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Unlike theR4 and∇4R4 couplings, whose coefficients are Langlands–Eisenstein series of

the U-duality group, the coefficient E (d)

(0,1) of the∇6R4 interaction in the low-energy effec-

tive action of type II strings compactified on a torus T d belongs to a more general class

of automorphic functions, which satisfy Poisson rather than Laplace-type equations. In

earlier work [1], it was proposed that the exact coefficient is given by a two-loop integral

in exceptional field theory, with the full spectrum of mutually 1/2-BPS states running

in the loops, up to the addition of a particular Langlands–Eisenstein series. Here we

compute the weak coupling and large radius expansions of these automorphic functions

for any d. We find perfect agreement with perturbative string theory up to genus three,

along with non-perturbative corrections which have the expected form for 1/8-BPS in-

stantons and bound states of 1/2-BPS instantons and anti-instantons. The additional

Langlands–Eisenstein series arises from a subtle cancellation between the two-loop am-

plitude with 1/4-BPS states running in the loops, and the three-loop amplitude with

mutually 1/2-BPS states in the loops. For d = 4, the result is shown to coincide with an

alternative proposal [2] in terms of a covariantised genus-two string amplitude, due to

interesting identities between the Kawazumi–Zhang invariant of genus-two curves and

its tropical limit, and between double lattice sums for the particle and string multiplets,

which may be of independent mathematical interest.
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1 Introduction and summary

The scattering of massless excitations of type II superstrings compactified on a torus T d is de-

scribed at low energy by maximally supersymmetric supergravity in dimension D = 10−d. The

effective action consists of the classical supersymmetric two-derivative action plus an infinite

tower of cut-off dependent higher derivative interactions, which conspire to ensure ultraviolet

finiteness. The coefficients of these interactions are strongly constrained by non-perturbative du-

alities [3,4], which tie together perturbative and non-perturbative (instanton and anti-instanton)

contributions. Combined with the from supersymmetry, duality invariance sometimes allows one

to determine the exact coefficient of these interactions in terms of automorphic functions under

the U-duality group. Such results offer an invaluable window into the non-perturbative regime

of string theory, including the full spectrum of D-branes, membranes or supersymmetric black

holes, despite the absence of a first principle, non-perturbative formulation of string theory or

of its eleven-dimensional parent.

This programme has been pursued most extensively for four-graviton scattering, generalising

the celebrated lowest order result [5] in ten-dimensional type IIB string theory to lower dimension

D = 10 − d and to higher orders in the derivative expansion. Schematically, these effective

interactions take the form E (d)

(p,q)(φ)∇4p+6qR4, where p and q denote powers of the Mandelstam

invariants σ2 = s2+ t2 +u2 and σ3 = s3+ t3+ u3 of the external momenta in the corresponding

amplitude and R4 denotes the fourth order polynomial t8t8R4 in the Riemann tensor that

generalises the square of the Bel–Robinson tensor in D dimensions [6, 7]. The coordinates φ on

the classical moduli space MD = Ed+1/Kd+1 include the constant metric and gauge potentials

on T d, as well as the string coupling constant gD. At weak coupling gD → 0, E (d)

(p,q) admits an

asymptotic expansion of the form

E (d)

(p,q) = E (d),n.an.
(p,q) + g

2d+8p+12q−4
d−8

D

∞∑

h=0

g−2+2h
D E (d,h)

(p,q) +O(e−2π/gD) +O(e−2π/g2D) (1.1)

where E (d,h)

(p,q) arises at genus h in the perturbative string expansion, while the last two terms

originate from Euclidean D-branes and NS-branes wrapped on T d. The term E (d),n.an.
(p,q) is a non-
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analytic function of the string coupling gD, which arises in the process of translating from string

frame to Einstein frame [8]. U-duality requires that E (d)

(p,q) should be automorphic, i.e. invariant

under the left-action of an arithmetic subgroup Ed+1(Z) ⊂ Ed+1 on MD, while supersymmetry

imposes further differential constraints when 4p+ 6q < 8 (the so-called F-terms) [9–15].

At leading and subleading order, the coefficients E (d)

(0,0), E (d)

(1,0) are known exactly in all dimen-

sions D ≥ 3, in terms of a special type of automorphic functions known as Langlands–Eisenstein

series [16–23]:

E (d)

(0,0) =
d≥1

4πξ(d − 2)E
Ed+1
d−2
2

Λd+1
, E (d)

(1,0) =
d≥2
d6=4

8πξ(d− 3) ξ(d − 4)E
Ed+1
d−3
2

Λd
, (1.2)

where EG
sΛk

is the (regularised) Langlands–Eisenstein series associated to the maximal parabolic

subgroup Pk ⊂ G, in Langlands’ normalisation (in particular, EG
0Λk

= 1), and we denote by

ξ(s) = π−s/2Γ(s/2)ζ(s) the completed Riemann zeta function. Here and elsewhere in this work,

we denote by Λk the kth fundamental weight of the algebra g according to Bourbaki’s labelling1,

and Pk the associated maximal parabolic subgroup. We recall (see e.g. [24]) that maximal

parabolic Langlands–Eisenstein series are defined for Re(s) large enough as the Poincaré sum of

the canonical multiplicative character yk of Pk,
2

EG
sΛk

≡
∑

γ∈Pk(Z)\G(Z)

y−2s
k

∣∣∣
γ
=

1

2ζ(2s)

′∑

Q∈MG
Λk

Q×Q=0

G(Q,Q)−s , (1.3)

and admit a meromorphic continuation to the full complex s-plane. As exhibited in (1.3),

they can be written as a constrained sum over the lattice MG
Λk

transforming in the irreducible

representation R(Λk) of highest weight Λk,
3 of the K(G) invariant bilinear form G(Q,Q) raised

to the power minus s. For MEd+1

Λd+1
and MEd+1

Λ1
, the constrained lattice sum can be interpreted as a

sum over 1/2-BPS states in string theory, that correspond respectively to particles and strings

in R1,9−d with BPS mass MBPS(Q) = G(Q,Q)
1
2 [26], see Table 1.

The coefficients (1.2) satisfy tensorial homogeneous differential equations on MD, reflecting

the fact that they are only sensitive to 1/2- and 1/4-BPS instantons, respectively [12,13]. This

implies that they are related to unipotent automorphic representations attached to the minimal

and next-to-minimal nilpotent orbit, respectively. SupersymmetryWard identities and U-duality

determine uniquely the function E (d)

(0,0) in (1.2) for d ≥ 3 and E (d)

(1,0) for d ≥ 5, up to an overall

1 Note that in formulae which are valid for all d such as (1.2), we use the labelling associated to Ed+1 which

differs from the standard labelling for d ≤ 4 — for example the E5 labelling is
[

2
1 3 4 5

]

whereas the D5 labelling

is
[

4
1 2 3 5

]

.
2Here and elsewhere in the paper we denote by

∑
γ f(x)|γ the Poincaré sum over coset elements γ acting on

the seed function f by f(x)|γ = f(γ · x), where the action of γ on x is defined by the right action on the group

element g(x) as g(x)γ. A more precise definition of the yk will be given in Section 2.1.
3The constraint can be written in general as [25, (6.17)]

Qi ×Qj = καβT
αQi ⊗ T βQj + (1− (Λk,Λk))Qi ⊗Qj −Qj ⊗Qi = 0 ,

with καβ the Killing Cartan form and Tα the generators of the algebra g. The constraint selects those charges

Q ∈ R(Λk) whose symmetric square lies in R(2Λk). In practice, the projection of this constraint on the largest

irreducible submodule is usually sufficient to enforce Q×Q = 0.
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D d GD = Ed+1 MEd+1

Λd+1
MEd+1

Λ1
MEd+1

Λ6

10B 0 SL(2) ∅ 2 ∅
9 1 GL(2) 2(−3)⊕ 1(4) 2(1) ∅
8 2 SL(3)× SL(2) (3,2) (3,1) ∅
7 3 SL(5) 10 5 ∅
6 4 Spin(5, 5) 16 10 1

5 5 E6(6) 27 27 27

4 6 E7(7) 56 133 1539

3 7 E8(8) 248 3875 2450240

Table 1: U-duality group, particle multiplet (Λd+1) and string multiplet (Λ1); the constraints

on the particle and string multiplets are in Λ1 and Λ6, respectively.

coefficient. Using functional relations for Langlands–Eisenstein series, they can then be written

alternatively as

E (d)

(0,0) =
d≥3

2ζ(3)E
Ed+1
3
2
Λ1

, E (d)

(1,0) =
d≥5

ζ(5)E
Ed+1
5
2
Λ1

. (1.4)

Remarkably, for d = 1 in the small volume limit (or equivalently, for type IIB strings in

D = 10) these couplings can also be computed in eleven-dimensional supergravity compactified

on T 2 at one-loop and two-loop, respectively [27, 28]. For d ≥ 2 or for d = 1 at finite volume,

membrane and five-brane degrees of freedom become important, and can be incorporated using

the framework of exceptional field theory in dimension D = 10 − d [29]. In this formalism,

all 1/2-BPS charges in the ‘particle multiplet’ lattice MEd+1

Λd+1
are allowed to propagate in the

loops. At one-loop, this leads to a ‘constrained lattice sum’ which reproduces the Langlands–

Eisenstein series E (d)

(0,0) in (1.2) [1], while at two-loops it leads to a ‘double constrained lattice

sum’ which again reproduces the Langlands–Eisenstein series E (d)

(1,0) in (1.2) [1]. Note that the

one-loop amplitude in exceptional field theory also produces a divergent contribution to the

∇4R4 coupling, but this is cancelled by a one-loop amplitude with 1/4-BPS states running in

the loop [30].

At next-to-next-to-leading order, the coefficient E (d)

(0,1) of the ∇6R4 coupling is less well un-

derstood. It satisfies a set of inhomogeneous differential equations, the simplest one being the

Poisson equation [31,22,2]
(
∆Ed+1

− 6(4 − d)(d+ 4)

8− d

)
E (d)

(0,1) = −
(
E (d)

(0,0)

)2
+40 ζ(3) δd,4+

55

3
E (5)

(0,0) δd,5+
85

2π
E (6)

(1,0) δd,6 , (1.5)

where ∆Ed+1
is the Laplace–Beltrami operator for the Ed+1-invariant metric on MD, and the

right-hand side involves the square of the R4 coupling, plus anomalous terms when ultraviolet

logarithmic divergences appear in supergravity. As a result, the weak coupling expansion in-

cludes perturbative contributions up to genus three, 1/8-BPS instantons as well as bound states

of 1/2-BPS instantons and anti-instantons. The exact ∇6R4 coupling in ten-dimensional type

IIB string theory was obtained from a two-loop computation in eleven-dimensional supergrav-

ity compactified on a torus T 2 in [31] and further analysed using the differential equation (1.5)

in [32]. The same coupling inD = 9 andD = 8 was obtained using similar methods in [33,22,34],

albeit in a rather implicit way.
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An explicit proposal for the ∇6R4 coupling in D = 6 was given in [2], by upgrading the

genus-two string theory contribution [35,36] to an invariant function under the U-duality group

Spin(5, 5,Z),

E (4)

(0,1) = 8πR.N.

∫

F2

d6Ω

|Ω2|3
Γ5,5,2(Ω, φ)ϕKZ(Ω) +

16ζ(8)

189
ÊD5

4Λ5
. (1.6)

Here F2 is the standard fundamental domain of the action of the modular group Sp(4,Z) on the

Siegel upper-half plane and Γd,d,h(Ω, φ) is the genus-h Siegel–Narain theta series for the even

self-dual lattice IId,d of signature (d, d) given by

Γd,d,h(Ω) ≡
∑

qi∈IId,d
|Ω2|

d
2 e−πΩij

2 G(qi,qj)−πiΩij
1 (qi,qj) , (1.7)

where i runs from 1 to h, Ωij = Ωij
1 + iΩij

2 is a symmetric h × h matrix with positive imagi-

nary part. Furthermore, G is the symmetric SO(d, d) matrix parametrising the moduli space

SO(d, d)/(SO(d)×SO(d)), ϕKZ(Ω) is the Kawazumi–Zhang invariant [37,38] for the genus-two

curve with period matrix Ω and R.N. is a particular regularisation prescription for genus-two

modular integrals introduced in [39,40]. The ansatz (1.6) automatically satisfies the differential

constraint (1.5) and reproduces the known perturbative contributions up to genus three [2].

Moreover, its decompactification predicts the full SL(5,Z)-invariant ∇6R4 coupling in D = 7,

E (3)

(0,1) =
4π

3

∫

S+

d3Ω2

|Ω2|
1
2

′∑

Mi∈MA4

Λ1

e−πΩij
2 G(Mi,Mj) ϕtr

KZ(Ω2) +
5πζ(7)

189
E

SL(5)
7
2
Λ3

(1.8)

where G is the 5 × 5 unit-determinant positive definite symmetric matrix parametrising the

moduli space SL(5)/SO(5) in D = 7, the sum runs over pairs of non-zero vectors (M1,M2) in

the lattice MA4

Λ1

∼= Z5, and the integral runs over the ‘positive Schwinger space’

S+ =

{
Ω2 =

(
L1 + L3 L3

L3 L2 + L3

) ∣∣∣∣ L1, L2, L3 ∈ R+

}
. (1.9)

Finally, ϕtr
KZ(Ω2) is the supergravity (a.k.a tropical [41]) limit of the Kawazumi–Zhang invariant,

as computed in [36, §3.2]

ϕtr
KZ(Ω2) = lim

λ→+i∞
λ−1 ϕKZ(Ω1 + iλΩ2) =

π

6

(
L1 + L2 + L3 −

5L1L2L3

detΩ2

)
(1.10)

The result (1.8) has a structure similar to the two-loop supergravity amplitude studied in [28,31],

but the summation variables Mi transform as doublets of vectors of SL(5), corresponding to the

multiplet of string charges in D = 7, while the multiplet of particle charges in D = 7 as a 10 of

SL(5).

Coming back to the exceptional field theory approach [1], the one-loop contribution to the

∇6R4 coupling in exceptional field theory gives4

F (d)

(0,1) =
8π4

567
ξ(d+ 4)E

Ed+1
d+4
2

Λd+1,
. (1.11)

4 For d = 0 and d = 7, there is a single ∇6R4 invariant and F (d)

(0,1) vanishes. For d = 1, 2, F (d)

(0,1) are given in

(F.4), (F.8), respectively. For d = 3, 4, F (d)

(0,1) coincides with the second term in (1.8) and (1.6), respectively. The

function (1.11) is divergent at the given value of the parameter [1] and we consider instead its regularised version

defined in (1.30).
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while the two-loop contribution is

E (d),ExFT
(0,1) =

4π

3

∫

S+

d3Ω2

|Ω2|
6−d
2

′∑

Γ1,Γ2∈MEd+1

Λd+1

Γi×Γj=0

e−πG(Γi,Γj) ϕtr
KZ(Ω2) , (1.12)

where ϕtr
KZ(Ω2) now arises from the Symanzik polynomial of the two-loop supergravity amplitude

[42], as shown in [28]. G is the symmetric bilinear form on the representation of highest weight

Λd+1, depending on the moduli in MD. The sum runs over pairs Γ1,Γ2 of non-vanishing vectors

in the particle multiplet lattice MEd+1

Λd+1
, corresponding to the charges running in the two loops,

subject to the 1/2-BPS conditions Γi×Γj = 0 for i, j = 1, 2, where Γi×Γj denotes the projection

of the tensor product on the representation of highest weight Λ1, see footnote 3.

These two functions are associated to two distinct ∇6R4-type supersymmetry invariants for

1 ≤ d ≤ 6 (and d = 0 type IIA) [14]. In particular it was shown in [1] that (1.11) satisfies

not only the differential equation (1.5) for all d ≤ 6, but also the more constraining tensorial

equation (2.10) for d = 4, 5, 6, using differential properties of ϕtr
KZ and the lattice sum. This led

to the proposal that the total non-perturbative ∇6R4 coupling should be given by the sum of

these two contributions [1]

E (d)

(0,1) = E (d),ExFT
(0,1) + F (d)

(0,1) . (1.13)

One main aim of this work will be to check that this proposal does indeed produce the correct

weak coupling and large radius expansions, and that it agrees with the proposal (1.6) and (1.8)

in D = 6 and D = 7. Before addressing these expansions, a major task will be to provide a

proper definition of the integral (1.12), which is otherwise divergent.

Specifically, in this work we shall

1. give a mathematically precise definition of the formal integral (1.12) via dimensional reg-

ularisation;

2. demonstrate that (1.13) (suitably renormalised, cf. point 6 below) coincides with (1.6) for

D = 6, thanks to remarkable properties of double theta series associated to the particle

and string multiplet (Section 2) and of the Kawazumi–Zhang invariant and its tropical

limit (Section A);

3. generalise the string multiplet proposal (1.6) to other dimensions D ≥ 3 and show that it

formally5 agrees with (1.12);

4. extract the weak coupling expansion of (1.13) for D ≥ 4 (Section 3.2) and show agreement

with the perturbative corrections in string theory (Section 5.2);

5. extract the large radius limit of (1.13), reproducing the corresponding term in dimension

D + 1 along with the expected threshold contributions (Sections 5.3, and 5.4);

5To keep the length of this work within reasonable bounds, we refrain from describing the regularisation of

the string multiplet formula in arbitrary dimensions.
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6. obtain the complete Fourier expansions relative to the weak coupling and large radius limit

for D ≥ 5 (and part of it for D ≥ 3), including instanton-anti-instanton contributions and

the 1/8-BPS instanton measure for generic Fourier coefficients in D = 4 and D = 3

(Sections 3.3 and E.2) ;

7. analyse the two-loop amplitude with 1/4-BPS states running in one of the two loops, and

show that it cancels the divergence of the two-loop amplitude in exceptional field theory,

such that the total amplitude including both 1/2-BPS and 1/4-BPS states up to three

loops is finite and gives the exact string theory coupling (Section 5.1)

The upshot of this analysis is that the appropriately renormalised form of (1.13) reproduces

the expected perturbative amplitude in string theory, up to non-perturbative corrections that

have yet not been computed from first principles but take the expected form of D-instanton

corrections. Using similar methods, one could in principle also extract the constant terms with

respect to the other maximal parabolic subgroups, e.g. the one relevant to the limit where the

M-theory torus T d+1 decompactifies keeping its shape fixed, and hence characterise the behavior

at all cusps. Assuming that these constant terms also agree with predictions from M-theory,

one may then apply the the conjecture that the relevant U-duality groups do not admit cuspidal

automorphic representations attached to suitably small nilpotent orbits [43,44] to conclude that

(1.13), suitably renormalised, is indeed the full exact coupling in any dimension D ≥ 4.

In the remainder of this introduction, we summarise our main results in view of the points

above, leaving details of the derivation to the body of the paper.

Double lattice sums and regularised integrals

As stressed before, the integral (1.12) is divergent and requires regularisation. In analogy with

dimensional regularisation in QFT, it is natural to replace d → d + 2ǫ in the exponent of

|Ω2|, and define the integral as the value at ǫ = 0 after analytic continuation from the region

Re(ǫ) ≫ 0 where the integral converges. However, we expect the analytic continuation to have

a pole at ǫ = 0 when d = 4, 5, 6, which thus needs to be subtracted appropriately. In addition,

we expect that the exact ∇6R4 coupling also includes the three-loop contribution in exceptional

field theory as well as contributions from 1/4-BPS states that play the role of counterterms in

exceptional field theory [30]. As we show in Section 5.1, the one-loop contribution to ∇6R4 in

exceptional field theory is in fact cancelled by a one-loop diagram with 1/4-BPS states running

in the loop, just as in the case of ∇4R4, but the same contribution F (d)

(0,1) reappears at three

loops [30], as we shall review later.

For the purpose of discussing this regularisation, it will be useful to decompose the period

matrix of the two-loop graph as in [28,31,45],

Ω2 =

(
L1 + L3 L3

L3 L2 + L3

)
=

1

τ2V

(
1 τ1
τ1 |τ |2

)
, (1.14)

such that τ runs over six copies of the standard fundamental domain F = {τ ∈ H1, |τ | > 1, 0 <

τ1 <
1
2} for the action of PGL(2,Z) on the upper half planeH1, and set ϕtr

KZ(Ω2) =
π
6 |Ω2|1/2A(τ)
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where A(τ) is the modular function defined in the fundamendal domain F by

A(τ) =
|τ |2 − τ1 + 1

τ2
+

5τ1(τ1 − 1)(|τ |2 − τ1)

τ32
, (1.15)

and elsewhere by enforcing PGL(2,Z). This function belongs to the class of local modular

functions, which appear at all orders in the derivative expansion of the two-loop supergravity

amplitudes [45] (see [46] for the relation to genus-two string integrands). Rewriting the measure

d3Ω2/|Ω2|3 = 2V 2dV dτ1dτ2/τ
2
2 , the integral over V ∈ R+ can be performed easily, leading to a

modular integral over F ,

E (d),ExFT
(0,1) =

8π2

3

Γ(d− 2)

πd−2

∫

F

dτ1dτ2
τ22

A(τ)

′∑

Γ1,Γ2∈MEd+1

Λd+1

Γi×Γj=0

[
τ2

G(Γ1 + τΓ2,Γ1 + τ̄Γ2)

]d−2

(1.16)

The divergence of the integral (1.12) at V → ∞ is reflected in the non-convergence of the double

lattice sum in (1.16). We shall regularise the latter divergence by dimensional regularisation,

i.e. by replacing d → d+ 2ǫ in the exponent of |Ω2| appearing in the denominator of (1.12), or

equivalently in the exponent of the summand in (1.16). It is indeed apparent in (1.16) that the

sum will be absolutely convergent for Re (ǫ) large enough. In order to regulate divergences due

to collinear charges, i.e. pairs of charges such that Γi ∧ Γj = 0, we further introduce a cut-off6

τ2 < L on the domain F in the coordinates (1.14), and consider the integral

Id(φ, ǫ, L) = 8π

∫

R+×F(L)

d3Ω2

|Ω2|
6−d−2ǫ

2

ϕtr
KZ (Ω2) θ

Ed+1

Λd+1
(φ,Ω2) , (1.17)

where F(L) = F ∩ {τ2 < L}. Here, θEd+1

Λk
for k = 1, . . . d+1 denotes the ‘double theta series’ for

the lattice MEd+1

Λk
transforming in the representation with highest weight Λk,

θ
Ed+1

Λk
(φ,Ω2) =

′∑

Qi∈MEd+1

Λk

Qi×Qj=0

e−πΩij
2 G(Qi,Qj) . (1.18)

The integral (1.17) is absolutely convergent for Re ǫ sufficiently large. We shall argue that it

admits an analytic continuation to a meromorphic function of ǫ ∈ C, by relying on similar

analytic properties of the Langlands–Eisenstein series which arise in its constant terms and of

the functions appearing in its Fourier coefficients. The renormalised value will be defined as the

value at ǫ = 0, after subtracting a specific Eisenstein series canceling the poles that occur when

d = 4, 5, 6 [47].

These poles can be interpreted physically as ultraviolet divergences of the two-loop amplitude

in exceptional field theory; they should cancel in the full theory in which all states are allowed

to propagate in the loops. Indeed, we shall show that the sum of the contribution of 1/2-BPS

states (given by the above integral (1.16)) and 1/4-BPS states (which we compute separately in

Section 5.1) gives a finite answer. It will also become clear that the 1/4-BPS states’ contribution

6The cut-off L plays the same rôle as the infrared cut-off µ ∼ 1/
√
L introduced in [1,30].
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is needed to restore supersymmetryWard identities for d = 5. The remaining L-dependent terms

corresponds to infrared effects from the exchange of massless particles, which must cancel against

non-local terms in the 1PI effective action. The apparent ambiguity in the regularisation drops

out in the complete four-graviton amplitude. Since we shall not compute the full non-local

amplitude, we shall not keep track of the cutoff-dependent terms in the effective coupling E (d)

(0,1).

It would be interesting to fix these finite terms by analysing the full genus-two string amplitude.

Performing the integral (1.17) over V leads to the modular integral

Id(φ, ǫ, L) =
8π2

3

∫

F(L)

dτ1dτ2
τ22

A(τ) Ξ
Ed+1

Λd+1
(τ, φ, d − 2 + 2ǫ) (1.19)

where the ‘double Epstein series’ Ξ
Ed+1

Λk
is defined for any k = 1, . . . , d+1 and Re (r) sufficiently

large7 by

Ξ
Ed+1

Λk
(φ, τ, r) =

Γ(r)

πr

′∑

Qi∈MEd+1

Λk

Qi×Qj=0

[
τ2

G(Q1 + τQ2,Q1 + τ̄Q2)

]r
. (1.20)

Although we only analyse in detail the case k = d + 1 in this paper, it should be possible

to use similar methods to show that Ξ
Ed+1

Λk
(φ, τ, r) can generally be analytically continued to a

meromorphic function of r ∈ C for any fundamental weight Λk. We will use these Epstein series

outside the domain of convergence, with the understanding that they are defined by analytic

continuation.

Equivalence of particle and string multiplet formulae

The proof of the equivalence of the exceptional field theory computation (1.13) and the covari-

antised string theory answer (1.6) rests on two main claims. The first is a remarkable property

of the Kawazumi–Zhang invariant ϕKZ, namely that it coincides with the Poincaré series seeded

by its tropical limit

ϕKZ(Ω) = lim
ǫ→0


 ∑

γ∈(GL(2,Z)⋉Z3)\Sp(4,Z)

(
|Ω2|ǫ ϕtr

KZ(Ω2)
) ∣∣∣

γ


 , (1.21)

where the limit ǫ → 0 is to be taken after analytic continuation from the region Re ǫ > 5
2

where the sum converges. Using the theta lift representation of ϕKZ established in [48], we trace

the relation (1.21) to a similar property (Eq. (A.16) of Appendix A) relating genus-one Siegel–

Narain theta series for lattices of signature (3, 2) and (2, 1). Inserting (1.21) inside the genus-two

modular integral in (1.6) and unfolding the integration domain, one immediately arrives at

8πR.N.

∫

F2

d6Ω

|Ω2|3
Γ5,5,2 ϕKZ =

4π

3
R.N.

∫

S+

d3Ω2

|Ω2|1/2
′∑

Q1,Q2∈MD5

Λ1

(Qi,Qj)=0

e−πΩij
2 G(Qi,Qj) ϕtr

KZ(Ω2) , (1.22)

7For the particle multiplet k = d + 1, we shall argue that ΞEd+1

Λd+1
(τ, φ, r) converges for Re r > 4, 6, 9, 29

2
for

d = 4, 5, 6, 7, respectively; for the string multiplet k = 1, that Ξ
Ed+1

Λ1
(τ, φ, r′) converges for Re r′ > 4, 6, 17

2
, 23

2
.
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where Qi runs over pairs of vectors in the even self-dual lattice MD5

Λ1

∼= II5,5 of SO(5, 5), which

are null and mutually orthogonal.

In order to match (1.22) with (1.12) for D = 6, which involves a sum over pairs of spinors

under Spin(5, 5), we invoke the special case d = 4 of a second remarkable property, namely

Γ(d− 2)

πd−2

′∑

Γ1,Γ2∈MEd+1

Λd+1

Γi×Γj=0

[
τ2

G(Γ1 + τΓ2,Γ1 + τ̄Γ2)

]d−2

=
d≥3

Γ(3)

π3

′∑

Q1,Q2∈MEd+1

Λ1

Qi×Qj=0

[
τ2

G(Q1 + τQ2,Q1 + τ̄Q2)

]3

(1.23)

where Γi runs over pairs of vectors in the particle multiplet (the spinor for D = 6), while Qi runs

over pairs of vectors in the string multiplet (the vector for D = 6). As in (1.12), Γi×Γj denotes

the projection of the product on the representation of highest weight Λ1, while Qi ×Qj denotes

the projection of the product on the representation of highest weight Λ6, which is trivial for d < 4

and understood as a singlet for d = 4 (see the last column in Table 1). While both sides of (1.23)

are in general divergent, the identity should be understood as a statement about the analytic

continuation of the sums Ξ
Ed+1

Λd+1
(φ, τ, r) and Ξ

Ed+1

Λ1
(φ, τ, r′) defined in (1.20) as (r, r′) → (d−2, 3).

We do not expect that a similar relation holds for generic values of (r, r′). When the analytic

continuations happen to have a pole at the required value (r, r′) → (d − 2, 3), we shall argue

that the equality (1.23) still holds for appropriately renormalised expressions.

In order to justify this claim, we shall show in Section 2 that the integral of both sides

of (1.23) against SL(2,Z) Eisenstein series and cusp forms agree, thanks to Langlands’ functional

equation for Eisenstein series of Ed+1. This can be viewed as a spectral justification of the

claim (1.23). Identities similar to (1.23) for double lattice sums associated to vector and spinor

representations of orthogonal groups are also established using similar methods in Section 2.8.

Formally inserting (1.23) into (1.22) and restoring the integral over V , we obtain the first

term in (1.13), hinting at the equivalence of the two proposals for D = 6. This equivalence

can be established more rigorously after regularising both (1.22) and (1.23). Conversely, we can

insert (1.23) inside (1.16), and obtain an alternative representation of the two-loop amplitude

(1.12) involving a sum over pairs of 1/2-BPS string charges,

E (d),ExFT
(0,1) =

d≥3

8π2

3

∫

F

dτ1dτ2
τ22

A(τ)

′∑

Q1,Q2∈MEd+1

Λ1

Q×Q=0

[
τ2

G(Q1 + τQ2,Q1 + τ̄Q2)

]3

=
4π

3

∫

S+

d3Ω2

|Ω2|1/2
ϕtr
KZ(Ω2)

′∑

Q1,Q2∈MEd+1

Λ1

Qi×Qj=0

e−πΩij
2 G(Qi,Qj) . (1.24)

For d = 4 we recover (1.22), for d = 3 (1.8); for d = 1 (and d = 0 type IIB) the constraint

Qi × Qj = 0 is trivially satisfied and the r.h.s. of (1.24) reproduces the two-loop supergravity

integral of [31]. Note however that the first equality (1.24) only holds for d ≥ 3. For example, for

d = 1 the constraint Γi×Γj = 0 admits two independent solutions, and the sum over Γi ∈ Z2+1

splits into the sum over eleven-dimensional supergravity Kaluza–Klein momenta on T 2, which
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is equal to the right-hand-side of (1.24), along with an additional sum over M2 branes wrapping

T 2 which has no analogue on the string multiplet side.

Finally, as a by-product of this analysis, we obtain two alternative representations of E (d),ExFT
(0,1)

as Poincaré series for the parabolic subgroups Pd and P3 of Ed+1, whose seed involves a special

function Ãs on the Poincaré upper half-plane,8

E (d),ExFT
(0,1) =

d≥2

8π2

3

∑

γ∈Pd+1\Ed+1

[
y2−d
d Ã d−2

2
(U)
] ∣∣∣

γ
=
d≥3

8π2

3

∑

γ∈P3\Ed+1

[
y−3
3 Ã 3

2
(U)
] ∣∣∣

γ
. (1.25)

The function Ãs, defined in (2.43) below, satisfies the differential equation (2.44). For s =

3/2, it coincides (up to the overall factor 8π2

3 in (1.25)) with the exact ∇6R4 coupling in ten-

dimensional type IIB string theory considered in [31, 32]. Thus, the second equation in (1.25)

can be summarised by saying that the exact ∇6R4 coupling in D dimensions is the sum of

the covariantisation of the S-duality invariant coupling in D = 10 under U-duality and the

homogeneous solution F (d)

(0,1) in (1.11), which is separately U-duality invariant. Unfortunately,

while conceptually pleasing, the identities (1.25) do not seem to be convenient for obtaining

asymptotic expansions.

Weak coupling expansion

In Section 3 we compute the asymptotic expansion of (1.16) at weak coupling by generalising

techniques introduced in [1,50], whereby the constraints Qi×Qj = 0 are solved step by step for

a suitable graded decomposition of Ed+1 which keeps T-duality manifest. Using this method,

we find the expected perturbative contributions, up to instanton corrections:

E (d),ExFT
(0,1) = g

2d+8
d−8

D

(2ζ(3)2
3g2D

+
4πζ(3)

3
ξ(d−2)EDd

d−2
2

Λ1
+g2

D
E (d,2)

(0,1)+
4ζ(6)

27
g4
D
ÊDd

3Λd−1
+O(e−1/gD)

)
(1.26)

Here, the first term reproduces the tree-level contribution, the second term and fourth term

reproduce part of the genus one (3.2) and genus three (3.4) contribution (the second part com-

ing from the homogeneous solution (1.11) while the third term reproduces the full genus-two

contribution (3.3), involving the Kawazumi–Zhang invariant ϕKZ. This fact relies on the key

equality (1.21) between ϕKZ and the Poincaré series seeded by its tropical limit ϕtr
KZ.

We are also able to extract the contributions to the constant term from bound states of

instantons and anti-instantons for any d ≤ 6. For d = 0, our approach provides a powerful

computational method, alternative to the one used in [31], which reproduces the results found

in [32] by integrating the differential equation.

Our method also allows us to analyse the non-zero Fourier modes of E (d),ExFT
(0,1) that correspond

to contributions to the scattering amplitude in the background of D-brane or NS-brane instan-

tons. In Section 3.3 we express the D-instanton contribution in terms of nested orbit sums.

The result is complete for E5 = D5 = Spin(5, 5), we argue that it is also complete for E6 and

we compute the generic Fourier coefficients (3.89) for E7. The generic Fourier coefficients in

8Another proposal for E (3)
(0,1) was given in [49], based on a Poincaré sum over P1\SL(5), which can be rewritten

as a single lattice sum. In contrast, the double lattice sum in (1.8) can be rewritten as a Poincaré sum over

P2\SL(5), see (1.25) below.
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d = 6 are particularly interesting because they are expected to be proportional to the helicity

supertrace Ω14 counting 1/8-BPS D-brane bound states. We find agreement with [51–53] for

the simplest D-brane configurations, but further analysis is required to understand the general

case.

Large radius/decompactification expansion

In Section 4 we study in the large radius limit using similar methods and obtain the expected

expansion [22,2]

E (d),ExFT
(0,1) = R

12
8−d

[
E (d−1),ExFT
(0,1) +

5

π
ξ(d− 6)Rd−7 E (d−1)

(1,0) +
2π

3
ξ(d− 2)Rd−3 E (d−1)

(0,0) (1.27)

+
20π

3
ξ(6)ξ(d + 4)Rd+3 +

16π2[ξ(d− 2)]2

(d+ 1)(6− d)
R2d−6 +O(e−1/R)

]
.

where R is the radius measured in D-dimensional Planck units. In this formula we recognise the

expected decompactification of the ∇6R4 term on T d to the one on T d−1 along with threshold

effects coming from the∇4R4 and R4 interactions, as well as pure powers of the decompactifying

radius R coming from one-loop and two-loop threshold effects in supergravity.

Our method also allows us to analyse the non-zero Fourier modes of E (d),ExFT
(0,1) , which can

now be interpreted as instanton effects from Euclidean black holes wrapping the Euclidean time

circle. The result is complete for E5 = Spin(5, 5) and E6, we argue that it is also complete for

E7 and we compute the generic abelian Fourier coefficients for E8 in Appendix E. The generic

abelian Fourier coefficients in d = 7 are also particularly interesting because they are expected to

be proportional to the helicity supertrace counting 1/8-BPS black holes. We do find agreement

with [51–53] for the simplest black hole charge configurations, but further analysis is required

to understand the general case.

1/4-BPS contributions and renormalised function

The couplings derived from the two-loop exceptional field theory calculation alone diverge in

dimension d = 4, 5, 6 whereas the full string theory amplitude is supposed to be finite. This

discrepancy can be traced back to the fact that in exceptional field theory only 1/2-BPS states

are allowed to propagate in the loops. However, the full theory also involves 1/4- and 1/8-BPS

states as well as non-BPS states. For specific BPS protected couplings such as ∇6R4, one may

hope that only 1/2- and 1/4-BPS states contribute at two-loop. Indeed, the perturbative genus-

two ∇6R4 coupling in string theory [35,36] exhibits precisely such contributions. The result of

our analysis shows that the contributions from 1/2- and 1/4-BPS states up to three-loop indeed

reproduces the exact low energy effective action up to ∇6R4, leading to the conclusion that

1/8-BPS states do not contribute to this coupling.

A similar issue was already encountered in [30] in the context of the ∇4R4 coupling where

both 1/2- and 1/4-BPS states happen to contribute. The contribution of the latter was inferred

in [30] by taking the perturbative one-loop string calculation, extracting the contribution of

perturbative 1/4-BPS states, and covariantising this result under U-duality so as to obtain

the contribution of the full non-perturbative spectrum of 1/4-BPS states. Following the same
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strategy for ∇6R4, we find that the two-loop amplitude with 1/4-BPS charges running in the

loops is given by a similar integral as in (1.12), where ϕtr
KZ(Ω2) is replaced by −E

SL(2)
−3Λ1

(τ)/V in

the variables (1.14). Combining this with the exceptional field theory result, we get

E (d)2-loop
(0,1) =

4π

3

∫

S+

d3Ω2

|Ω2|
6−d−2ǫ

2

(
ϕtr
KZ − π

36

E
SL(2)
−3Λ1

(τ)

V

)
θ
Ed+1

Λd+1
(φ,Ω2) . (1.28)

We will give strong evidence that this expression has a finite limit as ǫ → 0 for all values of d.

At three-loops, the structure of the perturbative genus-three superstring amplitude [54] suggests

that only 1/2-BPS states run in the loop. The resulting three-loop contribution in exceptional

field theory [30] produces the sum of two Eisenstein series (5.18), one of which formally cancels

the 1/4-BPS contribution in (1.28), while the other reproduces the contribution (1.11)

E (d)3-loop
(0,1) =

π2

27

∫

S+

d3Ω2

|Ω2|
6−d
2

E
SL(2)
−(3+2ǫ)Λ1

(τ)

V
θ
Ed+1

Λd+1
(φ,Ω2) +

8π4

567
ξ(d+ 4 + 2ǫ)E

Ed+1
d+4+2ǫ

2
Λd+1

. (1.29)

The regularised Eisenstein series (1.11) is defined by

F̂ (d)

(0,1) =
8π4

567
ξ(d+ 4 + 2ǫ)E

Ed+1
d+4+2ǫ

2
Λd+1

∣∣∣
ǫ0

=
8π4

567
ξ(d+ 4) Ê

Ed+1
d+4
2

Λd+1
, (1.30)

where |ǫ0 denotes the zero-th order term in the Laurent series in ǫ, which amounts to a minimal

subtraction prescription. According to the discussion below (1.18), we shall not keep track of the

finite terms proportional to the residue at the pole, which is similar to the difference between

minimal substraction (MS) or modified minimal subtraction (MS) regularisation schemes in

quantum field theory. We shall use the hat notation for similar zero-th order terms of any

Eisenstein series throughout this work.

Although the two functions in (1.29) satisfy the same Ed+1 invariant differential equation

(up to inhomogeneous terms), they do not satisfy the same differential equations [14] and corre-

spond mathematically to distinct automorphic representations [47]. Physically this means that

instantons with generic charges in a given limit may contribute to one function and not to the

other. In particular F̂ (6)

(0,1) admits contribution from generic Euclidean black holes instantons in

the decompactification limit whereas the first three-loop term in (1.29) and the two functions

in (1.28) do not, while these latter receive corrections from generic D-brane instantons in the

weak-coupling limit whereas F̂ (6)

(0,1) does not. It is therefore more natural to combine the first

component of (1.29) with the 2-loop contribution (1.28) to define the renormalised coupling

Ê (d),ExFT
(0,1) = E (d),ExFT

(0,1),ǫ

∣∣∣
ǫ0

as the finite part of

E (d),ExFT
(0,1),ǫ =

4π

3

∫

S+

d3Ω2

|Ω2|
6−d
2

(
|Ω2|ǫϕtr

KZ − π

36

E
SL(2)
−3Λ1

(τ)

V 1+2ǫ
+

π

36

E
SL(2)
−(3+2ǫ)Λ1

(τ)

V

)
θ
Ed+1

Λd+1
(φ,Ω2) (1.31)

as ǫ → 0. The two additional terms cancel each others for d ≤ 3 and we shall see that this func-

tion has the correct behaviour in d = 4, 5, 6, 7. In d = 4, 5, 6, these contributions are individually

divergent, but the total result is well-defined and satisfies all expected weak coupling and de-

compactification limits. The sum of (1.31) and (1.30) defines the complete non-perturbative

function

E (d)

(0,1) = Ê (d),ExFT
(0,1) + F̂ (d)

(0,1) , (1.32)
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which gives a precise definition to the formal formula (1.13).

Outline

The remainder of this work is organised as follows. In Section 2 we establish the central iden-

tity (1.23) that relates the double lattice sums in the string and particle multiplets to show

the equivalence (1.22) between the particle and string multiplet representations of the ∇6R4

coupling E (d)

(0,1). In Sections 3 and 4, we analyse the weak string coupling and single circle decom-

pactification limits of E (d)

(0,1), respectively. In particular, we compute the corresponding Fourier

expansion of Id(φ, ǫ, L) defined in (1.17), and find that it is a meromorphic function of ǫ. In

Section 5, we discuss in detail the renormalisation of the function E (d)

(0,1) due to the contribution

of 1/4-BPS states at two-loop order and show that their contribution cancels the divergences

coming from the 1/2-BPS sector, leading to the well-defined total result (1.32). Several appen-

dices contain additional technical details. In Appendix A, we present evidence for (1.21) that

expresses the Kawazumi–Zhang invariant as a Poincaré series seeded by its tropical limit while

Appendices B–D discuss certain integrals and auxiliary Fourier expansions that are used in the

main body of the paper. Most of our calculations apply to 4 ≤ D ≤ 8. Appendix E contains

details for the special case of D = 3 with U-duality group E8 that are also relevant to 1/8-BPS

black holes and Appendix F summarises the cases D ≥ 8.

2 From particle to string multiplet

In this section, we give very strong evidence for the identity (1.23) relating double Epstein sums

in the particle and string multiplets of Ed+1. This is done by first including arbitrary parameters

(r, r′) on either sides to obtain convergent expressions, and analytically continuing to the desired

values (r, r′) → (d − 2, 3) at the end. In Sections 2.1 and 2.2, we show that both sides satisfy

the same differential equations invariant under SL(2) × Ed+1. The representation-theoretic

origin of the differential equations is discussed in Section 2.3. In the remaining subsections, we

provide a spectral argument for (1.23) by computing the integral of both sides against Maaß

cusp forms and Eisenstein series of SL(2,Z), and showing that the two results are equal by

virtue of Langlands’ functional relation.

2.1 Laplace identities

We first establish that the lattice sum (1.20) in the particle multiplet representation satisfies

[
∆Ed+1

−∆τ −
r[(d− 10)r − 20 + 18d − d2]

d− 8

]
Ξ
Ed+1

Λd+1
(φ, τ, r) = 0 , (2.1)

where ∆Ed+1
is the Laplace operator on M = Ed+1/Kd+1, and ∆τ = τ22 (∂

2
τ1 + ∂2

τ2) is the SL(2)

Laplace operator on the upper-half plane. To prove this, we proceed as in [1] and write the sum

over doublets of charges Γ1,Γ2 such that Γi × Γj = 0 as a Poincaré sum over Pd\Ed+1, where

Pd is the maximal parabolic subgroup with Levi subgroup GL(2)×Ed−1. Under this subgroup,
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the particle multiplet decomposes as [1, (4.28)] 9

MEd+1

Λd+1

∼= (2,1)(10−d) ⊕ (1,MEd−1

Λd−1
)(2) ⊕ (2,MEd−1

Λ1
)(d−6) ⊕ . . . (2.2)

corresponding to the various charges arises upon compactifying from dimension D + 2 = 8 − d

down toD = 10−d on a torus T 2: the Kaluza–Klein charges on T 2, particle charges in dimension

D + 2, strings in dimension D + 2 wrapped on a circle in T 2, while the dots correspond to

membranes wrapped on T 2 and Kaluza–Klein monopoles. The superscripts in (2.2) denote the

scaling with respect to the GL(1) ⊂ GL(2) in a convenient convention.

Using Ed+1, one can always rotate two vectors Γ1,Γ2 into the top degree space (2,1)(10−d),

thereby allowing a rewriting of (1.20) as

πr

Γ(r)
Ξ
Ed+1

Λd+1
(φ, τ, r) =

∑

γ∈Pd\Ed+1




∑

M∈Z2×2

detM 6=0

[
τ2U2 y

−1
d

|(1, τ)M(1, U)|2 + 2τ2U2 detM

]r



∣∣∣∣∣∣∣∣
γ

+
∑

γ∈Pd+1\Ed+1




′∑

(m1,m2)∈Z2

[
τ2

|m1τ +m2|2y 2
d+1

]r

∣∣∣∣∣∣
γ

(2.3)

corresponding to non-collinear and collinear pairs of vectors, respectively, and where yk is the

multiplicative character for the parabolic subgroup Pk, normalised 10 such that the Langlands–

Eisenstein series is EG
sΛk

=
∑

γ∈Pk\G y−2s
k |γ . Note that the second term can be viewed as the

contribution of matrices M with detM = 0 in the first sum; moreover, it is easily recognised as

ζ(2r)E
SL(2)
rΛ1

(τ)E
Ed+1

rΛd+1
.

Next, we use the fact that upon acting on functions depending only on the GL(2)/U(1) factor

parametrised by U = U1 + iU2 ∈ H1 and yd, the Laplacian on Ed+1 reduces to to [1, (4.65)]

∆Ed+1
=

1

(8− d)
yd∂yd

(
(10− d)yd∂yd + (20 + d(d− 18))

)
+∆U . (2.4)

Acting on the seed in the first term on right-hand side of (2.3) immediately leads to (2.1). The

same is true using y 2
d+1 = ydU

−1
2 for the sum in the second line of (2.3), which morally extends

the sum on the first line to all non-zero matrices M , thus establishing (2.1).

Similarly, for any 4 ≤ d ≤ 7, we claim that the lattice sum in the string multiplet satisfies
[
∆Ed+1

−∆τ −
dr′(2d− 1− r′)

d− 8

]
Ξ
Ed+1

Λ1
(φ, τ, r′) = 0 . (2.5)

9For d = 5, 6, 7, this follows from embedding GL(2) × Ed−1 in a dual pair inside Ed+1,

E6 ⊃ SL(2) × SL(6) : 27 ∼= (2,6)⊕ (1,15)

E7 ⊃ SL(2) × Spin(6, 6) : 56 ∼= (1,32)⊕ (2, 12)

E8 ⊃ SL(3)× E6 : 248 ∼= (8, 1) ⊕ (1, 78)⊕ (3,27)⊕ (3,27)

10The normalisation of the character is defined such that the action of the Cartan torus element on the lowest

weight representation Λk is normalised to yk. In other words, we write the torus element as exp(−∑
i log(yi)hi),

where the hi are the canonical Chevalley generators that need to be evaluated in the lowest weight representation.

For example for SL(2) this leads to the matrix diag(y1, y
−1
1 ).
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To establish this, we proceed as before and write the constrained lattice sum as a Poincaré sum

over P3\Ed+1, where P3 is the maximal parabolic subgroup with Levi factor GL(2) × SL(d).

Under this subgroup, the string multiplet decomposes as11

MEd+1

Λ1

∼= (2,1)(1) ⊕ (1,∧2V )(
2d−8

d
) ⊕ (2,∧4V )(

3d−16
d

) ⊕ (1, V ⊗ ∧5V )(
4d−24

d
) ⊕ . . . , (2.6)

corresponding to the various string charges appearing in the large volume limit of type IIB string

theory compactified on T d: (p, q) strings, D3-branes, (p, q) 5-branes, and Kaluza–Klein, with

V = Zd. Using Ed+1, one can always rotate any pair of vectors Q1,Q2 into the top degree space

(2,1)(1), obtaining

πr′

Γ(r′)
Ξ
Ed+1

Λ1
(φ, τ, r′) =

∑

γ∈P3\Ed+1




∑

M∈Z2×2

detM 6=0

[
τ2U2y

−1
3

|(1, τ)M(1, u)|2 + 2τ2U2 detM

]r′



∣∣∣∣∣∣∣∣
γ

+
∑

γ∈P1\Ed+1




′∑

(m1,m2)∈Z2

[
τ2

|m1τ +m2|2y 2
1

]r′


∣∣∣∣∣∣
γ

. (2.7)

We then use the fact that the Laplacian on Ed+1 acting on functions depending only on the

GL(2)/U(1) factor reduces to

∆Ed+1
=

d

8− d

(
y3∂y3 + 2d− 1

)
y3∂y3 +∆U . (2.8)

Acting with this operator on the seed terms in (2.7) establishes (2.5). For d = 5, the two

equations (2.7) and (2.3) are of course identical since the particle and string multiplets 27 and

27 are related by conjugation.

For r = d− 2, r′ = 3, the two eigenvalues in (2.1) and (2.5) agree and the two lattice sums

satisfy the differential equation
[
∆Ed+1

−∆τ +
6d(d − 2)

8− d

]
ΞEd+1 = 0 , (2.9)

where ΞEd+1 stands for either the string multiplet expression Ξ
Ed+1

Λ1
or the particle multiplet

expression Ξ
Ed+1

Λd+1
.

2.2 Tensorial differential equations

For the same values (r, r′) = (d − 2, 3), it turns out that the two lattice sums satisfy a much

stronger system of differential equations beyond the Laplace equation (2.9). This equation is

given compactly for d = 4, 5, 6 as
[
TαT βT γDαDβDγ −

1

4
TαDα

(
∆τ + 6d− 6

d+ 8

8− d

)]
ΞEd+1 = 0 , (2.10)

11For d = 6, 7, this follows by embedding GL(2)× SL(d) inside a dual pair,

E7 ⊃ SL(3)× SL(6) : 133 = (8,1)⊕ (1,35)⊕ (3, 15)⊕ (3,15)

E8 ⊃ SL(2) × E7 : 3875 = (1,1539) + (3,133) + (2,56) + (2,912) + (1,1)
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where Tα are the generators of Ed+1 written in the highest weight representation R(Λd+1) and

Dα = Vα
M (∂M +ωM) the covariant derivative in tangent frame, where Vα

M denotes the inverse

vielbein on the Riemannian symmetric space Ed+1/K(Ed+1) and ωM is the K(Ed+1) connection

defined by the K(ed+1) component of the Maurer–Cartan form [12,47]. To prove (2.10) for the

particle multiplet sum, one uses the same Poincaré sum representation (2.3), and the restriction

of the tensorial equation (2.10) on functions of GL(2), which appeared in Eqs. (4.94) and (4.96)

of [1]. For the string multiplet sum, (2.10) also holds for d = 5 since the particle and string

multiplets are conjugate. For d = 6, additional work is required. Using the same techniques as

in [1], one finds that for a function of the Levi subgroup GL(2) ⊂ P3 ⊂ E7,

TαDα =




y3∂y316 0 0 0 0 0 0

0 1
2(y3∂y3 + U2∂U2)16

1
2U2∂U116 0 0 0 0

0 1
2U2∂U116

1
2(y3∂y3 − U2∂U2)16 0 0 0 0

0 0 0 020 0 0 0

0 0 0 0 1
2(−y3∂y3 + U2∂U2)16

1
2U2∂U116 0

0 0 0 0 1
2U2∂U116 −1

2(y3∂y3 + U2∂U2)16 0

0 0 0 0 0 0 −y3∂y316




.

(2.11)

This is a (56× 56) matrix of first order differential operators since R(Λd+1) corresponds to the

56 of E7, see Table 1. The differential operators Dα normally act on the 70 coordinates of

E7/SU(8) but here are reduced to the coordinates U = U1 + iU2 and y3 of the GL(2) ⊂ E7 part

of the symmetric space. The matrix is blocked according to the branching of the representation

R(Λd+1) under GL(2) × SL(5) that is

56 ∼= (1,6)(2) ⊕ (2,6)(1) ⊕ (1,20)(0) ⊕ (2,6)(−1) ⊕ (1,6)(−2) , (2.12)

and we have written out the doublets of 6 separately in (2.11). The third power of (2.11)

evaluates to

TαT βT γDαDβDγ =




S116 0 0 0 0 0 0

0 (S2 +
1
2S3U2∂U2)16

1
2S3U2∂U116 0 0 0 0

0 1
2S3U2∂U116 (S2 − 1

2S3U2∂U2)16 0 0 0 0

0 0 0 020 0 0 0

0 0 0 0 (−S2 +
1
2S3U2∂U2)16

1
2S3U2∂U116 0

0 0 0 0 1
2S3U2∂U116 −(S2 +

1
2S3U2∂U2)16 0

0 0 0 0 0 0 −S116




(2.13)

with

S1 = (y3∂y3)
3 − 37

4
(y3∂y3)

2 +
3

4
∆U +

27

4
y3∂y3 ,

S2 =
1

8
(y3∂y3)

3 +
3

8
∆Uy3∂y3 −

25

8
(y3∂y3)

2 − 3

4
∆U +

9

4
y3∂y3 ,

S3 =
3

4
(y3∂y3)

2 +
1

4
∆U − 33

4
y3∂y3 . (2.14)

Using these formulae, one can check that the seed function in (2.7) is annihilated by the operator

in (2.10).

We have shown that the seed of the double Epstein series (1.20) for the string and parti-

cle multiplet satisfy the same homogeneous differential equations. By inserting these equations

16



in (1.12) or (1.24), and using the differential equation satisfied by the (non-differentiable) modu-

lar function A(τ) (see [31] and (B.3) below), one may show that both proposals (1.12) and (1.24)

satisfy the inhomogenous differential equations required by supersymmetry Ward identities [14],

including the Poisson-type equation (1.5) [1]. To prove that the two double Epstein series (1.20)

indeed satisfy the tensorial differential equations we need to take care of the poles that arise

by analytic continuation from the domain of absolute convergence. We shall argue that they

are indeed satisfied, but for E6, in which case only the renormalised coupling does satisfy the

equations.

2.3 Nilpotent orbits and BPS states

The structure of the tensorial differential equations (2.10) can be understood by using the

language of nilpotent orbits of the group acting on its Lie algebra (see e.g. [55]). We shall be

using Bala–Carter labels for complex nilpotent orbits. The Bala–Carter label, e.g. A1, A2 or

2A1 (where the last case designates two commuting A1
∼= SL(2) subgroups) indicates in what

type of Levi subgroup a given nilpotent Lie algebra element is distinguished. For type An, a

nilpotent element is distinguished if it is regular (a.k.a. principal), i.e. if it belongs to the largest

possible nilpotent orbit of An.
12 If there are several non-conjugate Levi subgroups of the same

type in Ed+1, the Bala–Carter label includes conventional primes to differentiate between the

non-conjugate orbits, e.g. (2A1)
′ and (2A1)

′′ in E5.

Nilpotent orbits provide a useful classification of Fourier coefficients of automorphic forms. In

physics terminology, Fourier coefficients describe effects from non-perturbative states coupling

to axions, corresponding to coordinates along nilpotent generators in the symmetric moduli

space Ed+1/K(Ed+1) in a given parabolic decomposition [5, 21, 23]. Therefore, the various

types of non-perturbative effects can be labelled by nilpotent elements. The set of nilpotent

orbits that support non-vanishing Fourier coefficients is often called the wavefront set of an

automorphic form. The wavefront set of a generic Eisenstein series induced from a parabolic

subgroup P = LU ⊂ Ed+1 can be easily determined from the Gelfand–Kirillov dimension, and

is tabulated for various groups and parabolics e.g. in [56].

In the relation between nilpotent orbits and non-perturbative effects, 1/2-BPS states cor-

respond to nilpotent elements of Bala–Carter label A1, while 1/4-BPS states correspond to

Bala–Carter label 2A1. This can be understood by noticing that certain 1/4-BPS states can

be realised as an (orthogonal) intersection of two 1/2-BPS states. Similarly, certain 1/8-BPS

states can be realised by an (orthogonal) intersection of three 1/2-BPS states, leading to the

Bala–Carter label 3A1. In addition, the labels A2 and 4A1 are also associated with 1/8-BPS

states and arise for a different class of non-perturbative effects [14,47].

The order of nilpotency p in xp = 0 of a given nilpotent element x of the Lie algebra

depends on the finite-dimensional representation of ed+1 in which it acts. Since the Lie algebra

is represented by first order differential operators acting on functions on the symmetric space

Ed+1/K(Ed+1), the nilpotency relations translate into differential equations of order p satisfied

by the automorphic form. For a given automorphic form, the strongest differential equation

12For other Levi types there can be a finite number of such distinguished nilpotent elements; those are written

using conventional labels in parentheses following the Levi type, e.g., D4(a1). Since these Levi types only appear

for nilpotent orbits larger than the one encountered in the present paper, we refer the interested reader to [55].
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arises from the maximal orbit in its wavefront set. Physically, this equation corresponds to a

supersymmetric Ward identity [12–14]. Often it suffices to consider these equations in only one

of the fundamental representations, as the others will be consequences.

Equipped with this knowledge we now see that (2.10) is in fact the tensorial differential

equation associated with the maximal orbit in the wavefront set of the Eisenstein series induced

from the Heisenberg parabolic subgroup PH , i.e. the maximal parabolic subgroup PΛH
associated

to the highest weight for the adjoint representation (respectively Λ2, Λ2, Λ1, Λ8 for D5, E6, E7

and E8). As will be shown in (2.37) and (2.40) below, integrating the lattice sums Ξ
Ed+1

Λ1
at

r′ = 3 or respectively Ξ
Ed+1

Λd+1
at r = d− 2 against an arbitrary SL(2) Eisenstein series leads to an

Eisenstein series E
Ed+1

sΛH
for the Heisenberg parabolic for a specific value of s. The wavefront set

of any such ‘adjoint’ Eisenstein series is generically of Bala–Carter type A2.

Since integrating the double lattice sums (1.23) against an SL(2) Eisenstein series gives an

Eisenstein series with a wavefront set associated to A2 nilpotent orbit, we conclude that the

Fourier coefficients of the double lattice sums themselves are also restricted to the same orbits,

and thus are at most of Bala–Carter type A2, as confirmed by equation (2.10). Automorphic

representations of Ed+1 for d ≥ 4 with this Bala–Carter type are uniquely represented by adjoint

Eisenstein series E
Ed+1

sΛH
, where s is determined by the eigenvalue under the Laplacian. This

already gives a strong indication that the two double lattice sums in (1.23) must be proportional

to each other. We shall now present further evidence based on spectral considerations.

The claim that automorphic representations of Ed+1 for d ≥ 4 with Bala–Carter type A2

are uniquely represented by Eisenstein series relies on the conjecture that there is no cuspidal

automorphic representation associated to such small nilpotent orbits. Recall that cuspidal forms

are by definition exponentially suppressed at all cusps, and as such admit Fourier coefficients

that are themselves exponentially suppressed at all cusps of the corresponding Levi subgroup.

For the nilpotent orbit associated to the adjoint node 2ΛH , the generic Fourier coefficients in

the Heisenberg parabolic PH saturate the Gelfand–Kirillov dimension and are functions of the

Levi subgroup element v ∈ LH acting on the Fourier charge v(Q). For exceptional groups, the

following stabilisers HQ ⊂ LH ⊂ Ed+1 occur for generic charges Q

SO(1, 1) × SO(2, 2) , SO(2)× SO(1, 3) ⊂ SL(2)× SO(3, 3) ⊂ Spin(5, 5) ,

SL(3)× SL(3) , SL(3,C) ⊂ SL(6) ⊂ E6(6) ,

SL(6) , SU(3, 3) ⊂ Spin(6, 6) ⊂ E7(7) ,

E6(6) , E6(2) ⊂ E7(7) ⊂ E8(8) . (2.15)

The stabilisers are all non-compact. It follows that the Fourier coefficients as a function of

v(Q) are constant along all the cusps of the stabiliser HQ, and therefore cannot be cuspidal.

Applying this reasoning to orthogonal groups of type SO(2n, 2n), one concludes that the first

possible cuspidal representation can only appear for the nilpotent orbit of weight 2Λn, for which

the stabiliser of generic charges SO(n) × SO(n) is compact, in agreement with the conjecture

in [43]. For exceptional groups one predicts in this way that cuspidal representations can only

appear for higher dimensional nilpotent orbits, like the nilpotent orbit of weight 2Λ2 of type

A2 + 3A1 for E7 for example.
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2.4 Integrating against cusp forms and against Eisenstein series

In order to prove the identity (1.23), we shall now integrate both sides against an arbitrary Maaß

eigenform f(τ) that is annihilated by ∆τ − s(s − 1) and an eigenmode of all Hecke operators

HN : f(τ) 7→ ∑
kp=N,0≤j<k f(

pτ+j
k ). To avoid regularisation issues, we first consider the case

where f is a cusp form for GL(2,Z), and then discuss the case of an Eisenstein series.

Starting with the string multiplet sum, we consider, for Re (r′) large enough and f a cusp

form,

IEd+1

Λ1
(f, r′) ≡

∫

F

dτ1dτ2
τ22

f(τ) Ξ
Ed+1

Λ1
(τ, r′) , (2.16)

where F is the fundamental domain for PGL(2,Z) defined below (1.14). Using (2.7), we rewrite

Ξ
Ed+1

Λ1
(τ, r′) as a sum over γ ∈ P3\Ed+1 and over non-zero 2 × 2 matrices M . Restoring the

integral over the volume factor, we get

IEd+1

Λ1
(f, r′) =

∑

γ∈P3\Ed+1



∫ ∞

0

dV

V r′+1

∫

F

dτ1dτ2
τ22

f(τ)

′∑

M∈Z2×2

e−
πy3
V

Tr[T MUM⊺]



∣∣∣∣∣∣
γ

(2.17)

where

T =
1

τ2

(|τ |2 −τ1
−τ1 1

)
, U =

1

U2

(
1 U1

U1 |U |2
)

, (2.18)

such that (y3, U) parametrise the GL(2) factor in P3. The integral over F can then be unfolded

using the orbit method as in [57]. For cusp forms, the rank-one orbit does not contribute13

and the sum over rank-two matrices can be restricted to summing over M =
(
k j
0 p

)
with

0 ≤ j < k, k, p 6= 0, provided the integral over τ is extended to the upper half plane. For fixed

N = kp with k, p > 0, the sum over k, p, j is recognised as the action of the Hecke operator in

the U variable. Thus, we get

IEd+1

Λ1
(f, r) =

∑

γ∈P3\Ed+1

2

[
∑

N>0

H
(U)
N ·

∫ ∞

0

dV

V r′+1

∫

H1

dτ1dτ2
τ22

f(τ) e
−πNy3|τ−U|2

V τ2U2
− 2πy3N

V .

]∣∣∣∣∣
γ

(2.19)

Now, we use the fact that e−πt|τ−U |2/(τ2U2) acts as a reproducing kernel on eigenmodes of ∆τ

[58, 59]. More precisely, for any smooth solution of [∆τ − s(s− 1)]f(τ) = 0,

∫

H1

dτ1dτ2
τ22

f(τ) e
−πt|τ−U|2

τ2U2 = N (s, t) f(U) , (2.20)

where the factor N (s, t) is independent of f . This factor can be computed by choosing f(τ) = τ s2 :

N (s, t) =

∫

H1

dτ1dτ2
τ22

(
τ2
U2

)s

e
−πt|τ−U|2

τ2U2 =
U

1
2
−s

2√
t

∫ ∞

0

dτ2

τ
3/2
2

e
− πt

τ2U2
−πtU2

τ2
+2πt

=
2√
t
Ks− 1

2
(2πt) e2πt .

(2.21)

13For f an Eisenstein series, the rank-one orbit gives cut-off dependent contributions which do not contribute

to the renormalised integral for generic s.
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Setting t = Ny3/V , we thus get

IEd+1

Λ1
(f, r′) = 4

∑

γ∈P3\Ed+1

[
∑

N>0

1√
y3N

∫ ∞

0

dV

V r′+ 1
2

Ks− 1
2

(
2πy3N

V

)
H

(U)
N f(U)

]∣∣∣∣∣
γ

. (2.22)

The integral over V can now be computed using

∫ ∞

0

dt

t1−s′
K

s−1
2
(2πt) =

π−s′

4
Γ(s

′−s
2 + 1

4) Γ(
s+s′

2 − 1
4 ) , (2.23)

which is valid whenever Re (s′) > |Re (s− 1
2)|. As for the action of the Hecke operator HN , its

action on the Fourier expansion

f(τ) = f0 τ
s
2 + f ′

0 τ
1−s
2 +

∑

n>0

fn
√
2πτ2 Ks− 1

2
(2π|n|τ2) e2πnτ1 (2.24)

sends fn 7→
√
N
∑

d|(n,N) fnN/d2 . From looking at the first mode with n = 1, it follows that

HNf(τ) =
√
N fN f(τ)/f1 if f(τ) is a cuspidal Hecke eigenmode (i.e. f0 = f ′

0 = 0, f1 6= 0).

In this way, setting s′ = r′ − 1
2 and assuming that Re r′ is large enough such that 1 − Re r <

Re s < Re r, we arrive at

IEd+1

Λ1
(f, r′) = π

1
2
−r′Γ

(
r′−s
2

)
Γ
(
r′+s−1

2

) ∑

N>0

fN
f1

N
1
2
−r′

∑

γ∈P3\Ed+1

[
y−r′

3 f(U)
]∣∣∣

γ
. (2.25)

Recalling the definition of the completed L-series associated to f [60],

L⋆(f, r) = π−rΓ
(
r+s
2 − 1

4

)
Γ
(
r−s
2 + 1

4

) ∑

N>0

fN
f1

N−r , (2.26)

normalised such that L⋆(f, 1− r) is equal to L⋆(f, r) up to a phase, we get

IEd+1

Λ1
(f, r′) = L⋆(f, r′ − 1

2)
∑

γ∈P3\Ed+1

[
y−r′

3 f(U)
]∣∣∣

γ
. (2.27)

The right-hand side is recognised as an Eisenstein series induced from the cusp form f(U) on

the GL(2) factor in the maximal parabolic subgroup P3 with Levi subgroup GL(2)× SL(d).

If we now take for f the non-holomorphic Eisenstein series E
SL(2)
sΛ1

, the same computation

goes through, except that the rank-one orbit gets cut-off dependent coefficients from the constant

terms in the Fourier expansion

E
SL(2)
sΛ1

(τ) = τ s2 +
ξ(2s − 1)

ξ(2s)
τ1−s
2 +

2τ
1/2
2

ξ(2s)

∑

N 6=0

|N |s−
1
2 σ1−2s(|N |)Ks− 1

2
(2π|N |τ2) e2πiNτ1 .

(2.28)

For r′ large enough, these terms vanish as the cut-off is removed, and the rank-two orbit picks

up contributions from the non-zero Fourier coefficients in (2.28). Using Ramanujan’s identity

∞∑

N=1

N s−s′−1
2 σ1−2s(N) = ζ(s+ s′ − 1

2) ζ(s
′ − s+ 1

2) , (2.29)
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one finds the L-series associated to E
SL(2)
sΛ1

,

L⋆(E
SL(2)
sΛ1

, r) = ξ(r + s− 1
2) ξ(r − s+ 1

2) (2.30)

leading to a Langlands–Eisenstein series,

IEd+1

Λ1
(E

SL(2)
sΛ1

, r′) =ξ(r′ − s) ξ(r′ + s− 1)
∑

γ∈P3\Ed+1

[
y−r′

3 E
SL(2)
sΛ1

(U)
] ∣∣∣

γ

=ξ(r′ − s) ξ(r′ + s− 1)E
Ed+1

sΛ1+
r′−s

2
Λ3

(2.31)

Note that the right-hand side is invariant under s 7→ 1− s, as it should.

We now turn to the particle multiplet sum. Using the same reasoning, the integral

IEd+1

Λd+1
(f, r) =

∫

F

dτ1dτ2
τ22

f(τ) Ξ
Ed+1

Λd+1
(τ, r) (2.32)

for f a normalised Hecke eigenform evaluates to

IEd+1

Λd+1
(f, r) = L⋆(f, r − 1

2 )
∑

γ∈Pd\Ed+1

[
y−r
d f(U)

]∣∣
γ

(2.33)

or, for f = E
SL(2)
sΛ1

,

IEd+1

Λd+1
(E

SL(2)
sΛ1

, r) = ξ(r − s) ξ(r + s− 1)E
Ed+1

sΛd+1+
r−s
2

Λd
. (2.34)

For d = 3 one understands that Λd+1 = Λ3 and Λd = Λ2 +Λ4 in the usual basis of fundamental

weights of SL(5).

2.5 Relating the particle, string multiplet and adjoint Eisenstein series

In order to relate the Eisenstein series (2.31) and (2.34), we use the general functional relation

for Langlands–Eisenstein series with infinitesimal weight parameter 2λ− ρ,

EG
λ = M(w, 2λ − ρ)EG

w(λ− ρ
2
)+ ρ

2
(2.35)

for any element w of the Weyl group. Here, ρ is the Weyl vector and the prefactor M(w, λ),

known as the intertwiner (between different principal series representations), is given by a prod-

uct over positive roots that are reflected into negative roots under w:

M(w, λ) =
∏

α>0
wα<0

ξ(〈α, λ〉)
ξ(1 + 〈α, λ〉) . (2.36)

Using suitable Weyl elements14 we find for d ≥ 3 that (2.31) and (2.34) coincide for r = d− 2,

r′ = 3,

ξ(s − d+ 3) ξ(4 − d− s)E
Ed+1

sΛd+1+
d−2−s

2
Λd

= ξ(3− s) ξ(2 + s)E
Ed+1

sΛ1+
3−s
2

Λ3
(2.37)

14For the values d = 3, 4, 5, 6, 7 we use wA4 = w2w1w3w2, wD5 = w3w2w1w5w3w2, wE6 = w5w4w3w1w6w5w4w3,

wE7 = w6w5w4w3w1w7w6w5w4w3 and wE8 = w7w6w5w4w3w1w8w7w6w5w4w3, respectively. Recall that

sΛd+1 +
d−2−s

2
Λd for E4 is sΛ3 +

d−2−s
2

(Λ2 + Λ4) in the A4 basis.
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hence confirming the relation (1.23). In the following, we shall also need a dimensionally reg-

ularised version of the Eisenstein series in (2.37) with dǫ = d + 2ǫ, which satisfy the modified

identity

ξ(s−dǫ+3) ξ(4−dǫ−s)E
Ed+1

sΛd+1+
dǫ−2−s

2
Λd

= ξ(3−s−2ǫ) ξ(2+s−2ǫ)E
Ed+1

sΛ1+2ǫΛ2+
3−s−2ǫ

2
Λ3

. (2.38)

When f is an SL(2) cusp form, the expressions (2.27) and (2.33) describe more general

Eisenstein series induced from cusp forms on the parabolic subgroups P3 and Pd−1, respectively.

Langlands has also provided a functional relation for this case [61], see also [62, 63], and the

intertwiner now depends on the cusp form f as well as on λ. For the case of SL(2) it evaluates

to the corresponding quotient of completed L-functions [63], implying the equality

IEd+1

Λd+1
(f, d− 2) = IEd+1

Λ1
(f, 3) (2.39)

for all cusp forms. This completes the proof of (1.23).

It is also interesting to note that the same functional equation (2.35) also allows to rewrite

either side of (2.37) as an Eisenstein series EE8
s+14

2
Λ8
, EE7

s+8
2

Λ1
, EE6

s+5
2

Λ2
, ED5

s+3
2

Λ2
for the adjoint

representation, i.e. induced from the Heisenberg parabolic, in agreement with the discussion of

the last subsection:

IEd+1

Λd+1

(
E

SL(2)
sΛ1

, d− 2
)
= ξ(s− d+ 3) ξ(s + d− 3)E

Ed+1

sΛd+1+
d−2−s

2
Λd

=
ξ(s− 4 + 2sd+1)ξ(s− d− 1− δd,7 + 2sd+1)ξ(s + d− 3 + δd,7)

ξ(s)
E

Ed+1

( s−4
2

+sd+1)ΛH
(2.40)

where sd+1 =
7
2 ,

9
2 , 6, 9 for d = 4, 5, 6, 7, respectively.15

2.6 Poincaré series representations

For the case f(τ) = A(τ) of (1.15), the identity (2.20) is no longer valid, due to the non-

differentiability of A(τ) on the locus τ1 = 0 and its images under GL(2,Z). Moreover, A(τ) is

not an eigenmode of Hecke operators. Nevertheless, the manipulation in (2.17) and its analogue

for IEd+1

Λd+1
(A, r) are still valid, and lead to the Poincaré series representations

IEd+1

Λd+1
(A, r) =

∑

γ∈Pd\Ed+1

[
y−r
d Ã r

2
(U)
] ∣∣∣

γ
(2.41)

and

IEd+1

Λ1
(A, r′) =

∑

γ∈P3\Ed+1

[
y−r′

3 Ã r′

2

(U)
] ∣∣∣

γ
, (2.42)

15Here, we have used the following Weyl elements for the cases d = 4, 5, 6, 7: wD5 = w2w1w3w2w4w3,

wE6 = w2w4w3w1w5w4w2w3w4w5, wE7 = w1w3w4w2w5w4w3w1w6w5w4w2w3w4w5w6 and finally wE8 =

w8w7w6w5w4w2w3w1w4w3w5w4w2w6w5w4w3w1w7w6w5w4w2w3w4w5w6w7.
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where Ãs(U) is the SL(2,Z)-invariant function

Ãs(U) ≡
∫ ∞

0

dV

V 1+2s

∫

F

dτ1dτ2
τ 2
2

A(τ)
′∑

M∈Z2×2

e−
π
V
Tr[TMUM⊺] . (2.43)

This satisfies the differential equation

∆Ãs(U) = 12Ãs(U)− 6
(
ξ(2s)ESL(2)

sΛ1
(U)
)2

. (2.44)

For the case of interest for the ∇6R4 coupling, using the identity between the particle and string

multiplet sums, we get

E (d),ExFT
(0,1) =

d≥2

8π2

3

∑

γ∈Pd\Ed+1

[
y2−d
d Ã d−2

2
(U)
] ∣∣∣

γ
=
d≥3

8π2

3

∑

γ∈P3\Ed+1

[
y−3
3 Ã 3

2
(U)
] ∣∣∣

γ
(2.45)

This identity is formal however, since the value of r typically corresponds to a pole. One

recognises 8π2

3 Ã 3
2
(U) as the exact ∇6R4 coupling in ten-dimensional type IIB string theory in

the form given in [32].

2.7 Convergence

To determine the domain of convergence of the double Epstein series Ξ
Ed+1

Λd+1
(φ, τ, r) for the particle

multiplet, let us insert an additional regulating power of y−ǫ̃
d in the sum, and assume that Re (r)

and Re (ǫ̃) are both large enough such that the second term in (2.3) can be combined with the

first by allowing all matrices with rkM ≥ 1. We can then perform a Poisson resummation on

the second row of M and obtain the Fourier expansion with respect to τ1,

π−rΓ(r)
∑

γ∈Pd\Ed+1


y−ǫ̃

d

′∑

M∈Z2×2

[
τ2U2 y

−1
d

|(1, τ)M(1, U)|2 + 2τ2U2 detM

]r

∣∣∣∣∣∣
γ

(2.46)

= ξ(2r)τ r
2 E

Ed+1

rΛd+1+
ǫ̃
2
Λd

+ ξ(2r − 2)τ 2−r
2 E

Ed+1
1+ǫ̃
2

Λd+(r−1)Λd+1

+4τ2
∑

γ∈Pd\Ed+1

(
y−ǫ̃−r
d

′∑

m,n

σr−1(gcd(m,n))

gcd(m,n)2r−2
Kr−1(2πτ2

|mU+n|2
U2

)

)∣∣∣∣∣
γ

+2τ2
∑

γ∈Pd\Ed+1

(
y−ǫ̃−r
d

′∑

m1,m2

′∑

n1,n2

|m1+Um2|r−1

|n1+Un2|r−1 Kr−1

(
2πτ2

|m1+m2U ||n1+n2U |
U2

)
e2πiτ1(m1n2−m2n1)

)∣∣∣∣∣
γ

By Godement’s criterion [64, 24], the first term E
Ed+1

rΛd+1+
ǫ̃
2
Λd

in the limit ǫ̃ → 0 converges for

Re (r) > 4, 6, 9, 29
2 when d = 4, 5, 6, 7. The second term E

Ed+1
1+ǫ̃
2

Λd+(r−1)Λd+1
never converges when

ǫ̃ → 0, but its analytic continuation at ǫ̃ = 0 can be shown to vanish. Thus, we conclude that

the double Epstein series Ξ
Ed+1

Λd+1
(φ, τ, r) has no pole for Re (r) > 4, 6, 9, 29

2 , respectively, which

indicates that it is absolutely convergent in the same range. Similarly, we find that the double

Epstein series Ξ
Ed+1

Λ1
(φ, τ, r′) for the string multiplet converges absolutely forRe (r′) > 4, 6, 172 ,

23
2 .
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2.8 From vector to spinor double lattice sums

In this section, we generalise the observation on the equivalence of different lattice sums from

Ed+1 to Spin(d, d), as this will be used in our later analysis. Using the same techniques, one

can establish the relation between the double lattice sums in vector and spinor representations

of Spin(d, d) with d ≥ 3,

Γ(d− 2)

πd−2

′∑

Qi∈IId,d
Qi×Qj=0

[
τ2

g(Q1 + τQ2, Q1 + τ̄Q2)

]d−2

=
Γ(2)

π2

′∑

Qi∈S±
Qiγd−4Qj=0

[
τ2

g(Q1 + τQ2, Q1 + τ̄Q2)

]2
(2.47)

where IId,d is the even self-dual lattice in the vector representation of Spin(d, d), and S± are

the lattices in the Weyl spinor prepresentation of Spin(d, d), for either chirality. More precisely,

using the same notation as in (1.20),

lim
r→d−2

ΞDd
Λ1

(τ, r) = lim
r′→2

ΞDd
Λd

(τ, r′) = lim
r′→2

ΞDd
Λd−1

(τ, r′) . (2.48)

For d = 5, this reduces to the identity (1.23) for G = SO(5, 5). For d = 4, it expresses invariance

under triality of SO(4, 4). As a consistency check, note that the differential equations satisfied

by the two Epstein series

[∆Dd
−∆τ − r(r + 3− 2d)] ΞDd

Λ1
(τ, r) = 0 (2.49)

[
∆Dd

−∆τ − 1
2(d− 2)r′(r′ − d− 1)

]
ΞDd
Λd

(τ, r′) = 0 , (2.50)

agree for (r, r′) = (d − 2, 2). Integrating both sides against the Eisenstein series ESL(2)

sΛ1
(τ), one

gets

ξ(d− 2− s) ξ(d+ s− 3)EDd

sΛ1+
d−2−s

2
Λ2

= ξ(2− s) ξ(s+ 1)EDd

sΛd+
2−s
2

Λd−2
(2.51)

where the equality follows from Langlands’ functional relation (2.35). It is worth noting that

these series are related by functional equations to the adjoint Eisenstein series EDd
s+d−2

2
Λ2
. A

similar functional identity should hold for Eisenstein series induced from SL(2) cusp forms f on

parabolic subgroups P2 and Pd−2, namely

IDd
Λ1

(f, d− 2) = IDd
Λd

(f, 2) = IDd
Λd−1

(f, 2) . (2.52)

Assuming the relation (2.47) as well as the Poincaré series representation (1.21), we obtain

several equivalent ways of expressing the modular integral of the product of ϕKZ with the Siegel–

Narain lattice sum,16

∫

F2

d6Ω

|Ω2|3
ϕKZ Γd,d,2 =

∫

G

d3Ω2

|Ω2|3−
d
2

ϕtr
KZ(Ω2) θ

Dd
Λ1

=

∫

G

d3Ω2

|Ω2|
ϕtr
KZ(Ω2) θ

Dd
Λd

=

∫

G

d3Ω2

|Ω2|
ϕtr
KZ(Ω2) θ

Dd
Λd−1

(2.53)

where θDd
Λk

is defined as in (1.18) and G = R+ × F . In Appendix C, we study the asymptotics

of the various integrals and find further support for the relations (2.53), hence for the Poincaré

series representation (1.21).

16In each of these equations, we assume that a factor |Ω2|ǫ is inserted in the integral, divergences are subtracted

and the limit ǫ → 0 is taken after analytic continuation.
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3 Weak coupling limit

In this section, we study the weak coupling limit of the integral (1.17). We first discuss the

expected form of the expansion, known from general physical considerations, before turning to

a detailed analysis of the constrained lattice sum θ
Ed+1

Λd+1
of (1.18) entering in (1.17).

3.1 Expectation

The weak coupling limit (1.1) of the non-perturbative ∇6R4 coupling in generic dimension

D = 10− d takes the form

E (d)

(0,1) = g
2d+8
d−8

D

[
2
3ζ(3)

2

g2D
+ E (d,1)

(0,1) + g2
D
E (d,2)

(0,1) + g4
D
E (d,3)

(0,1) +O(e−1/gD)

]
(3.1)

where 2ζ(3)2/3g2D is the tree-level contribution while the genus one, genus two and genus three

contributions are given by [48, §2.1.1]17

E (d,1)

(0,1) =
4πζ(3)

3
ξ(d− 2)EDd

d−2
2

Λ1
+

8π4

567
ξ(d+ 4)EDd

d+4
2

Λ1
(3.2)

E (d,2)

(0,1) = 8π

∫

F2

d6Ω

|Ω2|3
ϕKZ(Ω)Γd,d,2 (3.3)

E (d,3)

(0,1) =
4ζ(6)

27

(
ÊDd

3Λd−1
+ ÊDd

3Λd

)
. (3.4)

The exponentially suppressed terms in (3.1) originate from 1/8-BPS instantons, as well as pairs

of 1/2-BPS and anti-1/2-BPS instantons, as required by the quadratic source term in the Laplace

equation (1.5). In special dimensions where the local ∇6R4 coupling mixes with the non-local

part of the one-particle irreducible effective action, there are also non-analytic terms proportional

to log gD [8, 48] which we will discuss in more detail in Section 5.2.

In the weak coupling limit, the behaviour of the homogeneous solution (1.11) can be deter-

mined using standard constant formulas [65,24] to be

F (d)

(0,1) = g
− 24

8−d
+2

D

[
8π4

567
ξ(d+ 4)EDd

d+4
2

Λ1
+ g2

D
F (d,2)

(0,1) +
4ζ(6)

27
g4
D
ÊDd

3Λd
+O(e−1/gD)

]
. (3.5)

The O(g2D) contribution arises for d = 5, 6 only, and corresponds to a two-loop threshold term

proportional to log gD. Such a term is known to arise from the non-analytic part of the string

amplitude, after Weyl rescaling to Einstein frame [8]. Substituting this behaviour into (1.13),

it follows from this, (3.1) and (1.2) that the two-loop exceptional field theory amplitude must

behave as (for D > 3)

E (d),ExFT
(0,1) = g

− 24
8−d

+2
D

[
2ζ(3)2

3g2
D

+
4πζ(3)

3
ξ(d−2)EDd

d−2
2

Λ1
+g2D E (d,2)

(0,1)+
4ζ(6)

27
g4D Ê

Dd
3Λd−1

+O(e
− 1

gD )

]
(3.6)

up to logarithmic corrections discussed in Section 5.2. The three-loop amplitude is invariant

under the outer automorphism of Dd which exchanges the two spinor nodes due to the fact the

17The Eisenstein series in (3.2) and (3.4) originate from genus-one and genus-three modular integrals, respec-

tively. The genus-two integration measure d6Ω/|Ω2 |3 in this paper differs by a factor 1/8 from dµ2 in [48].
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four-graviton amplitudes in type IIA and type IIB are the same up to order ∇8R4 [66]. The

constituent functions (3.5) and (3.6) are not invariant individually under this exchange since

they involve the two distinct spinor series associated to the fundamental weights Λd and Λd−1,

respectively.

3.2 Weak coupling limit of the particle multiplet lattice sum

We are interested in the weak coupling limit of the integral (1.17), which we recall for conve-

nience,

Id(φ, ǫ) = 8πR.N.

∫

G

d3Ω2

|Ω2|
6−d−2ǫ

2

ϕtr
KZ (Ω2) θ

Ed+1

Λd+1
(φ,Ω2) , (3.7)

where G is the fundamental domain R+ × F for the action of PGL(2,Z) on Ω2 (of which

the positive Schwinger domain S+ is a six-fold cover), and R.N. denotes the subtraction of L-

dependent counterterms. The integral and the sum are absolutely convergent for Re (ǫ) large

enough. By analyzing the Fourier expansion in this region, we shall find evidence that Id(φ, ǫ)
has a meromorphic continuation to ǫ ∈ C, with a pole at ǫ = 0 for d = 4, 5, 6. As we explain

in Section 5.1, these poles are cancelled by contributions from 1/4-BPS states running in the

loops. Since we are interested in the limit ǫ → 0, we shall retain the ǫ dependence only when

there is a potential pole for some value of d.

The theta series θ
Ed+1

Λd+1
involves a sum over pairs of vectors Γi in the particle multiplet, subject

to the constraints Γi×Γj = 0 valued in the string multiplet. Under Ed+1 ⊃ GL(1)×Spin(d, d),

the particle multiplet representation branches as

MEd+1

Λd+1
→ II

( 2
8−d

)

d,d ⊕ S
(d−6
8−d

)

+ ⊕
[
∧d−5IId,d + ∧d−7IId,d

]( 2d−14
8−d

)
⊕ . . . (3.8)

where the superscript denotes the charge under the GL(1) factor, IId,d the even-self-dual lat-

tice in the vector representation, ∧kIId,d the lattice in the k-th exterior power of the vector

representation (which is trivial for k > 2d), and S+ the Weyl spinor representation lattice.18

The branching (3.8) is complete for d ≤ 6; for E8 there are additional terms indicated by the

ellipses. For d ≤ 6 we denote the components of the charge Γi of (3.8) by qi ∈ IId,d, χi ∈ S+

and Ni ∈ ∧d−5IId,d.

On the other hand, the string multiplet, appearing in the constraint Γi×Γj = 0 of the lattice

sum, decomposes under GL(1) × Spin(d, d) as

MEd+1

Λ1
→ Z

( 4
8−d

)⊕S
(d−4
8−d

)

− ⊕
[
∧d−4IId,d + ∧d−6IId,d

]( 2d−12
8−d

)
⊕
[
∧d−7IId,d ⊗ S−

]( 3d−20
8−d

)
⊕ . . . , (3.9)

where the dots denote additional components that arise only for d ≥ 6 and play no role in

our analysis. Thus, the particle multiplet components (qi, χi, Ni) along the decomposition (3.8)

must satisfy

(qi, qj) = 0 , qa(iγaχj) = 0 , q(i ∧Nj) + χ(iγd−4χj) = 0 , qi ·Nj = 0 (3.10)

18S+
∼= S+ when d is even and S+

∼= S− when it is odd. For the corresponding parabolic subgroups, we likewise

denote P d
∼= Pd for d even, and P d

∼= Pd−1 for d odd.
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where the last constraint arises only in d ≥ 6. Here, we have denoted by γa the gamma matrices

of Spin(d, d) and γd−4 denotes the antisymmetric product of d − 4 such gamma matrices. In

terms of these components, the quadratic form G(Γ,Γ) occurring in the double lattice sum θ
Ed+1

Λd+1

of (1.18) can be expressed as

G(Γ,Γ) = g
4

8−d
D |v1(q + aγχ+ (12aγd−4a+ b)N)|2 + g

2 d−6
8−d

D |v2(χ+ aN)|2 + g
4 d−7
8−d

D |v3(N)|2 , (3.11)

where a ∈ S+, b ∈ R denote the Ramond–Ramond and Neveu–Schwarz axions, respectively,

parametrising the unipotent part of the parabolic subgroup Pd+1 with Levi subgroup GL(1) ×
Spin(d, d) (note that b is only present for d = 6). The norms |v1(q)|2, |v2(χ)|2, |v3(N)|2 denote

the Spin(d, d) invariant quadratic forms in the respective representations, and depend on the

SO(d, d)/(SO(d) × SO(d)) moduli parametrising the metric and B-field on the torus. To avoid

cluttering, we denote all these norms by |v(·)|2. The γa matrices are integral valued in the

canonical null basis associated to the even self-dual lattice IId,d with the normalisation {γa, γb} =

ηab.

As in [1, 50], we shall split the theta series θ
Ed+1

Λd+1
into contributions where the components

(qi, χi, Ni) along the graded decomposition (3.8) are gradually populated, such that the con-

straints can be solved explicitly. We shall refer to the gradually populated subsets of charges

that arise in this way as ‘layers’. We first focus on constant terms, which are independent of the

axions a, b and then consider non-trivial Fourier coefficients. A similar analysis for Spin(d, d)

lattice sums is presented in Appendix C.

1) The first layer

The contribution of the layer with χi = Ni = 0 but qi 6= 0 gives

θ(1)

Λd+1
(φ,Ω2) =

′∑

qi∈IId,d
(qi,qj)=0

e−πΩij
2 g

4
8−d
D g(qi,qj) . (3.12)

Integrating against ϕtr
KZ in order to obtain the contribution to (3.7) and using the Poincaré series

representation (1.21), the domain G can be folded into the fundamental domain F2 for Sp(4,Z),

I (1)

d := 8πR.N.

∫

G

d3Ω2

|Ω2|
6−d−2ǫ

2

ϕtr
KZ(Ω2) θ

(1)

Λd+1
(φ,Ω2)

= 8πg
− 24+8ǫ

8−d
+4

D

∫

F2

d6Ω

|Ω2|3
ϕǫ
KZ(Ω)Γd,d,2(Ω) (3.13)

where

ϕǫ
KZ = |Ω2|ǫ ϕtr

KZ(Ω2) (3.14)

denotes the Poincaré series seed in (1.21) before taking the limit ǫ → 0. The expression (3.13) is

recognised as the perturbative two-loop contribution (3.3). Note that the Narain partition func-

tion Γd,d,2 includes the zero vector qi = 0 which is absent in θ(1)

Λd+1
(φ,Ω2), but the contribution

of this vector is removed by the renormalisation prescription mentioned above and discussed in

more detail in Section 5.
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2) The second layer

The second contribution corresponds to qi arbitrary, χi 6= 0 but linearly dependent χi ∧ χj = 0,

while Ni = 0. For d ≥ 5, the constraints χiγd−4χj = 0 are solved by χi = niχ̂ where χ̂ ∈ S+ is

a primitive pure spinor i.e. χ̂γd−4χ̂ = 0 and such that no integer divides χ̂ (for d ≤ 4 there are

no constraints to solve). The primitive pure spinor χ̂ can always be rotated to a standard form

by Spin(d, d,Z) with stabiliser P d ⊂ Spin(d, d,Z). Therefore, the sum over χi can be written

as a Poincaré sum over P d\Spin(d, d,Z) together with a sum over ni ∈ Z. Under this parabolic

decomposition, IId,d = Z
d ⊕Zd, and the constraints (qi, qj) = 0 from (3.10) imply that qi ∈ Zd

so that their Spin(d, d) invariant norm vanishes automatically. Since the sum over qi ∈ Zd is

unconstrained, one can perform a Poisson resummation to obtain

θ(2)

Λd+1
(φ,Ω2) =

′∑

ni∈Z

∑

qai ∈Zd

∑

γ∈Pd\Dd

(
e−πΩij

2 g
4

8−d
D

(
y
4
d uab(q

a
i +aani)(qbj+abnj)+g−2

D y2ninj

)) ∣∣∣∣
γ

=
g
− 4d

8−d
D

|Ω2|
d
2

′∑

ni∈Z

∑

qia∈Zd

∑

γ∈Pd\Dd

(
y−4e−πΩij

2 g
2d−6
8−d

D y2ninj−πΩ−1
2ijg

− 4
8−d

D y−
4
d uabqiaq

j
b+2πiniq

i
aa

a

)∣∣∣∣
γ

.

(3.15)

Here, y and uab parametrise the Levi subgroup GL(d) ⊂ SO(d, d) while the axions a ∈ ∧2Zd

parametrise the unipotent subgroup within SO(d, d), and γ is understood to act on them through

the non-linear SO(d, d) action.19 The scalar y is defined such that y−2s is the canonical character

defining the Eisenstein series EDd
sΛd

=
∑

γ∈Pd\Dd
y−2s.

The term (3.15) contributes both to constant terms and to Fourier coefficients of (3.7).

Constant terms may come from a) from qia = 0 or b) from niq
i
a = 0 and qia 6= 0. The contribution

from a) qia = 0 diverges at ǫ = 0, but it can be obtained by analytic continuation in ǫ as above

to give

I (2a)

d = 8πg
− 24

8−d
D

∑

γ∈Pd\Dd


y−2ǫ

∫

G

d3Ω2

|Ω2|3−ǫ
ϕtr
KZ(Ω2)

′∑

ni∈Z
e−πΩij

2 ninj



∣∣∣∣∣∣
γ

. (3.16)

After integrating over the volume factor V using the parametrisation (1.14), the sum over ni

produces an Eisenstein series E
SL(2)
(2ǫ−2)Λ1

(τ). The remaining integral over τ can be computed

using the following formula, that we establish in Appendix B,

R.N.

∫

F

dτ1dτ2
τ 2
2

A(τ)E
SL(2)
sΛ1

(τ) =
3 [ξ(s)]2

[12− s(s− 1)]ξ(2s)
. (3.17)

Using this formula we get

I (2a)

d = g
− 24

8−d
D

16π2ξ(−2 + 2ǫ)2

(1 + 2ǫ)(6 − 2ǫ)

∑

γ∈Pd\Dd

y−2ǫ
∣∣∣
γ

ǫ→0→ 2ζ(3)2

3
g
− 24

8−d
D , (3.18)

which is recognised as the perturbative tree-level contribution in (3.1).

19The axion a is not to be confused with the summation index a = 1, . . . , d.
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The contribution from niq
i
a = 0, qia 6= 0 is computed by unfolding the fundamental domain

of PGL(2,Z) to the strip, so as to set (n1, n2) = (n, 0), (q1, q2) = (0, q), leading to

8π2

3
g
− 4d

8−d
D

∫ ∞

0

dV

V −1+2ǫ

∫ L

0

dτ2
τ 2
2

(∫ 1
2

− 1
2

dτ1A(τ)

)
(3.19)

×
∑

γ∈Pd\Dd


y−4

∑

n≥1

′∑

qa∈Zd

e
− π

V τ2
g
2d−6
8−d

D y2n2−πV
τ2

g
− 4

8−d
D y−

4
d uabqaqb



∣∣∣∣∣∣
γ

.

Note that the boundary of the unfolded domain ∪γ∈P1\SL(2)γF(L) includes boundaries at each

image of the cusp, but since there are no divergences at these points one can safely extend the

unfolded regularised domain to the bounded strip with τ2 < L.

Näıvely assuming that the expression (1.15) for A(τ) holds for all τ2 > 0, the integral on the

first line would evaluate to

∫ 1
2

− 1
2

dτ1A(τ) ≈
∫ 1

2

− 1
2

dτ1

( 1

τ2
+

(|τ |2 − τ1)(τ
2
2 + 5(τ 2

1 − τ1))

τ 3
2

)
= τ2 +

1

6τ 3
2

. (3.20)

We will see that this gives the correct powerlike terms in gD but misses exponentially suppressed

corrections to be discussed below and the full (non-näıve) result will be presented in (3.27). To

compute the integral over τ2 it is convenient to modify the regulator. Note that the integral

of the second term 1
6τ32

in (3.20) is finite, while the first term τ2 gives an incomplete Gamma

function; in the limit L → ∞, the result coincides with the result of the integral over τ2 ∈ R+

with an insertion of a factor τ−2ǫ̃
2 in the integral with the identification ǫ̃ = 1

2 logL → 0. Using this

regulator instead of L to simplify the computation, inserting this result in (3.19), and changing

variables to ρ2 = 1/(τ2V ), t = τ2/V , we get

I (2b)

d =
4π2

3
g
− 4d

8−d
D

∫ ∞

0

dt

t3−ǫ+ǫ̃

∫ ∞

0

dρ2

ρ 2−ǫ−ǫ̃
2

(
t+

ρ 2
2

6t

)
(3.21)

×
∑

γ∈Pd\Dd

(
y−4

∑

n≥1

′∑

qa∈Zd

e−πρ2g
2d−6
8−d

D y2n2−π
t
g
− 4

8−d
D y−

4
d uabqaqb

)∣∣∣∣∣
γ

=
4π2

3
g
− 24

8−d
−2ǫ d−4

8−d
+2ǫ̃

D

∑

γ∈Pd\Dd

[
y−4ǫ

′∑

qa∈Zd

(
ξ(2 + 2ǫ+ 2ǫ̃)π−3+ǫ−ǫ̃Γ(3− ǫ+ ǫ̃)g 6

D

6(y2
d−2
d uabqaqb)3−ǫ+ǫ̃

+
ξ(−2 + 2ǫ+ 2ǫ̃)π−1+ǫ−ǫ̃Γ(1− ǫ+ ǫ̃)g 2

D

(y2
d−2
d uabqaqb)1−ǫ+ǫ̃

)]∣∣∣∣∣
γ

=
8π2

3
g
− 24

8−d
−2ǫ d−4

8−d
+2ǫ̃

D

(ξ(2 + 2ǫ+ 2ǫ̃)ξ(6− 2ǫ+ 2ǫ̃)

6
g 6
D EDd

(3−ǫ+ǫ̃)Λd−1+2ǫΛd

+ξ(−2 + 2ǫ+ 2ǫ̃)ξ(2 − 2ǫ+ 2ǫ̃)g 2
D EDd

(1−ǫ+ǫ̃)Λd−1+2ǫΛd

)

ǫ̃→0→ g
− 24

8−d
−2ǫ d−4

8−d
D

(
4ζ(3)
3 g 2

D ζ(2)E
Dd
Λd−1

+ 4π2ξ(2+2ǫ)ξ(6−2ǫ)
9 g 6

D E
Dd

(3−ǫ)Λd−1+2ǫΛd
+O(ǫ)

)
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where we used

′∑

qa∈Zd

∑

γ∈Pd\Dd

(
y−2t

(y2
d−2
d uabqaqb)s

)∣∣∣∣∣
γ

= 2ζ(2s)EDd
sΛd−1+tΛd

. (3.22)

Using the fact that a vector qa parametrises the highest weight component of a conjugate Weyl

spinor of opposite chirality under the parabolic decomposition associated to Pd, one has

′∑

qa∈Zd

∑

γ∈Pd\Dd

[
f(y2

d−2
d uabqaqb)

] ∣∣∣
γ
=

′∑

N∈S−

f(g(N,N)) , (3.23)

for any function f(x) suitably decaying at infinity. Decomposing the more general sum with a

factor of y−2t one gets the sum over the non-maximal parabolic coset Pd−1,d of a product of the

two multiplicative characters that gives (3.22). Thus we get, in generic dimension

I (2b)

d = g
− 24

8−d
D

(
4
27g

6
D ζ(6)E

Dd
3Λd−1

+ 4ζ(3)
3 g 2

D ζ(2)EDd
Λd−1

)
. (3.24)

The two constant terms on the last line of (3.24) reproduce the expected one-loop and three-

loop contributions in (3.6). We shall explain in Section 5.2 how the renormalised coupling (1.28)

gives indeed the correct constant terms for all d.

Additional contributions to the second layer

However, (3.24) is only part of the constant term generated by (3.19), since the näıve formula

(3.20) only holds for τ2 >
1
2 , where the representation is (1.15) is valid. To compute the integral

over the full half-line τ2 ∈ R+, it is convenient to extend the Laplace equation in (B.3) to the

full upper half-plane by GL(2,Z) invariance,

(∆− 12)A(τ) = −12
∑

γ∈PGL(2,Z)/(Z2×Z2)

τ2
|cτ + d|2 δ(

(ad+bc)τ1+bd+ac|τ |2
|cτ+d|2 ) (3.25)

where γ =
(
a b
c d

)
, ad − bc = ±1 and the stabiliser subgroup Z2 ×Z2 is generated by

(
1 0

0 −1

)
and

(
0 1

1 0

)
. The locus (ad + bc)τ1 + bd + ac|τ |2 = 0 is a geodesic circle of radius 1

|2ac| . going from

− b
a to −d

c on the boundary at τ2 = 0. For fixed coprime (a, c), the pair (b, d) is determined up

to shifts by (a, c), which translate the circle by integers. There is only one circle among these

translates that intersects the region [−1
2 ,

1
2 ] × iR and the possible values of τ2 are restricted to

τ2 ≤ 1
|2ac| due to the radius and both possible signs of c are identical in this respect. Therefore

the integral of A(τ) along the segment [−1
2 ,

1
2 ] satisfies the Laplace equation

(
τ 2
2

∂2

∂τ 2
2

− 12
) ∫ 1

2

− 1
2

dτ1A(τ) = −12τ2 − 24τ2
∑

a,c≥1
gcd(a,c)=1

H(1− (2acτ2)
2)√

1− (2acτ2)2
(3.26)

where H(x) is the Heaviside function, equal to 1 if x > 0 or 0 otherwise. The first term on the

r.h.s. is the contribution of the coset γ of the identity with (a, c) = (1, 0). The unique solution
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to (3.26) with the correct behaviour at τ2 > 1 is20

∫ 1
2

− 1
2

dτ1A(τ) = τ2 +
1

6τ 3
2

− 1

7

∑

a,c≥1
gcd(a,c)=1
2ac<1/τ2

1 + 3
2(2acτ2)

2 + (2acτ2)
4

ac(acτ2)3
(1− (2acτ2)

2)
3
2 . (3.27)

The first two terms reproduce the näıve answer (3.20), but the last term, upon insertion into

(3.19), produces an additional contribution

I (2c)

d = −2 · 82π2

21

∫ ∞

0

dV

V −1+2ǫ

∫ 1

0

dt

t5
(1 + 3

2 t
2 + t4)(1 − t2)

3
2 g

− 4d
8−d

D (3.28)

×
∑

γ∈Pd\Dd


y−4

∑

a,c≥1
gcd(a,c)=1

∑

n≥1

′∑

qa∈Zd

e−
π
V t

g
2 d−6
8−d

D y2(2acn2)−πV
t
g
− 4

8−d
D y−

4
d uab(2acqaqb)




∣∣∣∣∣∣∣∣
γ

.

Using (3.23) and observing that an and cn are independent divisors of Na = acnqa, we get

I (2c)

d = −256π2

21
g
− 24

8−d
+2

D

∫ 1

0

dt

t5
(1 + 3

2t
2 + t4)(1− t2)

3
2

′∑

N∈S−
N×N=0

σ2(N)2
K2(

4π
gDt

|v(N)|)
|v(N)|2

= −16π2

21
g
− 24

8−d
+2

D

′∑

N∈S−
N×N=0

σ2(N)2

|v(N)|2 B2(
2π
gD
|v(N)|) , (3.29)

where we introduced the special function

Bs(z) = 16

∫ 1

0

dt

t5
(1 + 3

2t
2 + t4)(1− t2)

3
2Ks(

2z
t ) , (3.30)

which evaluates to

Bs(z) = 16

∫ ∞

1

du√
u2 − 1

(
1 +

1

2
(u2 + u−2)− u4 − u−4

)
Ks(2uz) (3.31)

=
(s2 − 4

z2
− 2− 8z2

s2 − 9
+

64z4

(s2 − 9)(s2 − 1)

)
(K s

2
−1(z))

2

+
(s(s2 − 4)

z3
− 2(s + 2)

z
− 8z

s+ 3
+

64z3

(s2 − 9)(s + 1)

)
K s

2
−1(z)K s

2
(z)

+
(
−s(s+ 2)

z2
+

2(s + 9)

s+ 3
+

8z2

(s+ 3)(s + 1)
− 64z4

(s2 − 9)(s2 − 1)

)
(K s

2
(z))2 .

For s = 2, this reduces to

zB2(2z) =
1

60

∑

i=0,1

rij(
z
2)Ki(z)Kj(z) (3.32)

20The homogeneous solution ( 1
(2nτ2)3

− (2nτ2)
4)H(1− 2nτ2) would have a δ source non-vanishing and is thus

ruled out.
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where rij are the functions defined in [32, (2.45)]. As a result, for d = 0 (3.29) reproduces the

formula [32, (2.44)], i.e. −16π2

21

∑′
n∈Z

σ2(n)2

|n|3
|n|
gD
B2(

2π
gD
|n|). In the limit gD → 0, using the standard

asymptotics of the modified Bessel function, we find that (3.29) reduces to

I (2c)

d ∼ −g
− 24

8−d
+5

D

′∑

N∈S−
N×N=0

σ2(N)2
e
− 4π

gD
|v(N)|

|v(N)|5 , (3.33)

which can be interpreted as contribution from bound states of instantons and anti-instantons

with vanishing total charge. Indeed, these effects are required by the differential equation (1.5),

given that E(0,0) contains instanton corrections of the form (see e.g. [5, (66)] for d = 0, [23, (4.84)]

for d = 4)

4πg
− 12

8−d
+ 3

2
D

′∑

N

σ2(N)
e
− 2π

gD
|v(N)|+2πiNa

|v(N)| 32
. (3.34)

Consistency with the Poisson equation

In order to check that the contributions (3.29) do satisfy the inhomogeneous Laplace equation

(1.5) sourced by the instanton terms in E (d)

(0,0), we use (2.1) to compute

(
∆Ed+1

− 6(4 − d)(d + 4)

8− d

)
E (d),ExFT
(0,1) =

8π2

3

Γ(d− 2)

πd−2

∫

F

dτ1dτ2
τ22

A(τ) [∆τ − 12] Ξ
Ed+1

Λd+1
. (3.35)

Restoring the integral over V , integrating by parts over τ , and focusing on the contribution to

the term (3.19) of type 2b), we get

16π2

3
g
− 4d

8−d
D

∫ ∞

0
V dV

∫ ∞

0

dτ2
τ 2
2

[
(
τ22∂

2
τ2 − 12

) ∫ 1/2
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]

×
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e
− π
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8−d

D y2n2−πV
τ2

g
− 4

8−d
D y−

4
d uabqaqb
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γ

. (3.36)

We now substitute the source term on the r.h.s. of (3.26) into the square bracket, obtaining

4π2 g
− 4d

8−d
D

∑

a,c≥1
gcd(a,c)=1

∫ 1
2ac

0

dτ2

τ2
√

1− (4acτ2)2

∫ ∞

0
V dV

×
∑

γ∈Pd\Dd

(
y−4

∑
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′∑

qa∈Zd

e
− π

V τ2
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8−d

D y2n2−πV
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g
− 4

8−d
D y−

4
d uabqaqb
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γ

. (3.37)

The integral over V is of Bessel type, giving

27π2

g
24

8−d
−2

D

∑

a,c≥1
gcd(a,c)=1

∑

n≥1

1
2ac∫

0

dτ2

τ2
√
1− (4acτ2)2

∑

γ∈Pd\Dd

[
y

2(2−d)
d n2

uabqaqb
K2

(
2π

τ2
y

d−2
d n
√
uabqaqb

)]∣∣∣∣∣
γ

. (3.38)
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The integral over τ2 can be computed by changing variables to u = 1/(2acτ2) and using
∫ ∞

1

du√
u2 − 1

Ks(2uz) =
1

2

[
Ks/2(z)

]2
. (3.39)

Setting acnqa = Na, the sum over a, c, n amounts to a sum over pairs of divisors (an, cn) of Na.

As a result, we get

26π2 g
− 24

8−d
+2

D

′∑

N∈S−
N×N=0

[
σ2(N)

|v(N)|K1

(
2π

gs

√
uabNaNb

)]2
(3.40)

which we recognise as the square of the D-instanton contributions in E (d)

(0,0) consistent with (3.29).

3) The third layer

The third contribution to (3.7) is obtained when χ1 and χ2 are non-zero and linearly independent,

while the Ni still vanish. The χis can then be rotated into the degree-one doublet of the SL(2)

factor in the Levi subgroup associated to the graded decomposition21

(
gl1 ⊕ sl2 ⊕ sl′2 ⊕ sld−2

)(0) ⊕
(
2⊗ 2′ ⊗Z

d−2
)( 2

d−2
)
⊕
(
∧2

Z
d−2
)( 4

d−2
)
⊂ sod,d ,

χi ∈ S+ = · · · ⊕
(
2⊗ ∧2

Z
d−2
)(d−6

d−2
)
⊕
(
2′ ⊗Z

d−2
)(d−4

d−2
)
⊕ 2(1) ,

qi ∈ V =
(
Z

d−2
)(− 2

d−2
)
⊕
(
2⊗ 2′

)(0) ⊕
(
Z

d−2
)( 2

d−2
)
.

(3.41)

We denote the variables parametrising the Levi subgroup GL(1)×SL(2)×SL(2)′×SL(d−2) by

(y, υı̂̂, ρ
αβ , uab), and the coordinates on the unipotent part 2⊗2′⊗Zd−2 by caβ

k̂
. The coordinates

of χi are (0, . . . , 0, n
ĵ
i ), while the constraint q

a
(iγaχj) = 0 in (3.10) implies that qi = (0, n̂i

̂ pα, q
a
i )

where n̂i
̂ := ni

̂/gcd
(
ni

̂
)
. Using these variables one can write the Poincaré sum

θ(3)

Λd+1
(φ,Ω2) =

∑
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− 4
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D

(
y
− 2

d−2Ω−1
2iju

abqiaq
j
b+

1

Ω
ij
2 υ

k̂l̂
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ραβ(p
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γ

(3.42)

21Such a doublet of spinors defines a (d− 2)-form χ1γd−2χ2 which is in the Spin(d, d) orbit of a highest weight

representative, which can be rotated into a standard form using Spin(d, d) to a specific representative.
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where we have used Poisson resummation on the unconstrained variables pα and qai . The constant

term comes from qiani
̂ = 0 and npα = 0, implying pα = qqa = 0. Replacing d → d + 2ǫ for the

analytic continuation, one obtains the constant term

I (3a)
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γ

(3.43)

where we have done the integral over V = |Ω2|−
1
2 and the sum over gcd(n) and then rewritten

the result as a new simpler integral over V and sum over the matrices ni
̂ without explicit gcd(n).

In Appendix C.3, we argue that in the limit ǫ → 0, this gives a finite Eisenstein series

I (3a)

d =
4π2

9

ξ(4ǫ− 2)

ξ(4ǫ)
ξ(5− 2ǫ)ξ(3 + 2ǫ)

ξ(8)

ξ(7)
g
− 24+8ǫ

8−d
+2+4ǫ

D EDd

(− 3
2
+ǫ)Λd−2+4Λd

=
ǫ→0

−80ξ(2)ξ(6)ξ(8)g
− 24

8−d
+2

D EDd

− 3
2
Λd−4+4Λd

. (3.44)

As we shall see in Section 5.2, this undesired term cancels against the counterterm in (1.28) and

does not appear in the renormalised coupling.

4) The fourth layer

Up to now, we have considered only contributions with Ni = 0, which exhaust all layers when

d ≤ 4. The fourth layer includes Ni 6= 0, but linearly dependent (Ni ∧ Nj = 0), which is

automatic for d = 5, where Ni ∈ Z. We shall argue that the contribution from this layers drops

out in the renormalised coupling (1.28).

For d = 5 one has

I (4)

5 (φ, ǫ) = 8πR.N.

∫

G

d3Ω2

|Ω2|
1−2ǫ

2

ϕtr
KZ (Ω2)

′∑

Ni∈Z
∑

χi∈S−
qi∈II5,5

χiγχj=N(iqj)
(qi,qj)=0

e−πΩij
2

(
g
4
3
5 g(qi+aγχi+

1
2
(aγa)Ni ,qj+aγχj+

1
2
(aγa)Nj )+g

− 2
3

5 v(χi+aNi)·v(χj+aNj)+g
− 8

3
5 NiNj

)
(3.45)
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while the same term for d = 6 can be written as a Poincaré sum

I (4)

6 (φ, ǫ) = 8πR.N.

∫

G

d3Ω2

|Ω2|−ǫ
ϕtr
KZ (Ω2)

∑

γ∈P1\SO(6,6)

′∑

Ni∈Z
∑

χi∈S−
qi∈II5,5

χiγχj=N(iqj)
(qi,qj)=0

e−πΩij
2

(
g24g(qi+aγχi+

1
2
(aγa)Ni,qj+aγχj+

1
2
(aγa)Nj )+yv(χi+aNi)·v(χj+aNj)+g−2

4 y2NiNj

)

×
∑

mi∈Z
e−πΩij

2 g24y
2(mi+ā(χi+ani)+bni)(mj+ā(χj+anj)+bnj)

∣∣∣∣∣
γ

=
8π

g 2
4

∑

γ∈P1\SO(6,6)

y−2


R.N.

∫

G

d3Ω2

|Ω2|
1−2ǫ

2

ϕtr
KZ (Ω2)

′∑

Ni∈Z
∑

χi∈S−
qi∈II5,5

χiγχj=N(iqj)
(qi,qj)=0

e−πΩij
2

(
g24g(qi+aγχi+

1
2
(aγa)Ni,qj+aγχj+

1
2
(aγa)Nj )+yv(χi+aNi)·v(χj+aNj)+g−2

4 y2NiNj

)

×
∑

m̃i∈Z
e−πΩ−1

2 ijg
−2
4 y−2m̃im̃j+2πim̃i(ā(χi+ani)+bni)



∣∣∣∣∣∣
γ

. (3.46)

The abelian Fourier coefficient is obtained by setting m̃i = 0, leading to

I (4a)

6 (φ, ǫ) = g
−4− 4ǫ

3
4

∑

γ∈P1\SO(6,6)

y−4− 4ǫ
3 I (4)

5 (g5 = y−
1
2 g4)

∣∣∣
γ
. (3.47)

Therefore the contributions to the constant terms and abelian Fourier coefficients in d = 6 are

determined from the ones in d = 5 through a Poincaré sum.

In Appendix D.1, we study a similar integral IEd+1

Λd+1
(ESL(2)

sΛ1
, d+2ǫ− 2) where A(τ) is replaced

by an Eisenstein series ESL(2)

sΛ1
. There we find for generic s that the constant terms from the orbit

with Ni 6= 0, Ni ∧ Nj = 0 disappear as ǫ = 0, due to an overall factor of 1
ξ(4ǫ) . Therefore we

expect this factor of 1
ξ(4ǫ) to appear in the computation irrespective of the function (e.g. A(τ)

or ESL(2)

sΛ1
) on SL(2)/SO(2) one considers. However, for the specific value s = −3 corresponding

to the counterterm in (1.28), one finds that the coefficient diverges in ξ(1 + 2ǫ) and there is a

finite contribution in the limit. Consistency requires that this finite contribution disappears in

the renormalised coupling (1.28), see Section 5.2.

5) The fifth layer

For d = 6 one must also consider the cases with Ni non-collinear. One can write the sum as a

Poincaré sum over P2 ⊂ SO(6, 6) such that

II6,6 ∼= (Z2)(−2) ⊕ (S−)
(0) ⊕ (Z2)(2) , S̄+

∼= (II4,4)
(−2) ⊕ (Z2 ⊗ S+)

(0) ⊕ (II4,4)
(2) , (3.48)
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where we have made a specific choice of triality assignments for the SO(4, 4) part of the Levi

subgroup. The solution to the constraints (3.10) decomposes in this basis as

qi = (0, 0, ni
̂) , χi = (0, ni

̂ pα
k , qia) , Ni = (ni

̂ (p,p)
2k2 , γ

a αα̇ pα
k qia,mi

̂) , (3.49)

where k can be chosen as an integer coprime to pα that divides ni
̂, γaαα̇pαqia and ni

̂

k
(p,p)
2 . The

integer k can be decomposed as k = k1k2 such that k1k
2
2 |ni

̂ and k1| (p,p)2 . For any pα, one can

find a pair of primitive null vectors uα and vα such that (u, v) = 1 and

pα = gcd(p)uα +
(p, p)

2gcd(p)
vα (3.50)

and the condition k|γa αα̇pαqia reduces to the property that the component of qia in the null

space of uα is divisible by k2 and the one in the null space of vα is divisible by k1k2. So

qia ∈ k2II4,4[k1] ∼= (k1k2Z)
4 ⊕ (k2Z)

4 in the appropriate decomposition. The bilinear form reads

G(Γi,Γj) = ỹ1υı̂̂(mi
ı̂ + ãı̂aqia +

1
2 ã

ı̂aãk̂ani
k̂ + b̃ni

̂)(mj
̂ + ã̂bqjb +

1
2 ã

̂bãl̂bnj
l̂ + b̃nj

l̂)

+
√

ỹ1ỹ2ũ
ab(qia + ãı̂ani

ı̂)(qjb + ã̂bnj
̂) + ỹ2υı̂̂ni

̂nj
̂ (3.51)

where

ỹ1 = g 2
4 y , ỹ2 = g−2

4 y + uαβ(pαk + aα)(
pβ
k + aβ) +

g 2
4

4y
[(pαk + aα)(

pα

k + aα)]2 ,

ũab =
uab + g 2

4 y
−1uα̇β̇γaαα̇γ

b
ββ̇(

pα

k + aα)(p
β

k + aβ)
√

1 + g 2
4 y

−1uγδ(
pγ
k + aγ)(

pδ
k + aδ) +

g 4
4

4y2
[(

pγ
k + aγ)(

pγ

k + aγ)]2
,

ãı̂a = εı̂̂ηabã̂b = aı̂a + cı̂α̇γaαα̇(
pα

k + aα) ,

b̃ = b+ āα(pαk + aα) +
1
2c (

pα
k + aα)(

pα

k + aα) , (3.52)

with (aα, aı̂a, āα) ∈ S− parametrising the unipotent in P1 ⊂ E7 in

S− ∼= (S+)
(−2) ⊕ (Z2 ⊗ II4,4)

(0) ⊕ (S+)
(2) , (3.53)

and (cı̂α̇, c) the unipotent Z2 ⊗ S− ⊕ Z of P2 ⊂ SO(6, 6) and uab and uα̇β̇ the Levi subgroup

Spin(4, 4) in the vector and spinor representation and υı̂̂ the SL(2) Levi subgroup of P2. For

fixed pα and k, the sum over ni
̂, qia and mi

̂ reproduces a genus two Siegel–Narain theta

series over the lattice k2II4,4[k1]⊕ II2,2[k1k
2
2], with ni

̂ non-degenerate. The computation at this

level would involve the consideration of the Poincaré sum of |Ω2|ǫϕtr
KZ (Ω2) over all congruent

subgroups Γ0(k1k
2
2) of Sp(4,Z) (γ = ( A B

C D
) with C a multiple of k1k

2
2), which seems out of reach.

Rather than pursuing this approach, we shall argue that the sum over p and k in this

expression can be seen as a Poincaré series over P1\SO(5, 5) acting on the overall unconstrained

lattice sum in II6,6 with ni
̂ non-degenerate. The reason is that one obtains exactly the same

sum in the T 2 decompactification limit of the same coupling, i.e. in the parabolic P6 ⊂ E7

ME7

Λ7
= (Z2)(−2) ⊕ S(−1)

− ⊕ (Z2 ⊗ II5,5)
(0) ⊕ S(1)

+ ⊕ (Z2)(2) . (3.54)
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The decomposition of this series can be computed explicitly when all strictly negative degree

charges are zero while the degree 0 ones are non-degenerate, in which case they match exactly

the set of charges we have defined above, i.e.

(ni
̂, ni

̂ pα
k , (p,p)

2k2
ni

̂) ∈ (Z2 ⊗ II5,5)
(0) , (qia, γ

a
αα̇

pα

k qia) ∈ S(1)

+ , mi
̂ ∈ (Z2)(2) . (3.55)

This does not parametrise the whole set of charges in the large T 2 volume, but only those for

which ni
̂ is non-degenerate in Z2 ⊗ II5,5, which we call the principal layer in the decomposition

of the SO(5, 5) Poincaré sum.22

With this interpretation, the sum over p and k of each Narain theta series over k2II4,4[k1]⊕
II2,2[k1k

2
2], with ni

̂ is the Poincaré sum acting on the Narain theta series over II6,6. So one can

apply the orbit method for the single Sp(4,Z) invariant theta series, and then carry out the sum

over p and k on the resulting expression. This leads to

∫

G

d3Ω2

|Ω2|3
∫

Z3\R3

d3Ω1 |Ω2|ǫϕtr
KZ (Ω2) |Ω2|3

∑

ni
ĵ∈Z2

detn 6=0

∑

qia∈II4,4
mi

̂∈Z2

e−πΩij
2 G(Γi,Γj)+πiΩij

1 (2εı̂̂mi
ı̂nj

̂−(qi,qj))

=

∫

G

d3Ω2

|Ω2|3
∫

Z3\R3

dΩ1 |Ω2|ǫϕtr
KZ (Ω2)

|Ω2|2
ỹ3+ǫ
1 ỹ1+ǫ

2

∑

ni
ĵ∈Z2

detn 6=0

∑

mî∈Z2

e
−π

√

ỹ2
ỹ1

Ω−1
2ijυı̂̂(m

iı̂+Ωiknk
ı̂)(mĵ+Ω̄jlnl

̂)

×
∑

qia∈II4,4
eπiΩ

ijpL(qi+ãni)·pL(qi+ãni)−πiΩ̄ijpR(qi+ãni)·pR(qi+ãni)+2πimi(qiã+
1
2 ããni+b̃ni)

=

∫

G

d3Ω2

|Ω2|3
∫

Z3\R3

dΩ1

∑

γ∈P2\Sp(4,Z)
detC(γ)6=0

(
|Ω2|ǫϕtr

KZ (Ω2)
)∣∣

γ

|Ω2|2
ỹ3+ǫ
1 ỹ1+ǫ

2

∑

mî∈Z2

detm6=0

e
−π

√

ỹ2
ỹ1

Ω−1
2ijυı̂̂m

iı̂mĵ

×
∑

qia∈II4,4
e−πΩij

2 ũabqiaqjb−πiΩij
1 ηabqiaqjb+2πimîqiaã̂

a
+ . . . , (3.56)

where the ellipsis denotes non-abelian Fourier coefficients. In words, we first enforce the con-

straint by introducing the integral over Ω1, then rescale Ω2 to identify the sum as a Narain

theta series over II6,6 and use Poisson summation over mi
̂, and in the last step convert the

‘partial’ P2\Sp(4,Z) Poincaré sum over linearly independent (mî, ni
̂) but with trivial symplec-

tic product into a ‘partial’ Poincaré sum of |Ω2|ǫϕtr
KZ (Ω2). Indeed, the sum over (mî, ni

̂) with

ni
̂ non-degenerate can be promoted to an Sp(4,Z) invariant sum over doublet of symplectic

vectors that are linearly independent. The Sp(4,Z) orbit of doublets of symplectic vectors with

a non-trivial symplectic product contribute to the non-abelian Fourier coefficient and can be

computed similarly. The Sp(4,Z) orbit of doublets of symplectic vectors with a vanishing sym-

plectic product can be written as a Poincaré sum over γ ∈ P2\Sp(4,Z) of the representatives

with ni
̂ and mî non-degenerate, but only when the 2× 2 matrix C in the lower-left block of γ

is non-degenerate is the resulting ni
̂ = Cijm

ĵ non-degenerate.

22The Poincaré series turns the vector (0, 0,mı̂) into an arbitrary null vector (nı̂, qα,m
ı̂) with the same gcd.

The trivial element gives (0, 0, mı̂), elements in the first layer are vectors of type (0, pα,m
ı̂) while elements in the

principal layer are (nı̂, pα,m
ı̂) with nı̂ 6= 0.
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Now we shall argue that the missing terms in the Poincaré sum over P1\Sp(4,Z) only

contribute to degenerate Fourier coefficients, such that the following refinement of (1.21) holds23

lim
ǫ→∞

∑

γ∈P2\Sp(4,Z)
detC(γ)6=0

(
|Ω2|ǫϕtr

KZ (Ω2)
)∣∣

γ
= ϕKZ (Ω)− ϕtr

KZ (Ω2)−
′∑

M∈S+
detM=0

FM (Ω2)e
2πitr[MΩ1] , (3.57)

where S+ is the set of symmetric matrices with positive integral diagonal components Mii ≥ 0

and half-integral off-diagonal M12 that is moreover > 0 if M11 = M22 = 0. The function FM (Ω2)

removes part of the Fourier coefficients of the KZ invariant in (A.11) supported on rank-one

matrices. For ǫ 6= 0, one expects, by analogy with the Siegel modular form
∑

γ∈P2\Sp(4,Z)

E
SL(2)
−3Λ1

(τ)

V 1+2ǫ

∣∣∣
γ
, that

the constant term at ǫ 6= 0 takes the form

∑

γ∈P2\Sp(4,Z)
detC(γ)6=0

(
|Ω2|ǫϕtr

KZ (Ω2)
)∣∣

γ
∼ 5ζ(3)

4π2
V 2E

SL(2)
2ǫΛ1

(τ) +
π

36
ξ(4ǫ−1)
ξ(4ǫ)

ξ(−4+2ǫ)ξ(3+2ǫ)
ξ(−3+2ǫ)ξ(4+2ǫ)

E
SL(2)
−3Λ1

V 2−2ǫ
. (3.58)

The second term vanishes in the limit ǫ → 0. Inserting the first term in the previous integral,

one obtains

I (5a)

6 (φ, ǫ) = 8π

∫

G

d3Ω2

|Ω2|3
5ζ(3)

4π2

E
SL(2)
2ǫΛ1

(τ)

|Ω2|
∑

γ∈P2\SO(6,6)

∑

pα∈S+
k≥1

gcd(k,p)=1

|Ω2|2
ỹ3+ǫ
1 ỹ1+ǫ

2

∑

mî∈Z2

detm6=0

e
−π

√

ỹ2
ỹ1

Ω−1
2ijυı̂̂m

iı̂mĵ

∣∣∣∣∣
γ

=
20ζ(3)

π
ξ(2ǫ)2

∑

γ∈P2\SO(6,6)

∑

pα∈S+
k≥1

gcd(k,p)=1

g−2
4 y−4−2ǫE

SL(2)
2ǫΛ1

(υ)

(1 + g 2
4 y

−1uγδ(
pγ
k + aγ)(

pδ
k + aδ) +

g 4
4

4y2
[(

pγ
k + aγ)(

pγ

k + aγ)]2)
3
2
+ǫ

∣∣∣∣∣
γ

=
20ζ(3)

π
ξ(2ǫ)2

ξ(2ǫ− 1)ξ(2ǫ − 4)

ξ(2ǫ)ξ(2ǫ + 3)
g−10
4

∑

γ∈P2\SO(6,6)

E
SL(2)
2ǫΛ1

(v)
(
y−2ǫ + . . .

)∣∣∣
γ

=
40ξ(2ǫ)ξ(3)ξ(2 − 2ǫ)ξ(5 − 2ǫ)

ξ(3 + 2ǫ)
g−10
4 ED6

2ǫΛ1
+ . . . , (3.59)

where the ellipses are Fourier coefficients. Here, we rewrote the sum over (p, k) as a sum over

unconstrained (p, k) and n = (p,p)
2k not zero, up to an overall factor of 1

ζ(3+2ǫ) , and then performed

23For the Siegel–Eisenstein series (A.25) with s1 = s2 = s, one checks that the sum over rank-one matrices C

gives the constant term ξ(2s−1)
ξ(2s)

E
SL(2)

(2s−1)Λ1
V

and contributes to the degenerate Fourier coefficients e2πitr[MΩ1] with M

rank-one. We shall argue in Appendix D that for s1 and s2 generic, the principal layer of the Poincaré sum over

rank-two matrices C gives all the constant terms of the two-parameter Siegel–Eisenstein series.
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a Poisson summation over n and set k to zero through the introduction of the theta lift of E
SL(2)

ǫΛ1
,

∑

pα∈S+
k≥1

gcd(k,p)=1

1

( y
g 2
4
+ uγδ(

pγ
k + aγ)(

pδ
k + aδ) +

g 2
4
4y [(

pγ
k + aγ)(

pγ

k + aγ)]2)
3
2
+ǫ

=
1

ξ(3 + 2ǫ)

∫ ∞

0

dρ2
ρ 2
2

∫ 1
2

− 1
2

dρ1ρ
5
2
+ǫ

2

∑

n∈Z
pα∈S+
k≥1

e
−πρ2

(
y

g24
k2+u(p+ak,p+ak)+

g24
y
(n+p̄a+ 1

2
āak)2

)
+iπρ1(2nk−p̄p)

=
g−1
4 y

1
2

ξ(3 + 2ǫ)

∫ ∞

0
dρ2

∫ 1
2

− 1
2

dρ1(E
SL(2)
ǫΛ1

(ρ)− ρǫ2)
∑

ñ≥1
pα∈S+

e
−πρ2u(p,p)− π

ρ2

y

g24
ñ2+2πiñp̄a−iπρ1p̄p

=
ξ(2ǫ− 1)ξ(2ǫ− 4)

ξ(3 + 2ǫ)ξ(2ǫ)
g−5+2ǫ
4 y

5
2
−ǫ + . . . . (3.60)

Although several steps in the computation just outlined remain to be clarified, in Appendix D.1

we apply the same reasoning to a similar modular integral with A(τ) replaced by an Eisenstein

series E
SL(2)

sΛ1
, and find that it reproduces the correct constant terms (namely the last three terms

in (D.2)) predicted by Langlands’ formula. This agreement is a strong indication that this

reasoning is indeed correct.

In Section 5.2 we shall see that the sum of the contributions from the five layers to the pertur-

bative part of the renormalised coupling (1.31) reproduce the expected terms in (3.1), including

logarithmic terms in the string coupling constant, while the divergent one-loop contribution in

I (5a)

6 (φ, ǫ) disappears in the renormalised function (1.28).

3.3 Fourier coefficients

Beyond the constant terms, our method also gives access to non-zero Fourier coefficients, which

we now turn to.

The first source of Fourier coefficients comes from what was called the second term above,

more specifically niq
i
a 6= 0 in (3.15). The corresponding terms simplify to

I (2d)

d = 8πg
− 24

8−d
D

∫

G

d3Ω2

|Ω2|3
ϕtr
KZ(Ω2)

∑

qi∈S+

qi×qj=0

∑

ni∈Z
niq

i 6=0

e−πΩij
2 ninj−πΩ−1

2ijg
−2
D g(qi,qj)+2πini(qi,a) . (3.61)

To analyse this expression, it is convenient to unfold the integral domain G to the set of positive

matrices R+ × H1/Z by fixing ni = (n, 0) for n > 0. Setting N = nq1, one can solve the

constraint for q2 in the Pd ⊂ SO(d, d) parabolic decomposition associated to N such that

I (2d)

d =
8π2

3
g
− 24

8−d
D

∫ ∞

0
V dV

∫ ∞

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1 A(τ)
∑

γ∈Pd\SO(d,d)

′∑

N∈N

∑

n|N

×
∑

j∈Z
q∈Zd(d−1)

2

q∧q=0

e
−π
(

n2

V τ2
+V τ2

y2N2

g2Dn2 + V

τ2g
2
D

(y2(j+(ς,q)− τ1
n
N)2+y2

d−4
d |v(q)|2)

)
+2πiNa

∣∣∣∣∣
γ
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=
8π2

3
g
− 24

8−d
+1

D

∫ ∞

0
V

1
2 dV

∫ ∞

0

dτ2

τ2
3
2

∑

γ∈Pd\SO(d,d)

′∑

N∈N

∑

n|N

∑

̃∈Z

∫ 1
2

− 1
2

dτ1 A(τ)e
−2πiτ1

Ñ
n

×y−1
∑

q∈Zd(d−1)
2

q∧q=0

e
−π
(

n2

V τ2
+V τ2

y2N2

g2Dn2 + V

τ2g
2
D

y2
d−4
d |v(q)|2+ τ2g

2
D

V y2
̃2
)
+2πi(̃(q,ς)+Na)

∣∣∣∣∣
γ

(3.62)

For ̃ 6= 0 and q 6= 0, this term involves the integral of the Fourier coefficient of A(τ) with a

saddle point at

τ2 = n

√
y

d−4
d |v(q)|
gD ̃N

, V =
n

y

√
g3D ̃

y
d−4
d |v(q)|N

, (3.63)

which is exponentially suppressed in e
−2π y

gD
N−2πy−

4
d |v(̃q)|

. One can compute explicitly the con-

tribution from the leading part (3.20) of the constant term of A(τ), and similarly for its Fourier

coefficients. Using the same method as in (3.26), (3.27) one solves the differential equation for

the Fourier coefficients24

(
τ 2
2

∂2

∂τ 2
2

− (2π̃ τ2)
2 − 12

) ∫ 1
2

− 1
2

dτ1A(τ)e
−2πĩ τ1 (3.64)

= −12τ2 − 24τ2
∑

a,c≥1
gcd(a,c)=1

H(1− (2acτ2)
2)√

1− (2acτ2)2
cos
(
2π̃( 1

2ac +
b
a)
)
cos
(π̃
ac

√
1− (2acτ2)2

)

where b is the solution modulo a to ad− bc = 1. One finds the unique continuous solution that

reproduces A(τ) for τ2 >
1
2

∫ 1
2

− 1
2

dτ1A(τ)e
−2πĩ τ1 =

3

(̃π)2τ2
− 15

2(̃π)4τ 3
2

+
∑

a,c≥1
gcd(a,c)=1
2ac<1/τ2

cos
(
2π̃( 1

2ac +
b
a)
)
(
3

(
75(ac)2

(π̃)6τ 3
2

+
2

(π̃)2τ2
− 5

(π̃)4τ 3
2

(1− (2acτ2)
2)

)

×
(√

1− (2acτ2)2 cos
(π̃
ac

√
1− (2acτ2)2

)
− ac

π̃ sin
(π̃
ac

√
1− (2acτ2)2

))

+
75ac

(π̃)5τ 3
2

(1− (2acτ2)
2) sin

(π̃
ac

√
1− (2acτ2)2

)
)
. (3.65)

The saddle point (3.63) is at large τ2 at small coupling gD, therefore the contributions from A(τ)

at τ2 < 1
2 will be further exponentially suppressed and at leading order one can neglect them.

The integral gives then

24For each positive coprime a and c there are two solutions τ1 = − 1
2ac

− b
a
±

√
1−(2acτ2)2

2ac
where b is the same

modulo a, leading to the same source term as in (3.26) multiplied by e2πĩ( 1
2ac

+ b
a
) cos(π̃

ac

√
1− (2acτ2)2). Because

the function A(τ ) is even in τ1, its Fourier coefficients are real. For each coprime a, c, there is the permuted pair c, a,

with b and −d permuted, and the contribution carries the complex conjugate phase e2πĩ( 1
2ac

− d
c
) = e2πĩ(− 1

2ac
− b

a
).
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I (2d)

d ∼ 16π2

3
g
− 24

8−d
+3

D

′∑

N∈S+
N×N=0

σ2(N)

(
y

4
d
−3

N

gcd(N)
ξ(2)ESLd

Λ1
(vN )K1

(
2π

√
g(N,N)

gD

)

+ g2D
y

20
d
−5

N

6gcd(N)
ξ(5)ESLd

5
2
Λ2
(vN )K1

(
2π

√
g(N,N)

gD

)

+
3gD

π2gcd(N)2y4N

′∑

Q∈Zd(d−1)
2

Q∧Q=0

σ1(Q)e2πi(Q,ςN )
K 3

2
(2πy

− 4
d

N |vN (Q)|)

(y
− 4

d
N |vN (Q)|) 3

2

K0

(
2π

√
g(N,N)

gD

)

− 15g2D
2π4gcd(N)3y5N

′∑

Q∈Zd(d−1)
2

Q∧Q=0

σ1(Q)e2πi(Q,ςN )
K 5

2
(2πy

− 4
d

N |vN (Q)|)

(y
− 4

d
N |vN (Q)|) 5

2

K1

(
2π

√
g(N,N)

gD

)
)
e2πi(N,a) (3.66)

where we kept the variable yN =

√
g(N,N)

gcd(N) for simplicity, and the sum over Q ∈ Z
d(d−1)

2 is a sum

over characters of the unipotent stabilisers of the charge N . The leading term in gD factorises

as an Eisenstein series over the Levi stabiliser of N , while the full Fourier coefficient depends

non-trivially on the whole parabolic stabiliser.

The neglected terms in (3.65) give rise to integrals over the truncated domain τ2 ∈ [0, 1
2ac ]

for any coprime a and c, which are therefore further exponentially suppressed. As we shall see,

these corrections can be ascribed to instanton anti-instanton corrections, similarly to (3.29) for

the constant term. To see this, it is convenient to do the inverse Poisson summation over ̃.

Note that the function fa,c,̃(τ2) appearing in the sum over coprime a, c

∫ 1
2

− 1
2

dτ1A(τ)e
−2πĩτ1 =

3

(̃π)2τ2
− 15

2(̃π)4τ 3
2

+
∑

a,c≥1
gcd(a,c)=1
2ac<1/τ2

fa,c,̃(τ2) (3.67)

is regular at ̃ = 0 and gives

fa,c,0(τ2) = −1 + 3
2(2acτ2)

2 + (2acτ2)
4

7ac(acτ2)3
(1− (2acτ2)

2)
3
2 (3.68)

as in (3.27). The Poisson formula involves the inverse Fourier transform

f̃a,c,j(τ2) =

∫

R

d̃ e2πij̃ fa,c,N
n
̃(τ2) e

−π
τ2g

2
D

V y2
̃2

(3.69)

which evaluates to

f̃a,c,j(τ2) =
(
P (1)

a,c,j(τ2) + P (2)

a,c,j(τ2)
√

1− (2acτ2)2
)
e
−π V y2

τ2g
2
D

[2acn(j+(q,ς))+N(1+2bc+
√

1− (2acτ2)2)]
2

(2acn)2

−
(
P (1)

a,c,j(τ2)− P (2)

a,c,j(τ2)
√

1− (2acτ2)2
)
e
−π V y2

τ2g
2
D

[2acn(j+(q,ς))+N(1+2bc−
√

1− (2acτ2)2)]
2

(2acn)2

+ P (0)

a,c,j(τ2)
(
erf(

√
π V
τ2

y
gD

2acn(j+(q,ς))+N(1+2bc+
√

1−(2acτ2)2)

2acn )− erf(
√

π V
τ2

y
gD

2acn(j+(q,ς))+N(1+2bc−
√

1−(2acτ2)2)

2acn )
)

(3.70)
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Here P (k)

a,c,j are polynomials in the various parameters which we omit since they are not particu-

larly illuminating. In the saddle point approximation, one computes that these corrections are

exponentially suppressed with the action25

SIĪ =
2π

gD

√
y2(N +N1 + (ς,Q))2 + y2−

8
d |v(Q)|2 + 2π

gD

√
y2(N1 + (ς,Q))2 + y2−

8
d |v(Q)|2 (3.71)

which is recognised as the sum of the actions of an instanton of charges (N +N1, Q) and anti-

instanton of charge (−N1,−Q) with

N1 = bcN + acnj , Q = acnq . (3.72)

It is convenient to change variables to N1, Q and

τ2 =
t

2ac
, V = acn2ν , (3.73)

and define

F
(
t, y2

g2D
ν,N,N1 + (ς,Q)

)
=

√
2

n
f̃a,c,j(τ2) , (3.74)

where the dependence on the arguments is made explicit in F . Then the complete function I (2d)

d

reduces to the sum of (3.66) and

8π2

3
g
− 24

8−d
+1

D

∫ ∞

0
ν

1
2dν

∫ 1

0

dt

t
3
2

∑

γ∈Pd\SO(d,d)

′∑

N∈N
e2πiNaγ

∑

q∈Zd(d−1)
2

q∧q=0

∑

j∈Z

∑

n|N

∑

a,c≥1
gcd(a,c)=1

a2c2n4

× y−1e
−π
(

2
νt

+νt y
2N2

2g2D
+ 2ν

tg2D
y2

d−4
d |v(acnq)|2

)
F
(
t, y

2

g2D
ν,N, bcN + acj + (ς, acq)

)
∣∣∣∣∣
γ

=
8π2

3
g
− 24

8−d
+1

D

∫ ∞

0
ν

1
2dν

∫ 1

0

dt

t
3
2

∑

γ∈Pd\SO(d,d)

′∑

N∈N
e2πiNaγ

′∑

N1∈Z
Q∈Zd(d−1)

2

Q∧Q=0

σ2(N1, Q)σ2(N +N1, Q)

× y−1e
−π
(

2
νt

+νt y
2N2

2g2D
+ 2ν

tg2D
y2

d−4
d |v(Q)|2

)
F
(
t, y

2

g2D
ν,N,N1 + (ς,Q)

)
∣∣∣∣∣
γ

(3.75)

where we used the property that cn divides (N1, Q) and an divides (N+N1, Q) using 1+bc = ad.

Note that the case (N1, Q) = 0 is excluded from the second sum: In this case a and j are fixed

such that bNn + aj = 0 and the sum over c (after replacing a2c2n4 by (acn2)2−2ǫ in dimensional

25To do this computation it is convenient to introduce z1 =

√
y2(N +N1 + (ς,Q))2 + y2− 8

d |v(Q)|2 and z2 =
√

y2(N1 + (ς,Q))2 + y2− 8
d |v(Q)|2. The saddle point for e

−π V y2

τ2g2
D

[2acn(j+(q,ς))+N(1+2bc+
√

1− (2acτ2)2)]
2

(2acn)2 lies within the

integration domain when z2 > z1 and the action takes the minimum value 2π
gD

(z1 + z2), whereas the saddle point

for e
−π V y2

τ2g2
D

[2acn(j+(q,ς))+N(1+2bc−
√

1− (2acτ2)2)]
2

(2acn)2 lies within the integration domain when z1 > z2 and attains the same

minimum value. The error functions involve the same exponential in their asymptotic expansion at large x using

erf(x) = sign(x)− 1
πx

e−x2 ∑∞
k=0 Γ(

1
2
+ k)(− 1

x2 )
k.
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regularisation) leads to a factor of ζ(2ǫ − 2) which vanishes at ǫ = 0. The factors σ2(N1, Q)

and σ2(N + N1, Q) are recognised as the measure factors of the 1/2-BPS instanton and anti-

instanton [5, 67].

We conclude that the dominant contribution (3.66) to I (2d)

d is of the expected form to cor-

respond to 1/2-BPS Euclidean D-brane instantons, with the spinor N identified as the D-brane

charge satisfying the 1/2-BPS constraint N ×N = 0. The overall factor of σ2(N)/N2 is recog-

nised as the partition function of the world-volume theory of N Euclidean Dp-branes on the

torus [67]. For a D(d−1) Euclidean brane instanton yN
− 4

d vN defines the string frame metric and

ςN the B field components along the torus, so that the sum over Q in (3.66) can be interpreted

as contributions from world-sheet instantons over the Euclidean brane background. The sub-

leading correction (3.75) can instead be interpreted as the instanton anti-instanton corrections,

which also carry the measure factor of the two constitutive instantons.

The second source of Fourier coefficients comes from the third layer of charges, more specif-

ically from (3.42) with qiani
̂ 6= 0 or npα 6= 0,

I (3b)

d = 8πg
− 24

8−d
+2

D

∑

γ∈Pd−2\Dd

( ′∑

ni
̂∈Z2

∫

G

d3Ω2

|Ω2|2
ϕtr
KZ(Ω2)

e−πΩij
2 υ

k̂l̂
ni

k̂nj
l̂

yΩij
2 υk̂l̂n̂i

k̂n̂j
l̂

(3.76)

×
∑

qia∈Zd−2

pα∈Z2

e
− π

g2D

(
y
d−4
d−2Ω−1

2iju
abqiaq

j
b+

y

Ω
ij
2 υ

k̂l̂
n̂i

k̂n̂j
l̂
ραβ(p

α−caα
k̂

n̂i
k̂qia)(p

β−cbβ
l̂

n̂j
l̂qjb)
)
+2πi(qiani

̂aâ+npαaα)
)

The integral over G can be unfolded to R+ ×H1 at the expense of restricting the sum over ni
̂

to Z2×2/GL(2,Z). The integral over Ω2 is once again dominated by a saddle point as gD → ∞.

The modulus of the exponential is of the form e−S(Ω) where S is the ‘action’

S(Ω2) = π
(
TrΩ2Y +TrΩ−1

2 X +
M

TrΩ2Y

)
(3.77)

where X,Y are symmetric positive matrices and M > 0. The extremum with respect to Ω2 is

given by

Ω⋆
2 =

√
M +TrXY + 2

√
|XY |

TrXY + 2
√

|XY |
(
X +

√
|XY |Y −1

)
, (3.78)

and satisfies

S(Ω⋆
2) = 2π

√
M +TrXY + 2

√
|XY | . (3.79)

Provided the integrand ϕtr
KZ(Ω2) is continuous around Ω⋆

2, the integral in the saddle point ap-

proximation reduces to

∫

H(R)

d3Ω2

|Ω2|2
ϕtr
KZ(Ω2)

TrΩ2Y
e−S(Ω2) ∼ ϕtr

KZ(X +
√

|XY |Y −1)e−2π
√

M+TrXY+2
√

|XY |
√

|X|(TrXY + 2
√

|XY |)(M +TrXY + 2
√

|XY |)
1
4

. (3.80)

For the integral (3.76) one obtains, setting Pα = npα and Qı̂
a = nj

ı̂qja,

S(Ω⋆
2) =

2π

gD

√
yραβ(P

α − caαı̂ Qı̂
a)(P

β − cbβ̂ Q̂
b) + y

d−4
d−2

(
υı̂̂u

abQı̂
aQ

̂
b + 2

√
(uabucd − uacubd)Q1̂

aQ
1̂
bQ

2̂
cQ

2̂
d

)
(3.81)
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which is identified as the classical action for a 1/4-BPS D-brane of charge N ∈ S+ with

N̄γd−4N 6= 0, (and γ2N · (N̄γd−4N) = 0 in ∧d−6IId,d for d ≥ 6)

S(Ω⋆
2) =

2π

gD

√
|v(N)|2 +

√
2|v(N)γd−4v(N)|2 . (3.82)

We shall now express the Fourier coefficients (3.76) in a covariant fashion by resolving the

sum over Pd−2\Dd. For each non-zero spinor N ∈ S+, one has a sum over the doublets of spinor

χi ∈ S− satisfying instead χ̄iγd−4χj = 0 such that (χ̄iγd−2χj) · γ2N = 0 in ∧d−4IId,d and such

that
1

gcd(χ̄iγd−2χj)
χ̄iγd−3N ∈ ∧d−3IId,d ,

1

gcd(χi)
N ∈ S+ . (3.83)

Introducing the same notation g(·, ·) for the metric on any module of Spin(d, d) parametrised

by the coset SO(d, d)/(SO(d) × SO(d)), and unfolding the integration domain against the sum

over χi, one can write (3.76) as

I (3b)

d = 16πg
− 24

8−d
+2

D

′∑

N∈S+

γ2N ·(N̄γd−4N)=0

e2πiN̄a
∑

χi∈S−⊗Z2/GL(2,Z)
χ̄iγd−4χj=0, χiγd−2χj 6=0

χ̄iγd−2χj ·γ2N=0
1

gcd(χ̄iγd−2χj)
χ̄iγd−3N∈∧d−3IId,d
1

gcd(χi)
N∈S+

∫

H(R)

d3Ω2

|Ω2|2
ϕtr
KZ(Ω2)

gcd(χi)
2

Ωij
2 g(χi, χj)

×e
−πΩij

2 g(χi,χj)− π

g2
D

(
Ω−1
2ij

εikεjlg(χ̄kγd−3N,χ̄lγd−3N)

g(χ̄1γd−2χ2,χ̄1γd−2χ2)
+

g(N,N)

Ω
ij
2

g(χi,χj )
− εikεjlg(χi,χj )g(χ̄kγd−3N,χ̄lγd−3N)

Ω
ij
2

g(χi,χj )g(χ̄1γd−2χ2,χ̄1γd−2χ2)

)

∼ 8πg
− 24

8−d
+4+ 1

4
D

′∑

N∈S+

Γ2N ·(N̄Γd−4N)=0

e
2πiN̄a− 2π

gD

√

g(N,N)+2
√

g(N̄γd−4N,N̄γd−4N)

(g(N,N) + 2
√

g(N̄γd−4N, N̄γd−4N))
1
4

(3.84)

×
∑

χi∈S−
χ̄iγd−4χj=0, χiγd−2χj 6=0

χ̄iγd−2χj ·γ2N=0
1

gcd(χ̄iγd−2χj )
χ̄iγd−3N∈∧d−3IId,d
1

gcd(χi)
N∈S+

gcd(χi)
2

√
|g(χi, χj)|

ϕtr
KZ[(

g(χ̄iγd−3N,χ̄jγd−3N)
g(χ̄1γd−2χ2,χ̄1γd−2χ2)

+

√
2g(N̄γd−4N,N̄γd−4N) g(χi,χj)

2|g(χk,χl)| )−1] .

where we used the same saddle point approximation as above in the second step. To find

this formula one can use the fact that the sum over non-zero χi decomposes into the Poincaré

sum over Pd−2\Dd and χi = (0, 0, ni
̂). Then χ̄iγd−2χj = εij(. . . , 0,detn), and the constraint

χ̄iγd−2χj · γ2N = 0 imposes that N = (0, Qı̂
a, P

α). Then the only non-zero component of

χ̄iγd−3N is εı̂̂ni
ı̂Q̂

a, so that the one of 1
gcd(χ̄iγd−2χj)

χ̄iγd−3N is −εijn
−1 j
ı̂ Qı̂

a, which in order to be

an integers requires that Qı̂
a = nj

ı̂qja for an integral qia. Finally the condition that 1
gcd(χi)

N ∈ S+

is automatically satisfied for Qı̂
a and requires that Pα be divisible by gcd(ni

̂).

In D = 4 there are additional contributions from the last orbit to the Fourier coefficients.

For generic abelian Fourier coefficients, one can insert the Fourier expansion (A.11) in (3.56)

without having to worry about the discrepancy (3.57). The integral over Ω1 sets the matrix M
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in (A.11) equal to 1
2ηabq

a
i q

b
j . As the Fourier coefficient is defined by the charge Qa

ı̂ = mı̂
jqaj , we

recast the sum over qai and mı̂
j into a sum over integral charges Qı̂ ∈ II4,4 and matrices Aı̂

j

dividing them in II4,4. One obtains in this way

I (5c)

6 =
∑

γ∈P2\SO(6,6)

(
1

g 4
4 y

4

∑

Q∈Z2⊗II4,4
∆(Q)≥1

∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II4,4

∑

d|A−1Q·Q⊺A−⊺

|A|−1d−3c̃
( ∆(Q)
|A|2d2

)
(3.85)

×
∑

k≥1
p∈S+

gcd(k,p)=1
(p,p)
2k

∈Z
A−1/Qp

k
∈S−

∫

H+

d3Ω2

|Ω2|

(
4π∆(Q)

L( pk + a)
+

5

π|Ω2|
( 1

L( pk + a)3
+

π

L( pk + a)2
tr[Ω2vQ ·Q⊺v⊺]

))

× e
−πtr[v⊺Ω2v(L(p+a)Q·Q⊺+QuQ⊺+

g 2
4
y
( p
k
+a)⊺/Qu/Q( p

k
+a))]− π

g 2
4
tr[Ω−1

2 ]+2πi(Q,a+cγa( p
k
+a))

)∣∣∣∣∣
γ

where

∆(Q) = det[ηabQı̂aQ̂b)] , L(p) =

√
1 +

g 2
4
y uαβpαpβ +

g 4
4

4y2
(p, p)2 . (3.86)

Note that ∆(Q) is the usual quartic invariant of electromagnetic charge vectors in an N = 4

truncation of N = 8 supergravity [68].

To exhibit the Fourier expansion, we still need to decompose the sum over (k, p) into p mod

k and the integral part p′, and Poisson resum over p′. We define the function

fQ(
g4x√
y ) =

∫

H+

d3Ω2

|Ω2|

(
4π∆(Q)

L(x)
+

5

π|Ω2|
( 1

L(x)3
+

2π

L(x)2
tr[Ω2vQ ·Q⊺v⊺]

))

e
−πtr[v⊺Ω2v(L(x)Q·Q⊺+QuQ⊺+

g 2
4
y
x⊺/Qu/Qx)]− π

g 2
4
tr[Ω−1

2 ]
, (3.87)

which can be evaluated in terms of matrix variate Bessel functions if so desired, and its Fourier

transform

f̃Q(χ) =

∫
d8x fQ(x)e

2πi(χ,x) , (3.88)

where we have rescaled variables such that f̃Q(χ) does not depend on y. While we do not have

an explicit formula for f̃Q(χ), we note that it is a well-defined, absolutely convergent integral.

Moreover, we expect that it should have the characteristic exponential suppression for 1/8-BPS

D-brane instantons. The generic Fourier coefficients can be written as26

26The condition d|Q ·Q⊺ is a shorthand notation for d|(Q1, Q1)/2, (Q2, Q2)/2, (Q1, Q2).
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I (5c)

6 =
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( ∆(Q)
|A|2d2

)

×
∑

k≥1
p∈S+ mod kS+

(p,p)
2k

∈Z
A−1/Qp

k
∈S−

e2πi(
p
k
,χ)f̃Q

(√y
g4

(χ+ /Qc)
)
e2πi(Q,a)+2πi(χ,a)

)∣∣∣∣∣
γ

. (3.89)

where the coefficients c̃(n) are defined in (A.12). As expected for a generic Fourier coefficient

saturating the Gelfand–Kirillov dimension of the automorphic representation, these Fourier co-

efficients decompose into a ‘measure factor’

µP2(Q,χ) =
∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II4,4

∑

d|A−1Q·Q⊺A−⊺

|A|−1d−3c̃
( ∆(Q)
|A|2d2

) ∑

k≥1
p∈S+ mod kS+

(p,p)
2k

∈Z
A−1/Qp

k
∈S−

e2πi(
p
k
,χ) (3.90)

and an analytic function 1
g 12
4
f̃Q
(√y
g4

(χ + /Qc)
)
of g4 and the Levi factor v acting on the charge

(0, Q, χ) only, but not on the number-theoretic properties of the charge. Note that the depen-

dence in y and the axions c is such that the function is covariant under P2 as a U(1)×SO(4)×
SO(4) ⊂ P2 invariant function of v(0, Q, χ).

A significant complication is that the true measure factor µ(Q,χ) differs from (3.90), due

to the fact that the charges in the form (0, Q, χ) do not define a unique representative of the

P2 ⊂ Spin(6, 6) orbits. We shall not attempt to compute the measure µ for general (Q,χ),

although we expect that it will take a similar form with different powers of the determinant

|A| of the dividing matrix A and of the integer d. In the special case however where Q is a

projective charge, in the language of [69], then the problem simplifies drastically. One example

of such a projective charge is a configuration of one D5 and three D1 Euclidean branes wrapping

three orthogonal T 2 ⊂ T 6, two once and one N times, possibly along with one unit of D(−1)

brane, i.e. 1 D5 +1 D1+1 D1+N D1 (+1 D(-1)). Then each representative has gcd(Q) = 1,

gcd(Qı̂ ·Q̂) = 1 and gcd(Q1̂∧Q2̂) = 1 such that A = 1, d = 1 and k = 1. In this case there is no

sum over p and the measure reduces to c̃
(
∆(Q)

)
= c̃
(
∆(0, Q, χ)

)
, where ∆(0, Q, χ) = ∆(Q) is

also the quartic Spin(6, 6) invariant of the total charge (0, Q, χ). Then the measure is the same

for all possible representatives in the Poincaré sum P2\Spin(6, 6), so the Spin(6, 6,Z) invariant

measure will be preserved and equal to c̃
(
∆(0, Q, χ)

)
. This is indeed in agreement with the index

of a 1/8-BPS stack of D-branes on T 6 determined in [51–53], which counts four-dimensional BPS

black holes.

The full Fourier expansion for D5

For d = 4, we have exhausted all the contributions in the theta series θ
Ed+1

Λd+1
(φ,Ω2), and have

thus obtained the complete expansion of the integral (3.7) that we record here for reference
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E (4),ExFT
(0,1) =

2ζ(3)2

3
g−6
6 +

2π2

9
ζ(3)g−4

6 ED4
Λ1

+ 8πg−2
6 R.N.

∫

F2

d6Ω

|Ω2|3
ϕKZ(Ω)Γ4,4,2(Ω, t)

+ 4
27ζ(6)E

D4
3Λ3

+ 8πg−6
6

∫

G

d3Ω2

|Ω2|3
ϕtr
KZ(Ω2)

′∑

qi∈S+

q̄iqj=0

∑

ni∈Z
niqi 6=0

e−πΩij
2 ninj−πΩ−1

2ijg
−2
6 g(qi,qj)+2πini(qi,a)

+ 8πg−4
6

′∑

N∈S+

e2πiN̄a
∑

χi∈S−
χ̄iχj=0, χiγ2χj 6=0
χ̄iγ2χj ·γ2N=0
1

gcd(χ̄iγ2χj)
χ̄iγ1N∈II4,4

1
gcd(χi)

N∈S+

∫

G

d3Ω2

|Ω2|2
ϕtr
KZ(Ω2)

gcd(χi)
2

Ωij
2 g(χi, χj)

× e
−πΩij

2 g(χi,χj)− π

g2
6

(
Ω
−1
2ij

εikεjlg(χ̄kγ1N,χ̄lγ1N)

g(χ̄1γ2χ2,χ̄1γ2χ2)
+

g(N,N)

Ω
ij
2 g(χi,χj )

− εikεjlg(χi,χj )g(χ̄kγ1N,χ̄lγ1N)

Ω
ij
2 g(χi,χj )g(χ̄1γ2χ2,χ̄1γ2χ2)

)

− 16π2

21
g−4
6

′∑

qi∈II4,4
(qi,qj)=0

σ2(q)
2

|v(q)|2B2

(
2π

g6
|v(q)|

)
(3.91)

As shown in Section C.2, the theta lift formula
∫

d6Ω
|Ω2|3ϕKZ(Ω)Γ5,5,2(Ω, t) gives indeed the same

constant terms. The integral in the second line can be simplified as in (3.66) and (3.75).

4 Decompactification limit

In this section, we study the integral (1.17) in the limit where one circle inside T d becomes

very large. We first discuss the expected form of the expansion, known from general physical

considerations, before turning to a detailed analysis of the constrained lattice sum (1.18). For

d = 5, it is worth noting that the decompactification limit is equivalent to the weak coupling

limit under exchanging g5 with R−1, due to the symmetry of the Dynkin diagram of E6 and

(1.23) with d− 2 = 3.

4.1 Expectation

The decompactification limit of the non-perturbative ∇6R4 coupling takes the formal generic

form [22] [2, (2.28)]

E (d)

(0,1) ∼ R
12

8−d

(
E (d−1)

(0,1) +
5

π
ξ(d− 6)Rd−7 E (d−1)

(1,0) + 40ξ(2)ξ(6)ξ(d + 4)Rd+3

+
2π

3
ξ(d− 2)Rd−3E (d−1)

(0,0) +
16π2ξ(d− 2)2

(d+ 1)(6− d)
R2d−6

)
(4.1)

where R = rd/ℓD+1 is the radius of the circle in Planck units, up to logarithmic terms that

depend on the specific dimension and can be found in the Appendix B of [2]. These terms are

determined by matching the decompactification limit of the perturbative string theory answer

together with the requirement that the result must be expressed in terms of the functions
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multiplying the lower-derivative terms in R, R4 and ∇4R4 in the effective action. On the other

hand, the decompactification limit of the homogeneous solution F (d)

(0,1) in (1.11) (coming from

the one-loop amplitude in exceptional field theory) gives

F (d)

(0,1) ∼ R
12
8−d

(
F (d−1)

(0,1) +
5

π
ξ(d− 6)ζ(5)Rd−7EEd

5
2
Λ1

+ 40ξ(2)ξ(6)ξ(d + 4)Rd+3
)

(4.2)

where ζ(5)EEd
5
2
Λ1

= E (d−1)

(1,0) for d = 6 and for d = 0 in type IIB, whereas

E (d−1)

(1,0) = ζ(5)EEd
5
2
Λ1

+
4π3

45
ξ(d+ 1)EEd

d+1
2

Λd
(4.3)

for 1 ≤ d ≤ 5 and d = 0 type IIA.27

It follows from (1.13) that for d ≤ 5, the two-loop exceptional field theory amplitude must

behave as

E (d),ExFT
(0,1) ∼ R

12
8−d

(
E (d−1),ExFT
(0,1) +

4π2

9
ξ(d− 6)ξ(d + 1)Rd−7EEd

d+1
2

Λd
+

2π

3
ξ(d− 2)Rd−3E (d−1)

(0,0)

+
16π2ξ(d− 2)2

(d+ 1)(6 − d)
R2d−6

)
(4.4)

up to logarithmic corrections that will be discussed in detail in Section 5.3. This formula applies

up to non-analytic terms to d = 6 if one omits the term EEd
d+1
2

Λd
which is divergent.

4.2 Decompactification limit of the particle multiplet lattice sum

We are interested in the decompactification limit of the integral (3.7). Under Ed+1 ⊃ GL(1)×Ed,

the particle multiplet decomposes as

MEd+1

Λd+1
→ Z

(9−d) ⊕
[
MEd

Λd

](1) ⊕
[
MEd

Λ1

](d−7) ⊕ [MEd

Λ7
](2d−15) , (4.5)

where we defineMEd

Λd+1
= Z andMEd

Λk
= {0} for k > d+1. We denote the charges Γi accordingly by

(mi, Qi, Pi, ni). The constraints Γi×Γj = 0 are valued in the string multiplet, which decomposes

as

MEd+1

Λ1
→
[
MEd

Λ1

](2) ⊕
[
MEd

Λ2
⊕MEd

Λ7

](d−6) ⊕ [MEd

Λ6
](2d−14) . (4.6)

Thus, the components (mi, Qi, Pi, ni) are subject to the constraints

Qi ×Qj = m(iPj) , P(i ×Qj)

∣∣
Λ2

= 0 , P(i ·Qj) = −3m(i nj) , Pi × Pj = −n(iQj) (4.7)

where the third only arises for d = 6, and the last constraint simplifies to (Pi, Pj) = 0 for d = 5

and disappears for d ≤ 4. In terms of these components, the quadratic form G(Γ,Γ) can be

expressed as

G(Γ,Γ) = R−2 9−d
8−d (m+ 〈a,Q〉+ 〈a× a, P 〉 − det a n)2

+R− 2
8−d g(Q+ 2a× P − a× an,Q+ 2a× P − a× an)

+R2 7−d
8−d g(P − an, P − an) +R2 15−2d

8−d n2 (4.8)

27 For d ≤ 3 one must understand E
Ed
sΛd

as the sum over the 1/2-BPS particle charges, so one gets EE3
sΛ3

=

E
SL(2)
sΛ1

E
SL(3)
sΛ2

, EE2
sΛ2

= ν
6s
7 E

SL(2)
sΛ1

+ ν− 8
7
s, EE1

sΛ1
= g

3
2
s

A for type IIA, and zero for type IIB.
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where a denotes the axions parametrising the unipotent part of the parabolic subgroup Pd+1.

As in Section 3.2, we shall split the theta series θEd+1

Λd+1
into contributions where the components

(mi, Qi, Pi, ni) along the graded decomposition (4.5) are gradually populated, such that the

constraints can be solved explicitly.

1) The first layer

The first layer corresponds to all charges being zero except mi, in which case one has the

contribution

θ(1)

Λd+1
(φ,Ω2) =

′∑

mi∈Z
e−πΩij

2 R
−2 9−d

8−dmimj . (4.9)

This term corresponds to the Kaluza–Klein states running in the loop. It is infrared divergent

and requires regularisation. Integrating against ϕtr
KZ, we get

I (1)

d = 8π

∫

G

d3Ω2

|Ω2|
6−d
2

ϕtr
KZ(Ω2)θ

(1)

Λd+1
(φ,Ω2)

=
8π2

3

∫ ∞

0

dV

V 3−d

∫

F

dτ1dτ2
τ 2
2

A(τ)
′∑

(m,n)∈Z2

e
−πV R

−2 9−d
8−d |m+nτ |2

τ2

=
16π2

3
ξ(2d− 4)R

12
8−d

+2(d−3)
∫

F

dτ1dτ2
τ 2
2

A(τ)E
SL(2)
(d−2)Λ1

(τ)

=
16π2 ξ(d− 2)2

(6− d)(d+ 1)
R

12
8−d

+2(d−3) (4.10)

where we used (3.17). More precisely, using the regularisation (1.17) one obtains after taking

the limit L → ∞
I (1)

d,ǫ =
16π2 ξ(d+ 2ǫ− 2)2

(6− d− 2ǫ)(d + 2ǫ+ 1)
R

12+4ǫ
8−d

+2(d−3)+4ǫ . (4.11)

It has a double pole in d = 2 and d = 3 associated to the double pole in the eight-dimensional

supergravity amplitude, and a simple pole in d = 6. It is associated to both the log divergence

proportional to the E(1,0) coupling in d = 6 and the log divergence proportional to the E(0,0)

coupling in d = 5 and is not proportional to a sum of them. We shall discuss the logarithmic

contribution for d = 6 in more detail in Section 5.3.

2) The second layer

The second term comes from mi ∈ Z, Qi 6= 0, Pi = ni = 0:

θ(2)

Λd+1
(φ,Ω2) =

′∑

Qi∈MEd

Λd

Qi×Qj=0

∑

mi∈Z
e−πΩij

2

(
R

−2 9−d
8−d (mi+〈a,Qi〉)(mj+〈a,Qj〉)+R

− 2
8−d g(Qi,Qj)

)
(4.12)

=
′∑

Qi∈MEd

Λd

Qi×Qj=0

∑

mi∈Z

R2 9−d
8−d

|Ω2|
1
2

e−πΩ−1
2 ijR

2 9−d
8−d mimj−πΩij

2 R
− 2

8−d g(Qi,Qj)+2πi〈miQi,a〉 .
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The term I (2a)

d with mi = 0 is recognised as the theta series θEd

Λd
(φ,Ω2), up to factors of |Ω2| and

R, whereas the term I (2b)

d coming from mi 6= 0 but miQ
i = 0 can be treated as I (2b)

d and I (2c)

d in

Section 3.2. In the same way we unfold the fundamental domain of PGL(2,Z) to the strip, so

as to set (m1,m2) = (0,m) and (Q1, Q2) = (Q, 0), leading to, upon using (3.27),

I (2b)

d =
8π2R2 9−d

8−d

3

∫ ∞

0

dV

V d−2+2ǫ

∫ L

0

dτ2
τ 2
2

(∫ 1
2

− 1
2

dτ1A(τ)

) ′∑

Q∈MEd

Λd

Q×Q=0

∑

m≥1

e
−πV

τ2
R29−d

8−dm2−πR
− 2

8−d

V τ2
|Z(Q)|2

=
8π2R

12+4ǫ
8−d

3

∫ ∞

0

dV

V d−2+2ǫ

∫ L

0

dτ2
τ 2
2

′∑

Q∈MEd

Λd

Q×Q=0

∑

m≥1

e
−πV

τ2
R2m2− π

V τ2
|Z(Q)|2

×
(
τ2 +

1

6τ 3
2

− 1

7

∑

a,c≥1
gcd(a,c)=1
2ac<1/τ2

1 + 3
2(2acτ2)

2 + (2acτ2)
4

ac(acτ2)3
(1− (2acτ2)

2)
3
2

)

=
8π2R

12+4ǫ
8−d

3

(
ξ(dǫ − 2)ξ(dǫ − 3)Rdǫ−3 EEd

dǫ−3
2

Λd
+

ξ(dǫ − 6)ξ(dǫ + 1)

6
Rdǫ−7 EEd

dǫ+1
2

Λd

−2π2

7
Rdǫ−3

′∑

Q∈MEd

Λd

Q×Q=0

(
σdǫ−3(Q)

)2

|Z(Q)|dǫ−3
Bdǫ−3(2πR|Z(Q)|)

)
(4.13)

where dǫ = d+ 2ǫ and Bd−3(x) is the function defined in (3.30). In total, one obtains

I (2)

d = R
12+4ǫ
8−d

(
8π

∫
d3Ω2

|Ω2|
7−dǫ

2

ϕtr
KZ(Ω2)

′∑

Qi∈MEd

Λd

Qi×Qj=0

e−πΩij
2 g(Qi,Qj) (4.14)

+
8π2

3
ξ(dǫ − 2)ξ(dǫ − 3)Rdǫ−3 EEd

dǫ−3
2

Λd
+

4π2

9
ξ(dǫ − 6)ξ(dǫ + 1)Rdǫ−7 EEd

dǫ+1
2

Λd

−16π2

21
Rd−3

′∑

Q∈MEd

Λd

Q×Q=0

(
σd−3(Q)

)2

|Z(Q)|d−3
Bd−3(2πR|Z(Q)|)

+8π R2(d−3)

∫
d3Ω2

|Ω2|
7−d
2

ϕtr
KZ(Ω2)

′∑

Qi∈MEd

Λd

Qi×Qj=0

′∑

mi∈Z
miQi 6=0

e−πΩ−1
2 ijm

imj−πΩij
2 R2g(Qi,Qj)+2πi〈miQi,a〉

)
.

The first term, corresponding to mi = 0, reproduces the function R
12

8−dId−1 in dimension D+1.

The two terms in the second line formally give respectively (part of) the threshold functions E (d−1)

(0,0)

and E (d−1)

(1,0) in D+1 dimensions, while the third line corresponds to non-perturbative corrections

to the constant term. We shall discuss the renormalised expression at ǫ = 0 shortly. Note that

unlike in the weak coupling limit, the regularisation does not give rise to non-maximal parabolic

Eisenstein series. This is because there is no additional Poincaré series in this computation, so
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one cannot deviate from the Pd maximal parabolic Poincaré series associated to the sum over Qi.

The last term corresponds to non-trivial Fourier coefficients associated to 1/2-BPS instantons,

which can be analysed similarly as I (2d)

d in Sections 3.3 and C.1.

Following the steps as in Section C.1 and in particular (C.19), one computes that

8π R2(d−3)

∫
d3Ω2

|Ω2|
7−d
2

ϕtr
KZ(Ω2)

′∑

Qi∈MEd

Λd

Qi×Qj=0

′∑

mi∈Z
miQi 6=0

e−πΩ−1
2 ijm

imj−πΩij
2 R2g(Qi,Qj)+2πi〈miQi,a〉

=
16π2

3
R

d−3
2

′∑

Q∈MEd

Λd

Q×Q=0

(
σd−3(Q)

(
y

9−3d
2

+ (9−d)(d−4)
10−d

Q

gcd(Q)
d−3
2

ξ(d− 4)EEd -1
d−4
2

Λd -1
(vQ)K d−3

2

(
2πR|Z(Q)|

)

+
3y

7−3d
2

Q

π2R gcd(Q)
d−1
2

′∑

q∈MEd−1

Λd−1

q×q=0

σd−4(q)e
2πi(q,ςQ)

K d−2
2
(2πy

−2 9−d
10−d

Q |vQ(q)|)

(y
−2 9−d

10−d

Q |vQ(q)|)
d−2
2

K d−5
2

(
2πR|Z(Q)|

)

−
15y

5−3d
2

Q

2π4R2 gcd(Q)
d+1
2

′∑

q∈MEd−1

Λd−1

q×q=0

σd−4(q) e
2πi(q,ςQ)

K d
2
(2πy

−2 9−d
10−d

Q |vQ(q)|)

(y
−2 9−d

10−d

Q |vQ(q)|)
d
2

K d−7
2

(
2πR|Z(Q)|

)
)

+
y

5−3d
2

+
(9−d)d
10−d

Q

6R2

σd−7(Q)

gcd(Q)
d−7
2

ξ(d)EEd -1
d
2
Λd -1

(vQ)K d−7
2
(2πR|Z(Q)|)

)
e2πi(Q,a)

+
8π2

3
R2d−7

∫ ∞

0

dν

ν
9
2 − d

∫ 1

0

dt

t
3
2

∑

γ∈Pd\Ed

′∑

N∈N

′∑

N1∈Z
q∈MEd−1

Λd−1

q×q=0

σd−3(N1, q)σd−3(N +N1, q)

× y−1e−π
(

2
νt

+νtR
2y2N2

2
+ 2ν

t
R2y

2
10−d |v(q)|2

)
F
(
t, R2y2ν,N,N1 + (ς, q)

)
e2πiQaγ

∣∣∣∣
γ

(4.15)

where yQ = |Z(Q)|
gcd(Q) , the sum over q ∈ MEd−1

Λd−1
runs over over characters of the unipotent stabilisers

of the charge Q, and F is the function defined in (3.74). The leading term in R factorises as an

Eisenstein series over the Levi stabiliser of Q in the minimal representation, while the full Fourier

coefficient depends non-trivially on the whole parabolic stabiliser. One recognises σd−3(Q) as

the measure for 1/2-BPS charges Q ∈ MEd

Λd
, and similarly σd−4(q) as the measure for 1/2-BPS

charges q ∈ MEd−1

Λd−1
, just like for Fourier coefficients of E (d−1)

(0,0) and E (d−2)

(0,0) in the decompactification

limit [23, 1]. To interpret these Fourier coefficients it is relevant to combine them with the

1/2-BPS Fourier coefficients of the homogeneous solution [50]

∫

R(Λd)/M
Ed

Λd

da e−2πi(Q,a)F (d)

(0,1) = 80ξ(2)R
12+4ǫ
8−d

+ d+3
2

(
ξ(6)σd+3(Q)

K d+3
2
(2πR|Z(Q)|)

|Z(Q)| d+3
2

+
σd−7(Q)

R5gcd(Q)
d−7
2

ξ(5)EEd -1
5
2
Λ1
(vQ)K d−7

2
(2πR|Z(Q)|)

)
(4.16)
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where Q × Q = 0. Altogether, the abelian Fourier coefficients of E (d)

(0,1) involving an Eisenstein

series of the Levi stabiliser of the charge Q combine in the full coupling E (d)

(0,1) as

R
12
8−d

+ d+3
2

(
16π4

567
σd+3(Q)

K d+3
2
(2πR|Z(Q)|)

|Z(Q)| d+3
2

+
4πσd−3(Q)

3(Ry
2

10−d

Q )3
E (d−2)

(0,0) (vQ)
K d−3

2
(2πR|Z(Q)|)

|Z(Q)| d−3
2

+
10σd−7(Q)

π(Ry
2

10−d

Q )5
E (d−2)

(1,0) (vQ)
K d−7

2
(2πR|Z(Q)|)

|Z(Q)| d−7
2

)
(4.17)

and we recognise the effective couplings in D + 2 dimensions that appear with the expected

power of the torus volume Ry
2

10−d

Q associated to the charge Q.

The last term in (4.15) involving the function F can be ascribed to instanton anti-instanton

corrections of charges Q = (N, 0, 0) and Q1 = (N1, q, 0), and is further exponentially suppressed

in e−2πR(|Z(Q1)+|Z(Q−Q1)|). The measure factor also reproduces the 1/2-BPS measure appearing

in the Fourier expansion of E (d)

(0,0), consistently with the property that these terms are the solution

to the Laplace equation (1.5) with a quadratic source term in E (d)

(0,0).

3) The third layer

The next layer corresponds to mi ∈ Z, Qi ∈ MEd

Λd
and Pi 6= 0, with Pi∧Pj = 0, so that Pi = niP

for two relative prime integers ni and some P ∈ MEd

Λ1
. In this case, the last constraint in (4.7)

implies that P is in the orbit of the highest weight representative in the parabolic decomposition

(3.9) with respect to P1 ⊂ Ed . Within this decomposition, the constraints (4.7) for the charge

Qi in the decomposition (3.8) imply that Qi = (qi, 0, . . . ) for a doublet of vectors qi ∈ IId−1,d−1,

subject to the conditions (qi, qj) = 2m(inj). Writing this third contribution as a Poincaré series

over P1\Ed, the seed is recognised as a Siegel–Narain genus-two theta series for the lattice IId,d
as follows,

θ(3)

Ed+1
(φ,Ω2)

=
∑

γ∈P1\Ed




∑

qi∈IId−1,d−1

ni,mi∈Z ni 6=0
(qi,qj)=2m(inj)

e−πΩij
2 yR

−2
8−d

(
(yR2)−1(mi + (a, qi) +

(a,a)
2 ni)(mj + (a, qj) +

(a,a)
2 nj) + g(qi + ani, qj + anj) + yR2ninj

)




∣∣∣∣∣∣∣∣∣∣∣
γ

=
∑

γ∈P1\Ed

(
|yR− 2

8−dΩ2|−
d
2

∫

[0,1]3
d3Ω1 Γd,d,2(Ry

1
2 ,Ω1 + iyR− 2

8−dΩ2)

−
∑

qi∈IId−1,d−1

(qi,qj)=0

∑

mi∈Z
e−πΩij

2 yR
− 2

8−d
(
(yR2)−1(mi+(a,qi))(mj+(a,qj))+g(qi,qi)

))∣∣∣∣∣
γ

(4.18)
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where Γd,d,2(Ry
1
2 ,Ω) is the genus-two partition function for the lattice IId,d = IId−1,d−1 ⊕ II1,1,

with radius Ry
1
2 on II1,1. To compute the integral of the first line against ϕtr

KZ, we first rescale

Ω2 7→ R
2

8−dΩ2/y, so that the argument of the Siegel–Narain theta series becomes Ω = Ω1 + iΩ2;

we then use its invariance under Sp(4,Z) to fold the integration domain to the fundamental

domain F2, at the cost of replacing ϕtr
KZ by the sum of its images under Sp(4,Z); the latter

sum produces the Kawazumi–Zhang invariant ϕKZ by virtue of (1.21). As for the second line in

(4.18), we perform a Poisson summation over mi, obtaining finally

I (3)

d = 8π R2 d−2
8−d

∑

γ∈P1\Ed

(
y2−d

∫

F2

d6Ω

|Ω2|3
ϕǫ
KZ(Ω)Γd,d,2(Ω, Ry

1
2 )

) ∣∣∣∣
γ

(4.19)

−8π R
12

8−d

∑

γ∈P1\Ed



y3−d

∫

G

d3Ω2

|Ω2|
7−d
2

−ǫ
ϕtr
KZ(Ω2)

∑

ni∈Z
qi∈IId−1,d−1

(qi,qj)=0

e−πΩ−1
2ijR

2yninj−πΩij
2 g(qi,qj)+2πi(niqi,a)




∣∣∣∣∣∣∣∣∣∣∣
γ

The next step is to integrate over Ω1 in the first line. In principle one should do the computation

using the unfolding method and the Fourier–Jacobi expansion of ϕǫ
KZ(Ω) at ǫ 6= 0. Instead, we

shall do the computation at ǫ = 0, and argue a posteriori that we do not miss any term for

d ≥ 4. At ǫ = 0, we can use the equivalence (2.53) between the constrained lattice sum over

the vectors in IId,d and the constrained lattice sum over spinors in S+. As for the second

line, it is useful to change variable from Ω2 → Ω−1
2 , using the fact that d3Ω2/|Ω2|sϕtr

KZ(Ω2) →
d3Ω2/|Ω2|4−sϕtr

KZ(Ω2) under this operation. After these steps, one obtains

I (3)

d = 8π R2 d−2
8−d

∑

γ∈P1\Ed

[
y2−d

(∫

G

d3Ω2

|Ω2|
ϕtr
KZ(Ω2) Ξ

Dd
Λd

(Ω2, Ry
1
2 )

−R2y

∫

G

d3Ω2

|Ω2|
d+1
2

ϕtr
KZ(Ω2)

∑

ni∈Z
qi∈IId−1,d−1

(qi,qj)=0

e−πΩij
2 R2yninj−πΩ−1

2ijg(q
i,qj)+2πi(niqi,a)

)]∣∣∣∣∣
γ

(4.20)

The integral on the first line can then be computed by inserting (C.24) with R replaced by

Ry1/2. Most terms in (C.24) coincide with the terms appearing in the second line of (4.20) and

cancel out, leaving only

I (3)

d = 8πR
12

8−d
+d−3

∑

γ∈P1\Ed

δ∈Pd−3\Dd−1

(
y

3−d
2

∑

ni
̂∈Z2

detn 6=0

∫
d3Ω2

|Ω2|2
ϕtr
KZ(Ω2)

e−πΩij
2 υ

k̂l̂
ni

k̂nj
l̂

y′(Ωij
2 υk̂l̂n̂i

k̂n̂j
l̂)

d−3
2

(4.21)

×
′∑

qia∈Z2

pα∈Zd−3

e
−πR2y

(
Ω−1

2iju
abqiaq

j
b+

y
′ 2
d−3

Ω
ij
2

υ
k̂l̂

n̂i
k̂n̂j

l̂
ραβ(p

α−caα
k̂

n̂i
k̂qia)(p

β−cbβ
l̂

n̂j
l̂qjb)
)
+2πi(qiani

̂aâ+npαaα)
)∣∣∣∣∣

δγ

,

where y and y′ are the coordinates on the GL(1) factors of the Levi subgroups of P1 and Pd−3,

respectively, i.e. the associated multiplicative parabolic characters. At this point we change
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variables y = y
2
3
4 v, y

′ = y
9−d
2

4 v
3−d
2 such that vυk̂l̂ni

k̂nj
l̂ is identified as υk̂l̂ni

k̂nj
l̂ over SL(3) and

y4 is the multiplicative character for P4

ed ⊃ (gl1 ⊕ sl2 ⊕ sl3 ⊕ sld−3)
(0) ⊕ (2,3,d − 3)(

9−d
3d−9

) ⊕ (3, (d− 3

2
))(

18−2d
3d−9

) ⊕ (2, (d − 3

3
))(

9−d
d−3

) (4.22)

under which

MEd

Λd
→ (Zd−3)(

2
d−3

) ⊕ (Z2 ⊗Z3)(
1
3 ) ⊕ (Z3 ⊗Zd−3)(

2d−12
3d−9

) ⊕ (Z2 ⊗ ∧2Zd−3)(
d−7
d−3

) ⊕ (Z3 ⊗ ∧3Zd−3)(
4d−30
3d−9

) . (4.23)

In this way, denoting y4 by y again for simplicity, we obtain

I (3)

d = 8πRd−3
∑

γ∈P4\Ed

(
∑

ni
̂∈Z3

rk(n)=2

∫
d3Ω2

|Ω2|2
ϕtr
KZ(Ω2)

e−πΩij
2 yυ

k̂l̂
ni

k̂nj
l̂

y2(Ωij
2 yυk̂l̂n̂i

k̂n̂j
l̂)

d−3
2

(4.24)

×
′∑

qia∈Z2

pα∈Zd−3

e
−πR2

(
Ω−1

2ijy
− 1

3 uabqiaq
j
b+

y
4

d−3

Ω
ij
2 yυ

k̂l̂
n̂i

k̂n̂j
l̂
ραβ(p

α−caα
k̂

n̂i
k̂qia)(p

β−cbβ
l̂

n̂j
l̂qjb)
)
+2πi(qiani

̂aâ+npαaα)
)∣∣∣∣∣

γ

.

where caα
k̂

are the axions in the component (2,3,d − 3)(
9−d
3d−9

) of the unipotent of P4 and Q =

(npα, qiani
̂, 0, 0, 0) is the Fourier charge in (4.23). Using the saddle point approximation as in

(3.77), (3.79) one obtains that these terms are exponentially suppressed in

2πR

√
y

4
d−3 ραβ(npα− caα

k̂
ni

k̂qia)(np
β − cbβ

l̂
nj

l̂qjb) + y
2
3

(
uabqiaq

j
bυk̂l̂ni

k̂nj
l̂+ 2|det q|√det(nυn⊺)

)

= 2πR

√
|Z(Q)|2 + 2

√
∆(Q×Q) , (4.25)

the BPS mass of a 1/4-BPS charge Q. The charge Q is 1/2-BPS if det q = 0.

4) The fourth layer

Next we consider mi ∈ Z, Qi ∈ MEd

Λd
and Pi ∈ MEd

Λ1
, with P1 ∧ P2 6= 0. In this case P1 ∧ P2 ∈

MEd

Λ3
is non-zero, and it is in the minimal orbit such that one can decompose the sum over

Pi as a Poincaré sum over P3\Ed and a sum over non-degenerate 2 by 2 matrices ni
̂ in this

GL(2) × SL(d− 1) decomposition

MEd

Λd
= (Zd−1)(

4
d−1

) ⊕ (Z2×(d−1))(
d−5
d−1

) ⊕ (∧3
Z

d−1)(
2d−14
d−1

) ⊕ (Z2 ⊗ ∧5
Z

d−1)(
3d−23
d−1

) ,

MEd

Λ1
= (Z2)(1) ⊕ (∧2

Z
d−1)(

2d−10
d−1

) ⊕ (Z2 ⊗∧4
Z

d−1)(
3d−19
d−1

) ⊕ (Zd−1 ⊗∧5
Z

d−1)(
4d−28
d−1

) ,

MEd

Λ2
= (Zd−1)(

2d−6
d−1

) ⊕ (Z2 ⊗ ∧3
Z

d−1)(
3d−15
d−1

) ⊕ . . . , (4.26)

The general solution to the constraints P(i ×Qj)

∣∣
Λ2

= 0 is then

Pi = (ni
̂, 0, 0, 0) , Qi = (qai , ni

̂ pa
k , 0, 0) , (4.27)

with qi and p in Zd−1 and k relative prime to p that divides ni
̂, while the additional constraint

Qi ×Qj = m(iPj) implies that

mi =
pa
k q

a
i , (4.28)
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so that k divides paq
a
i . One can then check that all the other constraints in (4.7) are satisfied.

The bilinear form then reduces to

R
2

8−dG(Γi,Γj) =
(
R2y + y

d−5
d−1uab(pak + aa)(

pb
k + ab)

)
υk̂l̂ni

k̂nj
l̂

+
(
y

4
d−1uab+R−2(pak + aa)(

pb
k + ab)

)(
qai +

(
aa
k̂
+ cac

k̂
(pck + ac)

)
ni

k̂
)(
qbj +

(
ab
l̂
+ cbd

l̂
(pdk + ad)

)
nj

l̂
)
.

(4.29)

For fixed k and pa, the sum over qai is in kZ ⊕ Zd−2, and one can do a Poisson summation to

the dual lattice 1
kZ⊕Zd−2

∑

qi∈Zd−1

paqai ∈kZ

e
−πΩij

2 (y
4

d−1 uab+R−2(
pa
k +aa)(

pb
k +ab))(qai +ãa

k̂
ni

k̂)(qbj+ãb
l̂
nj

l̂)
(4.30)

=
1

y4|Ω2|
d−1
2

∑

qi∈Zd−1

p∧qi∈kZ
(d -1)(d -2)

2

e
−πΩ−1

2ijy
− 4

d−1
(
uabk−2− uacubd(

pc
k +ac)(

pd
k +ad)

y
4

d−1R2k2+u(p+ak)(p+ak)

)
qiaq

j
b

k2 + y
− 4

d−1

R2 uab(pa + aak)(pb + abk)

e2πi
ni

̂qia
k

ãâ .

Writing instead the sum over ni
̂/k which we write ni

̂ for brevity and changing variable

Ω2 → R
2

8−d
(
R2k2 + y−

4
d−1uab(pa + aak)(pb + abk)

)−1
Ω2 (4.31)

one obtains

I (4)

d = 8πR
12+4ǫ
8−d

−4ǫ
∑

γ∈P3\Ed

∫

G

d3Ω2

|Ω2|
5
2
−ǫ

ϕtr
KZ(Ω2)

∑

ni
̂∈Z2

detn 6=0

e−πΩij
2 yυ

k̂l̂
ni

k̂nj
l̂
∑

qi∈Zd−1

∑

(k,p)
k|p∧qi

e2πi
ni

̂qia
k

(aâ +cab̂ (
pb
k +ab)) e

−πΩ−1
2ij

(
y
− 4

d−1R2uabqiaq
j
b+y

− 8
d−1 (uacubd−uadubc)(

pc
k +ac)(

pd
k +ad)q

i
aq

j
b

)

y4(k2 + y−
4

d−1R−2u(p+ ak, p + ak))2ǫ

∣∣∣∣∣
γ

(4.32)

The contribution from qia can be computed by Poisson resumming over pa ∈ Zd−1,

I (4a)

d =
8π

ξ(4ǫ)
R

12+4ǫ
8−d

∑

γ∈P3\Ed

y−2

∫

G

d3Ω2

|Ω2|
5
2
−ǫ

ϕtr
KZ(Ω2)

∑

ni
̂∈Z2

detn 6=0

e−πΩij
2 yυ

k̂l̂
ni

k̂nj
l̂

×
(
ξ(4ǫ - d+1)Rd−1−4ǫ + 2R

d−1
2

−2ǫ
′∑

p∈Zd−1

σd−1−4ǫ(p)
K d−1

2
−2ǫ(2πR

√
y

4
d−1uabpapb)

(y
4

d−1uabpapb)
d−1
4

−ǫ
e2πip

aaa

)∣∣∣∣∣
γ
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=
8π

ξ(4ǫ)
R

12+4ǫ
8−d

(
ξ(4ǫ - d+1)Rd−1−4ǫ

∑

Qi∈MEd

Λ1

Qi×Qj=0
Q1∧Q2 6=0

∣∣∣ gcd(Q1∧Q2)
v(Q1∧Q2)

∣∣∣
2
∫

G

d3Ω2

|Ω2|
5
2
−ǫ

ϕtr
KZ(Ω2)e

−πΩij
2 G(Qi,Qj)

+ 2R
d−1
2

−2ǫ
′∑

Q∈MEd

Λd

Q×Q=0

∑

Qi∈MEd

Λ1

Qi×Q=0
Qi×Qj=0
Q1∧Q2 6=0

∣∣∣ gcd(Q1∧Q2)
v(Q1∧Q2)

∣∣∣
2
∫

G

d3Ω2

|Ω2|
5
2
−ǫ

ϕtr
KZ(Ω2)e

−πΩij
2 G(Qi,Qj)

× σd−1−4ǫ(Q)
K d−1

2
−2ǫ(2πR|Z(Q)|)

|Z(Q)| d−1
2

−2ǫ
e2πi(Q,a)

)
(4.33)

where the sum over MEd

Λ1
with Qi ×Q = 0 in MEd

Λ2
, defines a function on the Levi stabiliser Ed−1

of Q as a constrained double lattice sum over MEd−1

Λ1
.

We shall now argue that this contribution disappears in the renormalised integral (1.28).

One can use the same argument as in Appendix C.3 to compute that the source term for the

Laplace equation satisfied by this function vanishes as ǫ → 0, with

(
∆Ed

− 12 + 2 (1+2ǫ)(d−1)(d−2−ǫ)
9−d

) ∑

Qi∈MEd

Λ1

Qi×Qj=0
Q1∧Q2 6=0

∣∣∣gcd(Q1∧Q2)
v(Q1∧Q2)

∣∣∣
2
∫

G

d3Ω2

|Ω2|
5
2
−ǫ

ϕtr
KZ(Ω2)e

−πΩij
2 G(Qi,Qj)

= −2πξ(2ǫ − 1)
∑

γ∈P1\Ed

g−
8+16ǫ
9−d

+2ǫ
(
ξ(2ǫ− 2)EDd -1

ǫΛd -2
+ 2g1−ǫ

′∑
Q∈S+
Q×Q=0

σ2ǫ-2(Q)
gcd(Q)2

K1-ǫ(
2π
g
|v(Q)|)

|v(Q)|1+ǫ e2πi(Q,a)
)

= 2πξ(2ǫ − 1)ξ(d− 3 + 2ǫ)
(
EEd

(ǫ− 1
2
)Λ1+

d−3+2ǫ
2

Λd
− EEd

(ǫ− 1
2
)Λ1

EEd
d−3+2ǫ

2
Λd

+O(ǫ)
)
= O(ǫ) (4.34)

which vanishes at ǫ → 0. Therefore the potentially dangerous constant term in I (4a)

d must be

proportional to an Eisenstein series. The coefficient follows by computing the first non-trivial

orbit in the string perturbation limit

8π
∑

Qi∈MEd

Λ1

Qi×Qj=0
Q1∧Q2 6=0

∣∣∣gcd(Q1∧Q2)
v(Q1∧Q2)

∣∣∣
2
∫

G

d3Ω2

|Ω2|
5
2
−ǫ

ϕtr
KZ(Ω2)e

−πΩij
2 G(Qi,Qj) +O(ǫ) (4.35)

=
4π2

9
ξ(6− 2ǫ)ξ(2 + 2ǫ)EEd

−3Λ1+(2+ǫ)Λ3

=
2π2

9

∑

Qi∈MEd

Λ1

Qi×Qj=0
Q1∧Q2 6=0

∣∣∣ gcd(Q1∧Q2)
v(Q1∧Q2)

∣∣∣
2
∫

G

d3Ω2

|Ω2|
5
2
−ǫ

E
SL(2)
−3Λ1

(τ)

V
e−πΩij

2 G(Qi,Qj) ,

In the last equality, that can be computed in the same way as in Section 2.4, we recognise the

same constant term as in the counterterm in (1.28). Using a functional equation, the Eisenstein

series in the middle line of (4.35) is seen to diverge as ξ(1 + 2ǫ)EEd

− 3
2
Λ1+Λ5

for d = 4, 5, while it
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has a finite limit otherwise. The same computation applies to the Fourier coefficients in I (4a)

d ,

since the function of the Levi stabiliser Ed−1 is the same. We conclude that I (4a)

d →
ǫ→0

0 for

d 6= 4, 5, and expect that the same holds for the whole contribution I (4)

d . For d = 4, 5, I (4a)

d has

a finite limit, but cancels in the renormalised coupling (1.28).

5) The fifth layer

We now briefly discuss the last layer for which ni 6= 0. This layer only occurs for d = 6.

The analysis from Appendix D.1 shows that for the similar integral IE7

Λ7

(
E

SL(2)
sΛ1

, 4 + 2ǫ
)
where

A(τ) is replaced by an arbitrary Eisenstein series, the contribution from this layer contains a

general factor ξ(4ǫ−5)ξ(4ǫ−9)
ξ(4ǫ)ξ(4ǫ−4) , so we expect the same for the case of interest. However, at the

specific value s = −3, the factor ξ(4ǫ−5)ξ(4ǫ−9)
ξ(4ǫ)ξ(4ǫ−4) multiplies a divergent function containing ξ(2ǫ)

that compensates for the 1/ξ(4ǫ) and gives the finite contribution 8π
27 ξ(2)ξ(10)R

15 in the limit.

As for the other cases we expect that this finite contribution cancels out in the renormalised

function (1.28), as it must for consistency. Note that the fifth layer also contributes to generic

Fourier coefficients with charges Q with a non-trivial E6 cubic invariant I3(Q) 6= 0. However,

the supersymmetric Ward identity for the renormalised coupling requires that such Fourier

coefficients must vanish [14]. It is therefore consistent that this fifth layer should not contribute

to the renormalised coupling after canceling the counterterm.

The contributions from the five layers produce exactly the expected constant terms in the

decompactification limit shown in (4.1). For this it is crucial to take into account the renor-

malisation and contribution from 1/4-BPS states. This will be discussed in more detail in

Section 5.3.

5 Regularisation and divergences

In the previous sections, we have computed the perturbative and decompactification limits of

the ∇6R4 coupling based on (1.12) that represents mutually 1/2-BPS states running inside a

two-loop diagram of exceptional field theory. In the calculation we have encountered various

divergent contributions, see for instance (3.44). In the present section, we analyse these singular

terms in more detail and provide a renormalisation prescription that also includes 1/4-BPS states

running in the loops and will be shown to cancel the pole in the two-loop 1/2-BPS contribution

in space-time dimension D = 4, 5, 6, so that the sum of the two is finite in the limit ǫ → 0 in

all dimensions. We will show that this regularisation gives the expected logarithmic term in the

string coupling constant in perturbation theory.

5.1 Contributions from 1/4-BPS states

We follow the same reasoning as in [30], where the analogous one-loop contribution to ∇4R4

with 1/4-BPS states running in the loop was obtained. The idea there was to interpret the

perturbative genus-one string integrand in the limit τ2 → ∞ as a sum over perturbative string

states running in the loop, and extending the sum to the full non-perturbative spectrum of

1/4-BPS states. In this way, the 1/4-BPS state contribution to the ∇4R4 coupling at one-loop
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was given in [30] as

E1-loop 1
4 -BPS

(1,0) = 4π
∑

Γ∈MEd+1

Λd+1

Γ×Γ6=0 ∆′(Γ)=0

σ3(Γ× Γ)

|V(Γ× Γ)|2
∫ ∞

0

dL

L
6−d−2ǫ

2

(
L+

1

2π|V(Γ × Γ)|
)
e−πLM(Γ)2 , (5.1)

where |V(Γ × Γ)|2 is the Ed+1-invariant quadratic norm on R(Λ1) and M(Γ) is the mass of a

state satisfying the 1/4-BPS constraints Γ× Γ 6= 0 and ∆′(Γ) = 0 with ∆ the quartic invariant

on R(Λ1) and ∆′ its gradient. The explicit form of the 1/4-BPS mass is

M(Γ) =
√

|Z(Γ)|2 + 2|V(Γ× Γ)| . (5.2)

The contribution for each charge Γ to (5.1) is weighted by σ3(Γ×Γ), which is recognised as the

twelfth helicity supertrace Ω12(Γ) =
1
12!Tr(−1)2J3(2J3)

12 counting 1/4-BPS multiplets of charge

Γ, as computed in [70,50].

Turning to ∇6R4, a similar contribution must appear as a one-loop sub-diagram in the

two-loop integrand by factorisation. We propose that the ∇6R4 coupling receives a two-loop

contribution of the form

E2-loop 1
4 -BPS

(0,1) = 20
∑

Γi∈MEd+1

Λd+1

Γ1×Γi=0
Γ2×Γ2 6=0 ∆′(Γ2)=0

σ3(Γ2 × Γ2)

|V(Γ2 × Γ2)|2
∫

R3
+

dL1 dL2 dL3

(
∑

i>j LiLj)
8−d−2ǫ

2

(
L2 + L3 +

1

2π|V(Γ2 × Γ2)|
)

× e−π(L1M(Γ1)2+L2M(Γ2)2+L3M(Γ1+Γ2)2) . (5.3)

Here the two edges with Schwinger parameters L2 and L3 carry 1/4-BPS multiplets of charge

Γ2 and Γ1 + Γ2, whereas the edge of length L1 carries a 1/2-BPS multiplet of charge Γ1. We

assume that the two-loop contribution with a 1/2-BPS charge Γ1 and a 1/4-BPS charge Γ2, but

with Γ1 × Γ2 6= 0, vanishes, as well as contributions where none of the charges Γ1,Γ2,Γ1 +Γ2 is

1/2-BPS.

Let us first analyse the contribution (5.3) from the point of view of perturbative string theory,

by writing it as a Poincaré sum over P1\Ed+1 of a charge sum in IId,d. This is possible because

one can always rotate the vector Γ2 × Γ2 to a highest weight representative using γ ∈ P1\Ed+1.

In the corresponding graded decomposition, the charge Γ2 is q2 ∈ IId,d with (q2, q2) 6= 0 and the

constraint Γ1 × Γ2 = 0 implies according to (3.10)

(q2, q1) = 0 , qa2γaχ1 = 0 , q2 ∧N1 = 0 , q2 ·N1 = 0 , (5.4)

from which one concludes that χ1 = N1 = 0 and moreover from Γ1 × Γ1 = 0 that (q1, q1) = 0.

It will be useful to consider the change of variables on the Schwinger parameters

L1 = g
− 4

8−d
D (t+ ρ2u2(1− u2)) , L2 = g

− 4
8−d

D ρ2(1− u2) , L3 = g
− 4

8−d
D ρ2u2 , (5.5)
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where ρ2 and t are positive reals and u2 ∈ [0, 1]. One obtains from (5.3)

E2-loop 1
4 -BPS

(0,1) = 20
∑

γ∈P1\Ed+1

[
g
− 24

8−d
+4

D

∑

qi∈IId,d
(q1,qi)=0
q 2
2 6=0

σ3(
q 2
2
2 )

( q
2
2
2 )

2

∫

R2
+

dρ2 dt

ρ 2
2 t

3

∫ 1

0
du2

1

t

(
1 +

1

2πρ2| q
2
2
2 |
)

× (ρ2t)
d
2
+ǫe−πtg(q1,q1)−πρ2g(q2+u2q1,q2+u2q1)−πρ2q 2

2

]∣∣∣∣∣
γ

(5.6)

= 40
∑

γ∈P1\Ed+1


g

− 24
8−d

+4
D

∫

P1,2\H2(C)

d6Ω

|Ω2|3−ǫ

1

t

′∑

n∈Z

(
ρ

1
2
2

σ3(|n|)
|n| 32

K 3
2
(2π|n|ρ2)e2πinρ1

)
Γd,d,2(Ω)




∣∣∣∣∣∣∣
γ

,

where

Ω =

(
ρ ρu2 + u1

ρu2 + u1 σ1 + it+ ρu 2
2

)
, (5.7)

and the integration domain P1,2\H2(C) ranges over [−1
2 ,

1
2 ] for ρ1, u1, u2 and σ1 and over R+

for ρ2 and t. In the last line we used the identity K3/2(2π|n|ρ2) = e−2π|n|ρ2

2
√

|n|ρ2

(
1 + 1

2π|n|ρ2

)
.

Before evaluating (5.6) further, we note the consistency of the known expression with the

genus-two contribution to the ∇6R4 coupling, given by [35,36]

8πg
− 24

8−d
+4

D

∫

F2

d6Ω

|Ω2|3
ϕKZ(Ω)Γd,d,2(Ω) . (5.8)

From (A.13) we recall that

∫ 1

0
du2

∫ 1

0
du1

∫ 1

0
dσ1ϕKZ =

π

6
t+

π

36

E
SL(2)
2Λ1

(ρ)

t
, (5.9)

where the SL(2) series has the well-known Fourier expansion

8π · π

36
E

SL(2)
2Λ1

(ρ) =
2π2

9
ρ 2
2 +

10ζ(3)

π
ρ−1
2 + 40

′∑

n∈Z
ρ

1
2
2

σ3(|n|)
|n| 32

K 3
2
(2π|n|ρ2)e2πinρ1 . (5.10)

exhibiting the same sum of Bessel functions as in (5.6). This shows that our non-perturbative

proposal (5.8) does include the known perturbative contribution from perturbative string theory.

Returning to (5.6), we next fold the integral from P1,2\H2(C) to the standard Siegel modular

domain F2 = Sp(4,Z)\H2(C). The resulting Poincaré sum of the non-zero Fourier mode does

not converge, but can be evaluated formally as in [30] to give

∑

γ∈P1,2\Sp(4,Z)

√
|n|ρ2K 3

2
(2π|n|ρ2)e2πinρ1
t

∣∣∣∣
γ

(5.11)

=
∑

γ∈P1\Sp(4,Z)

∑

δ∈P1\SL(2)

√
|n|ρ2K 3

2
(2π|n|ρ2)e2πinρ1

∣∣∣
δ

t

∣∣∣∣
γ
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=
2π2

3ζ(3)

σ3(|n|)
|n|

∑

γ∈P1\Sp(4,Z)

E
SL(2)
2Λ1

(ρ)

t

∣∣∣∣
γ

=
2π2

3ζ(3)

σ3(|n|)
|n|

∑

γ∈P2\Sp(4,Z)

E
SL(2)
−3Λ1

(τ)

V

∣∣∣∣
γ

,

where in the last step we use the analytic continuation of the Poincaré sums

∑

γ∈P1\Sp(4,Z)

E
SL(2)
(2+ǫ−δ)Λ1

(ρ)

t1−ǫ−δ

∣∣∣∣
γ

= E
Sp(4)
(2δ−3)Λ1+(2+ǫ−δ)Λ2

=
∑

γ∈P2\Sp(4,Z)

E
SL(2)
(2δ−3)Λ1

(τ)

V 1+2ǫ

∣∣∣∣
γ

, (5.12)

from the convergent range ǫ+1 > δ > 4 to their value at ǫ = δ = 0. The Eisenstein series in the

last term of (5.11) is recognised as a Siegel–Eisenstein series of Sp(4) satisfying the functional

identity

E
Sp(4)
−3Λ1+2Λ2

=
ξ(8)ξ(5)

ξ(7)ξ(4)
E

Sp(4)
5
2
Λ2

. (5.13)

Using these equalities between (divergent) Poincaré sums and ignoring the fact that the regu-

larising factor |Ω2|ǫ spoils modular invariance, one obtains from (5.6) that

E2-loop 1
4 -BPS

(0,1) =
160π2

3ζ(3)

∞∑

n=1

σ3(n)
2

n3

∑

γ∈P1\Ed+1

(
g
− 24

8−d
+4

D

∫

F2

d6Ω

|Ω2|3−ǫ

ξ(8)ξ(5)

ξ(7)ξ(4)
E

Sp(4)
5
2
Λ2

(Ω)Γd,d,2(Ω)

)∣∣∣∣
γ

=
160π2

3ζ(3)

∞∑

n=1

σ3(n)
2

n3

∫

G

d3Ω2

|Ω2|
6−d−2ǫ

2

E
SL(2)
−3Λ1

(τ)

V
θ
Ed+1

Λd+1
(φ,Ω2) . (5.14)

Making use, as in [30], of the formal Ramanujan identity

∞∑

n=1

σ3(n)
2

n3
= −ζ(3)

240
(5.15)

one concludes that

E2-loop 1
4 -BPS

(0,1) = −2π2

9

∫

G

d3Ω2

|Ω2|
6−d−2ǫ

2

E
SL(2)
−3Λ1

(τ)

V
θ
Ed+1

Λd+1
(φ,Ω2) , (5.16)

Even though we have used the formal identities (5.11) and (5.15) in the derivation, we stress

that the original expression (5.3) is regular and well-defined for large enough ǫ.

As stated in (1.28) in the introduction, the complete two-loop amplitude with both 1/2- and

1/4-BPS states running in the loops is therefore given by the sum

E (d)2-loop
(0,1) = 8π

∫

G

d3Ω2

|Ω2|
6−d−2ǫ

2

(
ϕtr
KZ − π

36

E
SL(2)
−3Λ1

(τ)

V

)
θ
Ed+1

Λd+1
(φ,Ω2) , (5.17)

which should be finite as ǫ → 0 in all dimensions d ≥ 4. We show that it is indeed finite in the

weak coupling and decompactification limits for d = 4, and for all the terms that we can compute

for d = 5 and d = 6. With hindsight, the reason for this finiteness is that the divergences at

ǫ = 0 in d = 4, 5, 6 come from the constant terms proportional to τ−3
2 in ϕtr

KZ and E
SL(2)
−3Λ1

(τ)/V ,

that drop out in the difference (5.17).

60



The three-loop exceptional field theory contribution was computed and analysed in [30,

(2.19)]. The analytic contribution has poles in d = 4, 5, 6, but those poles cancel against non-

analytic contributions, leading in these dimensions to

E (d)3-loop
(0,1) = 40ξ(2) ξ(6) ξ(d + 4) Ê

Ed+1
d+4
2

Λd+1
+ 40

ξ(8)

ξ(7)
ξ(d+ 1)ξ(2sd+1 − d+ 3)ξ(2sd+1) Ê

Ed+1

sd+1ΛH
(5.18)

where s5 =
7
2 , s6 =

9
2 and s7 = 6 as in (2.40). For d = 3, the three-loop contribution decomposes

similarly as28

E (3)3-loop
(0,1) = 40 ξ(2) ξ(6) ξ(7)E

SL(5)
7
2
Λ3

+ 40 ξ(2) ξ(3) ξ(4)E
SL(5)

− 1
2
Λ1−Λ4

(5.19)

which is finite and does not require regularisation. Both terms in (5.18) or (5.19) are homoge-

neous solutions of the Laplace equation (1.5), but they satisfy different tensorial equations [14]

and thus belong to two distinct automorphic representations. In particular, the second function

solves (2.10) whereas the first one does not. The first function in (5.18) is recognised as F̂ (d)

(0,1)

in (1.30), while the second can be written using (2.40) as the finite part of

E (d)Adj
(0,1) =

2π2

9

∫

G

d3Ω2

|Ω2|
6−d
2

E
SL(2)
−(3+2ǫ)Λ1

(τ)

V
θ
Ed+1

Λd+1
(φ,Ω2) (5.20)

= 40
ξ(4)ξ(8 + 4ǫ)

ξ(4 + 2ǫ)ξ(7 + 4ǫ)
ξ(d+ 1 + 2ǫ)ξ(2sd+1 + 2ǫ− d+ 3)ξ(2sd+1 + 2ǫ) Ê

Ed+1

(sd+1+ǫ)ΛH
,

at ǫ → 0 in agreement with the last term in (1.31).29 One finds therefore that the sum of the

second term in the three-loop contribution with the full two-loop contribution (5.16) reproduces

(1.31).

Thus one gets the exact coupling (1.32) stated in the introduction, with a now precise

prescription for defining the divergent integral (1.12). It will be useful in the analysis below to

rewrite (1.31) as the finite function

Ê (d),ExFT
(0,1) =

8π2

3
IEd+1

Λd+1
(A(τ)− 1

6E
SL(2)
−3Λ1

, d− 2) +
40ξ(8)ξ(d+1)ξ(2sd+1+3−d)ξ(2sd+1)

ξ(7) Ê
Ed+1

sd+1ΛH
, (5.21)

where IEd+1

Λd+1
(f, s) was defined in general in (2.32).

In summary, we have explained how the total ∇6R4 coupling arises from the sum of the

one-, two- and three-loop four-graviton amplitudes including massive 1/2-BPS and 1/4-BPS

states running in the loops. Since for d < 7 there are two distinct supersymmetry invariants

completing ∇6R4 [14], it is natural to decompose this coupling into two functions as in (1.32).

28The weight Λd−1 in [30, (2.19)] is in general the highest weight of the third order antisymmetric product of

Λd+1, which for d = 3 gives two solutions: Λ1 + 2Λ4 and 2Λ2 of SL(5), corresponding respectively to type IIA

and type IIB. The three-loop contribution is therefore 40ξ(−1)ξ(−2)ξ(−3)(ESL(5)

− 1
2
(Λ1+2Λ4)

+ESL(5)

− 1
2
Λ2

).
29The same formula holds for d = 3 with

2π2

9

∫

G

d3Ω2

|Ω2|
3
2

E
SL(2)
−(3+2ǫ)Λ1

(τ )

V
θA4

Λ3
(φ,Ω2) = 40ξ(2 + 2ǫ)ξ(3 + 2ǫ)ξ(4)E

SL(5)

−( 1
2
+ǫ)Λ1−(1+ǫ)Λ4

.
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The computation of the 1/4-BPS states contributions at one- and two-loops are rather formal as

in (5.11), and we do not understand the analytic continuation that would lead to a justification of

the formal infinite sums we have been doing. The derivation of these contributions can therefore

be considered as heuristic. Nonetheless, the final definition (5.21) can be justified independently

as the unique regularisation of the two-loop integral that is consistent with supersymmetry

Ward identities and the string theory perturbative expansion. Indeed, as we show in detail in

Appendix D in (D.30) and below, the term IE6

Λ6
(E

SL(2)
−3Λ1

, 3 + 2ǫ) in (5.21) yields an Eisenstein

series that belongs to an automorphic representation associated to a bigger nilpotent orbit than

the one required by supersymmetry according to equation (2.10). It is therefore apparent that

only the finite combination involving A(τ)− 1
6E

SL(2)
−3Λ1

in (5.17) solves (2.10) with the appropriate

source term as written in [1], and is therefore consistent with supersymmetry. The last term

in (5.21), involving an adjoint Eisenstein series, is the appropriate homogeneous solution to the

homogeneous tensorial equation (2.10). As we shall argue in Section 5.2, its presence in the full

coupling is required for consistency with string perturbation theory.

The renormalisation prescription (5.21) also makes the equality of the particle and string

multiplet sums stated in (1.23) meaningful. While the identity (1.23) is divergent at the values

of interest for the functional relation, the renormalised integral Ê (d),ExFT
(0,1) of (5.21) makes sense

on either side and the equality holds for these renormalised couplings.

5.2 Divergences and threshold terms in the weak-coupling limit

We shall now analyse the cancelation of divergences and the contributions to logarithmic terms

from (5.21) for each of the constant terms derived in Section 3. For brevity we shall refer to the

last term in (5.21) as the ‘adjoint Eisenstein series’

E (d)Adj
(0,1) =

40ξ(8)ξ(d + 1)ξ(2sd+1 + 3− d)ξ(2sd+1)

ξ(7)
Ê

Ed+1

sd+1ΛH
. (5.22)

The second term IEd+1

Λd+1
(E

SL(2)
−3Λ1

, d+ 2ǫ− 2) in (5.21) coming from the 1/4-BPS state sum (5.16)

will be referred to as the ‘counterterm’, the idea being that exceptional field theory contains only

loops of 1/2-BPS states, while additional contributions from 1/4-BPS states are described by

suitable counterterms. To analyse the perturbative terms we must deal with the poles at ǫ = 0

using the renormalisation prescription for the integral (5.17). There are divergent contributions

from what we called the second layer in (3.21), the third layer in (3.44), the fourth layer in (3.47)

and lastly, from the fifth layer in (3.58).

We have already argued that the contributions from the third and the fourth layers, which

are both proportional to 1
ξ(4ǫ) , should cancel when using the renormalisation prescription (5.17).

We expect the same to happen for the fifth layer in d = 6 proportional to 1
ξ(4ǫ) . This is indeed

the case if the last term in the conjectured expansion (3.58) is correct. We are not able to check

this property at this stage, and leave it as a conjecture.

Let us now turn to the terms that contribute at three-loop order in string perturbation

theory. The divergent contribution from the second perturbative layer I (2b)

d in (3.21) is given by

g
− 24

8−d
−2ǫ d−4

8−d
D

4π2ξ(2+2ǫ)ξ(6−2ǫ)
9 g 6

D EDd

(3−ǫ)Λd−1+2ǫΛd
. (5.23)
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while the correct contribution appearing at three loops in string theory, computed using the

same regularisation as in [30], is instead the zero-th order term at ǫ → 0 of

g
− 24

8−d
+2ǫ

D

4π2ξ(2+2ǫ)ξ(6+2ǫ)
9 g 6

D
EDd

(3+ǫ)Λd−1
. (5.24)

By examining the constant terms of the two functions one sees that these two results differ. The

discrepancy is, however, resolved using the renormalised integral (5.21) as follows. Using the

Langlands constant term formula (D.2) in Appendix D.1 one finds that the contribution from

the counterterm in (5.17) cancels (5.23), such that (5.17) is indeed finite, while the contribution

from the adjoint Eisenstein series in (5.21) gives precisely the perturbative term (5.24) as was

already observed in [47].

In addition, the counterterm (5.16) and adjoint series (5.20) both include a spurious correc-

tion in g−3
D in string frame, that cancel out in the total coupling. In d = 6 there is an additional

spurious contribution from the adjoint series in g−12
D

in string frame, that cancels the same one

from the counterterm in (3.58), while the divergent one-loop term in (3.59) is canceled in the

renormalised coupling (3.58).

In summary, the full ∇6R4 coupling (5.21) reproduces all the expected perturbative correc-

tions detailed in Section 3.1: The tree-level term appears in (3.18). The one-loop correction

comes from (3.24), with the additional logarithmic term for d = 6 that comes from the adjoint

series (5.20) that we shall discuss below. The two-loop term comes from (3.13). The three-loop

correction in (3.24) is canceled by the counterterm and replaced by the function (5.24) from the

adjoint series (5.20).

We close the perturbative analysis of the ∇6R4 coupling by a discussion of the logarithmic

terms. To analyse them we shall need the precise weak coupling expansion of F̂ (d)

(0,1) which

corresponds to the first term in (5.18) and of Ê (d),ExFT
(0,1) . The weak coupling expansion of F̂ (d)

(0,1) is

given for 1 ≤ d ≤ 6 by

F̂ (1)

(0,1) ∼
4ζ(2)ζ(5)

63
g
−10/7
9 (r5 + r−5) +

4

27
ζ(6) r3 g

18/7
9 ,

F̂ (2)

(0,1) ∼
[
8πζ(6)

567g28
E

SL(2)
3Λ1

(U) +
4ζ(6)

27
g28

]
E

SL(2)
3Λ1

(T ) ,

F̂ (3)

(0,1) ∼
5πζ(7)

189
g
−14/5
7 ED3

7
2
Λ1

+
4ζ(6)

27
g
6/5
7 ED3

3Λ3
,

F̂ (4)

(0,1) ∼
16ζ(8)

189

1

g46
ED4

4Λ3
+

5

3
ζ(3) log g6 +

4ζ(6)

27
ÊD4

3Λ4
, (5.25)

F̂ (5)

(0,1) ∼
5ζ(9)

54g65
ED5

9
2
Λ1

+

[
40

9g45
ζ(3) +

10

9g25
ζ(3)ED5

3
2
Λ1

]
log g5 +

4ζ(6)

27g25
ED5

3Λ5
,

F̂ (6)

(0,1) ∼
64ζ(10)

189πg104
ÊD6

5Λ1
+

[
−5ζ(5)

πg104
+

8ζ(8)

3π2g84
ED6

4Λ1

]
log g4 −

2ζ(6)

15g84
∂ǫE

D6

(4+ǫ)Λ1

∣∣∣
ǫ=0

+
4ζ(6)

27g64
ÊD6

3Λ6
,

where we have shown the complete result of the constant term calculation. We first discuss the

logarithmic terms for d = 4, 5, 6 and then the derivative of the Eisenstein series that appears for

d = 6. And finally we will discuss the special case d = 2.

The integral in (5.17) is finite layer-by-layer for d = 4, 5, 6 and the cancellation of the pole

between the two-loop integral and the counterterm also hold for the logarithmic terms. Therefore
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the logarithmic terms in Ê (d),ExFT
(0,1) must come exclusively from the three-loop contribution (5.18).

As was shown in [47], the adjoint series corresponding to the second term in (5.18) produces the

logarithmic terms

Ê (4),ExFT
(0,1) ∼

log g6
E (4)Adj
(0,1) ∼

log g6

10

3
ζ(3) log g6 + . . . ,

Ê (5),ExFT
(0,1) ∼

log g5
E (5)Adj
(0,1) ∼

log g5

10

3g25
ζ(3)ED5

3
2
Λ1

log g5 + . . . , (5.26)

Ê (6),ExFT
(0,1) ∼

log g4
E (6)Adj
(0,1) ∼

log g4

[
10ζ(5)

πg104
+

2π3

27g64
ED6

2Λ6

]
log g4 + . . . .

Combining the contributions from (5.25) and (5.26) then produces the following total logarithmic

terms for E (d)

(0,1)

E (4)

(0,1) ∼
log g6

5ζ(3) log g6 , (5.27)

E (5)

(0,1) ∼
log g5

[
40

9g45
ζ(3) +

40

9g25
ζ(3)ED5

3
2
Λ1

]
log g5 ∼

20

9
E (5)

(0,0) log g5 , (5.28)

E (6)

(0,1) ∼
log g4

[
5ζ(5)

πg104
+

2π3

27g64
ED6

2Λ6
+

8ζ(8)

3π2g84
ED6

4Λ1

]
log g4 ∼

5

π
E (6)

(1,0) log g4 . (5.29)

where E (d)

(0,0) and E (d)

(1,0) are the coefficients of the effective R4 and ∇4R4 couplings given by (1.2).

This indeed produces the expected non-analytic terms in the weak coupling expansion of the

∇6R4 couplings [2]. Note that the coefficient of the log gD correction had to recombine into

a U-duality invariant function, since it is related to the scale of a logarithm in Mandelstam

variables [8], determined by form factor divergences in supergravity.

In d = 6 one must be more careful with the two-loop contribution since they potentially

include an additional logarithmic term and a derivative of an Eisenstein series. Adding the

two-loop contribution (3.13), the similar contribution from the counterterm and the two-loop

contribution from the adjoint series leads to

8πg−8−4ǫ
4

∫

F2

d6Ω

|Ω2|3
(
ϕǫ
KZ(Ω)−

π

36
E

Sp(4)
−3Λ1+(2+ǫ)Λ2

(Ω)
)
Γ6,6,2(Ω)

+
2ζ(6)

15g84
∂ǫE

D6

(4−2ǫ)Λ1+ǫΛ2

∣∣∣
ǫ0
, (5.30)

and where |ǫ0 denotes the constant term in the Laurent expansion around ǫ = 0. In Appendix

C we provide evidence that this genus-two integral is finite at ǫ → 0, such that (5.17) is indeed

finite as claimed. If so, it cannot contribute to log g4 terms, and there is therefore no log g4 at

two-loop order. The finite two-loop contributions from the Eisenstein series then add up to

−2π2

9g 8
4

∫

F2

d6Ω

|Ω2|3
E

Sp(4)
−3Λ1+(2+ǫ)Λ2

(Ω)Γ6,6,2(Ω) +
2ζ(6)

15g84
∂ǫE

D6

(4−2ǫ)Λ1+ǫΛ2

∣∣∣
ǫ0

= −2ζ(6)

15g84
∂ǫE

D6
4Λ1+ǫΛ2

∣∣∣
ǫ=0

+
2ζ(6)

15g84
∂ǫE

D6

(4−2ǫ)Λ1+ǫΛ2

∣∣∣
ǫ0

= −4ζ(6)

15g84
∂ǫE

D6

(4+ǫ)Λ1

∣∣∣
ǫ0

. (5.31)
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In order to reproduce the genus-two string theory amplitude (5.8), it should be that

R.N.

∫

F2

d6Ω

|Ω2|3
ϕKZ(Ω)Γ6,6,2(Ω) =

∫

F2

d6Ω

|Ω2|3
ϕǫ
KZ(Ω)Γ6,6,2(Ω)

∣∣∣
ǫ=0

− ζ(6)

20π
∂ǫE

D6

(4+ǫ)Λ1

∣∣∣
ǫ0
, (5.32)

where we factored out 8πg−8
4 from (5.8). This identity may hold up to terms proportional to

ED6
4Λ1

which can be absorbed by adjusting the splitting between the analytic and non-analytic

parts of the full amplitude. This ambiguity appears in the renormalisation of the pole

∫

F2

d6Ω

|Ω2|3
ϕǫ
KZ(Ω)Γ6,6,2(Ω) =

π

18
ξ(1 + 2ǫ)ξ(8 + 2ǫ)ED6

(4+ǫ)Λ1
+O(ǫ0) (5.33)

at ǫ → 0. A more detailed analysis would be needed to establish (5.32), which we again leave

as a conjecture.

Let us end this discussion with the case d = 2, for which there is a logarithmic supergravity

divergence with a double pole in dimensional regularisation at two loops. The sources of loga-

rithmic divergences in I2(φ, ǫ) come from the two-loop integral I (1)

2 (3.13) that behaves as (cf.

Appendix F)

I (1)

2 = 8πg
− 4

3
ǫ

8

∫

F2

d6Ω

|Ω2|3
ϕǫ
KZ(Ω)Γ2,2,2(Ω) (5.34)

= g
− 4

3
ǫ

8

(
16π2ξ(2ǫ)2

(4− 2ǫ)(3 + 2ǫ)
E

SL(2)
2ǫΛ1

(U)E
SL(2)
2ǫΛ1

(T ) +O(ǫ0)

)
,

and the contribution

8π2

3
g
−2+ 2

3
ǫ

8 ξ(−2 + 2ǫ)ξ(2− 2ǫ)ED2

(1−ǫ)Λ1+2ǫΛ2
=

8π2

3
g
−2+ 2

3
ǫ

8 ξ(3− 2ǫ)ξ(2− 2ǫ)E
SL(2)

(1−ǫ)Λ1
(U) (5.35)

from (3.21). To cancel the pole in 1
ǫ , we must include the divergent component of the supergravity

amplitude, with massless legs, as well as the divergent component of the one-loop R4 form-factor

associated to the two-loop exceptional field theory amplitude with only massless states running

in one of the loops. Implementing an infrared cut-off µ as in [1, 30], one obtains 30

I2,ǫ +
π

3
π−ǫΓ(ǫ)µ−2ǫ E (2)

(0,0),ǫ +
π

3

(
π−2ǫΓ(ǫ)2 + 1

6π
−ǫΓ(ǫ) +O(ǫ0)

)
µ−4ǫ (5.36)

∼
ǫ→0

4π2

27
log(g8)

2 +
2π

9
log(g8)

(2ζ(2)
g28

+ 4ζ(4)(Ê
SL(2)
Λ1

(U) + Ê
SL(2)
Λ1

(T )) +
π

3

)
+ . . .

+
4π2

3
log(2πµ)2 − 2π

3
log(2πµ)

(2ζ(2)
g28

+ 4ζ(4)
(
Ê

SL(2)
Λ1

(U) + Ê
SL(2)
Λ1

(T )
)
+

4π

3
log(g8) +

π

3

)

where the dots stand for analytic terms in the string coupling constant coming from I2,ǫ, and

E (2)

(0,0),ǫ = 4πξ(2ǫ)E
SL(2)
ǫΛ1

E
SL(3)
ǫΛ2

= 4πξ(2ǫ) + E (2)

(0,0) +O(ǫ)

∼ 4π
(
ξ(2ǫ)g

− 2
3

8 E
SL(2)
ǫΛ1

(U)E
SL(2)
ǫΛ1

(T ) + ξ(3− 2ǫ)g
−2+ 4

3
ǫ

8 E
SL(2)
ǫΛ1

(U)
)
, (5.37)

30The term 1
6
π−ǫΓ(ǫ)L2ǫ has not been derived but must be there for cancelling the first order pole.
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is the dimensionally regularised one-loop exceptional field theory R4 coupling [1]. The result is

finite at ǫ → 0 and reproduces the logarithmic terms in the string coupling constant computed

in [2, (2.19)], up to the additive, scheme-dependent constant π
3 .

We conclude that the renormalised coupling (1.32) reproduces correctly all the required terms

in the weak coupling expansion, including the terms that are logarithmic in the string coupling

constant.

5.3 Divergences and threshold terms in the large radius limit

In the decompactification limit, similar divergent terms arise in the calculation presented in

Section 4 and have to be considered along with the renormalisation and three-loop contribution

shown in (5.21). More specifically, there are divergences in the first layer in (4.11), in the second

layer in (4.13), in the fourth layer in (4.33) and in the fifth layer. Most of them were already

discussed in detail after their derivation and we now focus in more detail on the second layer.

In the derivation of the second layer we used identities that are only valid at ǫ = 0. However,

the calculation in Appendix D.1 shows that the derivation gives the correct result at ǫ 6= 0 if

the local modular function A(τ) is replaced by an ordinary non-holomorphic Eisenstein series.

Indeed we find a consistent result for d = 4, 5, 6 using the regularised expression (4.13). Taking

this contribution from the second layer, subtracting the 1/4-BPS counterterm (5.17) and adding

the three-loop contribution to give (1.31), one gets

I (2b)

d,ǫ

[
A(τ)− π

6E
SL(2)

−3Λ1
(τ)
]
+ I (2b)

d,0

[
π
6E

SL(2)

−(3+2ǫ)Λ1

]
(5.38)

∼ 4π2

9
R

12+4ǫ
8−d

(
6ξ(dǫ − 2)ξ(dǫ − 3)Rdǫ−3EEd

dǫ−3
2

Λd
+ ξ(dǫ − 6)ξ(dǫ + 1)Rdǫ−7 EEd

dǫ+1
2

Λd

− ξ(8)

ξ(7)
ξ(dǫ − 6)ξ(dǫ + 1)Rdǫ EEd

dǫ−6
2

Λd
− ξ(dǫ − 6)ξ(dǫ + 1)Rdǫ−7EEd

dǫ+1
2

Λd

)

+
4π2

9
ξ(d− 6− 2ǫ)ξ(d + 1 + 2ǫ)R

12
8−d

(
ξ(8)

ξ(7)
Rd+2ǫEEd

d−6−2ǫ
2

Λd
+Rd−7−2ǫ EEd

d+1+2ǫ
2

Λd

)

∼ R
12

8−d

(
8π2

3
ξ(d− 2)ξ(d + 2ǫ− 3)Rd−3 EEd

d+2ǫ−3
2

Λd
+ δd,6

8ζ(10)

π2
R12 log(R)

+
4π2ξ(d− 6− 2ǫ)ξ(d+ 1 + 2ǫ)

9
Rd−7−2ǫEEd

d+1+2ǫ
2

Λd

)
.

The first term above is regular at ǫ = 0 for d ≥ 4. For d = 6, the extra term above cancels

against the contribution from the first term (4.11). The last term gives

4π2ξ(3 + 2ǫ)ξ(5 + 2ǫ)

9
R−3−2ǫEA4

( 5
2
+ǫ)Λ3

∼ 10ζ(3)

3R3

(
1
2ǫ − log(R) +

6

π
ξ(4)ξ(6)ÊA4

5
2
Λ3

)

4π2ξ(2 + 2ǫ)ξ(6 + 2ǫ)

9
R−2−2ǫED5

(3+ǫ)Λ5
∼ 5

3R2

((
1
2ǫ − log(R)

)
4πξ(2)ED5

Λ4
+ 4πξ(4)ξ(6)ÊD5

3Λ5

)

4π2ξ(1 + 2ǫ)ξ(7 + 2ǫ)

9
R−1−2ǫEE6

( 7
2
+ǫ)Λ6

∼ 40ξ(2)R−2ǫξ(1 + 2ǫ)ξ(5 − 2ǫ)EE6

( 5
2
−ǫ)Λ1

(5.39)
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for d = 4, 5, 6, respectively, reproducing the expected result displayed in Section 4.1.

We close the section by considering the logarithmically divergent contributions in the de-

compactification limit for d ≥ 4. The logarithmic terms in the radius R arising from F̂ (d)

(0,1) as

given by the first term in (5.18) are for d = 4, 5, 6

F̂ (4)

(0,1) ∼
logR

−5

2
ζ(3) logR ,

F̂ (5)

(0,1) ∼
logR

10

9
ζ(3)R4 logR− 20

9
ζ(3)R2 ED5

3
2
Λ1

logR ,

F̂ (6)

(0,1) ∼
logR

− 4

π2
ζ(8)R12 logR+

5

3
ζ(3)R6EE6

3
2
Λ1

logR− 5

2π
ζ(5)R5EE6

5
2
Λ1

logR . (5.40)

Turning to the decompactification limit of Ê (d),ExFT
(0,1) we note that there was a logarithmic

contribution for d = 6 coming from the first constant term in (4.11) as well as the counterterm

and there are additional contributions coming from the counterterm as well as from the three-

loop amplitude given by the adjoint series given in (5.20). Therefore we have the following

logarithmic terms

Ê (4),ExFT
(0,1) ∼

logR
E (4)Adj
(0,1) ∼

logR
−10

3
ζ(3) logR+ . . .

Ê (5),ExFT
(0,1) ∼

logR
E (5)Adj
(0,1) ∼

logR
−10

3
ζ(3)R2 ED5

3
2
Λ1

logR (5.41)

Ê (6),ExFT
(0,1) ∼

logR
− 8

π2
ζ(8)R12 log+

16

3π2
ζ(8)R12 logR+ E (6)Adj

(0,1) ∼
logR

− 5

π
ζ(5)R5 EE6

5
2
Λ1

logR .

Combining the two contributions then gives the following logarithmic terms

E (4)

(0,1) ∼
logR

−35

6
ζ(3) logR ,

E (5)

(0,1) ∼
logR

−25

9
R2E (4)

(0,0) logR+
10

9
ζ(3)R4 logR ,

E (6)

(0,1) ∼
logR

− 15

2π
R5E (5)

(1,0) logR+
5

6
R6E (5)

(0,0) logR− 4

π2
ζ(8)R12 logR (5.42)

where E (d−1)

(0,0) and E (d−1)

(1,0) are the coefficients of the R4 and ∇4R4 couplings in dimension D + 1,

given by (1.2) (after using Langlands functional equations). This agrees with the coefficients of

the logarithms found in [2, (B.62)].

For d = 6, we must also consider the derivative of the Eisenstein series. This derivative arises

from the term proportional to R5 in F̂ (6)

(0,1) that takes the form

F̂ (6)

(0,1) ∼
R5

40ξ(2)ξ(6)
(
R5−ǫ ξ(1 + 2ǫ)ξ(5 + 2ǫ)

ξ(6 + 2ǫ)
EE6

( 5
2
+ǫ)Λ1

−R5 ξ(5)

2ǫξ(6)
EE6

5
2
Λ1

)∣∣∣
ǫ→0

. (5.43)

There is a similar term in Ê (6),ExFT
(0,1) that reads

Ê (6),ExFT
(0,1) ∼

R5
40ξ(2)

(
R5+2ǫξ(1− 2ǫ)ξ(5 + 2ǫ)EE6

( 5
2
+ǫ)Λ1

+R5 ξ(5)

2ǫ
EE6

5
2
Λ1

)∣∣∣
ǫ→0

(5.44)
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such that the unphysical derivative of the Eisenstein series (∂sE
E6
sΛ1

)|s= 5
2
drops out in the total

coupling E (6)

(0,1).

For d = 2 the combination (1.28) is not finite because there is a logarithmic divergence in

supergravity. One obtains

I2,ǫ ∼ R
12+4ǫ

6

(
16π2ξ(2ǫ)2

(4− 2ǫ)(3 + 2ǫ)
R−2+4ǫ +

2π

3
R2ǫ−1ξ(2ǫ)E (1)

(0,0),ǫ +O(ǫ0)

)

∼ 1

12

(
E (2)

(0,0),ǫ +
π
6

)2
+O(ǫ0) (5.45)

where

E (2)

(0,0),ǫ = 4πξ(2ǫ)E
SL(2)
ǫΛ1

E
SL(3)
ǫΛ2

= 4πξ(2ǫ) + E (2)

(0,0) +O(ǫ) ,

E (1)

(0,0),ǫ = 4πξ(2ǫ − 1)
(
ν−

3
7
(1−2ǫ)E

SL(2)

(ǫ− 1
2
)Λ1

+ ν
4
7
(1−2ǫ)

)
= E (1)

(0,0) +O(ǫ) . (5.46)

Taking into account the divergence coming from the supergravity amplitude and the R4 form-

factor as in (5.37), one obtains instead

I2,ǫ +
π

3
π−ǫΓ(ǫ)µ−2ǫ E (2)

(0,0),ǫ +
π

3

(
π−2ǫΓ(ǫ)2 + 1

6π
−ǫΓ(ǫ) +O(ǫ0)

)
µ−4ǫ

∼ 49π2

27
log(R)2 − 7π

9
log(R)

(
R E (1)

(0,0) +
π
3

)

+
4π2

3
log(2πµ)2 − 2π

3
log(2πµ)

(
R E (1)

(0,0) − 14π
3 log(R) + π

3

)
(5.47)

which is finite as ǫ → 0 and reproduces the expected logarithmic terms from [2, (B.49)].

For d = 3 one obtains the constant terms

I3,ǫ ∼ R
12+4ǫ

5

(
16π2ξ(1 + 2ǫ)2

(3− 2ǫ)(4 + 2ǫ)
R4ǫ + I2,ǫ +

8π2

3
R2ǫξ(1 + 2ǫ)E (2)

(0,0),ǫ +O(ǫ0)

)

∼ R
12
5

[
4π2

3
log(R)2 +

2π

3
log(R) E (2)

(0,0) + . . .

]
(5.48)

which reproduces the expected logarithmic terms from [2, (B.38)].

In summary, our renormalisation prescription leading ultimately to the renormalised cou-

pling (1.31), reproduces correctly the expected expansion of the ∇6R4 coupling in the weak

coupling and decompactification limits, including logarithmic terms in the string coupling and

the radius R. This lends very strong support to the claim that (1.31) is the correct full coupling.

5.4 Generalisation to E8

In three dimensions there exists a unique ∇6R4 type supersymmetry invariant [14]. Thus, the

second term in (1.13) should be omitted, leading to

E (7)

(0,1) = Ê (7),ExFT
(0,1) = 8π

∫

G

d3Ω2

|Ω2|
−1
2

(
|Ω2|ǫϕtr

KZ − π

36

E
SL(2)
−3Λ1

(τ)

V 1+2ǫ
+

π

36

E
SL(2)
−(3+2ǫ)Λ1

(τ)

V

)
θE8

Λ8
(φ,Ω2)

∣∣∣∣
ǫ0

,

(5.49)
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consistently with the sum of the exceptional field theory amplitude contributions up to 3-loop

[30], and the 1/4-BPS states contribution discussed in this section.

The analysis of Section 4.2 can be applied to the lattice ME8

Λ8
in the adjoint representation

of E8. As we explain in Appendix E, the computation is very similar for the first five layers,

but there are two additional layers of charges. We are able to compute the constant term and

the generic Fourier coefficients for the sixth layer of charges. Using the Langland constant

term formula for the Eisenstein series IE8

Λ8
(E

SL(2)

sΛ1
, 5 + 2ǫ), we argue that the last layer does not

contribute, so that the constant terms that we are able to compute do exhaust the non-vanishing

contributions. Despite the fact that the three contributions in (5.49) are individually finite in

the limit ǫ → 0, IE8
Λ8
(E

SL(2)

−(3+δ)Λ1
, 5 + 2ǫ) is not analytic at (ǫ, δ) = (0, 0) in C2, because its

limit includes a factor of δ+2ǫ
δ−2ǫ . Therefore the renormalisation prescription (1.31) gives a finite

contribution that must be taken into account to reproduce the correct coupling. One obtains

eventually

E (7)

(0,1) ∼ R12

(
E (6)

(0,1) +
5

π
logR E (6)

(1,0) +
ζ(5)

2π
R4E (6)

(0,0) −
9ζ(5)2

8π2
R8 +

5ζ(11)

12π
R10

)
, (5.50)

which reproduces the expected result from [2, (B.70)]. The first three terms come from the

second layer of charges with

I (2)

7,ǫ

[
A(τ)− π

6E
SL(2)

−3Λ1
(τ)
]
+ I (2)

7,0

[
π
6E

SL(2)

−(3+2ǫ)Λ1

]
(5.51)

∼ R12
(
R4ǫIE7

Λ7

(
A(τ) − π

6E
SL(2)

−3Λ1
(τ), 5 + 2ǫ

)
+ IE7

Λ7

(
π
6E

SL(2)

−(3+2ǫ)Λ1
(τ), 5

))

+
4π2

9
R12+4ǫ

(
6ξ(5 + 2ǫ)ξ(4 + 2ǫ)R4+2ǫ EE7

(2+ǫ)Λ7
+ ξ(1 + 2ǫ)ξ(8 + 2ǫ)R2ǫEE7

(4+2ǫ)Λ7

− ξ(8)

ξ(7)
ξ(1 + 2ǫ)ξ(8 + 2ǫ)R7+2ǫ EE7

( 1
2
+ǫ)Λ7

− ξ(1 + 2ǫ)ξ(8 + 2ǫ)R2ǫEE7

(4+2ǫ)Λ7

)

+
4π2

9
ξ(1− 2ǫ)ξ(8 + 2ǫ)R12

(
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ξ(7)
R7+2ǫEE7

( 1
2
−ǫ)Λ7

+R−2ǫEE7

(4+2ǫ)Λ7

)

∼ R12

(
R4ǫIE7

Λ7

(
A(τ)− π

6E
SL(2)

−3Λ1
(τ), 5 + 2ǫ

)
+ IE7

Λ7

(
π
6E

SL(2)

−(3+2ǫ)Λ1
(τ), 5

)

+
4π2ξ(1− 2ǫ)ξ(8 + 2ǫ)

9
R−2ǫEE7

(4+ǫ)Λ7
+

8π2

3
ξ(5)ξ(4 + 2ǫ)R4 EE7

(2+ǫ)Λ7

)
.

To compute the logarithmic term one uses the property that the only divergent terms are

IE7
Λ7

(
π
6E

SL(2)

−(3+2ǫ)Λ1
(τ), 5

)
+

4π2ξ(1− 2ǫ)ξ(8 + 2ǫ)

9
R−2ǫEE7

(4+ǫ)Λ7

= 40ξ(4)
(
ξ(7+2ǫ)ξ(8+4ǫ)ξ(9+2ǫ)ξ(12+2ǫ)

ξ(4+2ǫ)ξ(7+4ǫ) EE7

(6+ǫ)Λ1
+ ξ(1− 2ǫ)ξ(8 + 2ǫ)R−2ǫ EE7

(4+ǫ)Λ7

)

= 40ξ(8)ξ(9)ξ(12)ÊE7
6Λ1

+ 40ξ(2)ξ(6)ξ(10)ÊE7
5Λ7

+
5

π
logRζ(5)EE7

5Λ1
+O(ǫ) , (5.52)

consistently with (5.50). The last constant term in 40ξ(2)ξ(6)ξ(d+4)Rd+3 that comes from the

function F̂ (d)

(0,1) for d ≤ 6 now originates from the sixth layer of Ê (7),ExFT
(0,1) displayed in (E.33).

This analysis also lends support to our renormalised coupling (1.32) in the case d = 7.
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A Poincaré series representation of ϕKZ

In this section, we provide evidence for the relation (1.21) expressing the Kawazumi–Zhang

invariant ϕKZ as a Poincaré series seeded by its tropical limit. We first recall how both sides

can be expressed as theta liftings for lattices of signature (3, 2) and (2, 1), following [48]. As

a result, (1.21) would follow from a similar property (A.16) for Siegel–Narain theta series. We

give evidence that (A.16) holds, by integrating both sides against a vector-valued Eisenstein

series of weight −1/2, and invoking Langlands’ functional relation for generic Eisenstein series

of SO(3, 2) = Sp(4,R)/Z2. Additional evidence for (1.21) comes from the analysis of constant

terms in Sections 3 and 4 and in Appendix C.

A.1 Theta series representation for real-analytic Siegel modular forms

The Siegel modular group Sp(4,Z) is isomorphic to the automorphism group of the lattice Z5

with quadratic form 2(m1n
1 +m2n

2) + 1
2b

2 of signature (3, 2). Using this observation, we can

obtain Siegel modular functions of Sp(4,Z) from theta liftings of vector-valued modular forms

under SL(2,Z), generalising earlier constructions of the log-norm of the Igusa cusp form Ψ10 [71]

and of the genus-two Kawazumi–Zhang invariant [48]. For this purpose, we introduce the lattice

partition functions for i = 0, 1 (setting z = x+ iy ∈ H and q = e2πiz)

Γ
(i)
3,2(Ω; z) = y

∑

m1,m2,n1,n2∈Z
b∈2Z+i

q
1
4
~p 2
L q̄

1
4
|pR|2 , i = 0, 1 (A.1)

where

p1R + ip2R =
m2 − ρm1 + σn1 + (ρσ − v2)n2 − b v√

ρ2 σ2 − v22
,

p1L + ip2L =
m2 − ρm1 + σ̄n1 + (ρσ̄ − v2)n2 − b v + i

2v
2
2(n

1 + ρn2)√
ρ2 σ2 − v22

p3L =b+ i
(n1 + n2ρ̄)v − (n1 + n2ρ)v̄

2ρ2
,

(A.2)
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such that ~p 2
L − |pR|2 = 4min

i + b2. Here,

Ω =

(
ρ v

v σ

)
(A.3)

lives in the Siegel upper-half plane H2, and (pR, p̄R) and ~pL = (p1L, p
2
L, p

3
L) are the projections of

the lattice vector Q = (m1,m2, b, n
1, n2) on the positive 2-plane and its orthogonal complement.

Given a weak Jacobi form h(z, v) of weight −1/2 and index 1, we can take its theta series

decomposition [72]

h(z, v) = h0(z) θ3(2z, 2v) + h1(z) θ2(2z, 2v) (A.4)

and consider the modular integral

I3,2[h] =
∫

F1

dxdy

y2

[
Γ
(0)
3,2(Ω; z)h0(z) + Γ

(1)
3,2(Ω; z)h1(z)

]
(A.5)

over the standard fundamental domain F1 = {τ ∈ H1, |τ | > 1, |τ1| < 1/2} for PSL(2,Z) (which

consists of two copies of the fundamental domain F for PGL(2,Z) defined below (1.14)). The

integrand is invariant under SL(2,Z)×Sp(4,Z), so the integral produces a Siegel modular form,

possibly with singularities on rational quadratic divisors when h has poles at the cusp. In the

limit Ω → i∞ (corresponding to the maximal non-separating degeneration in the language of

genus-two Riemann surfaces, or the limit where one circle decompactifies in the language of

torus compactifications), Γ
(i)
3,2(Ω; z) factorises into Γ1,1(V ; z)× Γ

(i)
2,1(τ, z), where

Γ1,1(V ; z) =V −1
∑

(p,q)∈Z2

e−π|p+qz|2/(yV 2)

Γ
(i)
2,1(τ ; z) =y

∑

a,c∈Z,b∈2Z+i

q
1
4
|pL|2 q̄

1
4
p2R , i = 0, 1 .

(A.6)

Here V = 1/|Ω2|1/2 is the inverse radius of the large circle, τ is defined as in (1.14) and

pR =
a|τ |2 + bτ1 + c

τ2
, p1L + ip2L =

aτ2 + bτ + c

τ2
(A.7)

such that |pL|2 − p2R = b2 − 4ac. In the decompactifying limit V → 0, the dominant term in the

modular integral (A.5) comes from the zero orbit (p, q) = (0, 0), so I3,2[h] ∼ V −1 I2,1[h] where

I2,1[h] =
∫

F1

dxdy

y2

[
Γ
(0)
2,1(τ ; z)h0(z) + Γ

(1)
2,1(τ ; z)h1(z)

]
. (A.8)

Thus, the leading tropical limit I2,1 of the Siegel modular form I3,2 is itself a theta lift. Sub-

leading terms come from the terms with (p, q) 6= (0, 0). For these terms, the integration domain

can be unfolded to the strip R+ × [−1
2 ,

1
2 ] at the expense of restricting to q = 0. The integral

over u picks up contributions from zero or negative Fourier modes of hi, leading to powerlike or

exponentially suppressed terms in 1/V , respectively. The minimal non-separating degeneration

limit t → ∞ with t = τ2/V keeping ρ2 = 1/(V τ2) fixed instead corresponds to the limit where

the volume of T 2 becomes infinite, and can be extracted using similar orbit methods.
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The Kawazumi–Zhang invariant ϕKZ is obtained by choosing [48]

(h0, h1) = −1

2
D−5/2(h̃0, h̃1) (A.9)

where

h̃(z, v) = h̃0(z) θ3(2ρ, 2v) + h̃1(z) θ2(2z, 2v) =
θ21(z, v)

η6(z)
(A.10)

and Dw = i
π (∂z − iw

2τ2
) is the Maaß raising operator, mapping modular forms of weight w to

modular forms of weight w + 2. Using the theta lift representation, it is straightforward to

obtain the asymptotics of ϕKZ in the tropical limit Ω → i∞, and indeed the complete Fourier

expansion,

ϕKZ =
π

6
|Ω2|1/2A(τ) +

5ζ(3)

4π2
|Ω2|−1

+ 2
∑

M∈S+

(
|M |+ 5

16π2|Ω2|
(1 + 2πtr[MΩ2])

)∑

k|M
k−3c̃(4|M |

k2
)(e2πitrMΩ + e−2πitrMΩ̄) (A.11)

where S+ is defined below (3.57), A(τ) is the modular local function defined by (1.15) on the

fundamental domain F , and c̃(n) are the Fourier coefficients of

− θ4(2τ)

η(4τ)6
=
∑

n≥−1

c̃(n)qn . (A.12)

In the minimal non-separating degeneration t → ∞, one has instead

ϕKZ =
π

6
t+ ϕ0 +

ϕ1

t
+O(e−πt), (A.13)

where

ϕ0 =πρ2u
2
2 − log

∣∣∣∣
ϑ1(v, ρ)

η(ρ)

∣∣∣∣ =
1

2
D1,1(ρ; v) ,

ϕ1 =
5

16π2ρ2
D2,2(ρ; v) +

π

36
E

SL(2)
2Λ1

(ρ) .

(A.14)

Here, Da,b is the Kronecker–Eisenstein series

Da,b(v, ρ) =
(2iρ2)

a+b−1

2πi

′∑

(m,n)∈Z2

e2πi(nu2+mu1)

(mρ+ n)a(mρ̄+ n)b
(A.15)

where v = u1 + u2ρ. It may be worth noting that D1,1 coincides with the scalar propagator on

the torus.

A.2 Poincaré series from theta lifting

The identity (1.21) expressing the Kawazumi–Zhang invariant as a Poincaré series seeded by its

tropical limit would follow from a similar property for the lattice theta series,

Γ
(i)
3,2 = lim

ǫ→0




∑

γ∈(GL(2,Z)⋉Z3)\Sp(4,Z)

(
|Ω2|

1
2
+ǫ Γ

(i)
2,1

) ∣∣∣
γ


 , (A.16)
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where the limit ǫ → 0 should be taken after analytic continuation away from the region where the

sum converges. While we do not know how to prove this relation, we shall test its consequence

when integrating against the Eisenstein series E(s,w; z) of weight w = −1
2 under the congruence

subgroup Γ0(4) ⊂ SL(2,Z). The Eisenstein series is defined by

E(s,w; z) =
∑

γ∈Γ∞\Γ0(4)

ys−
w
2

∣∣∣
w

γ
, (A.17)

where the ‘slash’ notation corresponds to the action of γ ∈ Γ0(4) on the variable z with an

additional factor of automorphy (cz + d)−w. Decomposing as in (A.4)

E(s,w; z) = E0(s,w; 4z) + E1(s,w; 4z) (A.18)

and computing the integral (A.5) by unfolding, we get

I3,2
[
E(s − 1

4 ,−1
2)
]
=

Γ(s)

πs

′∑

Q=(m1,m2,n1,n2,b)∈Z5

b2+4m1n1+4m2n2=0

|pR(Q)|−2s = ξ(2s)E
Sp(4)
sΛ2

(A.19)

which we recognise as the Siegel–Eisenstein series for Sp(4,Z). Indeed, using the constant terms

(for w ∈ Z+ 1
2 )

E(s,w; z) =ys−
w
2 +

41−2s(−1)⌊
w
2
− 1

4
⌋πΓ(2s− 1)

Γ(s+ w
2 ) Γ(s − w

2 )

ζ(4s− 2)

ζ(4s− 1)
y1−s−w

2 +O(e−πy) (A.20)

and the orbit method, we find the constant terms

V −1I2,1
[
E(s− 1

4 ,−1
2 )
]
+ ξ(2s) ξ(4s − 2)V −2s +

ξ(2s− 2) ξ(4s − 3)

ξ(4s− 2)
V 2s−3 . (A.21)

In the first term, the theta lift can be computed by unfolding,

I2,1
[
E(s− 1

4 ,−1
2 )
]
=

Γ(s− 1
2)

πs− 1
2

′∑

(a,b,c)∈Z3

b2−4ac=0

p
−(2s−1)
R

=
Γ(s− 1

2)

πs− 1
2




′∑

(a,b)∈Z2

a6=0,4a|b2

[
1

aτ2

∣∣∣∣aτ +
b

2

∣∣∣∣
2
]−(2s−1)

+
∑

c 6=0

(
c

τ2

)−(2s−1)




= V −1 ξ(2s− 1)E
SL(2)
(2s−1)Λ1

(τ) , (A.22)

where in the last line, we solved the constraint 4a|b2 by setting (a, b) = kp(p, q) with gcd(p, q) = 1

and k ≥ 1. In total, (A.21) reproduces the known constant terms of the Siegel–Eisenstein series

E
Sp(4)
sΛ2

[40, (3.13)].

The conjectural property (A.16) now predicts that

E
Sp(4)
sΛ2

=
ξ(2s − 1)

ξ(2s)
lim
ǫ→0




∑

γ∈(GL(2,Z)⋉Z3)\Sp(4,Z)

(
|Ω2|

1
2
+ǫE

SL(2)
(2s−1)Λ1

(τ)
) ∣∣∣

γ


 (A.23)
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Expressing E
SL(2)
(2s−1)Λ1

(τ) as a sum over cosets, this is tantamount to

E
Sp(4)
sΛ2

?
=

ξ(2s − 1)

ξ(2s)
lim
ǫ→0


 ∑

γ∈B∩Sp(4,Z)\Sp(4,Z)

(
|Ω2|

1
2
+ǫ τ2s−1

2

) ∣∣∣
γ


 (A.24)

where B is the Borel subgroup of Sp(4,Z). The righthand side is proportional to the generic

Langlands–Eisenstein series

E
Sp(4)
(s2−s1)Λ1+s1Λ2

=
∑

γ∈B∩Sp(4,Z)\Sp(4,Z)

ρs12 ts2
∣∣∣
γ
=

∑

γ∈B∩Sp(4,Z)\Sp(4,Z)

|Ω2|
1
2
(s1+s2) τ s2−s1

2

∣∣∣
γ

(A.25)

with (s1, s2) = (1 − s + ǫ, s + ǫ). Using the functional equation satisfied by (A.25) under

(s1, s2) 7→ (1 − s1, s2), and recalling (A.3), we find that the right-hand side of (A.24) is, in the

limit ǫ → 0, equal to ∑

γ∈B∩Sp(4,Z)\Sp(4,Z)

(|Ω2|s )
∣∣∣
γ

(A.26)

which is the standard definition of the Siegel–Eisenstein series E
Sp(4)
sΛ2

. This provides a strong

consistency check on the conjecture (A.16), and therefore on its consequence (1.21).

A.3 Poincaré series from 1/2-BPS state sums

If (h0, h1) or equivalently h(z) = h0(4z) + h1(4z) can be represented as a Poincaré series for

SL(2,Z), then we can evaluate the either of the integrals I3,2[h] or I2,1[h] by the unfolding

method [73], and obtain a sum over lattice vectors of fixed norm, which can be reinterpreted

as a Poincaré series for Spin(3, 2,Z) = Sp(4,Z) or for O(2, 1,Z) = PGL(2,Z). Let us assume

that h is proportional to the Niebur–Poincaré series F4(s, κ,w; z). The integral then becomes

I3,2(s, κ; Ω) = Γ(s+ 1
4)

∑

(mi,b,ni)∈Z5

4mini+b2=κ

(p2R/κ)
−1
4−s

2F1

(
s+ 1

4 , s +
1
4 ; 2s;−κ/p2R

)
. (A.27)

where

pR =
m2 − ρm1 + σn1 + (ρσ − v2)n2 − b v√

ρ2 σ2 − v22
. (A.28)

The summand is (away from the singular locus where pR = 0 for some vector Q) an eigenmode

of ∆Sp(4) with eigenvalue 1
8 (4s + 1)(4s − 5). For κ = 1, all vectors are images of the vector

Q = (mi, b, n
i) = (0, 1, 0), whose stabiliser is SL(2,Z)ρ×SL(2,Z)σ . Therefore, we can interpret

(A.27) as

I3,2(s, κ = 1;Ω) = Γ(s+ 1
4)

∑

γ∈[SL(2,Z)×SL(2,Z)]\Sp(4,Z)

Ms

(
|v|√

ρ2σ2 − v22

)
|γ (A.29)

where

Ms(u) =u−
1
2−2s

2F1

(
s+ 1

4 , s +
1
4 ; 2s;−

1

u2

)

=(1 + u2)−(s+
1
4 ) 2F1

(
s+ 1

4 , s− 1
4 ; 2s;−

1

1 + u2

)
,

(A.30)
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where in the second equality we used Pfaff’s identity 2F1(a, b, c; z) = (1−z)−a
2F1(a, c−b, c; z

z−1).

Note that Ms(u) satisfies

1

2
(1 + u2)∂2

uMs(u) +
1 + 4y2

2y
∂uMs(u) =

[
2s(s− 1)− 5

8

]
Ms(u) (A.31)

which ensures that the Poincaré series (A.29) is an eigenmode of ∆Sp(4) with eigenvalue 2s(s−
1)− 5

8 . Similarly, we can write the tropical limit as a Poincaré series:

I2,1(s, κ; τ) =Γ(s− 1
4 )

∑

(a,b,c)∈Z3

b2−4ac=κ

(p2R/κ)
1
4
−s

2F1

(
s+ 1

4 , s − 1
4 ; 2s;−κ/p2R

)

=Γ(s− 1
4 )

∑

γ∈SO(2)\SO(2,1,Z)

ms(τ1/τ2)|γ
(A.32)

where pR = [a|τ |2 + bτ1 + c]/τ2 and

ms(u) = u−2s+ 1
2 2F1

(
s+ 1

4 , s − 1
4 ; 2s;−

1

u2

)
(A.33)

Choosing s = 9
4 , κ = 1 and adjusting the normalisation, the Niebur–Poincaré series reduces to

the weak holomorphic modular form (A.10) appearing in the theta lift representation of the

Kawazumi–Zhang invariant or its tropical limit,

h̃(z) = h̃0(4z) + h̃1(4z) = − 1

Γ(92)
F4(

9
4 , 1,−5

2 ; z) . (A.34)

Using the identity

Dw F4(s, κ,w; z) = κ(2s + w)F4(s, κ,w + 2; z) (A.35)

and setting s = 9
4 in the previous formulae, we get

ϕKZ(Ω) =
1

4Γ(9/2)

∫

F1

dxdy

y2

[
Γ
(0)
3,2(Ω; z)F0(

9
4 ,

1
4 ,−5

2 ; z) + Γ
(1)
3,2(Ω; z)F∞(94 ,

1
4 ,−5

2 ; z)
]

=
1

4Γ(9/2)
I3,2(9/4, 1/4;Ω)

=
Γ(5/2)

4Γ(9/2)

∑

(mi,b,ni)∈Z5

4mini+b2=1

M(|pR|) =
1

35

∑

γ∈O(3,2,Z)/O(2,2,Z)

M

(
v√

ρ2σ2 − v22

)∣∣∣∣∣
γ

(A.36)

where

M(u) = u−5
2F1

(
5
2 ,

5
2 ;

9
2 ;−1/u2

)
=

35

12

[
3(2 + 5u2)arcsinh(1/u)− 11 + 15u2√

1 + u2

]
(A.37)
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Similarly, for the tropical limit A = 6
πϕ

tr
KZ, we get

A(τ) =− 3

π

∫

F1

dxdy

y2

[
Γ
(0)
2,1(τ ; z)Dz h̃0(z) + Γ

(1)
2,1(τ ; z)Dz h̃1(z)

]

=− 3

π

∫

FΓ0(4)

dxdy

y2
Γ
(0)
2,1(τ ; 4z)Dz h̃(z)

=
3

2π1/2Γ(92)

∑

(a,b,c)∈Z3

b2−4ac=1

m(pR) =
8

35π

∑

γ∈O(2,1,Z)/O(1,1,Z)

m

(
τ1
τ2

) ∣∣∣
γ

(A.38)

where

m(u) = u−4
2F1

(
5
2 , 2;

9
2 ;−1/u2

)
=

35

12

(
15u2 + 4− 3

(
3 + 5u2

)
u arccot(u)

)
. (A.39)

Note that m(u) is a bounded, continuous, even function of u ∈ R, non-differentiable at u = 0,

and decays as 1/|u|4 for |u| → ∞. It is annihilated by the differential operator ∂u(1+u2)∂u−12,

which ensures that the Poincaré series (A.38) is annihilated by ∆τ − 12 away from the locus

τ1 = 0 and its images under GL(2,Z).

B Integrating A(τ) against single and double Eisenstein series

In this appendix, we compute modular integrals of the local modular form A(τ) defined in

(1.15), which we copy for convenience,

A(τ) =
|τ |2 − τ1 + 1

τ2
+

5τ1(τ1 − 1)(|τ |2 − τ1)

τ32
. (B.1)

multiplied by either a standard non-holomorphic Eisenstein series E
SL(2)
sΛ1

(τ), or a ‘double Eisen-

stein series’ defined in (2.43), over the fundamental domain F for PGL(2,Z) defined below

(1.14). These results are used in the computation of the weak-coupling expansion in Section 3.2.

B.1 Against a single Eisenstein series

Here we establish the formula (3.17), which we recall for convenience,

R.N.

∫

F

dτ1dτ2
τ 2
2

A(τ)E
SL(2)
sΛ1

(τ) =
3 [ξ(s)]2

[12− s(s− 1)]ξ(2s)
. (B.2)

It will be convenient to unfold the integral to the domain F ′ = {|τ − 1
2 | > 1

2 , 0 < τ1 < 1} which

consists of the 6 images of F under the permutation group S3 ⊂ PGL(2,Z). Inside this domain,

the two factors in the integrand are eigenmodes of the Laplacian [31, (3.12)],

[∆τ − s(s− 1)]E
SL(2)
sΛ1

= 0 , (B.3)

(∆τ − 12)A = −12τ2 δ(τ1)− 12τ2 δ(1 − τ1)−
12τ2
|τ |2 δ

( |τ |2 − τ1
|τ |2

)
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We define the truncated fundamental domain F ′(L) by removing the region τ2 > L and its

images under S3. To avoid dealing with the delta functions, we regulate F ′(L) by requiring

δ < τ1 < 1− δ, |τ − 1
2 | > 1

2 + δ and we let δ → 0 at the end. Thus,

[s(s− 1)− 12]

∫

F ′(δ,L)

dτ1dτ2
τ 2
2

A(τ)E
SL(2)
sΛ1

=

∫

∂F ′(δ,L)
⋆
[
AdE

SL(2)
sΛ1

− E
SL(2)
sΛ1

dA
]

(B.4)

where ⋆dτ1 = dτ2, ⋆dτ2 = −dτ1. Due to S3 symmetry, the three boundaries at τ1 = 0, 1 and

|τ − 1
2 | = 1

2 produce identical contributions, while the the contribution from the boundary at

τ2 = L and its image is subtracted by the renormalisation prescription. The contribution from

the boundary at τ1 = 0 can be computed by using

A(0, τ2) = τ2 +
1

τ2
, ∂τ1A|τ1→0+ = − 6

τ2
, lim

τ1→0
∂τ1E

SL(2)
sΛ1

= 0 . (B.5)

At τ1 = 0, τ2 runs from L to 1/L, hence

[s(s− 1)− 12]

∫

F ′(δ,L)

dτ1dτ2
τ 2
2

A(τ)E
SL(2)
sΛ1

(τ) = −18

∫ L

1
L

dτ2
τ2

E
SL(2)
sΛ1

(iτ2) . (B.6)

The integral on the r.h.s. can be computed for Re[s] > 1 by substituting E
SL(2)
sΛ1

=
∑

(c, d) = 1

τ22
|cτ+d|2s

and integrating term by term. Upon folding the integral and subtracting the divergence, we get

lim
L→∞

(∫ L

1

dτ2
τ2

E
SL(2)
sΛ1

(iτ2)−
Ls

s

)
=

2

sζ(2s)

∞∑

n=1

n−2s
∞∑

m=1

2F1

(
s
2 , s;

s
2 + 1;−m2

n2

)
, (B.7)

where the sum and the integral are absolutely convergent for Re[s] > 1. Using the functional

identity31

2F1

(
s
2 , s;

s
2 + 1;−x2

)
+ x−2s

2F1

(
s
2 , s;

s
2 + 1;− 1

x2
)
=

sΓ( s2)
2

2Γ(s)
x−s , (B.8)

and exchanging m and n one obtains

2

sζ(2s)

∞∑

n=1

n−2s
∞∑

m=1

2F1

(
s
2 , s;

s
2 + 1;−m2

n2

)
=

Γ( s2)
2

2Γ(s)ζ(2s)

∞∑

n=1

∞∑

m=1

1

(nm)s
=

ξ(s)2

2ξ(2s)
. (B.9)

consistently with the advertised formula (B.2).

It is worth noting that the integral (B.6) can be computed alternatively by inserting a power

τη2 in the integrand, subtracting by hand the constant term from E
SL(2)
sΛ1

(iτ2), and extending the

integral from [1/L,L] to R+:

∫ +∞

0

dτ2

τ1−η
2

(
E

SL(2)
sΛ1

(iτ2)− τ s2 − ξ(2s− 1)

ξ(2s)
τ1−s
2

)
= L⋆

(
E

SL(2)
sΛ1

, η +
1

2

)
(B.10)

31A special case of the general identity [74, Eq. (15.3.7)]

2F1

(
a, b; c; z

)
=

Γ(b− a)Γ(c)

Γ(c− a)Γ(b)

(
− 1

z

)a
2F1

(
a, a−c+1;a−b+1; 1

z

)
+
Γ(a− b)Γ(c)

Γ(c− b)Γ(a)

(
− 1

z

)b
2F1

(
b−c+1, b;−a+b+1; 1

z

)
.
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which gives the same result in the limit η → 0 using (2.30). We therefore conclude that

R.N.

∫

F ′

dτ1dτ2
τ 2
2

A(τ)E
SL(2)
sΛ1

(τ) =
18

12− s(s− 1)

ξ(s)2

ξ(2s)
(B.11)

After dividing by 6 to get the integral over F , we obtain (B.2).

B.2 Against a double Eisenstein series

We now briefly consider the integral against the ‘double Eisenstein series’ defined in (2.43),

Ãs(U) ≡
∫ ∞

0

dV

V 1+2s

∫

F

dτ1dτ2
τ 2
2

A(τ)

′∑

M∈Z2×2

e−
π
V
M2

(B.12)

where, for an integer matrix M =

(
q1 p1
q2 p2

)
,

M2 =
1

τ2U2
Tr

[(
p1 q1
p2 q2

)T

·
(

1 −U1

−U1 |U |2
)
·
(
p1 q1
p2 q2

)
·
(

1 −τ1
−τ1 |τ |2

)]

=
1

2τ2U2

(
|p1 − Up2 − τ(q1 − Uq2)|2 + |p1 − Up2 − τ̄(q1 − Uq2)|2

)
(B.13)

Using (B.3) and the fact that M2 degenerates to

M2 =
1

τ2U2
|p1 − Up2|2 +

τ2
U2

|q1 − Uq2|2 (B.14)

on the locus τ1 = 0, it is straightforward to check that the integral (B.12) satisfies the differential

equation

∆Ãs(U) = 12Ãs(U)− 6
(
ξ(2s)ESL(2)

sΛ1
(U)
)2

. (B.15)

Using the same method as in [32, App. A], it is straightforward to show that the relevant

solution to (B.15) can be represented as a sum of an Eisenstein series and a lattice sum-type

series

Ãs(U) = 6ξ(2s)2


 ESL(2)

2sΛ1
(U)

2(2 − s)(2s + 3)
+
∑

γ∈S
(det γ)−2shs(U1/U2)

∣∣∣
γ


 (B.16)

where32

S = {±1}\
{(

α β

γ δ

)
∈ Z

2×2 ∩GL+(2,R)

∣∣∣∣ gcd(α, β) = gcd(γ, δ) = 1

}
(B.17)

and hs(u) is the unique smooth, decaying solution of

[
∂u((1 + u2)∂u)− 12

]
hs = −(1 + u2)−s . (B.18)

32In the expression (B.16), GL+(2,R) consists of positive determinant GL(2,R) matrices and the action of(
α β
γ δ

)
∈ GL+(2,R) on the upper half plane is U 7→ αU+β

γU+δ
. The Laplacian on the upper half plane is also

invariant under this action that extends the usual SL(2,R) action.
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This solution can be expressed for s /∈ {1, 2} as

hs(u) =
1− 3s

6(s− 1)(s − 2)
2F1(−

3

2
, s;

1

2
;−u2) +

su2

s− 1
2F1(−

1

2
, s+ 1;

3

2
;−u2)

+ α(s)

[
4

3
+ 5u2 + u(3 + 5u2) arctan(u)

]
(B.19)

in terms of hypergeometric functions and the term in the second line is the unique homogeneous,

even and smooth solution of (B.18). The latter can also be written as

4

3
+ 5u2 + u(3 + 5u2) arctan(u) =

[
m(u) +

35π

8
|u|(3 + 5u2)

]
, (B.20)

combining the non-smooth homogeneous solutionm(u) introduced in (A.39) and the independent

non-smooth solution |u|(3+5u2). The numerical coefficient α(s) is fixed by requiring that hs(u)

decays (as 1/|u|2) as |u| → ∞ and is given explicitly by

α(s) =
Γ(32 + s)

3
√
π(s− 1)(s − 2)Γ(s)

. (B.21)

For s = 3/2, we recover the solution in [32, (A.7)]

h3/2(u) =
7 + 44u2 + 40u4

3
√
1 + u2

− 16

3π

(
4

3
+ 5u2 + u(3 + 5u2)arctan(u)

)
. (B.22)

Similar closed algebraic forms arise when s is half-integer, e.g.

h5/2(u) = −13 + 102u2 + 168u4 + 80u6

9(1 + u2)3/2
+

32

9π

(
4

3
+ 5u2 + u(3 + 5u2)arctan(u)

)
. (B.23)

It is interesting to note that the representation (B.16) can be obtained directly by plugging

in the Poincaré representation (A.38) of A(τ) into the integral (B.12), and unfolding the sum

over γ ∈ GL(2,Z). The first term in (B.16) comes from contributions of rank-one matrices M

while the second comes from non-degenerate matrices. The agreement with the second term in

(B.16) relies on the conjectural identity for A = I2,

16

35π

∫ ∞

0

dV

V 1+2s

∫

H1

dτ1dτ2
τ 2
2

e
− 2π

V
−π|U−τ |2

V τ2U2 m(τ1/τ2) = 6[π−sΓ(s)]2 hs(U1/U2) (B.24)

which we have checked at the first few orders in a Taylor expansion around U1 = 0 using

Mathematica. Note that the factor m(τ1/τ2) in the integrand, despite being annihilated by

∆τ −12, is not regular along the locus τ1 = 0 in H, so that the reproducing kernel identity (2.20)

does not apply. Indeed, upon applying it blindly, it would only produce the term proportional

to the non-smooth m(U1/U2) in (B.19) via (B.20).

Using the same method as in Section 3, it is straightforward to obtain the Fourier expansion
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Ãs(U) =
3ξ(2s)2 U 2s

2

(2− s)(2s+ 3)
+ ξ(2s)ξ(2s − 1)U2 +

3ξ(2s − 1)2 U 2−2s
2

(s+ 1)(5 − 2s)
+

ξ(5− 2s)ξ(2s + 3)

6
U −3
2

− 2

7

′∑

N∈Z

(
σ2s−1(N)

)2

|N |2s−1
B2s−1(2πU2|N |)

+ 2U2

∑

M∈Z2×2

detM 6=0

∫

F

dτ1dτ2
τ 2
2

A(τ) |m11+τm12|2s−1

|m21+τm22|2s−1K2s−1(2πU2
|m11+τm12||m21+τm22|

τ2
)e2πi detMU1 (B.25)

where the function Bs was defined in (3.30). It can be checked that this expansion is consistent

with the Poisson equation (B.15).33

C Spin(d, d) lattice sums

In this appendix, we analyse the two-loop/genus-two integrals introduced in (2.53) involving

Spin(d, d) lattice sums. This provides support for the conjectures in Sections 2 and 3 as well as

in Appendix A.

C.1 Large radius limit

We start with the genus-two modular integral (3.3), which we rewrite for convenience,

E (d,2)

(0,1) = 8πR.N.

∫

F2

d6Ω

|Ω2|3
ϕKZ Γd,d,2 . (C.1)

Its asymptotics in the limit where one circle S1 of radiusR inside T d decompactifies was discussed

for generic d in [2, (2.38)]:

E (d,2)

(0,1) = R2 E (d−1,2)

(0,1) +
2π

3
ξ(d− 2)Rd−1 E (d−1,1)

(0,0) +
5

π
ξ(d− 6)Rd−5 E (d−1,1)

(1,0) +
16π2ξ(d− 2)2

(d+ 1)(6 − d)
R2d−4

(C.2)

and

E (d−1,1)

(0,0) = 4π ξ(d− 2)EDd
d−2
2

Λ1
, E (d−1,1)

(1,0) =
4π4

45
ξ(d+ 2)EDd

d+2
2

Λ1
(C.3)

Except for the last term proportional to R2d−4, these constant terms can be obtained by using

the orbit method: the term proportional to R2 is the zero orbit contribution, while the terms

proportional to Rd−1 and Rd−5 originate from the terms proportional to t and 1/t in (A.13),

the O(t0) term giving a vanishing result after integrating over v. The orbit method fails to

produce the complete expansion due to the logarithmic singularity of ϕKZ at the separation

limit, but one can recover the contribution in R2d−4 by carefully extracting the contribution

from this degeneration as in [75]. One can also determine this coefficient using the Poisson

equation satisfied by the integral (C.1).

33Note that the only term of the Fourier expansion of E
SL(2)
2sΛ1

(U) present in (B.16) that is not cancelled in

(B.25) is the leading constant term proportional to U2s
2 .
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We now consider the integral on the last line of (2.53),

IS,d = 8π

∫

G

d3Ω2

|Ω2|1−ǫ
ϕtr
KZ θDd

Λd
, θDd

Λd
(Ω2, φ) =

∑

Qi∈S+
Qiγd−4Qj=0

e−πΩij
2 v(Qi)·v(Qj) . (C.4)

We shall see that the functional identity E (d,2)

(0,1) = ÎS,d in (2.53) holds for the renormalised coupling

ÎS,d ≡ 8π

∫

G

d3Ω2

|Ω2|

(
|Ω2|ǫϕtr

KZ − π

36

E
SL(2)
−3Λ1

(τ)

V 1+2ǫ
+

π

36

E
SL(2)
−(3+2ǫ)Λ1

(τ)

V

)
θDd
Λd

, (C.5)

as in (1.31).

In order to analyse the decompactification limit of (C.4), we decompose the sum in θDd
Λd

.

Under Spin(d, d) ⊃ Spin(d− 1, d − 1)×GL(1), the Weyl spinors Qi ∈ S+ decompose into two

spinors qi ∈ S+, and pi ∈ S− of opposite chiralities. The invariant quadratic form becomes

|v(Q)|2 = R−1|v(q + ap)|2 +R|v(p)|2 (C.6)

while the constraints Qiγd−4Qj = 0 reduce to

qiγd−5qj = 0 , piγd−5pj = 0 , qiγd−4pi = qiγd−6pi = 0 . (C.7)

As in Section 3.2, we decompose the theta series into contributions where the components (qi, pi)

are gradually populated.

The first layer

The contribution from lattice spinors with qi 6= 0, pi = 0 gives

I (1)

S,d = 8πR2+2ǫ

∫
d3Ω2

|Ω2|1−ǫ
ϕtr
KZ(Ω2)

′∑

qi∈S+
qiγd−5qj=0

e−πΩij
2 v(qi)·v(qj) → R2 × IS,d−1 , (C.8)

where we can take the limit ǫ → 0 provided IS,d−1 is itself regular.

The second layer

For the layer with pi 6= 0 but p1 ∧ p2 = 0, one has the Poincaré sum

θ(2)

Λd
(φ,Ω2) =

∑

γ∈Pd−1\Dd−1

( ′∑

ni∈Z

∑

qai ∈Zd−1

e−πΩij
2

(
R−1y

2d−3
d−1 uab(q

a
i +aani)(qbj+abnj)+Ry2ninj

))∣∣∣∣∣
γ

=
Rd−1

|Ω2|
d
2

∑

γ∈Pd−1\Dd−1

y−2(d−2)

( ′∑

ni∈Z

∑

qia∈Zd−1

e−πΩij
2 Ry2ninj−πΩ−1

2ijRy
−2 d−3

d−1 uabqiaq
j
b+2πiniq

i
aa

a

)∣∣∣∣∣
γ

(C.9)
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Constant terms originate from a) qia = 0 and b) niq
i
a = 0, qia 6= 0. The former requires to take

into account both the dimensional regularisation ǫ 6= 0 and the regularisation of the fundamental

domain FL. One obtains after taking the limit L → ∞

I (2a)

S,d = 8πR2d−4−2ǫ
∑

γ∈Pd−1\Dd−1

(
y−4ǫ

) ∣∣∣
γ

∫
d3Ω2

|Ω2|
d+2
2

−ǫ
ϕtr
KZ(Ω2)

′∑

ni∈Z
e−πΩij

2 ninj

= R2d−4−2ǫ 16π2ξ(3− d+ 2ǫ)2

(6− d+ 2ǫ)(1 + d− 2ǫ)
E

Dd−1

2ǫΛd−1
→ R2d−4 16π

2ξ(d− 2)2

(6− d)(1 + d)
, (C.10)

using (3.17). The contributions b) are computed by unfolding the integration domain over

PGL(2,Z)

16πRd−1

∫ ∞

0

dV

V 4−d+2ǫ

∫ ∞

0

dτ2
τ 2
2

[∫ 1
2

− 1
2

dτ1A(τ)

]

×
∑

γ∈Pd−1\Dd−1

(
y2(3−d)

∑

n≥1

′∑

qa∈Zd−1

e
− π

V τ2
Ry2n2−πV

τ2
Ry

2 3−d
d−1 uabqaqb

)∣∣∣∣∣
γ

(C.11)

As in (3.19), this may be computed by inserting (3.27) in the square bracket. After changing

variables to ρ2 = 1/(τ2V ), t = τ2/V , The contribution from (3.20) to the integral gives

I (2b)

S,d =
4π2Rd−1

3

∫ ∞

0

dt

t
d+1
2

−ǫ

∫ ∞

0

dρ2

ρ
d−1
2

−ǫ

2

(
t+

ρ 2
2

6t

)

×
∑

γ∈Pd−1\Dd−1

(
y2(3−d)

∑

n≥1

′∑

qa∈Zd−1

e−πρ2Ry2n2−π
t
Ry

2 3−d
d−1 uabqaqb

)∣∣∣∣∣
γ

=
8π2Rd−1

3
ξ(3− d+ 2ǫ)ξ(d− 3− 2ǫ)E

Dd−1

(d−3
2

−ǫ)Λ1+2ǫΛd−1

+
4π2

9
Rd−5 ξ(7− d+ 2ǫ) ξ(d + 1− 2ǫ)E

Dd−1

(d+1
2

−ǫ)Λ1+2ǫΛd−1
(C.12)

The terms on the last line are recognised as Rd−1E (d−1,1)

(0,0) and Rd−5E (d−1,1)

(1,0) in (C.2) with their

respective coefficients. The last term in (3.27) gives additional non-perturbative contributions

that would be overlooked by the näıve unfolding method. They are

I (2c)

S,d = −2 · 82π2

21
Rd

∫ ∞

0

dV

V 4−d+2ǫ

∫ 1

0

dτ2
τ 5
2

(1 + 3
2τ

2
2 + τ 4

2 )(1− τ 2
2 )

3
2

×
∑

γ∈Pd−1\Dd−1

(
y3(2−d)

∑

a,c≥1
gcd(a,c)=1

∑

n≥1

′∑

qa∈Zd−1

e
− π

V τ2
Ry2(2acn2)−πV

τ2
Ry

2 3−d
d−1 uab(2acqaqb)

)∣∣∣∣∣
γ

= −16π2

21
Rd−1

′∑

q∈IId−1,d−1

(q,q)=0

σd−3(q)
2

|v(q)|d−3
Bd−3(2πR|v(q)|) , (C.13)

where Bs(x) was given in (3.31).
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The third layer

The contribution from p1 ∧ p2 6= 0 can be written as a Poincaré sum

θ(3)

Λd
(φ,Ω2) =

∑

γ∈Pd−3\Dd−1

(
∑

ni
̂∈Z2

detn 6=0

∑

qai ∈Z2

pα∈Zd−3

e−πΩij
2 R−1y

(
(R2n2+y

2
3−d ραβ(pα+aαn)(pβ+aβn))υk̂l̂n̂i

k̂n̂j
l̂
)

× e
−πΩij

2 R−1yuab(q
a
i +aa

k̂
ni

k̂+caα
k̂

n̂i
k̂(pα+aαn))(qbj+ab

l̂
nj

l̂+cbβ
l̂

n̂j
l̂(pβ+aβn))

)∣∣∣∣∣
γ

=
R

d+1
2

|Ω2|
∑

γ∈Pd−3\Dd−1

(
∑

ni
̂∈Z2

detn 6=0

∑

qia∈Z2

pα∈Zd−3

y−
d−1
2

(Ωij
2 υk̂l̂n̂i

k̂n̂j
l̂)

d−3
2

e−πΩij
2 Ryυ

k̂l̂
ni

k̂nj
l̂

(C.14)

× e
−πR

(
y−1Ω−1

2iju
abqiaq

j
b+

y
5−d
d−3

Ω
ij
2

υ
k̂l̂

n̂i
k̂n̂j

l̂
ραβ(p

α−caα
k̂

n̂i
k̂qia)(p

β−cbβ
l̂

n̂j
l̂qjb)
)
+2πi(qiani

̂aâ+npαaα)
)∣∣∣∣∣

γ

.

The constant term contribution is at qia = pα = 0, since ni
̂ is non-degenerate. After manipu-

lating the integral over V as in (3.42), one obtains the constant term

I (3a)

S,d = 8π
ξ(4ǫ− d+ 3)

ξ(4ǫ)
Rd−1

∑

γ∈Pd−3\Dd−1

(
∑

ni
̂∈Z2

detn 6=0

y−1

∫
d3Ω2

|Ω2|2−ǫ
ϕtr
KZe

−πΩij
2 Ryυ

k̂l̂
ni

k̂nj
l̂

)∣∣∣∣∣
γ

. (C.15)

The factor of ξ(4ǫ) in the denominator suggests that this contribution may vanish, but we shall

see that the integral also diverges in ξ(1+2ǫ) so that there is a finite contribution. Nonetheless,

we argue in Section C.3 that this terms drops out in the renormalised function (C.5) as a

consequence of the tensorial differential equation. In particular, one has

I (3a)

S,d =
4π

9

ξ(8)

ξ(7)
Rd−1−2ǫ ξ(4ǫ− d+ 3)

ξ(4ǫ)
ξ(2ǫ+ 3)ξ(2ǫ− 4)E

Dd−1
2ǫ−3

2
Λd−3+4Λd−2

+O(ǫ)

=
4π

9

ξ(8)

ξ(7)
Rd−1−2ǫ ξ(4ǫ−d+3)ξ(4ǫ−3)

ξ(4ǫ)ξ(4ǫ−2)
ξ(2+2ǫ)ξ(1+2ǫ)ξ(−5+2ǫ)ξ(−6+2ǫ)

ξ(2ǫ+4)ξ(2ǫ−3) E
Dd−1
2ǫ−3

2
Λd−5+4Λd−2

=
ǫ→0

−80ξ(2)ξ(6)ξ(8)ξ(d − 2)

ξ(3)
E

Dd−1

− 3
2
Λd−5+4Λd−2

(C.16)

for d ≥ 5, where the function is ED4
4Λ3

for d = 5, and zero for d < 5.

Fourier coefficients

The Fourier coefficients from (C.9) simplify to

I (2d)

S,d = 8πR2d−4

∫
d3Ω2

|Ω2|
d+1
2

ϕtr
KZ(Ω2)

′∑

ni∈Z

′∑

qi∈IId−1,d−1

(qi,qj)=0
niq

i 6=0

e−πΩij
2 ninj−πΩ−1

2ijR
2g(qi,qj)+2πini(q

i,a) (C.17)
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which can be computed as in Section 3.3. It is convenient to unfold the integral domain G to the

set of positive matrices R+ ×H1/Z by fixing ni = (n, 0) for n > 0. Setting N = nq1, one can

solve the constraint for q2 in the Pd−1 ⊂ SO(d− 1, d− 1) parabolic decomposition associated to

N such that

I (2d)

S,d =
8π2

3
R2d−4

∫ ∞

0
V d−4dV

∫ ∞

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1 A(τ)
∑

γ∈Pd -1\SO(d -1,d -1)

′∑

N∈N

∑

n|N
(C.18)

×
∑

j∈Z
q∈Z (d−1)(d−2)

2

q∧q=0

e
−π
(

n2

V τ2
+V τ2R2 y2N2

n2 + V
τ2

R2(y2(j+(ς,q)− τ1
n
N)2+y

2 d−5
d−1 |v(q)|2)

)
+2πiNa

∣∣∣∣∣
γ

=
8π2

3
R2d−5

∫ ∞

0
V d− 9

2 dV

∫ ∞

0

dτ2
τ2

3
2

∑

γ∈Pd -1\SO(d -1,d -1)

′∑

N∈N

∑

n|N

∑

̃∈Z

∫ 1
2

− 1
2

dτ1 A(τ)e
−2πiτ1

Ñ
n

× y−1
∑

q∈Z (d−1)(d−2)
2

q∧q=0

e
−π
(

n2

V τ2
+V τ2

R2y2N2

n2 + V
τ2

R2y
2d−5
d−1 |v(q)|2+ τ2

V R2y2
̃2
)
+2πi(̃(q,ς)+Na)

∣∣∣∣∣
γ

.

Following the steps as in Section 3.3 and in particular (3.65), one computes that

I (2d)

S,d =
16π2

3
R

d+1
2

′∑

N∈S+
N×N=0

(
σd−3(N)

(
y

9−3d
2

+ 4(d−4)
d−1

N

gcd(N)
d−3
2

ξ(d− 4)E
SL(d -1)
d−4
2

Λ2
(vN )K d−3

2

(
2πR

√
g(N,N)

)

+
3y

7−3d
2

N

π2R gcd(N)
d−1
2

′∑

Q∈Z (d−1)(d−2)
2

Q∧Q=0

σd−4(Q)e2πi(Q,ςN )
K d−2

2
(2πy

− 4
d−1

N |vN (Q)|)

(y
− 4

d−1

N |vN (Q)|) d−2
2

K d−5
2

(
2πR

√
g(N,N)

)

− 15y
5−3d

2
N

2π4R2 gcd(N)
d+1
2

′∑

Q∈Z (d−1)(d−2)
2

Q∧Q=0

σd−4(Q)e2πi(Q,ςN )
K d

2
(2πy

− 4
d

N |vN (Q)|)

(y
− 4

d
N |vN (Q)|) d

2

K d−7
2

(
2πR

√
g(N,N)

)
)

+
y

5−3d
2

+ 4d
d−1

N

6R2

σd−7(N)

gcd(N)
d−7
2

ξ(d)E
SL(d -1)
d
2
Λ2

(vN )K d−7
2
(2πR

√
g(N,N))

)
e2πi(N,a)

+
8π2

3
R2d−5

∫ ∞

0

dν

ν
9
2 − d

∫ 1

0

dt

t
3
2

∑

γ∈Pd -1\SO(d -1,d -1)

′∑

N∈N

′∑

N1∈Z
Q∈Zd(d−1)

2

Q∧Q=0

σd−3(N1, Q)σd−3(N +N1, Q)

× y−1e−π
(

2
νt

+νtR
2y2N2

2
+ 2ν

t
R2y2

d−5
d−1 |v(Q)|2

)
F
(
t, R2y2ν,N,N1 + (ς,Q)

)
e2πiNaγ

∣∣∣
γ

(C.19)

where we kept the variable yN =
√

g(N,N)

gcd(N) for simplicity, and the sum over Q ∈ Z
(d−1)(d−2)

2 is a sum

over characters of the unipotent stabilisers of the charge N , and F is the function defined in

(3.74). The leading term in R factorises as an Eisenstein series over the Levi stabiliser of N ,
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while the full Fourier coefficient depends non-trivially on the whole parabolic stabiliser. The

last term involving the integral and the function F can be ascribed to instanton anti-instanton

corrections, and is further exponentially suppressed.

The Fourier coefficients from (C.14) yield

I (3)

S,d = 8πRd−1
∑

γ∈Pd−3\Dd−1

( ′∑

ni
̂∈Z2

∫
d3Ω2

|Ω2|2
ϕtr
KZ(Ω2)

e−πΩij
2 υ

k̂l̂
ni

k̂nj
l̂

y(Ωij
2 υk̂l̂n̂i

k̂n̂j
l̂)

d−3
2

(C.20)

×
′∑

qia∈Z2

pα∈Zd−3

e
−πR2

(
Ω−1

2iju
abqiaq

j
b+

y
2

d−3

Ω
ij
2

υ
k̂l̂

n̂i
k̂n̂j

l̂
ραβ(p

α−caα
k̂

n̂i
k̂qia)(p

β−cbβ
l̂

n̂j
l̂qjb)
)
+2πi(qiani

̂aâ+npαaα)
)∣∣∣∣∣

γ

Using (3.77), the integral gives in the saddle point approximation

∫
d3Ω2

|Ω2|2
ϕtr
KZ(Ω2)

(TrΩ2Y )
d−2
2

e−S(Ω2) ∼ ϕtr
KZ(X +

√
|XY |Y −1)e−2π

√

M+TrXY+2
√

|XY |
√

8|X|(TrXY + 2
√

|XY |)(M +TrXY + 2
√

|XY |)
2d−7

4

(C.21)

For Pα = npα and Qı̂
a = nj

ı̂qja, we obtain

S(Ω⋆
2) = 2πR

√
y

2
d−2 ραβ(P

α − caαı̂ Qı̂
a)(P

β − cbβ̂ Q̂
b) + υı̂̂u

abQı̂
aQ

̂
b + 2|detQ|

)
(C.22)

which is recognised as the BPS mass for the vector Q ∈ IId,d with a non-vanishing norm, such

that

S(Ω⋆
2) = 2πR

√
g(Q,Q) + (Q,Q) . (C.23)

Collecting all contributions, one finally obtains

IS,d = R2 IS,d−1 +
16π2ξ(3− d)2

(6− d)(1 + d)
R2d−4

+
8π2

3
ξ(d− 2)ξ(d − 3)Rd−1 E

Dd−1
d−3
2

Λ1
+

4π2

9
ξ(d− 6)ξ(d + 1)Rd−5 E

Dd−1
d+1
2

Λ1

− 256π2

21
Rd−1

∫ 1

0

dt

t5
(1 + 3

2t
2 + t4)(1 − t2)

3
2

′∑

q∈IId−1,d−1

(q,q)=0

σd−3(q)
2Kd−3(

4π
t R|v(q)|)

|v(q)|d−3

+ 8πR2d−4

∫
d3Ω2

|Ω2|
d+1
2

ϕtr
KZ(Ω2)

′∑

ni∈Z

′∑

qi∈IId−1,d−1

(qi,qj)=0

e−πΩij
2 ninj−πΩ−1

2ijR
2g(qi,qj)+2πini(q

i,a)

+ 8πRd−1
∑

γ∈Pd−3\Dd−1

( ′∑

ni
̂∈Z2

∫
d3Ω2

|Ω2|2
ϕtr
KZ(Ω2)

e−πΩij
2 υ

k̂l̂
ni

k̂nj
l̂

y(Ωij
2 υk̂l̂n̂i

k̂n̂j
l̂)

d−3
2

×
′∑

qia∈Z2

pα∈Zd−3

e
−πR2

(
Ω−1

2iju
abqiaq

j
b+

y
2

d−3

Ω
ij
2

υ
k̂l̂

n̂i
k̂n̂j

l̂
ραβ(p

α−caα
k̂

n̂i
k̂qia)(p

β−cbβ
l̂

n̂j
l̂qjb)
)
+2πi(qiani

̂aâ+npαaα)
)∣∣∣∣∣

γ

(C.24)
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which is consistent with the identity (2.53). It is worth noting that the term proportional to

R2d−4 on the first line can be viewed as the contribution of the vector qi = 0 in the integral on

the fourth line, while the first term R2 IS,d−1 can be viewed as the contribution from ni = 0 in

the same integral, upon using the identity

∫

Sp(4,Z)\H+(C)

d6Ω

|Ω2|3
ϕKZ(Ω)Γd,d,2 =

∫

GL(2,Z)\H+(R)

d3Ω2

|Ω2|
ϕtr
KZ(Ω2)

∑

χi∈S+
χiγd−4χj=0

e−πΩij
2 v(χi)·v(χj) (C.25)

C.2 Large volume limit

We now consider the large volume limit of the genus-two integral

E (d,2)

(0,1) = 8π

∫

F2

d6Ω

|Ω2|3
ϕKZ Γd,d,2 = 8π

∫

G

d3Ω2

|Ω2|3−
d
2
−ǫ

ϕtr
KZ(Ω2) θ

Dd
Λ1

(C.26)

The latter may be computed either by the orbit method for the modular integral over F2, as

in [75], or by decomposing the lattice sum θDd
Λ1

. We shall show that the two procedures give the

same results, providing supporting evidence for the Poincaré series representation (1.21) which

underlies the equality (C.26).

Applying the orbit method on the first expression in (C.26), we find constant terms coming

from the rank-zero, rank-one and rank-two orbits, respectively,

E (d,2)

(0,1) = 8πRd

(∫

F2

d6Ω

|Ω2|3
ϕKZ

+

∫ ∞

0

dt

t3

∫

F

dρ1dρ2
ρ22

∫

[0,1]3
du1du2dσ1

(π
6
t+ ϕ0 +

ϕ1

t

) ′∑

n∈Zd

e−πR|v−⊺(n)|2

t

+

∫

G

d6Ω

|Ω2|3
(
ϕtr
KZ(Ω2) +

5ζ(3)

4π2
|Ω2|−1

) ∑

ni∈Z5

rkn=2

e−πRΩ−1
2ijv

−⊺(ni)·v−⊺(nj)

)
(C.27)

where Rd = V 2
d and we replaced ϕKZ by its constant terms (A.13) and (A.11) in the Fourier–

Jacobi and Fourier expansions, respectively. The first integral was evaluated in [36] using the

Laplace eigenmode property of ϕKZ,

∫

F2

d6Ω

|Ω2|3
ϕKZ =

π3

180
(C.28)

In the rank-one contribution, the integral over u1, u2 annihilates ϕ0 and replaces ϕ1 by the

Eisenstein series 5
12 E

SL(2)
2Λ1

, whose integral on F vanishes. In this way we arrive at the constant

terms

E (d,2)

(0,1) ∼ 2π4

45
Rd +

2π4

27
Rd−1E

SL(d)
Λd−1

+ 8πRd−2

∫
d3Ω2

|Ω2|3
ϕtr
KZ(Ω2)

′∑

ni∈Z5

e−πΩ−1
2ijv

−⊺(ni)·v−⊺(nj) +
ζ(3)ζ(5)

6π
Rd−5E

SL(d)
5
2
Λd−2

, (C.29)
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where we omitted in the third term the restriction of the sum to rank-two matrices, which would

follow from (C.27). The additional sum over rank-one matrices arises due to the logarithmic

divergence of the Kawazumi–Zhang invariant at the separating degeneration locus, similarly to

the term proportional to R2d−4 in (C.2) of the last section, and would be absent in the case of

a regular theta lift (against a cuspidal form or a Siegel–Eisenstein series. Physically this third

term comes from the 2-loop ten-dimensional supergravity amplitude on T d, which does include

all Kaluza–Klein momenta and not only rank-two matrices.

The Fourier coefficients only get contributions from the rank-two orbit, but they are com-

plicated and unilluminating, therefore we shall not display them.

Alternatively, one may compute the large volume limit by decomposing the constrained

lattice sum in the vector representation,

θDd
Λ1

=

′∑

qi∈Zd

e−πΩij
2 R−1v(qi)·v(qj) +

′∑

pi∈Zd

∑

qi∈Zd

2p(i·qj)=0

e−πΩij
2

(
R−1v(qi+api)·v(qj+apj)+Rv−⊺(pi)·v−⊺(pj)

)

=

′∑

qi∈Zd

e−πΩij
2 R−1v(qi)·v(qj)

+
∑

γ∈Pd−1\SL(d)




′∑

ni∈Z

∑

qi∈Zd−1

Rd−1

|Ω2|
d−1
2 y2

e−πΩij
2 Ry2ninj−πΩ−1

2ijRy
− 2

d−1 v(qi)·v(qj)+2πi(niqi,a)



∣∣∣∣∣∣
γ

+
∑

γ∈Pd−2\SL(d)

(
∑

ni
̂∈Z2×2

detn 6=0

∑

q̃i∈Z2×(d−2)

p̃∈Z

Rd− 3
2

|Ω2|
d−2
2 y

3
2

√
Ωij
2 ρk̂l̂n̂i

k̂n̂j
l̂
e−πΩij

2 Ryρ
k̂l̂
ni

k̂nj
l̂+2πi(ni

̂q̃i·â+np̃a)

× e
−πΩ−1

2ijRy
− 2

d−2 v(q̃i)·v(q̃j )− π

Ω
ij
2 ρ

k̂l̂
n̂i

k̂n̂j
l̂
Ry(p̃−n̂i

̂ q̃i·ĉ)2
)∣∣∣∣∣

γ

. (C.30)

Here we solved the constraints p(i · qj) = 0 using the decompositions

d = (d − 2)(−
2

d−2
) ⊕ 2(1) ∋ pi = (0, ni

ĵ) , (C.31)

d = 2(−1) ⊕ (d − 2)(
2

d−2
) ∋ qi = (p̃ n̂i

ĵ , q̃i) , (C.32)
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where n̂ = n/gcd(n), and performed a Poisson resummation over q̃i ∈ Zd−2 and p̃ ∈ Z. Inserting

the decomposition (C.30) inside the last integral in (C.26), one obtains

E (d,2)

(0,1) ∼ 8π Rd−2

∫

G

d3Ω2

|Ω2|3−
d
2

ϕtr
KZ(Ω2)

′∑

qi∈Zd

e−πΩij
2 v(qi)·v(qj) (C.33)

+
8π2

3
Rd−ǫE

SL(d)
ǫΛd−2

ξ(4− 2ǫ)R.N.

∫

F

dτ1dτ2
τ 2
2

A(τ)E
SL(2)
(2−ǫ)Λ1

(τ)

+
8π2

3
Rd−1ξ(−1− 2ǫ) ξ(1 + 2ǫ)E

SL(d)
1+2ǫ

2
Λd−2−2ǫΛd−1

+
4π2

9
Rd−5 ξ(3− 2ǫ) ξ(5 + 2ǫ)E

SL(d)
5+2ǫ

2
Λd−2−2ǫΛd−1

− 16π2

21
Rd−1

′∑

Q∈∧2Zd

Q×Q=0

σ2(Q)2

|v(Q)| B1(2πR|v(Q)|)

+8π
ξ(4ǫ − 2)

ξ(4ǫ)
Rd−1−2ǫ

∑

γ∈Pd−2\SL(d)

(
y−1−2ǫ

∫

F

d3Ω2

|Ω2|2−ǫ
ϕtr
KZ(Ω2)

∑

ni
̂∈Z2×2

detn 6=0

e−πΩij
2 ρ

k̂l̂
ni

k̂nj
l̂

)∣∣∣∣∣
γ

where the second term comes from the contribution of rank-one charges with qi = 0, and the

third and fourth lines from rank-one charges with qi 6= 0, niq
i = 0, which can be computed as

in (3.24), (3.29), giving the two Eisenstein series above using

∑

γ∈Pd−1\SL(d)

′∑

qa∈Zd−1

y4ǫ
(
y2

d−2
d−1 |v(q)|2

)−s−ǫ
= 2ξ(2s + 2ǫ)EDd

(s+ǫ)Λd−2−2ǫΛd−1
, (C.34)

at s = 1/2 and s = 5/2, for the third and fourth terms respectively. The last line comes from

the last line in (C.30) at q̃ = p̃ = 0 and generically vanishes at ǫ → 0 because of the overall 1
ξ(4ǫ)

factor. In addition, one checks using the Langlands constant term formula that for any z ∈ C,

lim
ǫ→0

(
ξ(1 + 2ǫ)E

SL(d)
1+2ǫ

2
Λd−2+zǫΛd−1

)
= ξ(2)E

SL(d)
Λd−1

(C.35)

generalising the functional equation

ξ(1 + 2ǫ)E
SL(d)
1+2ǫ

2
Λd−2

= ξ(2 + 2ǫ)E
SL(d)
2+2ǫ

2
Λd−1

. (C.36)

To identify the first term we use the identity

∫

G

d3Ω2

|Ω2|3−
d
2

ϕtr
KZ(Ω2)

′∑

qi∈Zd

e−πΩij
2 v(qi)·v(qj ) =

∫

G

d3Ω2

|Ω2|3
ϕtr
KZ(Ω2)

′∑

ni∈Zd

e−πΩ−1
2ijv

−⊺(ni)·v−⊺(nj) , (C.37)

that follows by Poisson summation using that the renormalised integral
∫
G

d3Ω2

|Ω2|3−sϕ
tr
KZ(Ω2) van-

ishes.

Putting these terms together, one therefore matches the expansion (C.27) in the limit ǫ → 0,

up to the exponentially suppressed terms that are missed by the orbit method. This computa-

tion, valid for generic d, provides strong evidence for the Poincaré series representation (1.21).
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It is worth noting that the term of order Rd arises in two different ways in these two com-

putations, leading to a rather remarkable identity for the integral of ϕKZ over the fundamental

domain of Sp(4,Z),
∫

F2

d6Ω

|Ω2|3
ϕKZ =

π3

270
R.N.

∫

F

dτ1dτ2
τ 2
2

A(τ)E
SL(2)
2Λ1

(τ) (C.38)

This identity can presumably be established more directly by using the Rankin–Selberg method,

i.e. computing the Petersson product between ϕKZ and E
Sp(4)
sΛ1

using the unfolding trick, and

extracting the residue at s = 3
2 . However, there are regularisation issues which make this

computation challenging.

In addition, there are non-perturbative corrections coming from the second line with qi 6= 0

but niq
i = 0 through the extension of ϕtr

KZ(Ω2) to H+(R). The Fourier coefficients from the

second line at niq
i 6= 0 can be computed after a change of variable in Ω2 → R−1y−2Ω−1

2 and

implementing the Poincaré sum at ǫ = 0 as

8π Rd

∫
d3Ω2

|Ω2|
3
2

ϕtr
KZ(Ω2)

′∑

Qi∈Z
d(d−1)

2

Qi×Qj=0

′∑

mi∈Z
miQi 6=0

e−πΩ−1
2 ijm

imj−πΩij
2 R2u(Qi,Qj)+2πi(miQi,a) . (C.39)

For d = 5 it coincides with the last line in (4.14) with d = 4, in agreement with the functional

equation (1.23). It can be simplified in the same way as in (4.15) for general d. The rank-two

Fourier coefficients come from the last line in (C.30) with (q̃i, p̃) 6= 0. One checks for d = 5

that they match the Fourier coefficients of (4.24) at d = 5, with a change of variable in Ω2 and

upon identitfying P3 ⊂ SL(5) as P4 ⊂ E4. Under the assumption that the renormalised I (4)

4 of

(4.32) indeed vanishes in the limit ǫ → 0, one obtains a perfect match of the two functions (1.6)

and (1.32) at d = 4. This provides further evidence for the vanishing of the renormalised fourth

layer contribution I (4)

d in the decompactification limit.

C.3 Vanishing of the third layer contribution

In Section 3.2, we relied on (3.44) to show that the third layer contribution to the weak coupling

limit of the renormalised coupling (1.31) cancels out. To justify (3.44) we shall first establish that

I (3a)

d is an eigenfunction of the Laplace operator. The argument of this section will generalise

straightforwardly to prove the similar result (C.16) for I (3a)

S,d .

For this purpose, one can write (3.43) as a Poincaré sum

I (3a)

d =
8π2

3
g
− 24+8ǫ

8−d
+2+4ǫ

D

ξ(4ǫ− 2)

ξ(4ǫ)

∑

γ∈Pd−2\Dd
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y−1−2ǫ

(
Ãǫ(U)− 3ξ(2ǫ)2

6 + ǫ− 2ǫ2
ESL(2)

2ǫΛ1
(U)
)]∣∣∣

γ

=
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g
− 24+8ǫ
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D
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∑

γ∈Pd−2\Dd

(
y−1−2ǫÃǫ(U)

)∣∣∣
γ
− ζ(3)

12
EDd

Λd
+O(ǫ)

)
(C.40)

where we used the functional relation

ξ(2ǫ)
∑

γ∈Pd−2\Dd

(
y−1−2ǫESL(2)

2ǫΛ1
(U)
)∣∣∣

γ
= ξ(2ǫ)EDd

1
2
Λd−2+ǫΛd

= ξ(2− 2ǫ)EDd

ǫΛd−2+(1−ǫ)Λd
(C.41)
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in the last line. Acting with the Laplace operator and integrating by parts, we find

(∆Dd
+ (d−2)(1+2ǫ)(d−2ǫ)

2 − 12)

(
∑

γ∈Pd−2\Dd

[
y−1−2ǫ

(
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ESL(2)
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γ
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=
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)]∣∣∣

γ
. (C.42)

The right-hand-side of this differential equation is a Poincaré sum of a function with a finite limit

at ǫ → 0, and so we expect I (3a)

d (that includes an extra 1
ξ(4ǫ)) to satisfy a homogenous equation

at ǫ = 0. To study this, it will prove convenient to use the double lattice sum representation of

the Poincaré sum

∑

γ∈Pd−2\Dd
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∑
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)∣∣∣∣∣
γ
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2 v(Qi)·v(Qj ) (C.43)

Using this representation one can rewrite the differential equation

(∆Dd
+ (d−2)(1+2ǫ)(d−2ǫ)
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The terms in the bracket are recognised as the Fourier expansion of the Eisenstein series EDd
Λd

with respect to the parabolic Pd , up to a constant term proportional to E
SL(d)
(1+ǫ)Λ1

. Thus the

previous result can be continued as

= −6ξ(2ǫ)
∑

γ∈Dd/Pd

(
ξ(2)y−2ǫEDd

Λd
− ξ(2 + 2ǫ)y−2(1+ǫ)d−2

d ESL(d)

(1+ǫ)Λ1
+O(ǫ)

)

= −6ξ(2ǫ)ξ(2)
(
EDd

Λd
− EDd

Λd−1
+O(ǫ)

)
= O(ǫ0) , (C.44)
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where we use EDd
Λd

= EDd
Λd−1

in the last step. After dividing out by ξ(4ǫ), the source term in the

Laplace equation therefore vanishes.

Assuming that the source terms for higher order invariant differential operators vanish in the

same way, we conclude that I (3a)

d must be proportional to an SO(d, d) Eisenstein series satisfying

to the same differential equations as the one appearing in the same perturbative limit of the

counterterm in (1.28). Since the counterterm in (1.28)

2π2

9

∫

G

d3Ω2

|Ω2|
6−d−2ǫ

2

E
SL(2)
−3Λ1

(τ)

V
θ(3)

Λd+1
(φ,Ω2)

∼ 4π2

9

ξ(4ǫ− 2)

ξ(4ǫ)
ξ(5− 2ǫ)ξ(3 + 2ǫ)

ξ(8)

ξ(7)
g
− 24+8ǫ

8−d
+2+4ǫ

D EDd

(− 3
2
+ǫ)Λd−2+4Λd

(C.45)

(where θ(3)

Λd+1
corresponds to the third layer contribution (3.42)) satisfies by construction to the

same differential equations as the function Id(φ, ǫ) without the source terms, it follows that I (3a)

d

must be proportional to EDd

−3
2Λd−4+4Λd

. We shall now argue that the coefficient of proportionality

is such that this Eisenstein series cancels in the renormalised coupling (1.28).

To this aim, we compute the first non-trivial contribution to the double lattice sum (C.43)

in the parabolic Pd. In this limit, one get a first contribution

∑

ni∈Z
qi∈∧2Zd

qi×qj=0
q1∧q2=0
n[iqj] 6=0

∣∣∣∣
gcd(2n[iqj])

y2
d−2
d 2n[iv(qj])

∣∣∣∣e
−πΩij

2

(
y2(ni+(qi,a))(nj+(qj ,a))+y2

d−4
d v(qi)·v(qj)

)
(C.46)

=
∑

γ∈SL(2)/P1

′∑

q∈∧2Z2

q×q=0

′∑

n2∈Z

∑

n1∈Z

∣∣∣∣
gcd(q)

y2
d−2
d v(q)

∣∣∣∣e
− π

V

(
(n1+(q,a)+τ1n2)

2

τ2
+τ2n 2

2 + 1
τ2

y2
d−4
d |v(q)|2

)∣∣∣∣
γ

=
∑

γ∈SL(2)/P1

′∑

q∈∧2Z2

q×q=0

′∑

n2∈Z

∑

ñ1∈Z

[∣∣∣∣
gcd(q)

y2
d−2
d v(q)

∣∣∣∣y
−1
√

V τ2e
− π

V

(
τ2y2n 2

2 + 1
τ2

y2
d−4
d |v(q)|2

)
−πV τ2y−2ñ 2

1

× e2πiñ1((q,a)+τ1n2)

]∣∣∣∣
γ

and the associated constant term is therefore

∫ ∞

0

dV

V
1
2
+2ǫ

∫ ∞

0

dτ2

τ2
3
2

∫ 1
2

− 1
2

dτ1A(τ)

′∑

q∈∧2Z2

q×q=0

′∑

n2∈Z

∣∣∣∣
gcd(q)

y3−
4
d v(q)

∣∣∣∣e
− π

V

(
τ2y2n 2

2 + 1
τ2

y2
d−4
d |v(q)|2

)

= 2ξ(2ǫ)ξ(−1 + 2ǫ) y−2−4ǫ d−2
d ESL(d)

ǫΛ2
+ ξ(−4+2ǫ)ξ(3+2ǫ)

6 y2
8−d
d

−4ǫ d−2
d ESL(d)

(2+ǫ)Λ2
+O(e−y−

2
d ) .

(C.47)

Comparing with a similar term in the expansion of EDd

−3
2Λd−4+4Λd

fixes the coefficient of the second

term in (3.44) to match the one of (C.45) in (D.2). In contrast, the first term does not appear
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in the expansion of EDd

−3
2Λd−4+4Λd

, instead it is recognised as a constant term of the minimal

Eisenstein series EDd
Λd

. Indeed it is not a solution to the homogeneous Laplace equation, and

we therefore expect that this term will cancel against another contribution at the next order in

level expansion for the charges, including either qi ∧ qj 6= 0 or pi ∈ ∧4Zd.

We may also consider the tensorial differential equations (2.10) on the renormalised expres-

sion (1.28). Using the reduction formula for Whittaker coefficients of the series EDd

−3
2Λd−4+4Λd

[24,

76], one computes that it admits non-zero Whittaker vectors of type A2A1 for d ≥ 5. This im-

plies that this function admits Fourier coefficients outside of the wavefront set determined by the

tensorial equation (2.10), that allows at most for Whittaker vectors of type A2. We conclude that

the näıve pole subtraction prescription for Id(φ, ǫ) and the counterterm (C.45) violate the ten-

sorial equation (2.10), but the term proportional to EDd

−3
2Λd−4+4Λd

drops out in the renormalised

function (1.28), such that it satisfies the required supersymmetry Ward identities.

D Integrating Ξ
Ed+1

Λd+1
(τ, φ, r) against an Eisenstein series

In order to determine the weak coupling and decompactification limit asymptotic expansions of

the renomalised coupling (1.31), we shall repeat the computations of Sections 3 and 4 with A(τ)

replaced by an Eisenstein series E
SL(2)
sΛ1

. Although these expansions can be easily computed by

using Langlands’s constant term formula, it is nevertheless instructive to obtain them in this

way, since it will allow us to identify the constant terms that we could not compute directly

using the method of Sections 3 and 4 as contributions of specific double cosets in the Weyl

group. Since these contributions can be expressed as theta-lifts of E
SL(2)
sΛ1

up to an overall factor

of 1
ξ(4ǫ) , it is plausible that the analogous contributions for A(τ) will also vanish in the limit

ǫ → 0, justifying our previous computations.

With these motivations in mind, let us consider the function

IEd+1

Λd+1

(
E

SL(2)
(4+δ)Λ1

, d+ 2ǫ− 2
)
=

∫

F

dτ1dτ2
τ22

E
SL(2)
(4+δ)Λ1

Ξ
Ed+1

Λd+1
(τ, φ, d+ 2ǫ− 2) (D.1)

= ξ(d+ 2ǫ− 6− δ)ξ(d + 2ǫ+ 1 + δ)E
Ed+1
d+2ǫ−6−δ

2
Λd+(4+δ)Λd+1

=
d=4,5,6

ξ(2sd+1 + δ − 2ǫ)ξ(2sd+1 + 3− d+ δ − 2ǫ)ξ(d+ 1 + 2ǫ+ δ)

ξ(4 + δ − 2ǫ)
E

Ed+1

(sd+1+
δ
2
−ǫ)ΛH+2ǫΛd+1

This function reproduces the last two terms in (1.31) upon setting either δ = 0 first or ǫ = 0

first and then writing δ = 2ǫ. Recall that sd+1 =
7
2 ,

9
2 , 6 for d = 4, 5, 6.

D.1 Weak coupling limit

We shall first write the result of Langlands constant term formula. We refer to [65, 24] for the

precise statement of this formula in terms of double cosets in the Weyl group. We shall use

the convention that Λd−k stands for the trivial vanishing weight when k = d, and an Eisenstein

series including a weight Λd−k for k > d vanishes. Using Langlands’ functional relations between
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Eisenstein series, one obtains the following formula valid for all d ≤ 6

ξ(d+ 2ǫ− 6− δ)ξ(d + 2ǫ+ 1 + δ)E
Ed+1
d+2ǫ−6−δ

2
Λd+(4+δ)Λd+1

(D.2)

∼ g
− 24+8ǫ

8−d
D

(
ξ(dǫ − 6− δ)ξ(dǫ + 1 + δ)g4DE

Dd

(4+δ)Λ1+
dǫ−6−δ

2
Λ2

+ξ(2 + δ + 2ǫ)ξ(−5− δ + 2ǫ)g2ǫD

(
g−1−δ
D EDd

(− 1+δ
2

−ǫ)Λd−1+2ǫΛd
+ ξ(7+2δ)

ξ(8+2δ)g
6+δ
D EDd

( 6+δ
2

−ǫ)Λd−1+2ǫΛd

)

+
ξ(4ǫ− 2)

ξ(4ǫ)
g2+4ǫ
D ξ(−4− δ + 2ǫ)ξ(3 + δ + 2ǫ)EDd

(− 3+δ
2

+ǫ)Λd−2+(4+δ)Λd

+
ξ(4ǫ− 5)

ξ(4ǫ)
g1+6ǫ
D

(
ξ(−8−δ+2ǫ)ξ(−6−δ+2ǫ)ξ(6+δ+2ǫ)

ξ(−3−δ+2ǫ) g−7−δ
D EDd

(− 6+δ
2

+ǫ)Λd−5+( 6+δ
2

+ǫ)Λd

+ ξ(−1+δ+2ǫ)ξ(1+δ+2ǫ)ξ(−1−δ+2ǫ)
ξ(4+δ+2ǫ)

ξ(7+2δ)
ξ(8+2δ)g

δ
DE

Dd

( 1+δ
2

+ǫ)Λd−5+(− 1+δ
2

+ǫ)Λd

)

+δd,6g
2+4ǫ
D

(
ξ(−11−δ+2ǫ)ξ(−8−δ+2ǫ)ξ(7+δ+2ǫ)

ξ(−3−δ+2ǫ) g−14−2δ
D

+ ξ(−4+δ+2ǫ)ξ(−1+δ+2ǫ)ξ(−δ+2ǫ)
ξ(4+δ+2ǫ)

ξ(7+2δ)
ξ(8+2δ)g

2δ
D

)
EDd

2ǫΛ1

+δd,6
ξ(4ǫ− 5)ξ(4ǫ− 8)

ξ(4ǫ)ξ(4ǫ − 4)
ξ(−7−δ+2ǫ)ξ(δ+2ǫ)ξ(−4−δ+2ǫ)ξ(3+δ+2ǫ)

ξ(−3−δ+2ǫ)ξ(4+δ+2ǫ) g−6+8ǫ
D EDd

(4+δ)Λ1+(− 4+δ
2

+ǫ)Λ2

)
.

This formula can be recast as a sum of contributions of the different layers of charges as in

Section 3.2, with A(τ) replaced by the Eisenstein series E
SL(2)
(4+δ)Λ1

,

IEd+1

Λd+1

(
E

SL(2)
(4+δ)Λ1

, d− 2 + 2ǫ
)

(D.3)

∼ g
− 24+8ǫ

8−d
D

(
ξ(d+ 2ǫ− 6− δ)ξ(d + 2ǫ+ 1 + δ)g4

D
IDd
Λ1

(
E

SL(2)
(4+δ)Λ1

, d− 2 + 2ǫ
)

+g4
D

∫ ∞

0

dV

V −1+2ǫ

∫ L

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1E
SL(2)
(4+δ)Λ1

×
∑

γ∈Pd\Dd


y−4

∑

n≥1

′∑

qa∈Zd

e
− π

V τ2
g−2
D y2n2−πV

τ2
y−

4
d uabqaqb



∣∣∣∣∣∣
γ

+
ξ(4ǫ− 2)

ζ(4ǫ)
g2+4ǫ
D

∫

F

d2τ

τ 2
2

E
SL(2)
(4+δ)Λ1

′∑

Qi∈S+
Qi×Qj=0
Q1∧Q2 6=0

∣∣∣gcd(Q1 ∧Q2)

v(Q1 ∧Q2)

∣∣∣
(

τ2
v(Q1 + τQ2) · v(Q1 + τ̄Q2)

)2ǫ

+
ξ(4ǫ− 5)

ξ(4ǫ)
g1+6ǫ
D

(
ξ(−8−δ+2ǫ)ξ(−6−δ+2ǫ)ξ(6+δ+2ǫ)

ξ(−3−δ+2ǫ) g−7−δ
D

EDd

(− 6+δ
2

+ǫ)Λd−5+( 6+δ
2

+ǫ)Λd

+ ξ(−1+δ+2ǫ)ξ(1+δ+2ǫ)ξ(−1−δ+2ǫ)
ξ(4+δ+2ǫ)

ξ(7+2δ)
ξ(8+2δ)g

δ
D
EDd

( 1+δ
2

+ǫ)Λd−5+(− 1+δ
2

+ǫ)Λd

)

+δd,6

∫

G

d3Ω2

|Ω2|3
(
E

Sp(4)

(4+δ)Λ1+
2ǫ - 3 - δ

2 Λ2
−

E
SL(2)
(4+δ)Λ1

V 1+2ǫ

)∑

γ∈P2\D6

∑

pα∈S+
k≥1

gcd(k,p)=1
mî∈Z2

detm6=0

|Ω2|2
ỹ3+ǫ
1 ỹ1+ǫ

2

e
−π

√

ỹ2
ỹ1

Ω−1
2ijυı̂̂m

iı̂mĵ

∣∣∣∣∣
γ

)
.
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The first layer of charges, as in (3.13), gives the first line in both (D.2) and (D.3), while the

second layer, as in (3.24), gives the second line in (D.2) and the second and third lines in (D.3).

Note that for an Eisenstein series there are no exponentially suppressed contributions to the

constant terms as they do arise for A(τ), see (3.29). The fourth layer of charges gives the fourth

line in (D.3) as in (3.43), which can be identified with the third line in (D.2). For d ≤ 4 this

exhausts all terms. For d = 5 and 6, it follows by elimination that the fourth layer of charges

gives the fourth and fifth lines in (D.2), that we have reproduced as such in (D.3). Although we

have not been able to compute these latter using the double lattice sum, the overall factor of
ξ(4ǫ−5)
ξ(4ǫ) suggests that the total contribution from the fourth layer of charge to the abelian Fourier

coefficients vanishes.

For d = 6, the same computation as in (3.59) gives the last line in (D.3). Using Langlands’s

constant term formula for the Sp(4,R) Langlands–Eisenstein series

E
Sp(4)

(4+δ)Λ1+
2ǫ - 3 - δ

2 Λ2
∼

E
SL(2)

(4+δ)Λ1

V 1+2ǫ
+

ξ(−4− δ + 2ǫ)

ξ(−3− δ + 2ǫ)

E
SL(2)
2ǫΛ1

V 5+δ
+

ξ(7 + 2δ)ξ(3 + δ + 2ǫ)

ξ(8 + 2δ)ξ(4 + δ + 2ǫ)

E
SL(2)
2ǫΛ1

V −2−δ

+
ξ(4ǫ− 1)

ξ(4ǫ)

ξ(−4− δ + 2ǫ)ξ(3 + δ + 2ǫ)

ξ(−3− δ + 2ǫ)ξ(4 + δ + 2ǫ)

E
SL(2)

(4+δ)Λ1

V 2−2ǫ
(D.4)

one obtains three contributions which, upon using the identification of the sum over coprime pα
and k as a Poincaré sum over P1\SO(5, 5) as in (3.59), give the two last lines in (D.2). We have

not proved rigorously that one can indeed write the sum over pα and k of the lattice sum over

k2II4,4[k1] ⊕ II2,2[k1k
2
2 ] as a Poincaré sum over P1\SO(5, 5) of a lattice sum over II6,6 that we

used in (3.56), neither do we have a proof of the identities (3.57) and (3.58). The fact that the

three constant terms match provides a strong consistency check that one has indeed

∑

γ∈P2\Sp(4,Z)
detC(γ)6=0

E
SL(2)

(4+δ)Λ1

V 1+2ǫ

∣∣∣∣∣
γ

∼ ξ(−4− δ + 2ǫ)

ξ(−3− δ + 2ǫ)

E
SL(2)
2ǫΛ1

V 5+δ
+

ξ(7 + 2δ)ξ(3 + δ + 2ǫ)

ξ(8 + 2δ)ξ(4 + δ + 2ǫ)

E
SL(2)
2ǫΛ1

V −2−δ

+
ξ(4ǫ− 1)

ξ(4ǫ)

ξ(−4− δ + 2ǫ)ξ(3 + δ + 2ǫ)

ξ(−3− δ + 2ǫ)ξ(4 + δ + 2ǫ)

E
SL(2)

(4+δ)Λ1

V 2−2ǫ
, (D.5)

in agreement with (3.57), (3.58) for an Einsenstein series and that one can indeed use (3.56).

Note that for generic δ, the limit ǫ = 0 is regular and produces the adjoint Eisenstein series

constant terms (with δ replaced by 2ǫ in order to match the notations in (1.31))

ξ(2sd+1 + 2ǫ)ξ(2sd+1 + 3− d+ 2ǫ)ξ(d + 1 + 2ǫ)

ξ(4 + 2ǫ)
E

Ed+1

(sd+1+ǫ)ΛH
(D.6)

∼ g
− 24

8−d
D

(
ξ(d− 6− 2ǫ)ξ(d+ 1 + 2ǫ)g4DE

Dd

(4+2ǫ)Λ1+
d−6−2ǫ

2
Λ2

+ξ(2 + 2ǫ)ξ(6 + 2ǫ)
(
g−1−2ǫ
D

EDd

−( 1
2
+ǫ)Λd−1

+ ξ(7+4ǫ)
ξ(8+4ǫ)g

6+2ǫ
D

EDd

(3+ǫ)Λd−1

)

+δd,6g
2
D

(
ξ(12+2ǫ)ξ(9+2ǫ)ξ(7+2ǫ)

ξ(4+2ǫ) g−14−4ǫ
D

+ ξ(−4+2ǫ)ξ(−1+2ǫ)ξ(1+2ǫ)
ξ(4+2ǫ)

ξ(7+4ǫ)
ξ(8+4ǫ)g

4ǫ
D

))
.
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D.2 Decompactification limit

We shall first write the result of Langlands’s constant term formula for d ≤ 7, using again the

convention that the weight Λ7 vanishes for d = 6, and an Eisenstein series including a weight

Λ7 vanishes for d < 6. Applying the functional relations between Eisenstein series, one obtains

the following formula valid for all d ≤ 7

ξ(d+ 2ǫ− 6− δ)ξ(d + 2ǫ+ 1 + δ)E
Ed+1
d+2ǫ−6−δ

2
Λd+(4+δ)Λd+1

(D.7)

∼ R
12+4ǫ
8−d

(
ξ(d+ 2ǫ− 7− δ)ξ(d + 2ǫ+ δ)EEd

d+2ǫ−7−δ
2

Λd−1+(4+δ)Λd

+ ξ(d+ 2ǫ− 6− δ)ξ(d + 2ǫ+ 1 + δ)Rd+2ǫ
(
RδEEd

d+2ǫ−6−δ
2

Λd
+ ξ(7+2δ)

ξ(8+2δ)R
−7−δ EEd

d+2ǫ+1+δ
2

Λd

)

+ ξ(4ǫ−1)ξ(3+δ+2ǫ)ξ(5+δ−2ǫ)
ξ(4ǫ)ξ(4+δ+2ǫ)ξ(4+δ−2ǫ) ξ(d− 5− δ − 2ǫ)ξ(d+ 2 + δ − 2ǫ)

×
(
Rd+1+δ−2ǫEEd

4ǫ−1
2

Λ1+
d−5−δ−2ǫ

2
Λd

+ ξ(7+2δ)
ξ(8+2δ)R

d−6−δ−2ǫEEd
4ǫ−1

2
Λ1+

d+2+δ−2ǫ
2

Λd

)

+
ξ(4ǫ+ 1− d)

ξ(4ǫ)
ξ(6− 2ǫ+ δ)ξ(−1 − 2ǫ− δ)Rd−1−4ǫEEd

(4+δ)Λ1− 3+δ−2ǫ
2

Λ3

+ ξ(4ǫ−5)ξ(4ǫ−9)ξ(−1+δ+2ǫ)ξ(9+δ−2ǫ)
ξ(4ǫ)ξ(4ǫ−4)ξ(4+δ+2ǫ)ξ(4+δ−2ǫ) ξ(5− δ − 2ǫ)ξ(12 + δ − 2ǫ)Rd+3−6ǫ

×
(

ξ(−d−10−δ+6ǫ)
ξ(−16−δ+6ǫ) R7+δEEd

5−δ−2ǫ
2

Λ6− 9−δ−6ǫ
2

Λ7
+ ξ(7+2δ)

ξ(8+2δ)
ξ(−d−3+δ+6ǫ)
ξ(−9+δ+6ǫ) R−δEEd

12+δ−2ǫ
2

Λ6− 16+δ−6ǫ
2

Λ7

)

+ δd,7

((
ξ(−16−δ+2ǫ)ξ(−12−δ+2ǫ)ξ(−8−δ+2ǫ)ξ(8+δ+2ǫ)

ξ(−7−δ+2ǫ)ξ(−3−δ+2ǫ)
ξ(−17−δ+6ǫ)
ξ(−16−δ+6ǫ)R

14+2δ

+ ξ(7+2δ)
ξ(8+2δ)

ξ(δ−9+2ǫ)ξ(δ−5+2ǫ)ξ(δ−1+2ǫ)ξ(1−δ+2ǫ)
ξ(δ+2ǫ)ξ(4+δ+2ǫ)

ξ(δ−10+6ǫ)
ξ(δ−9+6ǫ)

)
R10−4ǫEE7

2ǫΛ7

+ ξ(4ǫ−9)ξ(4ǫ−12)
ξ(4ǫ)ξ(4ǫ−4)

ξ(−17−δ+6ǫ)ξ(δ−10+6ǫ)
ξ(−16−δ+6ǫ)ξ(δ−9+6ǫ)

ξ(−8−δ+2ǫ)ξ(−4−δ+2ǫ)ξ(δ−1+2ǫ)ξ(3+δ+2ǫ)
ξ(4+δ−2ǫ)ξ(4+δ+2ǫ) R18−8ǫEE7

− 4+δ−2ǫ
2

Λ6+(4+δ)Λ7

+ ξ(4ǫ−9)ξ(4ǫ−13)ξ(4ǫ−17)
ξ(4ǫ)ξ(4ǫ−4)ξ(4ǫ−8)

ξ(−17−δ+6ǫ)ξ(δ−10+6ǫ)
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8+δ+2ǫ
2

Λ7

+ ξ(7+2δ)
ξ(8+2δ)

ξ(2+δ−2ǫ)ξ(1−δ+2ǫ)ξ(δ−9+2ǫ)ξ(δ−5+2ǫ)
ξ(4+δ+2ǫ)ξ(δ+2ǫ) R−7−δEE7

1−δ+2ǫ
2

Λ7

)))
.

For d ≤ 6, the last five lines drop out and this formula can be rewritten as a sum of contributions

of the various layers of charges in Section 4.2 as34

IEd+1

Λd+1

(
E

SL(2)
(4+δ)Λ1

, dǫ − 2
)
∼ R

12+4ǫ
8−d

(
IEd
Λd

(
E

SL(2)
(4+δ)Λ1

, dǫ − 3
)

+

∫ ∞

0

dV

V dǫ−2

∫ L

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1E
SL(2)
(4+δ)Λ1

∞∑

n=1

′∑

Q∈MEd

Λd

Q×Q=0

e
−πV

τ2
R2n2− π

V τ2
|Z(Q)|2

34Note that the general theory of Fourier coefficients for Eisenstein series induced from cusp forms predicts

precisely the structure of L-functions appearing in (D.8), suggesting that this formula should hold for any Hecke

eigenfunction.
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+
ξ(4ǫ− 1)L⋆(E

SL(2)
(4+δ)Λ1

,−1
2 + 2ǫ)

ξ(4ǫ)L⋆(E
SL(2)
(4+δ)Λ1

, 12 + 2ǫ)

∫ ∞

0

dV

V d−1−2ǫ

∫ L

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1E
SL(2)
(4+δ)Λ1

×
∑

γ∈P1\Ed

(
y3−d−2ǫ

∞∑

n=1

′∑

q∈IId -1, d -1
(q,q)=0

e
−πV

τ2
R2yn2− π

V τ2
g(q,q)

)∣∣∣∣∣
γ

+
ξ(4ǫ+ 1− d)L⋆(E

SL(2)
(4+δ)Λ1

,−3
2 + 2ǫ)

ξ(4ǫ)L⋆(E
SL(2)
(4+δ)Λ1

, 12 + 2ǫ)
Rd−1−4ǫIEd

Λ1

(
E

SL(2)
(4+δ)Λ1

, 1 + 2ǫ
)

+ δd,6
ξ(4ǫ− 5)ξ(4ǫ− 9)L⋆(E

SL(2)
(4+δ)Λ1

,−9
2 + 2ǫ)

ξ(4ǫ)ξ(4ǫ− 4)L⋆(E
SL(2)
(4+δ)Λ1

, 12 + 2ǫ)
R5−4ǫ

×
∫ ∞

0

dV

V 9−2ǫ

∫ L

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1E
SL(2)
(4+δ)Λ1

∞∑

n=1

′∑

Q∈MEd

Λd

Q×Q=0

e
−πV

τ2
R2n2− π

V τ2
|Z(Q)|2

)
. (D.8)

The first layer of charges does not contribute for an Eisenstein series because the regularised

integral over FL of the product of two Eisenstein series vanishes [77]. The first line of (D.7) is

reproduced from the first line of (D.8) that comes from the second layer of charges I (2a)

d with

Qi = 0 in (3.15), while I (2b)

d gives the second line in (D.8) that reproduces the second line

in (D.7). Eq. (4.24) might suggest that the third layer of charges does not contribute to the

constant terms, but the use of (4.20) is only valid at ǫ = 0 and there is a non-zero contribution

at ǫ 6= 0. Using the Langlands’s constant term formula for the Sp(4) Siegel–Eisenstein series in

the Fourier–Jacobi expansion P1\Sp(4)

E
Sp(4)

(4+δ)Λ1+
2ǫ - 3 - δ

2 Λ2
∼ t

5+δ
2

+ǫE
SL(2)
2ǫ−3−δ

2
Λ1

+ ξ(7+2δ)
ξ(8+2δ) t

− 2+δ
2

+ǫE
SL(2)
4+δ+2ǫ

2
Λ1

+ ξ(4ǫ−1)
ξ(4ǫ)

ξ(−4−δ+2ǫ)ξ(3+δ+2ǫ)
ξ(−3−δ+2ǫ)ξ(4+δ+2ǫ)

(
t
6+δ
2

−ǫE
SL(2)

− 2+δ+2ǫ
2

Λ1
+ ξ(7+2δ)

ξ(8+2δ) t
− 1+δ

2
−ǫE

SL(2)
5+δ−2ǫ

2
Λ1

)
(D.9)

one obtains

I (3)

d [E
SL(2)

(4+δ)Λ1
] (D.10)

=
1

2
R2 d+2ǫ−2

8−d

∑

γ∈P1\Ed

(
y2−d−2ǫ

∫

F2

d6Ω

|Ω2|3
E

Sp(4)

(4+δ)Λ1+
2ǫ - 3 - δ

2 Λ2
Γd,d,2(Ω, Ry

1
2 )

) ∣∣∣∣
γ

−1

2
R

12+4ǫ
8−d

∑

γ∈P1\Ed

(
y3−dǫ

∫

G

d3Ω2

|Ω2|
6−d
2

−ǫ
E

SL(2)

(4+δ)Λ1

∑

ni∈Z
qi∈IId -1, d -1
(qi,qj)=0

e−πΩ−1
2ijR

2yninj−πΩij
2 g(qi,qj)+2πi(niqi,a)

)∣∣∣∣∣
γ

∼ ξ(4ǫ−1)
ξ(4ǫ)

ξ(−4−δ+2ǫ)ξ(3+δ+2ǫ)
ξ(−3−δ+2ǫ)ξ(4+δ+2ǫ) R

12+4ǫ
8−d

∫ ∞

0

dV

V d−1−2ǫ

∫ L

0

dτ2
τ 2
2

∫ 1
2

− 1
2

dτ1

(
τ4+δ
2 + ξ(7+2δ)

ξ(8+2δ)τ
−3−δ
2

)

×
∑

γ∈P1\Ed

(
y3−d−2ǫ

∞∑

n=1

′∑

q∈IId -1, d -1
(q,q)=0

e
−πV

τ2
R2yn2− π

V τ2
g(q,q)

)∣∣∣∣∣
γ
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∼ ξ(4ǫ−1)ξ(3+δ+2ǫ)ξ(5+δ−2ǫ)
ξ(4ǫ)ξ(4+δ+2ǫ)ξ(4+δ−2ǫ) ξ(d− 5− δ − 2ǫ)ξ(d+ 2 + δ − 2ǫ)R

12+4ǫ
8−d

×
(
Rd+1+δ−2ǫEEd

4ǫ−1
2

Λ1+
d−5−δ−2ǫ

2
Λd

+ ξ(7+2δ)
ξ(8+2δ)R

d−6−δ−2ǫEEd
4ǫ−1

2
Λ1+

d+2+δ−2ǫ
2

Λd

)

such that the third layer of charges gives the second and third lines in (D.8) that gives the third

and fourth lines in (D.7). Consistently with (4.20), these two terms appear with a factor of
ξ(4ǫ−1)
ξ(4ǫ) that vanishes at ǫ = 0. We expect that the integral of A(τ) will give the same result

from (3.58) such that this contribution vanishes in the renormalised function (1.31).

The fourth layer of charges gives the fifth line in (D.8) using (4.33), where the ratio of L-

functions (2.30) comes from the presence of the factor |v(Q1 ∧ Q2)|−2 in (4.33) that shifts the

weight s in the Eisenstein series but not in the parameter of the L-function in (2.27). This term

reproduces the fifth line in (D.7). By elimination, the last two lines in (D.8), which reproduces

the sixth and seventh lines in (D.7), must come from the fifth layer of charges that only exists

in d ≥ 6.

The same analysis holds for d = 7 for the first five layers of charges as we show in Appendix

E. The sixth layer of charges that only appears for d = 7 can be computed as in (E.27), (E.33)

to give

1

2

∫

G

d3Ω2

|Ω2|
1
2

∫

Z3\R3

dΩ1

(
E

Sp(4)

(4+δ)Λ1+
2ǫ - 3 - δ

2 Λ2
−

E
SL(2)

(4+δ)Λ1

V 1+2ǫ

)
(D.11)

×
∑

mi∈Z2

detm6=0

∑

qi∈II5,5
R̃2 e

−πΩ−1
2ij R̃υ̃ı̂̂mı̂

im̂
j−πΩij

2 ũabq
a
i q

b
j−πiΩij

1 ηabq
a
i q

b
j+2πim̂

iqai ã
̂
a

(
(
y + υ(ℓ̃,ℓ̃)

R2

)2
+
(
y + υ(ℓ̃,ℓ̃)

R2

)y 1
2

R2 u(p̃, p̃) +
1
4

y
R4u(p̃γp̃, p̃γp̃))

5
2
+ǫ

∼
(

ξ(−16−δ+2ǫ)ξ(−12−δ+2ǫ)ξ(−8−δ+2ǫ)ξ(8+δ+2ǫ)
ξ(−7−δ+2ǫ)ξ(−3−δ+2ǫ)

ξ(−17−δ+6ǫ)
ξ(−16−δ+6ǫ)R

14+2δ

+ ξ(7+2δ)
ξ(8+2δ)

ξ(δ−9+2ǫ)ξ(δ−5+2ǫ)ξ(δ−1+2ǫ)ξ(1−δ+2ǫ)
ξ(δ+2ǫ)ξ(4+δ+2ǫ)

ξ(δ−10+6ǫ)
ξ(δ−9+6ǫ)

)
R10−4ǫEE7

2ǫΛ7

+ ξ(4ǫ−9)ξ(4ǫ−12)
ξ(4ǫ)ξ(4ǫ−4)

ξ(−17−δ+6ǫ)ξ(δ−10+6ǫ)
ξ(−16−δ+6ǫ)ξ(δ−9+6ǫ)

ξ(−8−δ+2ǫ)ξ(−4−δ+2ǫ)ξ(δ−1+2ǫ)ξ(3+δ+2ǫ)
ξ(4+δ−2ǫ)ξ(4+δ+2ǫ) R18−8ǫEE7

− 4+δ−2ǫ
2

Λ6+(4+δ)Λ7

By elimination one then concludes that the last seventh layer of charges contributes the last two

lines in (D.7) for d = 7.

In the limit ǫ → 0 at generic δ (a posteriori set to δ = 2ǫ) one obtains from (D.7) the constant

terms of the adjoint Eisenstein series

ξ(d− 6− 2ǫ)ξ(d+ 1 + 2ǫ)E
Ed+1
d−6−2ǫ

2
Λd+(4+2ǫ)Λd+1

(D.12)

=
ξ(2sd+1 + 2ǫ)ξ(2sd+1 + 3− d− δd,7 + 2ǫ)ξ(d+ 1 + δd,7 + 2ǫ)

ξ(4 + 2ǫ)
E

Ed+1

(sd+1+ǫ)ΛH

∼ R
12

8−d

(
ξ(2sd + 2ǫ)ξ(2sd + 4− d+ 2ǫ)ξ(d + 2ǫ)

ξ(4 + 2ǫ)
EEd

(sd+ǫ)ΛH

+ξ(d− 6− 2ǫ)ξ(d+ 1 + 2ǫ)
(
Rd+2ǫEEd

d−6−2ǫ
2

Λd
+ ξ(7+4ǫ)

ξ(8+4ǫ)R
d−7−2ǫEEd

d+1+2ǫ
2

Λd

)

+δd,7

(
ξ(18+2ǫ)ξ(13+2ǫ)ξ(9+2ǫ)

ξ(4+2ǫ) R24+4ǫ + ξ(7+4ǫ)
ξ(8+4ǫ)

ξ(2ǫ−10)ξ(2ǫ−5)ξ(2ǫ−1)
ξ(4+2ǫ) R10−4ǫ

))
.
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D.3 Comments on layers with vanishing contribution

We have claimed in Section 5 that all the constant terms in the weak coupling and the large

radius limit with an overall factor of 1
ξ(4ǫ) vanish for the renormalised function (1.28) at ǫ → 0.

We further argued that the whole layer of charges generating them, including contributions

to the Fourier coefficients, vanishes in the limit ǫ → 0. In this section, we shall discuss the

corresponding terms for the Eisenstein series (D.1).

For d = 4, 5, 6, there are additional poles in 1
ǫ when one first sets δ = 0, such that Formulae

(D.6) and (D.13) are not valid at δ = 0. We must therefore be more careful in the analysis of the

contributions in 1
ξ(4ǫ) . We shall first discuss the constant terms and then the Fourier coefficients.

Decompactification limit

Let us first discuss the constant terms in the decompactification limit (D.7). The term

ξ(4ǫ−1)ξ(3+2ǫ)ξ(5−2ǫ)
ξ(4ǫ)ξ(4+2ǫ)ξ(4−2ǫ) ξ(d− 5− 2ǫ)ξ(d+ 2− 2ǫ) ξ(7)ξ(8)R

d−6−2ǫEEd
4ǫ−1

2
Λ1+

d+2−2ǫ
2

Λd
(D.13)

has a finite limit at ǫ → 0 in d = 4, 5, 6 and

ξ(4ǫ−1)ξ(3+2ǫ)ξ(5−2ǫ)
ξ(4ǫ)ξ(4+2ǫ)ξ(4−2ǫ) ξ(d− 5− 2ǫ)ξ(d+ 2− 2ǫ)Rd+1−2ǫEEd

4ǫ−1
2

Λ1+
d−5−2ǫ

2
Λd

(D.14)

is also finite in d = 5. Assuming the conjectured expansion (3.58) is correct, these terms cancel

in (1.28). Next, the term

ξ(4ǫ+ 1− d)

ξ(4ǫ)
ξ(6− 2ǫ)ξ(−1− 2ǫ)Rd−1−4ǫ EEd

−3Λ1+(2+ǫ)Λ3
(D.15)

also admits a finite limit at ǫ → 0 in d = 4, 5, thanks to the functional identity

EEd

−3Λ1+(2+ǫ)Λ3
=

d=4,5

ξ(1 + 2ǫ)

ξ(4 + 2ǫ)
EEd

(− 3
2
+ǫ)Λ1+(d−4+ǫ)Λ2

, (D.16)

and the finiteness of EEd

− 3
2
Λ1+(d−4)Λ2

.

By the same reasoning as in Section C.3, we expect that the leading contribution from

IEd+1

Λd+1
(A, d− 2+2ǫ) will include the same L-function factors as for the Eisenstein series in (D.8),

such that
∑

Qi∈MEd

Λ1

Qi×Qj=0
Q1∧Q2 6=0

∣∣∣gcd(Q1∧Q2)
v(Q1∧Q2)

∣∣∣
2
∫

G

]d3Ω2

|Ω2|2−ǫ
A(τ)e−πΩij

2 G(Qi,Qj) (D.17)

=
ξ(6)ξ(2)

ξ(4)2
IEd
Λ1

(A, 1 + 2ǫ) +O(ǫ0) =
ξ(6)ξ(2)

3
EEd

−3Λ1+(2+ǫ)Λ3
+O(ǫ0) ,

reproducing (4.35). We checked explicitly in the decompactification limit that the last equality

holds for d = 4.

For d = 6 we moreover have a finite contribution from the fifth layer of charges,

ξ(4ǫ−5)ξ(4ǫ−9)ξ(−1+2ǫ)ξ(9−2ǫ)
ξ(4ǫ)ξ(4ǫ−4)ξ(4+2ǫ)ξ(4−2ǫ) ξ(5− 2ǫ)ξ(12 − 2ǫ)R9−6ǫEE6

(6−ǫ)Λ6
→
ǫ→0

2ξ(2)ξ(6)ξ(10)

ξ(4)
R9 . (D.18)

This contribution comes from the constant term in τ−3
2 of the Eisenstein series E

SL(2)
4Λ1

(τ) that

also appears in A(τ), so it is expected to cancel in (1.28).
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Weak coupling limit

Turning to the weak coupling limit (D.2) , we have already seen that the contribution

ξ(4ǫ− 5)

ξ(4ǫ)
g1+6ǫ
D

ξ(−8+2ǫ)ξ(−6+2ǫ)ξ(6+2ǫ)
ξ(−3+2ǫ) g−7

D
EDd

(−3+ǫ)Λd−5+(3+ǫ)Λd
(D.19)

of the third layer of charges has a finite limit in d = 4, 5, 6, but we argued in Appendix C.3 that

it cancels in (1.28). The contributions from the fourth layer of charges for d = 5, 6 do not vanish

at δ = 0 in the limit ǫ → 0. The two terms contribute for d = 5 and only the first for d = 6. We

expect them to cancel in (1.28). The contribution from the fifth layer of charges gives a finite

contribution in d = 6

ξ(4ǫ− 5)ξ(4ǫ − 8)

ξ(4ǫ)ξ(4ǫ − 4)
ξ(−7+2ǫ)ξ(2ǫ)ξ(−4+2ǫ)ξ(3+2ǫ)

ξ(−3+2ǫ)ξ(4+2ǫ) g−6+8ǫ
D EDd

4Λ1+(−2+ǫ)Λ2
(D.20)

which cancels in (1.28) provided the expansion (3.58) is correct.

Borel Fourier coefficients

We want now to argue that the Fourier coefficients associated to the layers of charges that

give constant terms with an overall factor of 1
ξ(4ǫ) , also include a similar factor and generically

vanish. For this one can use a reduction formula for abelian Fourier coefficients in the Borel

decomposition, the so-called (degenerate) Whittaker coefficients or Whittaker vectors [76,24].

The abelian Fourier coefficients of the SL(2) Eisenstein series can be written as

WA1
sΛ1

(nα1) ≡
∫ 1

0
dτ1e

−2πinτ1E
SL(2)
sΛ1

=
Ws(n)

ξ(2s)
=

1

ξ(2s)

√
τ2
σ2s−1(|n|)
|n|s− 1

2

Ks− 1
2
(2π|n|τ2) . (D.21)

Similarly for SL(r + 1) Eisenstein series, the generic abelian Fourier coefficients in the Borel

decomposition35 take the form

WAr
∑

skΛk
(
∑

k

nkαk) ≡
∫

U
da e−2πi

∑

k nkakE
SL(r + 1)
∑

skΛk
=

W{sk}(nk)
∏r−1

k=0

∏r−k
j=1 ξ(2

∑k+j
i=j si − k)

, (D.22)

for {sk} such that none of the ξ arguments vanish, i.e.
∏r−1

k=0

∏r−k
j=1(2

∑k+j
i=j si − k) 6= 0. The

functions W{sk}(nk) are Eulerian functions 36 on the Cartan torus and are regular for all sk. In

particular the reduction of the wavefront set at special values of {sk} is a consequence of the

vanishing ξ factors only. The abelian Fourier coefficients of an arbitrary Eisenstein series over a

reductive group G

WG
∑

skΛk
(
∑

k

nkαk) ≡
∫

U
da e−2πi

∑

k nkakEG
∑

skΛk
(D.23)

can be written in a similar way. It can however happen that the ‘instanton charges’ nk on the

simple roots are not all non-zero, in which case one is therefore computing a degenerate Whittaker

35The product of ξ functions in the denominator is due to the product over all positive roots of SL(r + 1), see

also [78].
36i.e. they can be written as infinite products of p-adic Whittaker vectors for all primes p, including a special

function contribution from the ‘archimedean prime at infinity’.
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coefficient. The resulting expression is then not necessarily Eulerian but can be given by a sum

of different terms in a way described by Weyl cosets according to a reduction formula [24]. If

the subset of non-zero nk corresponds to a subgroup SL(r1+1)×SL(r2 +1)×· · · ×SL(rN +1)

of G, the corresponding Whittaker coefficient is said to be of Bala–Carter type Ar1Ar2 . . . ArN .

It is generally given by a sum over Weyl elements acting on
∑

skΛk and subsequent projection

to the subgroup SL(r1 +1)×SL(r2 +1)× · · · ×SL(rN +1) generating products of terms of the

generic type (D.22) with coefficients depending on the sk.

We shall now analyse some of the Whittaker vectors for the Eisenstein series (D.1). We

will only display the ξ factors and will schematically write fk for some products of functions

W{sk}(nk).

• For D5, using the reduction formula one computes the Whittaker vector of type A2A1A1

WD5

(ǫ−1)Λ3+4Λ5
(n1α1 + n2α2 +mα4 + pα5) =

f1W2+ǫ(m) + ξ(7)
ξ(8)f2Wǫ− 3

2
(m)

ξ(4ǫ)ξ(4 + 2ǫ)ξ(4− 2ǫ)ξ(5 + 2ǫ)ξ(3 − 2ǫ)
, (D.24)

where, at the identity in the Cartan torus,

f1 = Wǫ−2,2+ǫ(n1α1 + n2α2)Wǫ−2(p) , f2 = W 3
2
+ǫ,ǫ− 3

2
(n1α1 + n2α2)W 3

2
+ǫ(p) . (D.25)

One recognises the structure of the terms in the third lines of (D.7) that have the same factor

of 1
ξ(4ǫ)ξ(4+2ǫ)ξ(4−2ǫ) , suggesting that they come from the third layer of charges in the decom-

pactification limit. One can understand that the type A2A1A1 corresponds to generic Fourier

coefficients in the decompactification limit. In this case the Fourier coefficients in the 10 of P5

so(5, 5) ∼= . . .⊕ (gl1 ⊕ sl5)
(0) ⊕ 10

(2)
(D.26)

supported on the simple root pα5, of type A1 have a Levi stabiliser sl3 ⊕ sl2, so the generic

Fourier coefficient that can be related to a Whittaker vector corresponds to a Fourier coefficient

of the generic SL(3) × SL(2) Levi functions that are by definition of type A2A1, leading to a

total Bala–Carter type A2A1A1. The Whittaker vectors of type A2A1 have a structure similar

to (D.24) where W2+ǫ(m) and Wǫ− 3
2
(m) are replaced by the constant terms (at the identity) of

the corresponding SL(2) Eisenstein series E
SL(2)
(2+ǫ)Λ1

and E
SL(2)
(ǫ−3/2)Λ1

, together with one additional

new contribution

WD5

(ǫ−1)Λ3+4Λ5
(n1α1 + n2α2 + pα5) =

f1(ξ(4 + 2ǫ) + ξ(3 + 2ǫ)) + ξ(7)
ξ(8)f2(ξ(4 − 2ǫ) + ξ(5− 2ǫ))

ξ(4ǫ)ξ(4 + 2ǫ)ξ(4 − 2ǫ)ξ(5 + 2ǫ)ξ(3 − 2ǫ)

+
ξ(2 + 2ǫ)ξ(6− 2ǫ)W4,ǫ− 3

2
(n1α1 + n2α2)W2ǫ−1(p)

ξ(4ǫ)ξ(4 + 2ǫ)ξ(4− 2ǫ)ξ(5 + 2ǫ)ξ(3− 2ǫ)ξ(8)
. (D.27)

The new contribution has a factor of W2ǫ−1(p) associated to the Eisenstein series E
SL(2)
(2ǫ−1)Λ1

,

whose corresponding constant term includes a factor ξ(4ǫ− 3), and is understood to correspond

to the fourth layer of charges in the decompactification limit. One may check that for ǫ → 0, the

A2 Whittaker vectors collapse to the Eulerian Whittaker vectors of the adjoint series, so that

all Fourier coefficients associated to the third and the fourth layer of charges indeed vanish at

ǫ = 0.
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• For E6, using the reduction formula one computes the Whittaker vector of type A2A1A1

WE6

(ǫ− 1
2
)Λ5+4Λ6

(n1α1 +mα2 + n2α3 + pα6) =
f1W2+ǫ(m) + ξ(7)

ξ(8)f2Wǫ− 3
2
(m)

ξ(4ǫ)ξ(4 + 2ǫ)ξ(4− 2ǫ)ξ(6 + 2ǫ)ξ(2− 2ǫ)
(D.28)

that can similarly be attributed to the third layer of charges, and does vanish in the limit ǫ → 0.

One finds for type A2A1

WE6

(ǫ− 1
2
)Λ5+4Λ6

(n1α1 + n2α3 + pα6) =
f1(ξ(4 + 2ǫ) + ξ(3 + 2ǫ)) + ξ(7)

ξ(8)f2(ξ(4− 2ǫ) + ξ(5− 2ǫ))

ξ(4ǫ)ξ(4 + 2ǫ)ξ(4− 2ǫ)ξ(6 + 2ǫ)ξ(2− 2ǫ)

+
ξ(2 + 2ǫ)ξ(6 − 2ǫ)W4,ǫ− 3

2
(n1α1 + n2α2)W2ǫ− 3

2
(p)

ξ(4ǫ)ξ(4 + 2ǫ)ξ(4 − 2ǫ)ξ(6 + 2ǫ)ξ(2 − 2ǫ)

+
ξ(7− 2ǫ)f3 + ξ(1 + 2ǫ) ξ(7)ξ(8)f4

ξ(4ǫ)ξ(4 + 2ǫ)ξ(4 − 2ǫ)ξ(6 + 2ǫ)ξ(2− 2ǫ)
. (D.29)

Again, one can attribute the first line to the third layer of charges, the second line to the fourth

layer of charges and the third line to the third layer of charges. All these contributions vanish

in the limit ǫ → 0, but the last term associated to the third layer of charges. One finds also a

Whittaker vector of type A2A1 that does not vanish at ǫ → 0 ,

WE6

(ǫ− 1
2
)Λ5+4Λ6

(n1α1 +mα2 + n2α3) =
ξ(1+2ǫ)

ξ(7)
ξ(8)

f5

ξ(4ǫ)ξ(4+2ǫ)ξ(4−2ǫ)ξ(6+2ǫ)ξ(2−2ǫ) +O(ǫ) . (D.30)

This Fourier coefficient can be identified as a A2A1 type Fourier coefficient of EE5
4ǫ−1
2 Λ1 +

7+δ−2ǫ
2 Λ5

in

(D.7) and is therefore associated to the third layer of charges. This shows that the wavefront set

of EE6

(ǫ− 1
2
)Λ5+4Λ6

∣∣
ǫ0

is of type A2A1 and not A2, and therefore this function cannot be a solution

to the tensorial differential equation (2.10). In order for the renormalised function (1.28) to

satisfy this equation, this contribution must cancel against the Fourier coefficients of the theta

lift of A(τ).

• For E7 the Eisenstein series ξ(2ǫ)E
Ed+1

ǫΛ6+4Λ7
is of Bala–Carter type A3A1 (with wavefront

set associated to the smallest nilpotent orbit of that type). The corresponding Whittaker vector

is

ξ(2ǫ)ξ(7 + 2ǫ)WE7
ǫΛ6+4Λ7

(n1α2 + n2α4 + n3α5 + pα7) =

1
ξ(8)f

ξ(4ǫ)ξ(4ǫ − 4)ξ(4 + 2ǫ)ξ(4 − 2ǫ)
(D.31)

consistently with the fifth and last layer of charges contribution in (D.7), that includes the same

denominator.

Turning to the A2A1A1 type, we find

ξ(2ǫ)ξ(7 + 2ǫ)WE7
ǫΛ6+4Λ7

(n1α1 +mα2 + n2α3 + pα7)

=
f1 +

ξ(7)
ξ(8)f2

ξ(4ǫ)ξ(4 + 2ǫ)ξ(4 − 2ǫ)
+

ξ(4ǫ− 5)(f̃1 +
ξ(7)
ξ(8) f̃2)

ξ(4ǫ)ξ(4ǫ − 4)ξ(4 + 2ǫ)ξ(4 − 2ǫ)
, (D.32)
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where the first term comes from the third layer of charges as in (D.24) and (D.29), while the

second comes from the fifth layer of charges. One finds again that the A2A1 Whittaker vector

ξ(2ǫ)ξ(7 + 2ǫ)WE7
ǫΛ6+4Λ7

(n1α1 + n2α3 + pα7)

=
ξ(4ǫ− 5)

ξ(4ǫ)ξ(4ǫ − 4)ξ(4 + 2ǫ)ξ(4 − 2ǫ)
· 1

ξ(8)

(
ξ(2ǫ)ξ(7)(f3 + f4) + ξ(1 + 2ǫ)ξ(7− 2ǫ)f4(ǫ)

)

+
1

ξ(4ǫ)ξ(4ǫ − 4)ξ(4 + 2ǫ)ξ(4 − 2ǫ)
· ξ(7)
ξ(8)

ξ(2ǫ− 5)ξ(1 + 2ǫ)f3(ǫ) +O(ǫ) (D.33)

vanishes at ǫ → 0. For E7 all the A2A1 type Whittaker vectors are in the same Weyl orbit

and therefore vanish in the limit ǫ → 0. For WE7
ǫΛ6+4Λ7

(n1α1 +mα2 + n2α3) the contribution

from (D.30) coming from the second layer of charges in (D.7) cancels agains the same contri-

bution from EE6
4ǫ−1

2
Λ1+(4−ǫ)Λ6

coming from the third layer of charges in (D.7). We conclude that

ξ(2ǫ)E
Ed+1

ǫΛ6+4Λ7

∣∣
ǫ0

is of Bala–Carter type A2, and must therefore satisfy the tensorial equation

(2.10). We also checked that all the Whittaker vectors of Bala–Carter type A1A1A1A1 vanish

at ǫ → 0 and the ones of type A2 collapse to the ones of the adjoint Eisenstein series (i.e. all

terms proportional to 1
ξ(4ǫ) cancel in the limit ǫ → 0).

To summarise, we have found that for d = 4 and d = 6, all the Whittaker vectors of Bala–

Cater type exceeding A2 vanish in the limit ǫ → 0 and the ones of type A2 collapse to the

Whittaker vectors of the adjoint Eisenstein series (D.6), while for d = 5 we found that some

Fourier coefficients of Bala–Carter type A2A1 originating from the third layer of charges remain

in the limit. We take this as further evidence for the fact that for all d, the fourth and fifth

layers of charges do not contribute to the Fourier coefficients of the renormalised coupling (1.28)

in the decompactification limit.

E Decompactification limit for E8

In this appendix, we discuss the d = 7 case considered in Section 5.4 in more detail. We first

explain how to rewrite the charge sum in the double theta series (1.18) in this case. We extract

the constant terms and abelian Fourier coefficients from the new layers that have no counter

part for d < 7. In particular we extract the summation measure for 1/8-BPS instantons in the

decompactification limit, which is related to the index of BPS black holes in four dimensions.

We consider the lattice sum (1.18)

θE8
Λ8

(φ,Ω2) =

′∑

Qi∈ME8

Λ8

Qi×Qj=0

e−πΩij
2 G(Qi,Qj) , (E.1)

whereME8

Λ8
is the lattice in the adjoint representation invariant under the Chevalley group E8(Z).

Under the grading

e8(8)
∼= 1(−2) ⊕ 56(−1) ⊕

(
gl1 ⊕ e7(7)

)(0) ⊕ 56(1) ⊕ 1(2) , (E.2)
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one defines Q = (n,Υ, ℓ + Q,Γ,m) ∈ ME8

Λ8
with n,m ∈ Z, Υ, Γ ∈ ME7

Λ7

∼= Z56 and Q ∈ e7 and

ℓ ∈ Z/2 such that Q+ ℓ acts on ME7

Λ7
as a Z56×56 matrix [50, §4.1]. For ℓ integer, Q ∈ ME7

Λ1
. The

Spin(16) invariant bilinear form is

G(Q,Q) = R−4
(
m+ 〈a,Γ + bΥ〉+ 2bℓ+ b2n+ 1

2〈a,Q · a〉+ 1
4 〈Υ,∆′(a)〉+ 1

4n∆(a)
)2

+R−2
∣∣Z
(
Γ +Q · a+ ℓa+ 1

8∆
′(a, a,Υ) + 1

2a〈a,Υ〉+ 1
4n∆

′(a) + b(Υ + an)
)∣∣2

+
∣∣V
(
Q+ 2a×Υ+ a× an

)∣∣2 +
(
ℓ+ 1

2 〈a,Υ〉+ bn
)2

+R2
∣∣Z(Υ + an)

∣∣2 +R4n2 , (E.3)

where the axions a ∈ R56, b ∈ R parametrise the Heisenberg unipotent subgroup R56+1 ⊂ P8,

R ∈ R+ the GL(1)+ subgroup and the SU(8) invariant norms |V (Q)| and |Z(Γ)| depend on

E7/SU(8). Altogether they parametrise P8/SU(8) ∼= E8/Spin(16). Recall that ∆′(Γ) ∈ ME7

Λ7
is

the gradient of the quartic invariant ∆(Γ) ∈ Z and ∆′(Γ1,Γ2,Γ3) ∈ ME7

Λ7
is the corresponding

symmetric trilinear map. The 1/2 BPS constraint Qi × Qj = 0 is satisfied if and only if the

symmetric product Qi ⊗Qj|Λ1 = 0, and the highest weight Λ1 module decomposes under (E.2)

as

3875 ∼= 133(−2) ⊕ (912 ⊕ 56)(−1) ⊕
(
1539⊕ 133⊕ 1

)(0) ⊕ (912⊕ 56)(1) ⊕ 133(2) . (E.4)

The five components of (E.4) can be written explicitly as [50]

i) Υ×Υ = nQ ,

ii) 1
3Q ·Υ = nΓ− ℓΥ , 2Υ× (Q · J) + 2

3J × (Q ·Υ) = 〈J,Υ〉Q , ∀J ∈ ME7

Λ7
,

iii) Q2 · J = (3ℓ2 − 3mn+ 1
2〈Υ,Γ〉)J + 2Υ〈Γ, J〉 − 2Γ〈Υ, J〉 , ∀J ∈ ME7

Λ7
, Υ× Γ = ℓQ ,

iv) 1
3Q · Γ = ℓΓ−mΥ , 2Γ× (Q · J) + 2

3J × (Q · Γ) = 〈J,Γ〉Q , ∀J ∈ ME7

Λ7
,

v) Γ× Γ = mQ , (E.5)

We consider the computation of θE8
Λ8

layer by layer as in Section 4.2.

E.1 Constant terms

1) The first, second, third and fourth layers

For the first four layers of charges, i.e. with Υi = ni = 0, one finds that ℓi = 0 from the constraint

and the computation is identical to the one carried out in Section 4.2. All the corresponding

results in Section 4.2 apply to the case d = 7.

2) The fifth layer

Let us now consider Υi 6= 0 and ni = 0. First we shall discuss the case in which Υi are linearly

dependent, so one can consider the E6 grading:

e7(7)
∼= 27(−2) ⊕

(
gl1 ⊕ e6(6)

)(0) ⊕ 27
(2)

,

56 ∼= 1(−3) ⊕ 27
(−1) ⊕ 27(1) ⊕ 1(3) ,

912 ∼= 78(−3) ⊕
(
351⊕ 27

)(−1) ⊕
(
351⊕ 27

)(1) ⊕ 78(3) ,
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1539 ∼= 27(−4) ⊕
(
351⊕ 27

)(−2) ⊕
(
1⊕ 78⊕ 650

)(0) ⊕
(
351⊕ 27

)(2) ⊕ 27
(4)

, (E.6)

such that Υi = (0, 0, 0, ni) ∈ 1(3). Using the 912 constraint one obtains that Qi = (0,κi +0, p̃i),

such that κi ∈ Z. The 56 constraint then gives κi = −ℓi. Then the condition Q2 + 4Γ ∧ Υ in

the 1539 enforces that Γi = (p0i , pi, qi, qi0) with the additional constraints

n(iqj) = −p̃i × p̃j , n(ipj) = 2κ(ip̃j) , n(ip
0
j) = −4κiκj , (E.7)

where κi = −ℓi is in Z/2. Then the constraint Υ× Γ = ℓQ gives

ℓ(ip̃j) = −1

2
n(ipj) , n(ip

0
j) = 4ℓ(iκj) , (E.8)

the constraint QΓ|912 = 0 gives

2κ(ipj) + p̃(ip
0
j) = 0 , p(i × p̃j) = 2κ(iqj) , 4q(i × (p̃j) × y) = p̃(i tr qj)y +

1

3
y tr p̃(iqj) , (E.9)

whereas the 56 component of iv) gives

(κ(i − ℓ(i)q0j) +
1
3 tr p̃(iqj) = −m(inj) (κ(i − 3ℓ(i)qj) = 2p̃(i × pj) , (κ(i + 3ℓ(i)pj) = p0(ip̃j) .

(E.10)

Finally v) gives

pi × pj = −p0(iqj) , 2m(iκj) = 3p0(iq0j) − tr p(iqj) , 4q(i × (pj) × y) = p(i tr qj)y +
1

3
y tr p(iqj)

(E.11)

and

qi × qj − p0(ipj) = n(ip̃j) . (E.12)

For ℓi = 0 the solution is the same as for the fifth layer of charges in E7. We are not able

to extract the constant terms from the fifth layer, but the Langlands constant term formula

suggests that they will involve a factor of 1
ξ(4ǫ)ξ(4ǫ−4) and vanish in the limit ǫ → 0, along with

the corresponding abelian Fourier coefficients.

2) The sixth layer

We shall now consider Υi 6= 0 and linearly independent with ni = 0. In this case one can

consider the SO(5, 5) grading:

e7 ∼= 10(−2) ⊕ (2⊗ 16)(−1) ⊕
(
gl1 ⊕ sl2 ⊕ so(5, 5)

)(0) ⊕ (2⊗ 16)(1) ⊕ 10(2) ,

56 ∼= 2(−2) ⊕ 16
(−1) ⊕ (2⊗ 10)(0) ⊕ 16(1) ⊕ 2(2) ,

912 ∼= · · · ⊕
(
2⊗ 120⊕ 2× 2⊗ 10

)(0) ⊕
(
3⊗ 16⊕ 144⊕ 16

)(1) ⊕ (2⊗ 45⊕ 2)(2) ⊕ 16
(3)

,

1539 ∼= · · · ⊕ (120 ⊕ 3⊗ 10⊕ 10)(2) ⊕ (2⊗ 16)(3) ⊕ 1(4) , (E.13)

with Υi = (0, 0, 0, 0, ni
̂) ∈ 2(2). The condition QΥ|912 = 0 then implies that

Q =
(
0, 0, ni

̂ ℓk̂
r

+ 1
2δ

̂

k̂
ni

l̂ ℓl̂
r
, 0, ni

̂ p

k
, qi

)
∈ (2⊗ 2)(0) ⊕ (2⊗ 16)(1) ⊕ 10(2) , (E.14)
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so that ℓ = 1
2ni

̂ℓ̂/r. The condition Q2 + 4Γ ∧Υ to vanish in the 1539 implies that

Γi =
(
ni

̂ ℓı̂
r

ℓ̂
r
, ni

̂ ℓ̂
r

p

k
, 12ni

̂ p

k
γ
p

k
+ ε̂k̂

ℓk̂
r
qi, /qi

p

k
,mi

̂
)

(E.15)

with the constraint

2εk̂l̂n(i
k̂mj)

l̂ = (qi, qj) . (E.16)

The only constraint that is not yet satisfied is Γi × Γj = m(iQj) that enforces

mi =
1
2

p

k
/qi
p

k
+mi

̂ ℓ̂
r

. (E.17)

Here we defined k coprime to p ∈ S+ and r coprime to ℓı̂ ∈ Z2 such that they divide ni
̂ and all

the other necessary quantities for the charges to be integer valued.

One can then interpret the sum over (k, p) as a Poincaré sum over P1\E6, and the sum over

(r, ℓı̂) as a Poincaré sum over P1\SL(3), for the maximal pair SL(3)×E6 ⊂ E8, and manipulate

the sum over ni
̂, qi,mi

̂ using the orbit method for an auxiliary genus two theta lift. One can

understand this in two steps. One can first rewrite the set of charges at ℓı̂ = 0 in the P7 ⊂ E8

decomposition in which the sum over (k, p) can be interpreted as a sum over P1\E6

e8 ∼= 2(−3) ⊕ 27(−2) ⊕ (2⊗ 27)(−1) ⊕ (gl1 ⊕ sl2 ⊕ e6)
(0) ⊕ (2⊗ 27)(1) ⊕ 27

(2) ⊕ 2(3)

(ni
̂, ni

̂ p

k
, ni

̂ pγp

2k2
) ∈ (2⊗ 27)(1)

(qi, /qi
p

k
,
p/qip

2k2
) ∈ 27

(2)

mi
̂ ∈ 2(3) . (E.18)

The set of charges of the sixth layer, at ℓı̂ = 0, span the three first degrees in the decomposition

above, where the doublet of non-collinear charges in the (2⊗ 27) is in the E6 orbit of (ni
̂, 0, 0).

One recognises the sum over (k, p) as the Poincaré sum over P1\E6 of the solution to Qi×Qj = 0

at p = ℓı̂ = 0. Similarly, the sum over non-trivial (r, ℓı̂) can be interpreted as a sum over

P1\SL(3) in the decomposition

e8 ∼= · · · ⊕ (gl1 ⊕ sl3 ⊕ so(5, 5))(0) ⊕ (3⊗ 16)(1) ⊕ (3⊗ 10)(2) ⊕ 16
(3) ⊕ 3(4)

(ni
̂, ni

̂ ℓk̂
r

+ δ̂
k̂
ni

l̂ ℓl̂
r
, ni

̂ ℓ̂ℓk̂
r2

) ∈ (sl3)
(0)

(ni
̂ p

k
, ni

̂ ℓ̂
r

p

k
) ∈ (3⊗ 16)(1)

(qi, ε
̂k̂ ℓk̂

r
qi +

pγp

2k2
) ∈ (3⊗ 10)(2)

/qi
p

k
∈ 16

(3)

(mi
̂,mi

̂ ℓ̂
r
+

p/qip

2k2
) ∈ 3(4) . (E.19)

Now, the set of charges of the sixth layer span the five first degrees in the decomposition above,

where the doublet of non-collinear charges in sl3 is in the SL(3,Z) orbit of (ni
̂, 0, 0). One
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recognises the sum over (r, ℓı̂) as the Poincaré sum over P1\SL(3) of the solution to Qi×Qj = 0

at ℓı̂ = 0.

With this interpretation as a P1\E6 × P1\SL(3) Poincaré sum in mind, we rewrite the

invariant bilinear form as

G(Qi,Qj) = (R−2yυı̂̂+R−4ℓ̃ı̂ℓ̃̂)
(
mi

ı̂+(ãı̂, qi+
1
2 ãk̂ni

k̂)+ b̃ni
ı̂
)(
mj

̂+(ã̂, qj +
1
2 ãl̂)nj

l̂ + b̃nj
̂
)

+
(
(y +R−2υ(ℓ̃, ℓ̃))uab +

y
1
2

R2
p̃γauγbp̃+

1
4

(p̃γap̃)(p̃γbp̃)

R4 + R2

y υ(ℓ̃, ℓ̃)

)
(qai + ãaı̂ ni

ı̂)(qbj + ãb̂nj
̂)

+
(
R2y + υ(ℓ̃, ℓ̃) + y

1
2u(p̃, p̃) + 1

4

u(p̃γp̃, p̃γp̃)

R2 + 1
yυ(ℓ̃, ℓ̃)

)
(υı̂̂ +

1
R2y ℓ̃ı̂ℓ̃̂)ni

ı̂nj
̂ (E.20)

where we introduced for short

ℓ̃ı̂ =
ℓı̂
r
+ aı̂ , p̃ =

p

k
+ a+ cı̂

(ℓı̂
r
+ aı̂

)
,

ãaı̂ = aaı̂ + cı̂γ
a
(p
k
+ a+ 1

2c
̂
(ℓ̂
r
+ â

))
+ ca

(ℓı̂
r
+ aı̂

)
+ 1

2εı̂̂υ
̂k̂
(ℓk̂
r

+ ak̂

) p̃γap̃

R2y + υ(ℓ̃, ℓ̃)
,

b̃ = b+ 1
2 ā
(p
k
+ a+ 1

2c
ı̂
(ℓı̂
r
+ aı̂

))
+ 1

2 ā
ı̂
(ℓı̂
r
+ aı̂

)
+ 1

2 p̃/cp̃ + . . . . (E.21)

The factors of R2 + 1
yυ(ℓ̃, ℓ̃) in the denumerator in (E.20) comes from completing the squares in

R−2yυı̂̂mi
ı̂mj

̂ +R−4(mi
ı̂ℓ̃ı̂ +

1
2 p̃/qip̃)(mj

̂ℓ̃̂ +
1
2 p̃/qj p̃)

= (R−2yυı̂̂ +R−4ℓ̃ı̂ℓ̃̂)
(
mi

ı̂ + 1
2υ

ı̂k̂ℓ̃k̂
p̃/qip̃

R2y + υ(ℓ̃, ℓ̃)

)(
mj

̂ + 1
2υ

̂l̂ℓ̃l̂
p̃/qj p̃

R2y + υ(ℓ̃, ℓ̃)

)

+1
4

(p̃γap̃)(p̃γbp̃)

R4 + R2

y υ(ℓ̃, ℓ̃)
qai q

b
j (E.22)

and

yuabq
a
i q

b
j +R−2υı̂̂uab

(
εı̂k̂ ℓ̃k̂q

a
i +

1
2ni

ı̂p̃γap̃
)(
ε̂l̂ℓ̃l̂q

b
j +

1
2nj

̂p̃γbp̃
)

= (y +R−2υ(ℓ̃, ℓ̃))uab

(
qai +

1
2ni

ı̂υı̂k̂ε
k̂p̂ℓ̃p̂

p̃γap̃

R2y + υ(ℓ̃, ℓ̃)

)(
qbj +

1
2nj

̂υ̂l̂ε
l̂q̂ ℓ̃q̂

p̃γbp̃

R2y + υ(ℓ̃, ℓ̃)

)

+1
4

u(p̃γp̃, p̃γp̃)

R2 + 1
yυ(ℓ̃, ℓ̃)

(υı̂̂ +
1

R2y ℓ̃ı̂ℓ̃̂)ni
ı̂nj

̂ (E.23)

and repeatedly using the Spin(5, 5) identity [79]

γap̃p̃γa = −1
2(p̃γ

ap̃)γa ⇒ γap̃(p̃γap̃) = 0 . (E.24)

G(Qi, Qj) in (E.20) is then recognised, up to a scale factor, as the the metric on the SO(7, 7)

lattice II7,7

g̃(Qi, Qj) = R̃−1υ̃ı̂̂
(
mi

ı̂ + (ãı̂, qi +
1
2 ãk̂ni

k̂) + b̃ni
ı̂
)(
mj

̂ + (ã̂, qj +
1
2 ãl̂)nj

l̂ + b̃nj
̂
)

+ ũab(q
a
i + ãaı̂ ni

ı̂)(qbj + ãb̂nj
̂) + R̃υ̃ı̂̂ni

ı̂nj
̂ , (E.25)
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with

G(Qi,Qj) =

√
(
y + υ(ℓ̃,ℓ̃)

R2

)2
+
(
y + υ(ℓ̃,ℓ̃)

R2

)y 1
2

R2
u(p̃, p̃) + 1

4

y

R4
u(p̃γp̃, p̃γp̃) g̃(Qi, Qj)

R̃ = R2

√
1 +

υ(ℓ̃, ℓ̃)

R2y
+

u(p̃, p̃)

R2y
1
2

+ 1
4

u(p̃γp̃, p̃γp̃)

R4y +R2υ(ℓ̃, ℓ̃)

υ̃ı̂̂ =
υı̂̂ +

ℓ̃ı̂ ℓ̃̂
R2y√

1 + υ(ℓ̃,ℓ̃)
R2y

ũab =

(
1 + υ(ℓ̃,ℓ̃)

R2y

)
uab +

1
R2y

p̃γauγbp̃+
1
4

(p̃γap̃)(p̃γbp̃)

R4y+R2υ(ℓ̃,ℓ̃)√(
1 + υ(ℓ̃,ℓ̃)

R2y

)2
+
(
1 + υ(ℓ̃,ℓ̃)

R2y

)u(p̃,p̃)
R2y

1
2
+ 1

4
u(p̃γp̃,p̃γp̃)

R4y

(E.26)

where one checks that ũab is indeed an orthogonal symmetric matrix using (E.24).

We can now use the orbit method for the genus-two Siegel–Narain theta series on the lattice

II7,7 to compute the sum
∫

G

d3Ω2

|Ω2|3
∫

Z3\R3

dΩ1 |Ω2|ǫϕtr
KZ (Ω2) |Ω2|

7
2

∑

ni
ĵ∈Z2

detn 6=0

∑

qia∈II5,5
mi

̂∈Z2

e−πΩij
2 G(Qi,Qj)+πiΩij

1 (2εı̂̂mi
ı̂nj

̂−(qi,qj))

=

∫

G

d3Ω2

|Ω2|
1
2

∫

Z3\R3

dΩ1

∑

γ∈P2\Sp(4,Z)
detC(γ)6=0

(
|Ω2|ǫϕtr

KZ (Ω2)
)∣∣

γ

∑

mi∈Z2
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+ . . . (E.27)

where the ellipsis denotes non-abelian Fourier coefficients. The constant term at qi = 0 can be

computed using the interpretation of the sum over k and p as the principal layer of the Poincaré

sum P1\E6 and the sum over r and ℓ as the principal layer of the Poincaré sum over P1\SL(3).
In order to carry out the sum over k and p bellow we shall use that the sum over P1\E6 can

be interpreted as a weak coupling limit with g5 = (R2y
1
2 + y−

1
2υ(ℓ̃, ℓ̃))−

1
2 such that

∞∑

k=1

∑
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∈II5,5
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+
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√
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2 υ(ℓ̃,ℓ̃)) (E.28)

up to the exponentially suppressed Fourier coefficients in e2πi(q,a), by recognising

EE6
sΛ6

=
1

2ζ(2s)

∑

k∈Z
p∈S+
q∈II5,5
2nq=pγp

1

(g
− 8

3
5 k2 + g

− 2
3

5 u(p+ ak, p + ak) + g
4
3
5 u(q + (aγp) + 1

2 (aγa)k, q + (aγp) + 1
2(aγa)k))

s
.

(E.29)
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Similarly, to carry out the sum over ℓ and r one can recognise the unrestricted sum over ℓ and

r as the SL(3) Eisenstein series

E
SL(3)

(s−ǫ)Λ1+2ǫΛ2
=

1

2ζ(2ǫ)

′∑

r∈Z
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1
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2)s
E
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(
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( ℓr+a)( ℓr+a)

y3
3

√

1+
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y3
3

)
(E.30)

such that the restricted sum with r 6= 0 can be recognised as its last constant term using

Langlands constant term formula, giving
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One determines that this is the unique constant term coming out of the principal layer by

computing the scaling in R2y from the homogeneity of the Fourier transform.

Using (E.27) and (3.58), one can compute in this way the constant term contribution
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In the third equality we carried out the sum over p and k using (E.28), and in the fourth equality

the sum over ℓ and r using (E.31). This is the term that appears in the decompactification

limit (4.1), except for the sign. The sign will be resolved in considering the renormalised coupling

(1.31). Indeed, this contribution drops out in (1.28) because the constant term 5ζ(3)
4π2 V 2E

SL(2)
2ǫΛ1

(τ)

in (3.58) also appears in the constant terms of the Siegel–Eisenstein series (D.4) at δ = 0.

After these cancellations, the only remaining contribution in (1.28) is the one from the adjoint

Eisenstein series coming from the Siegel–Eisenstein series constant term 5ζ(3)
4π2 V 2+2ǫ that gives
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Note that in both cases we have used formal identities for divergent sum or integrals. In

the first sum for I (5a)

7 , we integrated the logarithmically divergent integral over V by analytic

continuation of dV
V 1+ǫ̃ at ǫ̃ = 0. For the second sum we have the formal Poincaré sum of 1 over

P7\E8, which we consider equal to one by analytic continuation of the Eisenstein series EE8
ǫ̃Λ7

. We

encounter these divergences because we have neglected the cut-off L on the fundamental domain

F in the computation, in particular when we used the orbit method in (E.27). We expect that

a proper handling of the cut-off L in the orbit method should be equivalent to introducing such

parameter ǫ̃ as in (3.21). Although this computation is not rigorous, the fact that the same

method reproduces correctly three of the constant terms of the two-parameter Eisenstein series

in (D.7) provides a strong consistency check of our result.

For d = 7 both the counterterm and the three-loop contribution are finite, so one may

wonder why one needs the renormalised coupling to get the right answer. The point is that

IE8

Λ8

(
E

SL(2)
(4+δ)Λ1

, 5 + 2ǫ
)
includes a non-analytic factor in ξ(δ−2ǫ)

ξ(δ+2ǫ) ∼ δ+2ǫ
δ−2ǫ near (δ, ǫ) = (0, 0), such

that the finite value at (δ, ǫ) = (0, 0) depends on direction in which it is approached in C2.
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E.2 Abelian Fourier coefficients

We now consider the abelian Fourier coefficients coming from the sixth layer, since the contribu-

tions from the other layers were already discussed in Section 4.2. Combining the results of the

last section, and using the same method as in Section 3.3 for the weak coupling limit in D = 4,

one concludes that they take the form
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where

∆(Q) = det[ηabQı̂aQ̂b)] , (E.35)

L(p̃, ℓ̃) =

√
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R2y
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4
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.

To exhibit the Fourier expansion, we still need to decompose the sum over (k, p) into p mod

k and the integral part p′, and to use the Poisson formula on the sum over p′. We define the

function
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× e
−πtr[Ω2(L(p̃,ℓ̃)Q·Q⊺+(1+ 1
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which can be evaluated in terms of matrix variate Bessel functions [80,50] if so desired, and its

Fourier transform

f̃Q(χ, λ) =

∫
d2ℓ̃

∫
d16p̃ fQ(p̃, ℓ̃)e

2πi(χ,p̃)+2πi(λ,ℓ) , (E.37)

where we have rescaled variables such that f̃Q(χ, λ) does not depend on y. While we do not

have an explicit formula for f̃Q(χ, λ), we note that the integral is absolutely convergent. The
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generic Fourier coefficients can be written as37
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where the coefficients c̃(n) were defined in (A.12). As expected for a generic Fourier coefficient

saturating the Gelfand–Kirillov dimension of the automorphic representation, these Fourier co-

efficients decompose into a measure factor

µP6(Q,χ, λ) =
∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II5,5
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(E.39)

and a real part given by the function R22f̃Q of R and the Levi factor v acting on the charge

Γ = (0, 0, Q, χ, λ) only. Note indeed that the dependence of the function in y and the axions

cı̂, ca is manifestly covariant under P6. The main complication in this formula is the Poincaré

sum over P6\E7. One must still determine the set of (Q,χ, λ) mapping to the same charge

Γ ∈ ME7

Λ7
under the Poincaré sum.

The computation simplifies drastically if the charge Γ is projective according to the definition

given in [69]. Any primitive charge Γ ∈ ME7

Λ7
(with gcd(Γ) = 1) can be rotated by E7(Z) to a

doublet of vectors (Q1, Q2) ∈ II2,2 (corresponding to the so-called STU truncation with a single

magnetic charge p0 = 1)

Q1 = e1+ + q1e1− , Q2 = q2e2+ + q3e2− + q0e1− , (E.40)

for a specific basis of light-like vectors ei± normalised such that

(ei±, ej±) = 0 , (ei+, ej−) = δij . (E.41)

A primitive charge is moreover projective if and only if (where qI+3 = qI)

gcd(q0, qI , qI+1qI+2) = 1 for I = 1, 2, 3 . (E.42)

37The condition d|Q ·Q⊺ is a shorthand notation for d|(Q1, Q1)/2, (Q2, Q2)/2, (Q1, Q2).
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If ∆(Γ) = 1 mod 4 (i.e. q0 odd), a charge is projective if and only if gcd(12∆
′(Γ)) = 1 [69], with

1

2
∆′(Q1, Q2) =

( −q0e1+ + q0q1e1− + 2q1q2e2+ + 2q1q3e2−
−2q2q3e1+ + (q 2

0 − 2q1q2q3)e1− + q0q2e2+ + q0q3e2−

)
. (E.43)

Considering the representative (E.40), one finds that (E.40) for i = 1 gives that gcd(Qı̂ ·Q̂) = 1

and (E.40) for i = 2 implies gcd(Q1∧Q2) = 1. Since gcd(Q) = 1, it follows that the only matrix

that divides (Q1, Q2) is the identity A = 1, and the only integer dividing the norms are d = 1 and

k = 1. In this case there is no sum over p and the measure reduces to c̃
(
∆(Q)

)
= c̃
(
∆(Q,χ, λ)

)

where the first ∆ is the quartic invariant of SO(5, 5), while the second is the one of E7. Since

the measure factor is the same for all representatives, the Poincaré sum will not modify the

measure in this case, and one recovers the expected index of BPS black holes in four dimensions

determined in [51–53].

A slightly more general orbit of charges is defined by primitive charges with gcd(Γ×Γ)′ = 1,

where (Γ× Γ)′ includes all components of Γ× Γ, except for the possibly half-integer E6 singlet,

i.e. for the representative (E.40)

Γ×Γ =
{
q0, qI , qI+1qI+2,

3
2q0 | I = 1, 2, 3

}
, (Γ×Γ)′ =

{
q0, qI , qI+1qI+2 | I = 1, 2, 3

}
. (E.44)

Note that the condition gcd(Γ×Γ)′ = 1 is E7(Z) invariant [69]. The helicity supertrace counting

1/8-BPS states with such charges was determined in [81] as

Ω14(Γ) =
gcd(Γ)=1

gcd(Γ×Γ)′=1

∑

d|Γ∧ 1
4
∆′(Γ)

d c̃
(∆(Γ)

d2

)
. (E.45)

For a charge Γ = (0, 0, Q, 0, 0), it can be written in a way similar to (E.39), namely

Ω14(Q) =
gcd(Γ)=1

gcd(Γ×Γ)′=1

∑

A∈Z2×2/GL(2,Z)
A−1Q∈Z2⊗II5,5

∑

d|A−1Q·Q⊺A−⊺

|A| d c̃
( ∆(Q)
|A|2d2

)
. (E.46)

Indeed, the set of matrices modulo GL(2,Z) that divides (Q1, Q2) is restricted in this case to

diagonal matrices parametrised by one integer k such that k divides Q2. They are the same as

the integers dividing

Q1 ∧Q2 = (q2, q3, q0, q1q2, q1q3) . (E.47)

The second condition on d dividing A−1Q ·Q⊺A−⊺ is that it divides (q1,
q0
k ,

q2q3
k2

), but since q1 is

coprime to gcd(q2, q3, q0, q1q2, q1q3) by the assumption that gcd(Γ× Γ)′ = 1, d must be coprime

to k and divide gcd(q2, q3, q0, q1q2, q1q3). The sum over d is then over the integers dividing

(q1, q0, q2q3), independently of k dividing (q2, q3, q0, q1q2, q1q3). This sum is then the same as the

one over all the integers d′ = dk dividing Γ ∧ 1
4∆

′(Γ) in (E.45).

It is reasonable to expect that upon taking into account the different representatives of

the same charge Γ = (0, 0, Q, 0, 0) under the Poincaré sum P6\E7, the measure (E.39) will

be modified to (E.46). However, the latter is not invariant under triality (permutations of

I = 1, 2, 3) for more general charges, so that it depends on the chosen representative charge

(E.40) in general and it is therefore too näıve to hope that the Poincaré sum over P6\E7 gives

simply (E.46) out of (E.39) for gcd(Γ× Γ)′ 6= 1.
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F ∇6R4 in D ≥ 8

In this section, we briefly discuss the explicit form of the ∇6R4 coupling at small d ≤ 2, in

relation to earlier proposals in the literature.

F.1 D = 10 type IIB

In [31] it was proposed that the exact ∇6R4 coupling in ten-dimensional type IIB string theory

is given by the two-loop amplitude in 11D supergravity compactified on T 2, with metric gij =
√
det g
U2

(
1 U1

U1 |U |2
)
, where U is identified with the type IIB axiodilaton. In the notation of the

present paper, this amounts to

E (0)

(0,1)(U) =
8π2

3

∫

G

dV

V 4

dτ1dτ2
τ22

A(τ)

′∑

M∈Z2×2

e
− 2π

V
detM− π

V τ2U2

∣

∣

∣(1, U)M
(−τ

1

)∣

∣

∣

2

=
8π2

3
Ã3/2(U) (F.1)

where Ãs was introduced in (2.43). The weak coupling expansion can be obtained from (B.25)

and reproduces the known perturbative terms, as well as the instanton and anti-instanton effects

which were inferred in [32] by solving the Poisson equation (B.15).

F.2 D = 9

The exact ∇6R4 coupling in D = 9 was proposed in [22] to be given by

E (1)

(0,1) = ν−
6
7 E (0)

(0,1) +
4

3
ζ(2)ζ(3) ν

1
7 E

SL(2)
3
2
Λ1

+
8

5
ζ(2)2ν

8
7 +

4

63
ζ(2)ζ(5)

(
ν

15
7 E

SL(2)
5
2
Λ1

+ ν−
20
7

)
(F.2)

where

ν =

(
r

ℓs

)7/4 √
g9 , U = C0 + i

√
r/ℓs
g9

(F.3)

and E (0)

(0,1)(U) is the function (F.1) which governs the ∇6R4 term in ten-dimensional type IIB

string theory. In our formalism, the last two terms come from the 1-loop exceptional field theory

amplitude

F (1)

(0,1) =
4ζ(2)ζ(5)

63

[
ν

15
7 Ê

SL(2)
5
2
Λ1

+ ν−
20
7

]
(F.4)

while the 2-loop amplitude in exceptional field theory accounts for the term

E (1),ExFT
(0,1) = ν−

6
7 E (0)

(0,1) +
8

5
ζ(2)2ν

8
7 . (F.5)

The remaining contribution 4
3ζ(2)ζ(3) ν

1
7 E

SL(2)
3
2
Λ1

does not appear as a 1/2-BPS particle state

sum and instead resembles a string multiplet state sum.
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F.3 D = 8

The exact ∇6R4 coupling in D = 8 was proposed in [22], using results from [33], as

E (2)

(0,1) = ESL(3)
(0,1) + ESL(2)

(0,1) +
4

3
ζ(2)ζ(3) Ê

SL(3)
3
2
Λ1

Ê
SL(2)
Λ1

+
πζ(3)

18
Ê

SL(3)
3
2
Λ1

+
2π

9
ζ(2)Ê

SL(2)
Λ1

+
ζ(2)

9

+
4ζ(6)

27
E

SL(3)

− 3
2
Λ1

E
SL(2)
3Λ1

(F.6)

where ESL(2)
(0,1) and ESL(3)

(0,1) are solutions to Poisson-type equations

(∆U − 12) ESL(2)
(0,1) = −

(
4ζ(2)Ê

SL(2)
Λ1

)2
,

(∆SL(3) − 12)ESL(3)
(0,1) = −

(
2ζ(3)Ê

SL(3)
3
2
Λ1

)2
. (F.7)

with suitable asymptotics. The last term is recognised as the homogeneous solution (1.11),

F (2)

(0,1) =
4ζ(6)

27
E

SL(3)

− 3
2
Λ1

E
SL(2)
3Λ1

, (F.8)

To see the origin of the other terms, note that the particle multiplet transforms as (3̄,2) under

SL(3)× SL(2). The double lattice sum therefore decomposes into

′∑

Γi∈Z2×3

Γi×Γj=0

e−πΩij
2 G(Γi,Γj) (F.9)

=

(
∑

qi∈Z2

qi∧qj 6=0

∑

γ∈P2\SL(3)
e−πΩij

2 y 2
2 G(qi,qi)

∣∣∣
γ
+

∑

pi∈Z3

pi∧pj 6=0

∑

γ∈P1\SL(2)
e−πΩij

2 y 2
1 G(pi,pi)

∣∣∣
γ

+
′∑

ni∈Z2

∑

γ∈P2\SL(3)×P1\SL(2)
e−πΩij

2 y 2
1 y 2

2 ninj

∣∣∣
γ

)

The first two terms can be further decomposed into an unconstrained sum minus the sum over

collinear charges that can be computed using (B.25) as

8π

∫

G

d3Ω2

|Ω2|2−ǫ
ϕtr
KZ

∑

qi∈Z2

qi∧qj 6=0

e−πΩij
2 G(qi,qi) =

8π2

3
Ãǫ −

16π2ξ(2ǫ)2

(4− 2ǫ)(3 + 2ǫ)
E

SL(2)
2ǫΛ1

, (F.10)

8π

∫

G

d3Ω2

|Ω2|2−ǫ
ϕtr
KZ

∑

pi∈Z3

pi∧pj 6=0

e−πΩij
2 G(pi,pi) =

8π2

3

∑

γ∈P1\SL(3)
Ãǫ

∣∣∣
γ
− 16π2ξ(2ǫ)2

(4− 2ǫ)(3 + 2ǫ)
E

SL(3)
2ǫΛ2

.

These combinations are finite as ǫ → 0, as can be checked using (B.25) for the first, and
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8πg
− 2ǫ

3
8

∫

G

d3Ω2

|Ω2|2−ǫ
ϕtr
KZ

′∑

qi∈Z3

e−πΩij
2 G(pi,pi) =

8π2

3
g−2ǫ
8 Ãǫ(T ) +

16π2ξ(2ǫ)2

(6− 2ǫ)(1 + 2ǫ)
g−4+2ǫ
8

+
8π2

3
ξ(2− 2ǫ)ξ(3 − 2ǫ)g−2

8 E
SL(2)

(1−ǫ)Λ1
+

4π2

9
ξ(2 + 2ǫ)ξ(6− 2ǫ)g28E

SL(2)

(3−ǫ)Λ1
+ . . .

+
16π2

3
g−1−ǫ
8

′∑

N∈Z2

(
σ2−2ǫ(N)

gcd(N)−2ǫ
ξ(2ǫ)

K1−ǫ

(
2π
g8

|N1+TN2|√
T2

)

( |N1+TN2|√
T2

)1+ǫ

+
g28
6

σ2+2ǫ(N)

gcd(N)6
ξ(5− 2ǫ)

K1+ǫ

(
2π
g8

|N1+TN2|√
T2

)

( |N1+TN2|√
T2

)ǫ−5
+ . . .

)
e2πi(N,a) , (F.11)

for the second. This expansion in turn follows from (3.13), (3.18), (3.22) and (3.66) up to

exponentially suppressed terms (represented by the dots) that are finite at ǫ → 0. Therefore

one can set ǫ = 0 in the first term
∫

G

d3Ω2

|Ω2|2−ǫ

∑

qi∈Z2

qi∧qj 6=0

∑

γ∈P2\SL(3)
e−πΩij

2 y 2
2 G(qi,qi)

∣∣∣
γ

= E
SL(3)
2ǫΛ2

∫

G

d3Ω2

|Ω2|2−ǫ
ϕtr
KZ

∑

qi∈Z2

qi∧qj 6=0

e−πΩij
2 G(qi,qi)

=
ǫ→0

∫

G

d3Ω2

|Ω2|2
ϕtr
KZ

∑

qi∈Z2

qi∧qj 6=0

e−πΩij
2 G(qi,qi) , (F.12)

and the second
∫

G

d3Ω2

|Ω2|2−ǫ

∑

pi∈Z3

pi∧pj 6=0

∑

γ∈P1\SL(2)
e−πΩij

2 y 2
1 G(pi,pi)

∣∣∣
γ

= E
SL(2)
2ǫΛ1

∫

G

d3Ω2

|Ω2|2−ǫ
ϕtr
KZ

∑

pi∈Z3

pi∧pj 6=0

e−πΩij
2 G(pi,pi)

=
ǫ→0

∫

G

d3Ω2

|Ω2|2
ϕtr
KZ

∑

pi∈Z3

pi∧pj 6=0

e−πΩij
2 G(qi,qi) . (F.13)

As for the mixed term, we get, after integrating over the volume factor and using (B.2),

8π

∫

G

d3Ω2

|Ω2|2−ǫ
ϕtr
KZ

′∑

ni∈Z2

∑

γ∈P2\SL(3)×P1\SL(2)
e−πΩij

2 y 2
1 y 2

2 ninj

∣∣∣
γ
=

16π2ξ(2ǫ)2

(4− 2ǫ)(3 + 2ǫ)
E

SL(2)
2ǫΛ1

E
SL(3)
2ǫΛ2

.

(F.14)

As in (5.37), this function is divergent and one needs to take into account the contribution from

the supergravity amplitude and theR4 form factor associated to the partly massless contribution,

giving38

16π2ξ(2ǫ)2

(4− 2ǫ)(3 + 2ǫ)
E

SL(2)
2ǫΛ1

E
SL(3)
2ǫΛ2

+
π

3

Γ(ǫ)

(πµ2)ǫ
E (2)

(0,0),ǫ +
π

3

(Γ(ǫ)2
π2ǫ

+
1

6

Γ(ǫ)

πǫ
+O(ǫ0)

)
µ−4ǫ

∼
ǫ→0

4

3
ζ(2)ζ(3) Ê

SL(3)
3
2
Λ1

Ê
SL(2)
Λ1

+
π2

3
∂2
s

(
E

SL(2)
sΛ1

+ E
SL(3)
sΛ1

)∣∣
s=0

+
π

18
E (2)

(0,0) +
11π2

108

+
4π2

3
log(2πµ)2 − 2π

3
log(2πµ)

(
E (2)

(0,0) +
π

3

)
. (F.15)

38Observe that the first term by itself produces 8
3
ζ(2)ζ(3) Ê

SL(3)
3
2
Λ1

Ê
SL(2)
Λ1

, which is twice the correct result.
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One can then identify the automorphic forms ESL(2)
(0,1) and ESL(3)

(0,1) introduced above as

ESL(2)
(0,1) =

(8π2

3
Ãǫ −

16π2ξ(2ǫ)2

(4− 2ǫ)(3 + 2ǫ)
E

SL(2)
2ǫΛ1

)∣∣∣
ǫ=0

+
π2

3
∂2
sE

SL(2)
sΛ1

∣∣
s=0

+
π

9
ζ(2)Ê

SL(2)
Λ1

+
13π2

216
,

ESL(3)
(0,1) = 8π

∫

G

d3Ω2

|Ω2|2
ϕtr
KZ

∑

qi∈Z3

pi∧pj 6=0

e−πΩij
2 G(pi,pi) +

π2

3
∂2
sE

SL(2)
sΛ1
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s=0

+
π

9
ζ(3)Ê

SL(3)
3
2
Λ1

+
13π2

216
.

(F.16)

One checks using (B.25) that they have indeed the same constant terms as [2, (B.25)]. We

conclude that summing all contributions we reproduce the expected coupling E (2)

(0,1) in (F.6) with

8π

∫

G

d3Ω2

|Ω2|2−ǫ
ϕtr
KZ

′∑

Γi∈Z2×3

Γi×Γj=0

e−πΩij
2 G(Γi,Γj) + F (2)

(0,1)

+
π

3

Γ(ǫ)

(πµ2)ǫ
E (2)

(0,0),ǫ +
π

3

(Γ(ǫ)2
π2ǫ

+
1

6

Γ(ǫ)

πǫ
+O(ǫ0)

)
µ−4ǫ +

π

18
E (2)

(0,0) +
2ζ(2)

9

= E (2)

(0,1) +
4π2

3
log(2πµ)2 − 2π

3
log(2πµ)

(
E (2)

(0,0) +
π

3

)
, (F.17)

where the last two terms in the second line are scheme dependent terms which can be reabsorbed

in the definition of the infrared cutoff µ of the non-local component of the amplitude.
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