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Abstract

The deconvolution of low-resolution time-of-flight data has numerous advantages

including the ability to extract additional information from the experimental data. We

augment the well-known Lucy-Richardson deconvolution algorithm by various Bayesian

prior distributions and show that a prior of second-differences of the signal outperforms

the standard Lucy-Richardson algorithm by accelerating the rate of convergence by a

factor of two and preserving the peak amplitude ratios of a larger fraction of the total

peaks. A stopping criterion and boosting mechanism is implemented to ensure that

these methods converge to the same final entropy and that local minima are avoided.

Improvement by a factor of two in mass resolution of the signal allowed more accurate

quantification of the spectra. The general method is demonstrated in this paper by

the deconvolution of fragmentation pathway peaks of the benzyltriphenylphosphonium

thermometer ion following femtosecond ultraviolet laser desorption.

Introduction
Mass spectrometry (MS) is practiced in various settings, including commercial applications
such as quality control1 and pharmacokinetics,2 as well as basic scientific investigations such
as proteomics3 and biological pathway analysis.4 While operation of mass spectrometers can
be regarded as a routine and high-throughput task, the correct interpretation of the spectra
requires a chemistry background and often ample experience. Recent interest in the detection
of biomarkers5–7 further underlines the significance of accurate and thorough interpretation of
mass spectrometric data. It has been demonstrated that it is possible to distinguish between
healthy and unhealthy domains of mammalia tissue sections when comparing their respective
mass spectrometric data.8–10 This opens up the possibility of compiling a mass spectrometric
database of biomarkers associated with recognized diseases for the identification of unhealthy
tissue.10–12 The ability to distinguish between these domains should permit the accurate
identification of critical boundaries using mass spectrometric imaging techniques.

When investigating an extensive mass range, the large amounts of acquired data present
an inescapable dilemma: one must either deal with very large raw data sets or else compress
the raw data by averaging. While compression is a simple and adequate solution for many
applications, there are cases where it destroys valuable information. A typical example would
be pulsed laser beam analyses within which it might be of interest to study the mass spectra
as a function of depth or shot number.13–16
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While it has always lurked in the background, the data compression dilemma has not
been acute in mass spectrometry so far, largely because investigations and results were either
qualitative in nature or couched in simple terms such as one-dimensional time-independent
data. As more complex measurements such as mass spectrometry imaging become feasible,
the negative effects of the trade-off between much larger data sets and information loss are
increasingly being felt. Each additional variable or differential quantity results in a significant
increase in the number of possible outcomes, resulting in low signal-to-noise ratios.

It is of course also possible to obtain good results by brute force long acquisition times, but
this may have other unintended consequences. As an example, more accurate measurements
could be obtained by the use of the minimum focal spot size of the laser beam to maximize
resolution in mapping the boundary between two domains. The resulting longer acquisition
time, however, is self-defeating because signal intensity drops in time due to the decreasing
number of ions available for sampling.17–20 It is common knowledge that the concentration of
the biomarkers of interest is usually orders of magnitude lower than that of the background,
closely related mass species in the surrounding tissue, which frequently includes species which
contribute to ion suppression and, therefore, hinder detection of these biomarkers.3,21,22

In a similar vein, mass spectrometry signals originating from a variety of ion sources are
generally not constant in time. These time variabilities introduce correlations and thereby
obscures the genuine average mass spectrum. For example, the intensity chromatographs of
liquid samples irradiated by laser pulses under atmospheric conditions are highly transient.
The fluctuating liquid interface is translated within the focal plane of the laser beam, which
produces the undesired outcome of fluctuations in the signal intensity measured by the mass
spectrometer.23 These fluctuations introduce the above-mentioned time correlation artifacts,
so that time averaging is inappropriate, at least until the appropriate time correlation scales
have been determined. Time-dependent mass spectroscopy has turned out to be much more
challenging than initially expected.

Faced with such complications, one could opt for shorter runs with less data. Shorter
acquisition times, however, make it harder to distinguish signal from noise and to disentangle
peaks. There is no escape from the dilemma. There is, however, a way to obtain quantitative
answers even when the data is sparse, multivariate and/or complex. Encountering the same
issues, fields such as particle physics and cosmology have increasingly applied the methods of
Bayesian inference with success.24–26 It hence seems natural to us to apply similar methods
to mass spectrometry images.

In this paper, we examine the application of Bayesian methods to time-of-flight mass
spectrometry data. Our two main objectives are to test the use of Bayesian deconvolution
to improve mass resolution of peaks and to evaluate the robustness of this framework. The
improved resolution of a deconvolved signal permits more quantitative statements regarding
the fragmentation pathway of a well-known thermometer ion upon femtosecond ultraviolet
desorption. Once the proposed deconvolution methods have been stress-tested in this simple
environment, they may be extended to assist in the decoupling of shot-to-shot phenomena.
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As a valuable candidate measurement to examine the potential applicability and value of
developing such a Bayesian framework, a fragmentation pathway study was selected, which
characterizes the internal energy transfer occurring between the matrix and the analyte ions
during the laser desorption. Although matrix-assisted laser desorption/ionization (MALDI)
is routinely used,27 the underlying ionization mechanisms are not adequately understood and
are therefore still recurrently investigated.28–30 Furthermore, since the internal energy of an
ion determines the potential fragmentation pathways, it is a useful property for characterizing
the softness of a given ionization mechanism.31–36 However, due to the specific nature of these
measurements, it is not experimentally desirable to increase the mass resolution by means of
implementing delayed ion extraction or an ion reflectron, since either of these interventions
would eliminate valuable quantitative information from the mass spectra.37–39 We, therefore,
used as a case study the linear mass spectra produced by internal energy transferred during
the desorption process to the benzyltriphenylphosphonium (BTP) thermometer ion.

The relevant experiments were performed on our in-house designed linear time-of-flight
mass spectrometer with a mass resolution of approximately 200 in the mass range of interest.
As this system has been discussed before,40 we sketch the relevant information only briefly.
The third harmonic (λ = 343 nm, τ = 190 fs) output pulses from a regeneratively amplified
Yb:KGW oscillator (Pharos SP1.5, Light Conversion, Vilnius, Lithuania) was used for sample
irradiation. Desorption was performed in the transmission geometry, after which the positive
ions were accelerated to the nominal kinetic energy of 5 keV in a static, two-stage extraction
region, supplemented by a 10 keV post-acceleration stage reaching the detector. Positive ions
were detected with a dual-stage chevron microchannel plate detector (F9890, Hamamatsu,
Bridgewater, USA). These ion signals were recorded by an 8-bit digitizer (DC211, Acquiris,
Plan-les-Ouates, Switzerland) operating at an 1 ns sampling rate. For all the data presented,
100 single-shot spectra were averaged before performing the deconvolution. The final results
were normalized relative to the 2,5-dihydroxybenzoic acid (DHB)41 matrix parent ion.

Methodology
In this section, we derive and discuss several Bayesian deconvolution methods for extracting
the underlying signal from low-resolution time-of-flight data. Our approach is based on the
well-established Lucy-Richardson deconvolution algorithm42,43 which we supplemented with
Bayesian prior distributions.

We show that a Gaussian prior based on the second-differences of the signal outperforms
the standard Lucy-Richardson algorithm in terms of preserving the peak amplitude ratios
for a larger fraction of the total number of peaks. To facilitate comparisons, a novel stopping
criterion is introduced which monitors the difference in the mean of the residuals, which in
combination with a boosting mechanism, ensures that the algorithm does not wind up in a
local minimum and that all of the methods converge to the same result.
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Linear deconvolution
From a statistics viewpoint, one-dimensional mass spectrometric data is represented as a set
of discrete counts nb, one for each m/z interval, channel or bin b where the joint intervals of
bins b = 1, 2, . . . , B cover the entire m/z interval. Barring other pertinent information, the
individual events counted in any bin during the acquisition are considered exchangeable;44
suggesting that the total bin counts nb follow a Poisson distribution

p(nb |λb) = e−λbλnb
b /nb! nb = 0, 1, 2, . . . ,∞ b = 1, 2, . . . , B, (1)

where for each bin the parameter λb > 0, which is proportional to the acquisition time period,
represents the true signal or expected value of counts in that bin. The vector n = {nb}Bb=1,
therefore, represents the time-averaged data of the experiment. Assuming that counts nb are
mutually independent, the joint probability of all counts given the parameters λ = {λb}Bb=1,
also termed the likelihood, is given by

p(n |λ) =
B∏
b=1

p(nb |λb). (2)

By assumption, the vector n is the sum of counts originating from underlying, but spec-
trally broadened, narrow peaks: each nb is the convolution of these narrow peak counts.
The task at hand is to reverse that convolution and to separate low-resolution data into
high-resolution peaks using deconvolution, using where possible other pertinent information
such as isotopic signatures or detector responses. The goal is to find a set of parameters
s∗ = {s∗

b}Bb=1 which represent the best amplitude approximations of a possible narrow un-
broadened peak for each bin b, interpreting any small s∗

b as background noise rather than
a true peak. Research on deconvolution with Poisson likelihoods started during the mid-
eighties after seminal papers by Shepp and Vardi 45 and by Geman and Geman 46 . A recent
review of the literature appears in Bertero et al. 47 and reviews focussed on astronomy in
Puetter et al. 26 and Starck et al. 48 Books dedicated to the subject are Hansen et al. 49 ,
Jansson 50 and Young et al. 51

Convolution and deconvolution are modelled as linear processes. Let sc be the true peak
amplitude in bin c and let A be the B×B square matrix whose components Abc constitute
the peak broadening contribution which sc makes to the data in nearby bins b. The matrix
A is generally termed the point spread function (PSF). The Poisson parameter in bin b, in
component and vector-matrix notation respectively, is then given by

λb =
∑
c

Abcsc or λ = As. (3)
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Provided that the PSF depends only on the separation between the bins b and c, the matrix
A becomes a Toeplitz matrix whose components depend only on the difference between the
row and column indices, Abc = Fb−c where F is some non-negative function, which we can
write somewhat ambiguously as Ab−c. The Poisson parameters can then be written as the
convolution equation

λb =
∑
c

Fb−c sc. (4)

In addition, if the point spread function has finite support (i.e. the number of neighbouring
bins c contributing to λb is finite), then the Toeplitz matrix A has a block-diagonal form.

Under these assumptions and limitations, the likelihood Eq. (2) can be rewritten as

p(n |A, s) =
∏
b

p(nb | (As)b) =
∏
b

e−(As)b (As)nb

b /nb! . (5)

Applying Stirling’s approximation log n! ' n log n−n to all counts nb, the negative logarithm
of the likelihood reduces to a variant of the Kullback-Leibler divergence,

L[s] = − log p(n |A, s) ' 1T (As− n) + nT log n

(As) , (6)

where 1T is a row vector of ones and for the notational simplicity we write nT logn/(As) ≡∑
b nb log[nb/(As)b], i.e. the division and the logarithm are taken pointwise. This variant of

the Kullback-Leibler divergence is called the I-divergence52 which is the consistent measure
for images and data which are non-negative. By enforcing the normalization of the matrix
1TA = 1T, as appropriate for convolutions, this expression simplifies to

L[s] = I[n |As] = 1T (s− n) + nT log n

As
. (7)

The I-divergence, or also called relative entropy, I[n |As], replaces the metric distance that
appears in the usual least-squares method and can be considered as the data fidelity term.
It is convex, non-negative and coercive on the non-negative orthant (the higher-dimensional
generalization of the octant), implying that a minimum exists which is global and unique.
The gradient and Hessian of the I-divergence are given by

∇I[n |As] = AT
(
1− n

As

)
, ∇2I[n |As] = ATdiag

(
n

(As)2

)
A. (8)
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Lucy-Richardson and Poisson algorithms
To solve the system of equations (8), the minimizer s∗ of the I-divergence must be determined.
The linear terms in the divergence imply that the solution must obey the constraint

∑
b

s∗
b =

∑
b

nb. (9)

Moreover, the logarithm necessarily also requires that s∗
b > 0 for all b. As the convolution is

a linear operation, perfect reconstruction of the data would, in general, require both negative
and positive parameter values, and this positivity condition, therefore, complicates matters
considerably. In effect, it forces minimizers of the I-divergence to be sparse, i.e. the solution
s∗ must lie near to the boundary of the non-negative orthant. This is called the checkerboard
effect 53 or night-sky reconstruction.54 If the underlying signal contains extended objects (i.e.
the object spans more than one bin), this will conflict with the sparsity precondition and the
algorithm should be stopped as soon as an appropriate solution is found. The algorithm is
therefore semi-convergent. The main challenge is that the likelihood does not contain all the
relevant information on what constitutes an image, and running it longer will only generate
less plausible configurations.

Up until this point, the algorithm has followed the generally assumed superiority of Lucy-
Richardson closely. To integrate it into a Bayesian framework, an appropriate prior for smust
be specified. Instead of maximizing just the likelihood, the task becomes the maximization
of the joint probability, which is the product of likelihood times source prior p(n, s) =
p(n |A, s) p(s), or equivalently minimization of the sum of the negative log likelihood and
log prior P [s] = − log p(s),

J [s] = L[s] + βP [s], (10)

where we have introduced a regularization parameter β which mediates the strength of the
likelihood relative to the prior. Conventionally, the regularization parameter is placed with
the prior instead of the likelihood.55 To solve the system iteratively, we apply the gradient
descent method in a general form,

s∗
j+1 = s∗

j − αf [s∗
j ]∇J [s∗

j ], (11)

where α is a relaxation factor, f [s∗
j ] is the Lagrange function that ensures the constraint and

∇J [s∗
j ] is the gradient. If α is chosen appropriately and f [s∗

j ] is a positive function within
the domain of s∗, each iteration will lower the I-divergence, and the process will converge.
To enforce the positivity constraint, we set f [s∗] = s∗ such that a system that starts from a
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positive solution will stay positive. It corresponds to performing the transform s = exp[t],
seeking a minimum in t and then transforming back to s. Inserting Eq. (8) gives

s∗
j+1 = s∗

j − αs∗
j

{
1− AT

(
n

As∗
j

)
+ β∇P [s∗

j ]
}
. (12)

Setting α = 1 and without a prior, we have the multiplicative form of the algorithm, which
is the standard Lucy-Richardson algorithm,

s∗
j+1 = s∗

jAT

(
n

As∗
j

)
. (13)

This multiplicative form explicitly enforces the positivity constraint and therefore reduces the
computational requirements of the algorithm significantly. Our own numerical investigation
has indicated this form has significant advantages over its competitors. The Lucy-Richardson
algorithm was introduced independently by Lucy42 and Richardson.43 It was rederived by
Sheppi and Verdi45 as an example of the Expectation-Maximization(EM) algorithm,56 which
is itself a specific case of the Majorization-Minization approach. To include the prior, we
need to split the gradient into positive and negative parts,

∇P [s∗] = u∗ − v∗, (14)

where u∗ ≥ 0 and v∗ ≥ 0 for all b. Rewriting the derivative equation as

s∗ (1 + βu∗) = s∗AT
(
n

As∗

)
+ βv∗ (15)

which can then be solved iteratively with

s∗
j+1 = s∗

j

{
AT

(
n

As∗
j

)
+ βv∗

j

}
/
(
1 + βu∗

j

)
. (16)

This algorithm is called the split-gradient method (SGM).57,58 The SGM in the multiplicative
form is not always convergent due to the influence of the prior. Should this happen, then the
regularization parameter β needs to be reduced such that the algorithm is more aligned with
the Lucy-Richardson algorithm.45 In summary, the following issues need to be addressed:

1. A stopping criterion is required for the semi-convergence of the algorithm.

2. A useful prior distribution corresponding to the type of solutions we prefer is required.
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3. The regularization parameter β must be adjusted so that the SGM is convergent.

Priors for the SGM
A computational simple prior distribution to consider is a Gaussian distribution55 with the
choice of an appropriate Toeplitz matrix Bj and a scale parameter Λ,

p(s |Λ,Bj) =
(

Λ
2π

)B/2
e−ΛsTBT

j Bjs/2. (17)

The possible matrices Bj, j = 0, 1, 2, 3, 4 reflect the underlying generic information as follows.
We may have generic knowledge that the prior distribution depends either on the signal itself,
or we may know that it depends on a discrete difference between signals, or even on higher-
order differences. The choice of B0 = 0 then reflects the desire to have no prior at all, while
dependence on the signal itself would motivate the usage of B1 = I, or if a constant function
is preferred, the first differences of the signal

B2 =



−1 1 0 0 0 0 . . . 0

0 −1 1 0 0 0 . . . 0
... . . . ...

0 . . . 0 0 0 −1 1 0

0 . . . 0 0 0 0 −1 1


. (18)

Choices to use higher-order signal differences are reflected in the corresponding second-order
difference matrix

B3 =



−1 2 −1 0 0 0 . . . 0

0 −1 2 −1 0 0 . . . 0
... . . . ...

0 . . . 0 0 −1 2 −1 0

0 . . . 0 0 0 −1 2 −1


, (19)
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or alternatively, even a third-order difference,

B4 =



1 −4 6 −4 1 0 . . . 0

0 1 −4 6 4 1 . . . 0
... . . . ...

0 . . . 1 −4 6 −4 1 0

0 . . . 0 1 −4 6 −4 1


. (20)

As indicated earlier, all these matrices are Toeplitz Matrices, which conveniently represent
the convolution operation. As the scale parameter Λ appears only in the prior, it need not
be a variable but can be replaced by its expectation value,

Λ∗ = B

1 + s∗BT
jBjs∗ , (21)

where B is the total number of bins or elements. The Λ∗ parameter can be computed on each
iteration and normalizes the prior contribution. The stopping criterion, which monitors the
difference in the mean of the residuals, and regularization parameter β are to be discussed
below. The residuals are defined as the difference between the reconstructed data using our
minimizers As∗ and the time-of-flight experimental data.

Gaussian algorithm
In order to investigate the effect of the underlying error distributions, we also implemented an
alternative approach by simply replacing the Poisson likelihood with a Gaussian distribution.
Following the same steps as in the Poisson case, we obtain an iteration prescription

s∗
j+1 = s∗

j

{(
ATn

ATAs∗
j

)
+ βv∗

j

}
/
(
1 + βu∗

j

)
. (22)

Without the prior, the algorithm is called the Image Space Reconstruction Algorithm (ISRA)
or Muller Algorithm, which was originally proposed by Daube-Witherspoon and Muehllehner59
and later analyzed by De Pierro60 and Titterington.61

10



Results and discussion

Experimental test case
We have applied split-gradient deconvolution methods to laser desorption mass spectrometry
time-of-flight data; the experimental setup has been described in Ref. 40. A representative
example of the spectra obtained when investigating a BTP fragmentation pathway is shown
in Figure 1; both the parent peaks of the BTP thermometer (m/z 353) and DHB matrix ions
(m/z 154) are pronounced. The BTP fragmentation signature is known to primarily consist
of the benzyl (m/z 91) and triphenylphosphine (m/z 262) ions.36 However, since femtosecond
pulses are used, the fragmentation is reduced such that these peaks are barely visible.40 The
soft nature of desorption with ultrashort pulses has been discussed elsewhere.35,36,40

Figure 1: Representative spectrum after averaging several single-shot spectra. Although the
parent peaks of the BTP thermometer (m/z 353) and the DHB matrix (m/z 154) ions stand
out, the benzyl (F1, m/z 91) and triphenylphosphine (F2, m/z 262) ions are barely visible.

The mass resolution is significantly improved using an appropriate deconvolution method,
as shown in Figure 2 for the standard Lucy-Richardson algorithm and a modification thereof
by applying the second-difference prior. The deconvolved signal facilitated a more quantita-
tive conclusion regarding the fragmentation pathway as it resulted in an improved resolution
and, therefore, enabled more peak-to-peak ratios to be defined. Of the five priors investigated
(B0 to B4), only the standard Lucy-Richardson algorithm (B0) and a second-differences prior
(B3) are discussed in this section since these two methods produced the best results. Both
of these methods deconvolved the data into the underlying signals while the peak amplitude
ratios are evidently preserved. However, the second-differences prior performed better than
Lucy-Richardson in deconvolving the underlying peak structures such as dehydroxylated
DHB. This superior performance was observed for the majority of peaks, especially for those
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having relatively small amplitudes such as triphenylphosphine. For both these methods, the
recovered spectra (not shown here) overlapped the data well, which signifies an appropriate
deconvolution since the deconvolved signal is capable of recovering the data.

The Lucy-Richardson algorithm is semi-convergent after an initial deconvolution period,
which suggests that further iterations will not substantially improve the likelihood while con-
tinuing to increase the sparsity of the solution. By adding the prior, the initial deconvolution
is guided closer to an appropriate solution which accelerates the convergence and, therefore,
also decreases the number of iterations that can introduce sparsity, thus preserving the peak
amplitudes ratios. As an illustrative example, Figure S1 (see supporting information) shows
two histograms comparing the respective preservation of the peak amplitude ratios, defined
as the relative difference between the signal and data. Even though these two distributions
have similar centroids, the distribution of the prior method is skewed towards the lower-end,
thereby indicating the better relative peak amplitude preservation. Subsequent studies will
investigate whether the isotopic distributions are equally well preserved.

Figure 2: Comparison spectra of DHB (m/z 154, right) and its dehydroxylated fragment (m/z
137, left) after deconvolution was performed using the standard Lucy-Richardson algorithm
(B0) and the Lucy-Richardson algorithm with the second-differences prior (B3).

Our immediate goal was to enhance confidence in our methods for accurately quantifying
ion fragmentation. However, given the low mass resolution (∼200), it was difficult to succeed
in doing this before deconvolution. As an example, examining the region following the DHB
parent ion, the isotopic distribution thereof can be approximated. Nevertheless, it is hard to
make a realistic statement regarding the hydrogen loss peaks (m/z 136 and 153) other than
inferring their possible existence. Likewise, very few conclusions can be drawn regarding the
dehydroxylated DHB fragment (m/z 137) other than to determine its peak intensity ratio
relative to the parent. At the minimum, the deconvolution appears to be successful in that
each of the peaks in Figure 2 are separated by single atomic mass units. The hydrogen loss
is supported by the H+ peak which is visible in Figure 1, which suggests that a fast ejection
of neutral hydrogen, followed by an ionisation step, is probably the responsible pathway.62–65
While similar pathways have been reported in previous studies when using ultrashort pulses,
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they could not be corroborated for these measurements before deconvolution was performed.
The benzyl fragment is still not clearly visible, suggesting that this fragment is suppressed,
while it is at this time possible to identify the triphenylphosphine fragment by using its mass
signature.32,33 When comparing the deconvolved signal to the data, Figure 3 illustrates that
the deconvolution facilitated an enhanced peak identification process because of an increase
in the mass resolution (∼500 at m/z 154). It is important to recognize that this improvement
is comparable in magnitude to that offered when using delayed ion extraction.38,39

Figure 3: Comparison spectra of the DHB (m/z 154, left) and its dehydroxylated fragment
(m/z 137, left), as well the triphenylphosphine (m/z 262, right) ion after deconvolution was
performed using the Lucy-Richardson algorithm with the second-differences prior.

Numerical challenges
We will briefly discuss our algorithm, its usage and arising challenges. It requires the user to
make choices regarding the peak shape, the prior distribution, the type of statistics applied,
either Poisson (Lucy-Richardson) or Gaussian (ISRA), and a stopping criterion. The choices
primarily depend on the spectra being considered. The effectiveness of these options is judged
by the speed of convergence and the quality of the recovered spectra. Here we discuss the
implementation of the algorithm and address these choices as they arise. The pseudocode
for the algorithm and its variables are discussed in the supporting information.

The primary input into the algorithm consists of the initial values for the signal in the
Signal vector and the data in the Data vector, which are equal in length. Other inputs are
two smaller vectors Prior and Peak which both represent convolution kernels, i.e. represen-
tations of the Toeplitz matrices A and B, which will be convolved with the Signal vector.
Signal is iteratively updated until the convergence criteria are satisfied, while Data, Peak
and Prior remain unchanged. The update depends on the convolution of the current Signal
with the Peak and Prior vectors. Peak was chosen as a symmetric second-order polynomial
since the results do not strongly depend on the peak shape, given that it is unimodal.
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While the convergence of the entropy S could be used as a stopping criterion, this proved
difficult to generalize since its behaviour depends strongly on the given prior. Fortunately, the
distribution of the residuals is discussed in the deconvolution literature, which asserts that,
for a meaningful reconstruction, the residuals should follow a Gaussian distribution centred
around zero.26 As an example, the distribution of residuals is shown in Figure 4(a) for the
second-differences prior. Since this distribution satisfies the above-mentioned requirements,
we decided to survey its behaviour to monitor the state of the deconvolution process. Our
stopping criterion requires that the difference in the mean of the residuals ∆ε must decrease
below a predefined tolerance εtol for a predefined number of iterations Nmax. In addition,
a constant-sign criterion is implemented due to the oscillation of the mean of the residuals ε
around zero (not shown here). Importantly, since the magnitude of the mean of the residuals
ε depends on the dataset and prior, it cannot be employed as a universal stopping criterion;
rather, the change ∆ε should be used. The number of additional iterations to perform once
the difference in the mean of the residuals has fallen below the threshold (and the oscillations
have levelled off) was empirically determined to be Nmax = 10. The respective convergence
behaviour of the standard Lucy-Richardson algorithm (B0) and the second-differences prior
(B3) are compared in Figure 4(b). We confirmed that these trends agree qualitatively with
the behaviour of the entropy convergence plots.

Figure 4: Residual distribution (left) for the second-differences prior discussed in Figure 2.
The difference in the mean of residuals ∆ε are also shown (right) for this prior and standard
Lucy-Richardson. The prior reaches the same level of difference ∆ε as Lucy-Richardson, but
in fewer iterations, which therefore preserves the quality of the reconstruction.

The differences in entropies ∆S will decrease upon approaching local and global minima.
Should this difference be below a defined tolerance ∆Stol, the strength of the prior is reduced
by using scaling the regularization parameter β with the amount β∆ smaller than unity. The
attenuation of the prior is akin to the boost mechanism introduced by Miroslav to dislodge the
solution out of a local minimum.66 Figure 5(b) indicates that the prior guides the algorithm
during the initial phase of the deconvolution since the influence of β is rather significant, but
it is increasingly suppressed by the boosting mechanism. Further, note that without such a

14



boosting mechanism, the Tikhonov regularization prior (B1) would have been permanently
stranded within the local minimum,67 as indicated by the stepping behaviour of the entropy
in Figure 5(a). Most importantly, this mechanism ensures that all the methods converge to
the same final entropy, thereby permitting a quantitative comparison of results as a function
of different priors for the given dataset, providing an additional reassurance that the selected
stopping criterion is indeed appropriate.

Figure 5: Convergence of the entropy (left) for the standard Lucy-Richardson algorithm
and the second-differences and Tikhonov regularization priors. During initial iterations the
influence of the prior (right) is large, but it is rapidly suppressed by the boost mechanism.

We emphasize, however, that inclusion of a prior is not beneficial by default. Relative to
the standard Lucy-Richardson algorithm, only the second-differences prior improved the rate
of convergence (152 versus 361 iterations). The Tikhonov regularization prior produced the
highest quality spectra in avoiding overfitting (spurious small peaks) and correctly identifying
most of the physically meaningful peaks, but at the expense of the slightly longer convergence
time than the Lucy-Richardson algorithm (379 versus 361 iterations). Both the first (B2) and
third-differences (B4) priors resulted in ill-defined peak shapes, which is not unexpected since
these priors discourage sharp features (dependence on signal differences) in the solution.

Although ion counting was performed, it was not known which error distribution would be
the most suitable for this data since the mass average is considered in this analysis. For that
reason, both Poisson and Gaussian error statistics were tested by using the Lucy-Richardson
and the ISRA algorithms respectively. As noted by others, and as also shown in Figure S2,
the Lucy-Richardson algorithm converges significantly faster (361 versus 1988 iterations)
while providing the superior deconvolution results (the ISRA algorithm is more susceptible
to introducing artifact peaks). Currently, it is not known whether this is due to the stopping
criterion, although the residual distributions appear to be qualitatively similar, or whether
this conclusion applies universally to these algorithms. Even though the results of not using
priors are shown, these characteristics were observed for all of the priors investigated. In
addition, preliminary results indicate that this observation also applies to single-shot spectra.
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Conclusions
We have demonstrated the advantages of deconvolving low-resolution mass spectrometry
data by using the well-established Lucy-Richardson algorithm both with and without priors.
Various priors were applied so as to extract a more meaningful signal from the experimental
data. For the data investigated in this analysis, it was shown that the Gaussian prior based
on the second-differences of the signal outperforms the standard Lucy-Richardson algorithm
as evidenced by an accelerated convergence and a preservation of a larger fraction of the peak
amplitudes ratios. A novel stopping criterion which monitors the difference in the mean of the
residuals was included to facilitate these comparisons, which in combination with a boosting
mechanism, ensures that the algorithm does not wind up in a local minimum and that all
of the methods reach the same result. The Image Space Reconstruction algorithm was also
studied, as it was not known initially whether Gaussian statistics might be more appropriate
for the experimental test data. However, as noted previously, Lucy-Richardson converges
faster and is less prone to overfitting. For all of the investigated methods, the improved
resolution of the deconvolved signal allowed a more precise statement to be made regarding
the fragmentation of the benzyltriphenylphosphonium thermometer ion upon femtosecond
desorption. Further studies will extend the framework introduced in this work to assist in
the interpretation and decoupling of MALDI shot-to-shot phenomena.
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Supporting Information Available
The algorithm requires the arrays Signal, Peak, Prior and Data, representing respectively
the initial signal, the peak and prior point spread functions (PSF), and the raw data. With
reference to algorithm 1, the ? operator returns the convolution of two arrays, mean() returns
the mean of the input array, sum() the total of an array, flip() reverses the elements of an
array, and the plus (+) and minus (−) subscripts returns an array containing only positive
or negative elements.

Algorithm 1 Split-gradient method
1: N ← 0; β ← 1.0; β∆ ← 0.9; εtol ← 10−9;Nmax ← 100; ∆Stol ← 0.01
2: (OldEntropy,Recon) = GetEntropy(Data, Signal, Peak)
3: εold = Mean(Data−Recon)
4: while N < Nmax do
5: Conv ← Signal ? Peak
6: Penalty ← Signal ? Prior
7: Λ← mean(1 + Penalty2)
8: Deriv ← (Data/Conv) ? Flip(Peak)
9: Penalty ← Penalty ? Flip(Prior)
10: Penalty+ ← (Penalty/Λ)+
11: Penalty− ← (Penalty/Λ)−
12: Signal← Signal × (Deriv − β × Penalty−)/(1 + β × Penalty+)
13: (NewEntropy,Recon)← GetEntropy(Data, Signal, Peak)
14: ∆S ← NewEntropy −OldEntropy
15: OldEntropy ← NewEntropy
16: εnew ←Mean(Recon−Data)
17: if ∆S < ∆Stol then
18: β = β × β∆
19: end if
20: if (εold × εnew < 0) ‖ ((εold − εnew) > εtol) then
21: N ← 0
22: else
23: N ← N + 1
24: end if
25: εold = εnew
26: end while
27: function GetEntropy(Data, Signal, Peak)
28: Recon← Signal ? Peak
29: Entropy ← data× log(data/recon)
30: Out← Sum(entropy + signal − data)
31: return (Out,Recon)
32: end function
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Figure S1: Histograms of the relative differences between the signal and data, with data being
the reference, for the Lucy-Richardson (left) and second-differences prior (right) algorithms.
Although these distributions have similar centroids, the prior distribution is skewed towards
the lower-end, which indicates a better amplitude preservation.

Figure S2: Change in the mean of the residuals (left) for the standard Lucy-Richardson and
Image Space Reconstruction algorithms. Also shown are the comparison spectra of the DHB
ion (m/z 154, right), clearly showing the introduced artifacts.
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