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G. Dautcourt

Received: date / Accepted: date

Abstract Vacuum gravitational fields admitting a light-like Killing field were sys-
tematically studied starting around 1960. Besides the already known plane waves,
a second class of gravitational wave fields was found. In contrast to plane waves,
their wave surfaces were not flat, but had a negative Gaussian curvature. Recently,
such solutions found attention again as “twisted gravitational waves”. In the pa-
per we review and extend the earlier results. In suitable coordinates, the metric
assumes a simple shape. The waves are then determined by a single function that
satisfies a Laplace equation in cylindrical coordinates. The “twisted waves” prove
to be a special case.

Keywords General Relativity, Exact Solutions, Gravitational Waves

1 History and summary

Einstein hoped to explain the discrete quantum structure of matter in terms of
singularity-free solutions of a nonlinear unified field theory [18]. In particular, the
graviton was expected to be represented by an exact solution of the nonlinear
vacuum field equations of gravity. What would this solution look like? Analogous
to a photon, the graviton had to be a massless particle moving with the velocity
of light. Also, the field configuration of a single graviton without interaction was
expected to be preserved during its motion in a direction kµ. These two conditions
led to specific geometric requirements: kµ had to be a null vector in the geometry
created by the graviton, and this geometry should not change as the graviton
moves along the integral curves of kµ. This means, that the single classical graviton

in Einstein’s vision should admit a null Killing field, just as an isolated particle with
non-zero rest-mass has a time-independent gravitational field, admitting a time-
like Killing vector.

Such heuristic ideas were discussed at the beginning of the Sixties of the last
century in Papapetrou’s research group at the former Prussian Academy of Sci-
ences in Berlin. The author as a member of the group worked on the characteristic
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initial value problem for the vacuum field equations of General Relativity at that
time [13, 19]. His method was not applicable in the case that the tangent vector of
the initial null hypersurface was a Killing vector (that is, if the hypersurface was
a horizon). This special case had to be treated separately1.

So there was ample reason to handle vacuum fields with a null Killing vector.
Surprisingly, it was pretty easy to find the general solution [13, 20]. There were
two types of solutions, depending on the Killing field being a gradient or not. The
first case corresponded to the - already at that time - well known plane waves.
In the second case a new class of exact solutions emerged, also with apparently
free functions. The essential difference between both types is the character of their
wave surfaces, two-dimensional surfaces orthogonal to the propagation direction of
the wave. For a gradient Killing field the wave surfaces are Euclidean planes with
zero Gaussian curvature - hence the name “plane waves”2. The wave surfaces of
the new class had non-constant negative Gaussian curvature.

Plane waves have little similarity with Einstein’s classical graviton problem,
but also the new class of solutions was a disappointment in this respect. Just like
many other solutions to Einstein’s vacuum equations, the new metrics had true
singularities that could not be removed by a coordinate transformation. Freely
specifiable functions could be interpreted as wave amplitudes, and the solutions
led asymptotically to plane waves - features which could qualify the metric as a
gravitational wave -, but the singularities were hard to explain. Thus only a short
communication was published at the time. The fields received little attention until
a recent rebirth as “twisted gravitational waves” [29]-[32].

As explained in section 2, all these solutions belong to Kundt’s class of vacuum
fields. In section 3 and 4 we derive the general solution. We closely follow the
original treatment, which is otherwise only available in German. In section 5 an
interpretation as a gravitational wave is attempted and some special cases are
discussed. For the sake of completeness, section 6 shortly deals with plane waves,
whose interpretation as gravitational waves is undisputed. Section 7 explains in
some detail the relation to the “twisted gravitational waves” (TGW). It is shown
that the TGW’s are special cases of our solution.

The article deals exclusively with vacuum fields. At the end we briefly consider
the extension to non-vacuum gravitational fields.

2 Relation with Kundt’s class

A null Killing field kµ satisfies the relations3

kµ;ν + kν;µ = 0, (1)

kµkνgµν = 0. (2)

It follows kµ;νk
ν = 0, so the field kµ represents a geodesic null congruence. A gen-

eral geodesic null congruence kµ can be characterized by several scalars, obtained

1 see the note added in proof of [14], p. 914.
2 We consistently use the term “plane wave” for what is often referred to as “pp wave”.
3 Greek letters range from 0 to 3, Latin letters from 1 to 3, Capital latin letters from 2 to

3. Other conventions are those of [25] or [24].
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by decomposing the covariant derivative of kµ. Expansion θ, the square of the
shear amount |σ|2 and twist ω are given by

θ =
1

2
kµ;µ, (3)

|σ|2 =
1

2
k(µ;ν)k

µ;ν − 1

4
(kµ;µ)

2, (4)

ω2 =
1

2
k[µ;ν]k

µ;ν . (5)

The scalars are related by the Raychaudhuri equation

θ,µk
µ − ω2 + θ2 + |σ|2 = −1

2
Rµνk

µkν . (6)

Obviously, the Killing congruence defined by (1) and (2) is a non-expanding shear-
free geodesic null congruence, but not apriori twist-free. (6) shows that for vacuum
fields also the twist vanishes.

Kundt has studied a number of gravitational fields related to the problem
[11, 16, 17]. His class of solutions assumes a geodesic null congruence with zero
expansion and twist. For vacuum fields one concludes from (6) that Kundt’s fields
are also shear-free. Thus our solution belongs to Kundt’s class.

3 The field equation Rµνk
µ
k
ν = 0 in adapted coordinates

For the integration of the field equations it is useful to introduce coordinates
adapted to the symmetry. We choose kµ as tangent to the x0-lines:

kµ = δµ0 , (7)

thus (1),(2) reduce to

gµν,0 = 0, g00 = 0. (8)

The second condition g00 = 0 is equivalent to |gik| = 0. Since the four-dimensional
metric is nonsingular by assumption, |gµν | 6= 0, we have rank(gik) = 2. Thus
there exists at least one two-dimensional submatrix of (gik) with non-vanishing
determinant, say

|gAB | = g22g33 − g23g23 6= 0. (9)

With the quantities

µ = (g12g33 − g13g23)/|gAB|, λ = (g13g22 − g12g23)/|gAB | (10)

we can write

|gµν | = −|gAB|(g00 − µg02 − λg03)2. (11)

This implies |gAB | > 0.
We try to simplify the metric by transforming x1 into a null coordinate. One

of the coordinate transformations preserving the conditions (8) is

x̄0 = x0, x̄1 = f(x1, xA), x̄A = xA (12)
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with a function f(x1, xA). The condition ḡ11 = 0 for a null coordinate x̄1 takes the
form

σAσBgAB = 0 (13)

with

σ2 = µf,1 + f,2, σ3 = λf,1 + f,3. (14)

Since |gAB| > 0, one concludes σA = 0 or explicitly

µf,1 + f,2 = λf,1 + f,3 = 0. (15)

This system of differential equations for the single function f requires

µ,3 − λ,2 + λµ,1 − µλ,1 = 0 (16)

as integrability condition. Surprisingly, the field equation Rµνk
µkν = 0 or in

adapted coordinates

R00 = −1

2
g201(µ,3 − λ,2 + λµ,1 − µλ,1)

2 = 0 (17)

provides just this integrability condition. Moreover, the transformation (12) leads
also to

ḡ1A = g1Af,1 + gABf,B = 0. (18)

Finally, we may reach for the two-dimensional metric gAB a diagonal form gAB =
eφδAB by means of

x̄0 = x0, x̄1 = x1, x̄A = xA(xi). (19)

After these simplifications, the line element becomes (omitting the bar)

ds2 = 2g01dx0dx1 + g11dx
2
1 + 2g1Adx1dxA + eφ(dx2

2 + dx2
3). (20)

The five field functions g1i and φ depend on xi. This form of the line element is
preserved under the transformations

x̄0 = x0 + ϕ(xi), x̄1 = x̄1(x1), x̄A = x̄A(xi) (21)

with arbitrary functions ϕ(xi), x̄1(x1), only x̄A(x1, xA) has to satisfy the two-
dimensional Laplace equation

∆x̄A ≡ ∂2x̄A
(∂x2)2

+
∂2x̄A
(∂x3)2

= 0. (22)

The metric (20) already satisfies the vacuum equations R00 = 0 and R0A = 0. One
can use coordinate transformations still available to simplify and solve the other
field equations.
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4 Solving the remaining field equations

Some remaining vacuum equations, written as R22 −R33, R23, R01, R22 +R33, are
respectively

φ,2m,2 − φ,3m,3 = m,22 −m33 + (m,2)
2/2− (m,3)

2/2 ≡ A, (23)

φ,2m,3 + φ,3m,2 = m,2m3 + 2m,23 ≡ B, (24)

∆m+ (m,2)
2 + (m,3)

2 = 0, (25)

∆φ+∆m+ (m,2)
2/2 + (m,3)

2/2 = 0. (26)

Here we have set g01 = em (we can assume that g01 has the same sign everywhere,
a zero would mean |gµν | = 0). Under the assumption (m,2)

2 +(m,3)
2 6= 0 we solve

(23,24) for φ,2 and φ,3:

φ,2 = (Am,2 +Bm,3)/((m,2)
2 + (m,3)

2), (27)

φ,3 = (Bm,2 −Am,3)/((m,2)
2 + (m,3)

2). (28)

A short calculation shows, that because of (25), the integrability condition φ,23 =
φ,32 as well as the field equation (26) are already satisfied.

The coordinates xA are only fixed up to harmonic transformations with (22).
FollowingWeyl [1], we introduce special canonical coordinates. Let x̄2 = f(x1, x2, x3)
be a set of functions of xA, parametrized by x1, which satisfies ∆f = 0. Then there
always exists another set of harmonic functions, say x̄3 = g(x1, x2, x3) , satisfying
the Cauchy-Riemann equations f,2 = g,3, f,3 = −g,3. Since (25) can be written
∆em = 0, em is already such a harmonic function. Thus we are able to set em = x2

(we can imagine x2 as a kind of radial coordinate). The determination of φ from
(23,24) now becomes trivial and leads to

eφ = a(x1)/
√
x2, (29)

where a(x1) is a free function.
Introducing canonical coordinates xA also simplifies the integration of the re-

maining field equations R1i = 0. Writing g12 = x2q2, g13 = x2q3 with two functions
qA(x1, x2, x3), the conditions R12 = 0 and R13 = 0 lead to

q3,23 − q2,33 + a1/(x2)
5/2 = 0, (30)

q2,32 − q3,22 + 5(q2,3 − q3,2)/x2 = 0, (31)

which can be integrated to give

q2,3 − q3,2 = (a,1x3 − b)/(x2)
5/2. (32)

b = b(x1) is a second free function. We still have one transformation x̄0 = x0 +
ϕ(xi), x̄i = xi at our disposal, which leads to

q̄A = qA + ϕ,A (33)

and will be used to reach q2 = 0. Then from (32) after integration

q3 =
2

3
(a,1x3 − b)/(x2)

3/2. (34)
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Here a function c(x1, x3) resulting from this integration has been transformed to
zero with help of (33). The last equation R11 = 0 can now be written4

∂2H

∂x2
2

+
1

x2

∂H

∂x2
+

∂2H

∂x2
3

= x
−7/2
2 (b− a,1x3)

2/a+ x
−3/2
2 (a2,1/a− 2a,11/3), (35)

where we have set g11 = rH(x1, x2, x3). The general solution H of (35) is repre-
sented as the sum of a particular solution and the general solution of the homo-
geneous equation

∂2F

∂x2
2

+
1

x2

∂F

∂x2
+

∂2F

∂x2
3

= 0. (36)

It is not difficult to find a particular solution of the inhomogeneous equation, so
the general solution of (35) can be written

H = F +
4

9
x
−3/2
2 (b− a,1x3)

2/a+ x
1/2
2 (

4

9
a2,1/a− 8

3
a,11). (37)

The metric now becomes

ds2 = 2x2dx0dx1 +Hx2dx
2
1 +

4

3
√
x2

(a,1x3 − b)dx1dx3 +
a√
x2

(dx2
2 + dx2

3), (38)

with two arbitrary functions a(x1) and b(x1). In this form the metric was published
[20]. It is not mentioned in [20] that the functions a(x1) and b(x1) are still subject
to coordinate changes of the type (21) and (22). The transformations

x̄0 = x0 + ϕ, x̄1 = q(x1), x̄2 = x2/q,1, x̄3 = p(x1) + x3/q,1 (39)

with two arbitrary functions p(x1) and q(x1) (q,1 6= 0) send a und b to new functions

a → a(q,1)
3/2, b → (2b+ 2a,1pq,1 + 3ap,1q,1 + 3apq,11)/(2

√
q,1). (40)

In particular, choosing p and q according to

q,1 = a−2/3, p,1 = −2

3
ba−1/3 (41)

we may reach standard values a = 1 and b = 0. With this gauge the metric becomes
diagonal, depending only on the function F (x1, x2, x3):

ds2 = 2x2dx0dx1 + x2Fdx2
1 +

1√
x2

(dx2
2 + dx2

3). (42)

For later use we note another form of the metric with an arbitrary non-vanishing
spurious function τ(x1), allowing for self-similar changes of x1, also a constant
a 6= 1 is left:

ds2 = 2τx2dx0dx1 + Fτ2x2dx
2
1 +

a√
x2

(dx2
2 + dx2

3). (43)

In deriving (42) starting from the definition equations (1),(2) we have made
no further restricting assumptions, except of (m,2)

2 + (m,3)
2 6= 0 (dropping this

4 The corresponding equation (28) in [20] is misprinted: instead of 4/3 read 2/3. The misprint
was noted in [23]. Also equation (30) in [20] is misprinted: instead of 3a2/(4x3

2) read 3/(4a2x3
2).
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assumption leads to the plane wave branch). We can therefore expect that (42)
represents the general solution to the problem under discussion.

Solutions of the vacuum equations admitting non-isotropic Killing vectors exist
in large numbers [25]. It is perhaps noteworthy that in the case of a null Killing field

(with kµ;ν 6= 0) only one simple solution class (42) exists. The solution is governed

by a single function F (x1, x2, x3), which satisfies the linear differential equation (36).
For the other solution class with kµ;ν = 0, the plane waves, a similar statement
applies (section 6).

5 Properties of the solutions

The null hypersurfaces x1 = const with kµ as tangential vector can be regarded
as propagation fronts of a gravitational wave. Each three-dimensional propagation
front is formed by a set of two-dimensional wave surfaces orthogonal to kµ. Wave
surfaces can be used to define an amplitude of the wave: Besides kµ, there is
another null direction orthogonal to a wave surface, say lµ. Geodesic continuation
of lµ generates a null hypersurface for every wave surface, which is called conjugate

to the propagation front x1 = const. Then part of the geometry of the conjugate
hypersurfaces at their intersection with the wave surfaces can serve as geometrical

measure of the wave intensity. The required data are those which could also be
taken as initial data in a characteristic initial value problem related to the null
hypersurfaces. A convenient datum is the complex Penrose function

P = |P |eiθ = Rµνρσ l
µm̄ν lρm̄σ (44)

with amplitude |P | and phase θ.mµ is a complex null vector spanning the directions
in the wave surfaces, m̄µ complex-conjugated. The Penrose function depends only
on the inner geometry of the conjugated null hypersurfaces. For the general metric
(42) one obtains

P = −1

2
x
−3/2
2 (x2

∂2F

∂x2
2

+
5

4

∂F

∂x2
) +

i

2
x
−3/2
2 (x2

∂2F

∂x2∂x3
+

3

4

∂F

∂x3
). (45)

This simple interpretation of the metric as a progressing gravitational wave
cannot hide that one is far from a physical understanding. The outstanding feature
of the solution is the singularity for x2 → 0, for which no convincing physical
interpretation seems to be available. The invariants of the Riemann tensor

I1 = Rµνρσ Rµνρσ − iRµνρσ R∗µνρσ =
3

4
x−3
2 , (46)

I2 = Rµνρσ Rρσαβ Rαβ
µν + iRµνρσ Rρσαβ R∗

αβ
µν = − 3

16
x
−9/2
2 (47)

show this singularity. The singularity is also visible in the Gaussian curvature of
the wave surfaces:

K = −1

4
x
−3/2
2 . (48)

For large x2 the wave surfaces become flat and the invariants tend to zero. These
are signs that the fields asymptotically tend to plane waves.

We leave the problem of singularities open for the time being, and move on to
some explicit solutions. (36) has the form of a three-dimensional Laplace equation
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in cylindrical coordinates (r = x2, z = x3) for a function F with axial symmetry,
i.e. independent of the azimuth. The trivial case F = 0 leads to

ds2 = 2x2dx0dx1 +
1√
x2

(dx2
2 + dx2

3). (49)

This is one of the simplest curved Ricci-flat geometries. The metric can be trans-
formed into one of the Kasner solutions [2] and was discovered independently
several times. Harrison found the solution as case III-2 among his 30 Ricci-flat
metrics [9], but in coordinates which hide its simplicity. The solution also belongs
to the so-called “one-dimensional gravitational fields” discussed in [12].

(49) admits two independent null Killing vectors kµ = δµ0 , lµ = δµ1 and is
the only metric in our class with this property. The Petrov type is D. The two
sets of null hypersurfaces x0 = const and x1 = const are both horizons with
vanishing shear and expansion of their inner geometries. Their intersections are
two-dimensional surfaces with the negative Gaussian curvature (48). (49) can be
considered as the unique solution of a characteristic initial value problem starting
from a pair of conjugated horizons together with a given two-dimensional geom-
etry of their intersection. If one writes the metric in space-time coordinates, its
static character becomes visible, so it is certainly not a gravitational wave. A wave
intensity formally calculated with (45) is zero. The solution is however the key to
a physical understanding of equally singular solutions, that clearly show a wave
character.

A function F = f(x1), also a trivial solution of (36), can be reduced to F = 0
by a coordinate transformation. Simple, but non-trivial solutions result from a
separation ansatz F = A(x1, x2)B(x1, x3), leading to

1

A

d2A

dx2
2

+
1

x2

1

A

dA

dx2
= −k,

1

B

d2B

dx2
3

= k, (50)

k may depend on x1. For k = 0, this effectively gives

F = U(x1)x3 + V (x1)lnx2 +W (x1)x3lnx2. (51)

We interpret this metric as superposition of three gravitational waves, which trans-
mit information stored in the functions U , V and W of x1. The total amplitude
and phase as measured by the Penrose function are

P =
3i

8
x
−3/2
2 U − 1

8
x
−5/2
2 V − 1

8
x
−5/2
2 x3W +

i

2
x
−3/2
2 (1 +

3

4
lnx2)W. (52)

From the Penrose function we can read off the different polarization modes of the
U, V and W -waves: The real part of P corresponds to ⊕-polarization, the imaginary
part to ⊗-polarization. It is seen that the U-wave has ⊗-polarization, the V -wave
⊕-polarization. W -waves show both types of polarization.

If in (50) k differs from zero and is positive, one obtains solutions involving
Bessel functions. A basic solution with Bessel functions of the first kind is

F = J0(
√
kx2)e

±
√
kx3 . (53)
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The corresponding polarization amplitudes are:

P⊕ =
e±

√
kx3

8x
3/2
2

(
√
kJ1(

√
kx2) + 4kx2J0(

√
kx2)), (54)

P⊗ =
e±

√
kx3

8x
3/2
2

(∓4J1(
√
kx2)± 3

√
kJ0(

√
kx2)). (55)

Another solution results, if the Bessel functions of the first kind in (53)-(55) are
replaced by Bessel functions of the second kind (Weber functions), with different
behaviour at the singularity x2 → 0 and for x2 → ∞.

For a negative k one has similar expressions with waves oscillating in x3. Be-
cause of the linearity of (36), all solutions can be superimposed linearly with
coefficients depending arbitrarily on x1.

One may think of other solutions, but the given examples are sufficient to
illustrate the class. The Petrov type is in general II, in special cases D.

6 Plane waves

To complete the discussion, we shortly consider plane waves, the other class of
vacuum solutions in case of a null Killing vector. There were many papers on
plane waves around 1960 (and earlier), either with Brinkmann-like coordinates or
in the Rosen form [3, 4, 5, 6, 7, 8, 10, 11, 16, 17]. Plane waves result if we drop
the condition (m,2)

2 + (m,3)
2 6= 0 and assume m = m(x1). It is easy to see that

the Killing vector is a gradient (and therefore covariantly constant), if and only if
m is independent of xA. Again we can use coordinate transformations to simplify
the solution. For Brinkmann coordinates, we can write the line element (for a
derivation, see e.g. [25])

ds2 = 2dx0dx1 +Adx2
1 + dx2

2 + dx2
3. (56)

As in our previous case, a single function A = A(x1, x2, x3) governs the solutions,
but now A satisfies (in the vacuum case) the two-dimensional Laplace equation
∆A = 0. We take the local solution which is quadratic in the transversal coordi-
nates xA:

A = α(x1)(x
2
3 − x2

2) + 2β(x1)x2x3. (57)

Also here the null hypersurfaces x1 = const serve as propagation fronts. The
complex Penrose function of the conjugated null hypersurfaces as a measure of the
wave intensity reduces to

P = α(x1) + iβ(x1), (58)

in accordance with our expectation. The wave surfaces are Euclidean planes.
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7 “Twisted gravitational waves”

Recently solutions admitting a null Killing field were considered in a series of
papers [29, 30, 31, 32] under the heading “twisted gravitational waves” (TGW).
The authors have carried out an extensive study of some of these metrics, including
an investigation of particle movements.

The term “twisted” is used here in an unusual way: In the standard literature
[16, 25, 26, 24] a congruence kµ is called twisted, if k[µ;νkρ] 6= 0, which is equiva-
lent to the non-vanishing of the twist-scalar ω. Instead, the authors call solutions
twisted, if k[µ;ν] differs from zero. Thus “twisted metrics” in this unconventional
sense may have (and in case of the above papers actually do have) a vanishing
twist-scalar ω.

The authors consider solutions Ψ(x̄1, x̄2) of the partial differential equation

∂

∂x̄2

(

Ψ
∂2Ψ

∂x̄2
1

)

= 0, (59)

also written

Ψ
∂2Ψ

∂x̄2
1

= V (x̄1) (60)

with an arbitrary function V (x̄1). Then the metric given by

ds2 = −Ψ4dx̄0dx̄1 + λ2 Ψ4
(

∂Ψ

∂x̄2

)2

dx̄2
2 +

1

Ψ2
dx̄2

3 (61)

(λ > 0 is a constant) is Ricci-flat and admits a null Killing vector kµ = δµ0 . The
metric is only implicitly known, since it depends on a solution of the differential
equation (59).

Since we claim to have found the general Ricci-flat solution in the null Killing
vector case, given by (42) or (43), there must exist a coordinate transformation
that relates a solution of the form (61) to our solution.

TGW coordinates are noted as x̄µ, our coordinates are xµ. The null Killing
vector has in both metrics the components kµ = δµ0 . Coordinate transformations
preserving this property are again of the type (21). Rewritten in inverse form we
have

x0 = x̄0 − ϕ(x̄i), x1 = x̄1,

x2 = h(x̄i), x3 = k(x̄i). (62)

Using (43) with the spurious function τ(x1) instead of (38) allows to use the same
coordinate x1 in both metrics.

We first consider some explicit solutions discussed in [29]-[31]. One of them is
the Harrison metric [9], given by (using the form found in [31])

ds2 = −x̄
4/3
2 dx̄0dx̄1 + x̄

6/5
1 dx̄2

2 + x̄
−2/3
2 x̄

−2/5
1 dx̄2

3. (63)

In these coordinates the Harrison metric does not have the standard structure
(61), but still belongs to the TGW class. The transformation

x0 = x̄0 +
9

5
x̄
1/5
1 x̄

2/3
2 , x1 = x̄1,

x2 = (3/4)4/3x̄
4/5
1 x̄

4/3
2 , x3 = (3/4)1/3x̄3 (64)
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leads from Harrison to the solution (43) with

a = 1, F = 0, τ = −25/3

34/3
x
−4/5
1 . (65)

Another simple example is the so-called w-metric, arising from (61) with Ψ =
x̄1 + x̄2 and λ = 1:

ds2 = −(x̄1 + x̄2)
4dx̄0dx̄1 + (x̄1 + x̄2)

4dx̄2
2 + (x̄1 + x̄2)

−2dx̄2
3. (66)

Here the transformations

x0 = x̄0 + x̄1 + 2x̄2, x1 = x̄1,

x2 = (x̄1 + x̄2)
4/2, x3 = 2x̄3 (67)

generate (43) with

a =
1

4
√
2
, F = 0, τ = −1. (68)

Thus the transformed w-metric essentially coincides with the transformed Harri-
son metric: Obviously, “Harrison” and “w” represent the same metric in different
coordinate systems, both of which are equivalent to the basic solution (49). The
relations

x̂0 = x̄0 + 9x̄
1/5
1 x̄

2/3
2 /5− 2x̄

1/5
1 x̄

1/3
2 /3−1/3 + 5x̄

1/5
1 /34/3,

x̂1 = 5x̄
1/5
1 /34/3, x̂2 = 31/3x̄

1/5
1 x̄

1/3
2 − 5x̄

1/5
1 /34/3, x̂3 = 31/3x̄3 (69)

give the w-metric coordinates x̂µ in terms of the Harrison coordinates x̄µ.
Turning now to the general case (61), we show that the relations

x0 = x̄0 − ϕ(x̄1, x̄2, x̄3),

x1 = x̄1, x2 = h(x̄1, x̄2), x3 = 2x̄3/λ (70)

with

h(x̄1, x̄2) = Ψ4(x̄1, x̄2)/2 (71)

and suitable ϕ transform the TGW metric into (43) with τ = −1. The transfor-
mation equations

gµν =
∂xµ
∂x̄α

∂xν
∂x̄β

ḡαβ

give for the index pair (µ, ν)=(2,2) or (3,3)

a =
λ2

4
√
2
. (72)

The pairs (0,0), (0,1) and (0,3) provide the derivatives ϕi =
∂ϕ
∂x̄i

. The remaining
equations are already satisfied. We find

ϕ1 = −λ2
(

∂Ψ

∂x̄1

)2

− F̄

2
, ϕ2 = −2λ2 ∂Ψ

∂x̄1

∂Ψ

∂x̄2
, ϕ3 = 0, (73)
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where the constancy of a is already taken into account. The integrability conditions
require ϕ2,3 − ϕ3,2 = 0, ϕ3,1 − ϕ1,3 = 0, ϕ1,2 − ϕ2,1 = 0. The last two give

∂F̄

∂x̄3
= 0,

∂F̄

∂x̄2
= 4λ2 ∂

2Ψ

∂x̄2
1

∂Ψ

∂x̄2
. (74)

The function F (x1, x2, x3) is written here F̄ (x̄1, x̄2, x̄3) as function of the TGW
coordinates:

F̄ (x̄1, x̄2, x̄3) ≡ F (x̄1, x2[x̄1, x̄2], x3[x̄1, x̄3]). (75)

In original coordinates F satisfies the linear equation (36). Translated into TGW
coordinates by means of (70), the transformed function F̄ satisfies

∂2F̄

∂x̄2
2

+
(

h2

h
− h22

h2

)

∂F̄

∂x̄2
+

λ2h2
2

4

∂2F̄

∂x̄2
3

= 0, (76)

where h2 = ∂h
∂x̄2

etc. Inserting (71) and (74) we find

∂Ψ

∂x̄2

(

Ψ
∂3Ψ

∂x̄2∂x̄2
1

+
∂2Ψ

∂x̄2
1

∂Ψ

∂x̄2

)

= 0. (77)

Since ∂Ψ
∂x̄2

6= 0, the basic equation (59) for Ψ is recovered. Clearly, this relation
must be satisfied, thus that metrics of the type (61) can be transformed into our
metric. For the function F̄ we obtain

F̄ = 4λ2V (x̄1) lnΨ (78)

up to an added arbitrary function of x̄1. Translated into our coordinates we have
the result: The TGW metrics are the special case F = V (x1) lnx2 of our solution. In

particular, the Harrison metric (or w-metric) corresponds to F = 0.

8 Final remarks

Many of the issues concerning nonplanar waves need further clarification. In recent
years the “cosmic jet” property was intensively investigated: Test particles can gain
(or lose) energy in time-dependent gravitational fields, e.g. plane waves [27, 28]. It
would be interesting to study this question also for the nonplanar waves presented
in this article.

Another task is the extension beyond vacuum fields. In the presence of a cos-
mological constant the vacuum field equations can be written Rµν = Λgµν . Hence
all conclusions drawn from Rµνk

µkν = 0 in section 2 remain valid, we again ar-
rive at the metric (20). Recently such solutions with Λ 6= 0 have been found by
Firouzhjahi and Mashhoon [32]. Also non-vacuum gravitational fields with a twist-
free null Killing vector have been discussed, e.g. electro-vac solutions [21, 22]; for
a survey see [25].
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