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We consider special Lambert series as generating functions of divisor sums and deter-

mine their complete transseries expansion near rational roots of unity. Our methods

also yield new insights into the Laurent expansions and modularity properties of it-

erated Eisenstein integrals that have recently attracted attention in the context of

certain period integrals and string theory scattering amplitudes.
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1 Introduction

The central object of study in this paper is the q-series

Sα,β(q) =
∑
n,m≥1

n−αm−βqnm (1.1)

and we shall be interested in its asymptotic expansion as q approaches a rational root of unity

from within the unit disk. For different values of α and β, the q-series Sα,β = Sβ,α is related to

special types of Lambert series that serve as generating functions of divisor sums, to holomorphic

Eisenstein series or iterated integrals thereof.

Our method for analysing the asymptotic expansion makes use of results by Zagier [1] and

the transseries completion uses resurgent methods [2–4]. The completion captures the terms

that are exponentially suppressed in the asymptotic expansion and, as we shall see, they are

very closely related to the modular properties of the q-series. In particular, we shall be interested

in something that can be called the ‘modularity gap’ [5] which is the failure of the q-series to

transform as a modular form of definite weight given by 1− α− β under the S-transformation

transformation τ → − 1
τ where q = e2πiτ .

Depending on the values of α and β, this modularity gap is given by a Laurent polynomial

or by a multi-valued function of τ whose form depends on a choice of resummation. As the

q-series is invariant under the T -transformation τ → τ + 1 and since S and T together generate

PSL2(Z) when acting on τ , we obtain the complete behaviour of the q-series Sα,β(q) under
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the modular group PSL2(Z). As all rational roots of unity are conjugate to q = 1 under the

modular group, one can in principle determine the complete form of Sα,β(q) expanded around

any rational root of unity. However, as this is not necessarily the most convenient way we shall

also discuss asymptotic expansions near roots of unity directly.

The case of divisor sums corresponds to Sα,0(q) for which the asymptotic perturbative ex-

pansion in the limit q → 1− has already been analysed in [6, 7]. Our approach gives a concise

re-derivation of their result, generalises it to other rational roots of unity and provides the com-

plete transseries expansion. This will be the content of section 2. This analysis can also be

extended to q-Pochhammer symbols as we show in an appendix.

For other special integral choices of α and β, we make contact with iterated integrals of

Eisenstein series of the type that have been recently discussed in the literature [8–11, 13–16] in

connection to periods of moduli spaces of genus-one Riemann surfaces and have found ample

applications in string scattering amplitudes [9, 13, 17–19]. Our methods can be used in this

context to determine the Laurent polynomials of these iterated integrals including the terms

that have been hard to obtain in [9] as they are related to integration constants of the differential

equations the iterated integrals satisfy [13,19–22]. Again, this analysis is deeply tied in with the

modular properties of Sα,β(q). This connection will be analysed in section 3.

One important aspect in the discussion of iterated integrals is given by the conjectural elliptic

single-valued map [13,22–25] that we shall discuss in section 4. Our analysis is restricted to what

is known as ‘depth-one’ iterated integrals in the literature and the resulting Laurent polynomials

therefore contain only standard Riemann zeta values rather than (single-valued) multiple zeta

values.

It would be extremely interesting to understand how to apply the methods explained in

the present work to the case of higher depth iterated integrals and multiple polylogarithms (or

single-valued version thereof). In particular it is only at higher depth that in string scattering

amplitudes we start encountering multiple zeta values in the coefficients of the “perturbative”

expansion. Furthermore the conjectured elliptic single-valued map, see for example [13], would

allow us to go from an open string calculation to a closed string one but its action on the per-

turbative and non-perturbative amplitudes is far from straightforward. We believe our methods

could produce new insights into all these extremely interesting problems.
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2 Lambert series

In the current section, we begin by studying the general q-series Sα,β(q) defined in (1.1) when

one of the parameters vanishes. The resulting q-series will be denoted by

Ls(q) = Ss,0(q) =

∞∑
k=1

k−s
qk

1− qk
, (2.1)

where s ∈ C and q ∈ C inside the unit disk |q| < 1. We have carried out one of the sums

in (1.1) as it has become geometric and in this way one recognises that (2.1) is a special case of

a Lambert series for which we have adopted a more standard notation.

It is straightforward to rewrite this Lambert series in two alternative forms making use of

the polylogarithm function

Lis(q) =

∞∑
k=1

qk

ks
s ∈ C, |q| < 1 (2.2)

and of the divisor function σs(n) =
∑

d|n d
s, the sum of the sth power of positive divisors of an

integer n through the equations

Ls(q) =

∞∑
n=1

Lis(q
n) =

∞∑
m=1

σ−s(m)qm . (2.3)

The Lambert series (2.1) can then be understood as the generating function for the divisor

function σ−s(n).

Making furthermore use of the trivial fact σs(m) = msσ−s(m) we can also obtain the relation

L−s(q) =

∞∑
m=1

σs(m)qm =

∞∑
m=1

σ−s(m)msqm = (q∂q)
sLs(q) , (2.4)

so we can consider equation (2.1) for Re s ≥ 0 and obtain Re s < 0 by analytic continuation

using the (fractional) derivative operator (q∂q)
s. For negative integers s this operator should be

thought of as an integral operator and this is what will be explored in section 3.

2.1 Asymptotic expansion at q = 1

We first want to obtain the asymptotic expansion of (2.1) for q → 1−, meaning from within the

unit disk. To this end, we let q = e−2πy with Re y > 0 and consider the asymptotic expansion

for y → 0+. An alternative notation that will be used throughout this paper is the modular

parameter τ defined by q = e2πiτ with Im τ > 0, which is related to the variable y by y = −iτ .

By slight abuse of notation we will write interchangeably

Ls(q) = Ls(y) = Ls(τ) with q = e−2πy = e2πiτ . (2.5)

We are then interested in the expression

Ls(y) =

∞∑
n=1

Lis(e
−2πny) . (2.6)
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This form for the Lambert series under consideration will be our starting point to obtain

an asymptotic expansion for y → 0+. We notice in fact that we want to obtain the asymptotic

expansion for a series of the form
∑

m≥0 φ((m+a)y) if we consider φ(y) = Lis(e
−2πy) and a = 0,

and Zagier has proved a very useful result for this situation [1] which we will now review briefly.

Assume φ(y) is a smooth function for y > 0 with all derivatives of rapid decay at infinity. If

φ(y) has an asymptotic expansion around y = 0 of the form φ(y) ∼
∑

n≥0 bny
n, then the asymp-

totic expansion of the function summed over its values at shifted argument has the asymptotic

expansion around the origin given by∑
m≥0

φ((m+ a)y) ∼
Iφ
y

+
∑
n≥0

bnζ(−n, a)yn (2.7)

where a > 0. In this expression the Hurwitz zeta function ζ(−n, a) arises from the näıve

interchange of two infinite sums in

∑
m≥0

φ((m+ a)y) ∼
näıve

∑
m≥0

∑
n≥0

bn(m+ a)nyn =
∑
n≥0

bn

∑
m≥0

(m+ a)n

 yn =
∑
n≥0

bnζ(−n, a)yn ,

(2.8)

where the m-sum is divergent and is to interpreted via analytic continuation of the Hurwitz

zeta function. As Zagier has shown the only correction needed in addition to this interchange

is given by the ‘Riemann integral term’

Iφ =

∫ ∞
0

φ(y)dy . (2.9)

This term arises from interpreting the original sum as an approximation to the Riemann integral

for small y with 1/y being the length of the integration domain. There are also extensions of (2.7)

when φ(y) is not C∞ at the origin but includes terms of the form ys log y or ys for Re s > −1,

see [1], that we shall also use later.

We want to adapt the method just outlined to the case under consideration of equation (2.6)

so first we have to consider φ(y) = Lis(e
−2πy) and compute its Taylor expansion near y = 0

given by

Lis(e
−2πy) = (2πy)s−1Γ(1− s) +

∞∑
k=0

(−2πy)k

k!
ζ(s− k) . (2.10)

Applying the method of [1], the asymptotic expansion of the Lambert series for y → 0+ is

then formally given by

Ls(y) ∼ Is
y

+

∞∑
n=1

(2πny)s−1Γ(1− s) +

∞∑
k=0

(−1)k

k!
ζ(s− k)

∞∑
n=1

(2πny)k , (2.11)

where the Riemann term Is is given by

Is =

∫ ∞
0

Lis(e
−2πy)dy =

ζ(s+ 1)

2π
, (2.12)
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for Re s > 0, although the final result will be valid for any s ∈ C. Clearly the above expression

is only formal since two non-convergent sums have been interchanged, but if one interprets∑∞
n=1(2πny)α as its analytic continuation (2πy)αζ(α) we obtain

Ls(y) ∼ ζ(s+ 1)

2πy
+ ζ(1− s)Γ(1− s)(2πy)s−1 +

∞∑
k=0

(−2πy)k

k!
ζ(−k)ζ(s− k) , (2.13)

where ∼ denotes asymptotic in the sense of Poincaré and [1] shows that the above expansion is

then the correct asymptotic expansion of the Lambert series (2.1).

Note that the Riemann integral term can be understood as the limit k → −1 of the asymp-

totic series

lim
k→−1

(−2πy)k

Γ(k + 1)
ζ(−k)ζ(s− k) =

ζ(s+ 1)

2πy
, (2.14)

hence we can rewrite (2.13) to incorporate the Riemann term into the sum and, after shifting

k → k − 1, we obtain

Ls(y) ∼ ζ(1− s)Γ(1− s)(2πy)s−1 +
∞∑
k=0

(−2πy)k−1

Γ(k)
ζ(1− k)ζ(s+ 1− k) , (2.15)

where the k = 0 term is understood as a limit. If one makes use of the relation kζ(1−k) = −Bk
for k 6= 1, where Bk is the kth Bernoulli number, we see that equation (2.15) is exactly the same

asymptotic expansion found in a different way in [7], see in particular their Theorem 2.2 after

the trivial change s→ −s and having set the authors’ variable x = 1.

Some comments are in order for the cases in which s→ m ∈ N = {0, 1, 2, . . .}. In particular

we notice two singular terms in equation (2.15), namely Γ(1 − s)ζ(1 − s)ys−1 and the k = m

term of the series, however it is fairly simple to see that the sum of these two terms has the

finite limit

lim
s→m

[
Γ(1− s)ζ(1− s)(2πy)s−1 +

(−2πy)m−1

Γ(m)
ζ(1−m)ζ(1−m+ s)

]
=
[
mζ ′(1−m)− (log(2πy)− γ − ψ(m))mζ(1−m)

] (−2πy)m−1

m!
, (2.16)

where γ is Euler–Mascheroni constant and ψ(m) = Γ′(m)/Γ(m) denotes the digamma function.

The case m = 0 has to be understood as a further limit

lim
m→0

[
mζ ′(1−m)− (log(2πy)− γ − ψ(m))mζ(1−m)

](−2πy)m−1

m!
=
γ − log(2πy)

2πy
. (2.17)

We have then the asymptotic expansions for the Lambert series (2.1) specialised to the case

s = m ∈ N∗ = {1, 2, . . .}

Lm(y) ∼
[
mζ ′(1−m)− (log(2πy)− γ − ψ(m))mζ(1−m)

](−2πy)m−1

m!

+
∞∑
k=0,
k 6=m

(−2πy)k−1

Γ(k)
ζ(1− k)ζ(1− k +m) . (2.18)
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Note that when m is an odd integer ζ(1 − k)ζ(1 − k + m) = 0 for k > m + 1 so (2.18) does

actually truncate, leading to a finite asymptotic series.

Similarly for the case s = 0 we have

L0(y) ∼ γ − log(2πy)

2πy
+
∞∑
k=0

(−2πy)k

k!
ζ(−k)2 . (2.19)

Both asymptotic series (2.18) and (2.19) match with the results of [7] obtained following a

different method.

2.2 Exponentially suppressed corrections and modular properties

We note that the asymptotic expansions (2.15), (2.18) and (2.19) can be used to numerically

compute (2.1) when q = e−2πy → 1−. However, they cannot possibly be accurate when q → 0,

the centre of the unit disk. The reason is that (2.15), (2.18) and (2.19) are only asymptotic

expansions and miss terms of the form exp(4π2/ log q) = exp(−2π/y), exponentially suppressed

in the limit y → 0+, i.e. q → 1−.

To obtain the complete transseries representation we start from (2.15) for s generic with

Re s > 0, the cases s ∈ N can be obtained as limits. We first define m = [Re s] as the integer

part of Re s, and split (2.15) into a finite sum plus an asymptotic tail

Ls(y) ∼ ζ(1− s)Γ(1− s)(2πy)s−1 +

m+1∑
k=0

(−2πy)k−1

Γ(k)
ζ(1− k)ζ(s+ 1− k) + LTs (y) , (2.20)

with the tail given by

LTs (y) =
∞∑

k=m+2

(−2πy)k−1

Γ(k)
ζ(1− k)ζ(s+ 1− k) . (2.21)

We rewrite this asymptotic series by making use of Riemann’s functional equation and by shifting

k → k +m+ 2

LTs (y) = −y
s−1

π
cos
(πs

2

) ∞∑
k=0

( y
2π

)k+m+2−s
(1 + (−1)k+m)Γ(k +m+ 2− s)

× ζ(k +m+ 2) ζ(k +m+ 2− s) . (2.22)

Using the known Dirichlet series

ζ(k + a)ζ(k) =

∞∑
n=1

σ−a(n)n−k , (2.23)

we can further simplify the asymptotic tail to

LTs (y) = −y
s−1

π
cos
(πs

2

) ∞∑
n=1

σ−s(n)
∞∑
k=0

( y

2πn

)k+m+2−s
(1+(−1)k+m)Γ(k+m+2−s) . (2.24)
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Using first the Dirichlet series to get rid of the two Riemann zeta is a crucial step1 since we have

thus obtained a very simple series where the variable y has been shifted to y → y/n with n ∈ N
and the sum over k is now amenable to standard Borel-Ecalle resummation [2, 3] which we will

now briefly review.

Given a formal asymptotic series for y → 0

f(y) =
∞∑
k=0

yk+α+1 ck Γ(k + α+ 1) , (2.25)

we can consider an auxiliary function, called the Borel transform of f(y), defined by

B(t) =
∞∑
k=0

tk+αck . (2.26)

If the series defining the Borel transform has finite radius of convergence we can make use of

the known identity

yk+α+1Γ(k + α+ 1) =

∫ ∞
0

e−t (yt)k+α y dt , (2.27)

to obtain an analytic continuation of the formal asymptotic power series f via Borel resummation

given by

Sθ [f ] (y) =

∫ ∞
0

e−tB (yt) y dt =

∫ eiθ∞

0
e
− t
yB(t)dt , (2.28)

where θ = arg y, provided that the direction of integration does not contain singularities of the

Borel transform, i.e. it is not a Stokes direction for B(t).

We can now consider the direction θ to be independent from the argument of y and the

directional Borel resummation Sθ [f ] (y) defines an analytic function in the wedge θ − π
2 <

arg y < θ + π
2 of the complex y-plane, with asymptotic expansion for y → 0 given precisely

by our starting formal power series (2.25). If the Borel transform B(t) has no singularities in

the wedge of the Borel t-plane θ1 < arg t < θ2 then Sθ2 [f ] (y) is the analytic continuation of

Sθ1 [f ] (y) on a wider wedge of the complex y-plane since they coincide on the common domain

of analyticity.

Let us apply this method to the present formal power series (2.24). We first define the Borel

transform of the series as

B(t) =
∞∑
k=0

tk+m+1−s(1 + (−1)k+m) = tm+1−s
(

1

1− t
+

(−1)m

1 + t

)
, (2.29)

and the directional Borel resummation for the tail LTs (e−y) can be written as the Laplace

transform of B(t)

Sθ
[
LTs
]

(y) = −y
s−1

π
cos
(πs

2

) ∞∑
n=1

σ−s(n)

∫ eiθ∞

0
e
− 2πnt

y B(t)dt , (2.30)

1The present discussion is very similar to [26, 27] where it was shown that one can reinterpret asymptotic

series with factorially growing coefficients “dressed” by other particular combinations of Riemann zeta functions

as series with simpler coefficients just evaluated at shifted y → y/n with n ∈ N for which it is easier to evaluate

the full non-perturbative completions.
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where θ → 0, which provides an analytic continuation of the asymptotic tail, valid in the wedge

Re y > 0 of the complex y-plane.

The function B(t) has two singular directions in the complex t-plane, arg t = 0 and arg t = π.

Let us focus on the arg t = 0 direction, which is the only relevant one for the wedge under

consideration Re y > 0, and compute the Stokes automorphism, i.e. the discontinuity across a

Stokes direction, using Cauchy’s formula

lim
θ→0+

[
Sθ
[
LTs
]

(y)− S−θ
[
LTs
]

(y)
]

= S+

[
LTs
]

(y)− S−
[
LTs
]

(y)

= −2i ys−1 cos
(πs

2

) ∞∑
n=1

σ−s(n)e
− 2πn

y , (2.31)

where we have defined the two lateral resummations S± across the Stokes direction θ = 0 via

the limit limθ→0+ S±θ = S±.

The non-vanishing of this Stokes automorphism means that our resummation (2.30) would

give rise to ambiguities in defining a unique value for the starting asymptotic series (2.24) when

y > 0; furthermore, although our asymptotic tail (2.24) is only a formal object it is nonetheless

manifestly real for y > 0 while neither of the two lateral resummations is.

To obtain a real and unambiguous resummation for y > 0 we have to consider an average

between the two lateral resummations, usually referred to as median resummation [3]:

Smed

[
LTs
]

(y) = S±
[
LTs
]

(y)± i ys−1 cos
(πs

2

) ∞∑
n=1

σ−s(n)e
− 2πn

y . (2.32)

This resummation amounts to having subtracted half of the Stokes automorphism (with sign)

from the two lateral resummations S±, in more concrete terms this is equivalent to using a prin-

cipal value prescription to compute the singular integral S0

[
LTs
]

(y). The median resummation

is clearly real and continuous as arg y → 0.

The Stokes constant cos(πs2 ) fixes the imaginary part of the transseries parameter σ, i.e. the

overall piece-wise constant (jumping only at Stokes directions) in front of the non-perturbative

terms, to Imσ = ±i cos(πs2 ). We will make the assumption [27] that the complete transseries

parameter does in fact exponentiate, this means we will work under the hypothesis that

σ = e±i
π
2

(1−s) , (2.33)

where once more the sign is correlated with the choice of resummation. We have verified the va-

lidity of this assumption by numerically evaluating both the q-series and its proposed transseries

to high numerical precision and, at the end of the derivation, we shall provide further evidences

for the correctness of our hypothesis by reproducing some well-known results in certain special

cases.

We can then provide the complete transseries expression for the Lambert series:

Ls(y) = ζ(1− s)Γ(1− s)(2πy)s−1 +

m+1∑
k=0

(−2πy)k−1

Γ(k)
ζ(1− k)ζ(s+ 1− k) (2.34)

+ S±
[
LTs
]

(y) + (∓iy)s−1
∞∑
n=1

σ−s(n)e
− 2πn

y ,
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valid in the wedge Re y > 0.

Note that the non-perturbative terms take the exact form of the Lambert series (2.3) when

we replace y → 1/y or equivalently τ → −1/τ . So for general parameter s we obtain

Ls(y) = ζ(1− s)Γ(1− s)(2πy)s−1 +
m+1∑
k=0

(−2πy)k−1

Γ(k)
ζ(1− k)ζ(s+ 1− k) (2.35)

+ S±
[
LTs
]

(y) + (∓iy)s−1Ls
(

1

y

)
,

that we verified numerically to agree with (2.1) for different values of y and s and a precision of

10−150.

If we choose the analytic continuation given by the lateral resummation S− we can rewrite

equation (2.34) to produce a quasi-modular S-transformation replacing y = −iτ

Ls(τ)− τ s−1Ls
(
−1

τ

)
= ζ(1− s)Γ(1− s)(−2πiτ)s−1 +

m+1∑
k=0

(2πiτ)k−1

Γ(k)
ζ(1− k)ζ(s+ 1− k)

+ S−
[
LTs
]

(τ) . (2.36)

Note that we used the lateral resummation S− defined above but we could have used the di-

rectional resummation Sθ along any direction −π < θ < 0 since all these analytic continuation

coincide on their common domain of analyticity. The modular weight of Ls(τ) is 1− s and we

see that for general s ∈ C the right-hand side can be understood as the modularity gap for

Ls(τ), given by a perturbative finite degree Laurent polynomial plus the function S−
[
LTs
]

(τ)

which is analytic in Im τ > 0 with a branch cut along R− as one can easily see from (2.30). We

have checked that our modularity gap reproduces precisely the same result as [5].

It is worth emphasising that firstly the non-perturbative terms are captured completely by

the asymptotic perturbative data and secondly they can be rewritten precisely in terms of the

original Lambert series by simply changing τ → −1/τ .

Had we chosen the analytic continuation given by the lateral resummation S+ we can rewrite

equation (2.34) to produce a quasi-modular (−S)-transformation

Ls(τ)− (−τ)s−1Ls
(
−1

τ

)
= ζ(1− s)Γ(1− s)(−2πiτ)s−1 +

m+1∑
k=0

(2πiτ)k−1

Γ(k)
ζ(1− k)ζ(s+ 1− k)

+ S+

[
LTs
]

(τ) . (2.37)

Again we used the lateral resummation S+ but we could have used the directional resummation

Sθ along any direction 0 < θ < π as explained above, and the function S+

[
LTs
]

(τ) we obtain is

analytic in Im τ > 0 with a branch cut along R+ as one can easily see from (2.30).

It is interesting to notice that the two elements S =
(

0 −1
1 0

)
and −S are both in SL2(Z)

but their action on τ is the same since they correspond to the same element in PSL2(Z), i.e.

S · τ = −S · τ = −1/τ . Using the slash operator notation (f |sγ)(τ) = (cτ + d)−sf(aτ+b
cτ+d) where

γ =
(
a b
c d

)
∈ SL2(Z) we see from equations (2.36) and (2.37) that in general we have

Ls(τ)−
(
Ls
∣∣∣
1−s

S
)

(τ) 6= Ls(τ)−
(
Ls
∣∣∣
1−s

(−S)
)

(τ) , (2.38)
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this means that S and −S act differently on Ls(τ) for s ∈ C generic. The reason is that for

generic s ∈ C the modularity gap is not a single-valued function. From equation (2.36) we see

that an S transformation has automorphy factor τ s−1 while the modularity gap contains the

function S−
[
LTs
]

(τ) which is a multi-valued function on the complex τ plane. Similarly if we

perform the transformation −S, the automorphy factor is now (−τ)s−1 while the modularity

gap contains the multi-valued function S+

[
LTs
]

(τ).

To summarise, the two different ways to resum the transseries (2.35) using the two lateral

resummations correspond precisely to the two different actions of S and −S on Ls(τ) which for

generic s ∈ C do not project to an action of PSL2(Z) on Ls(τ) because of the multi-valuedness

of both the automorphy factor and the modularity gap. We will shortly see that Ls(τ) will be

a genuine quasi-modular form with a proper action of PSL2(Z) only when s is an odd integer.

If the parameter s becomes an integer we can simplify the general transseries (2.35) even

further. Let us suppose that s = m ∈ N is an odd integer. In this case the directional Borel

transform (2.30) does actually vanish because of the cos(πs/2) factor, hence the transseries

(2.35) simplifies to

Lm(y) =
[
mζ ′(1−m) + δm,1 log(

√
2πy)

] (−2πy)m−1

m!
(2.39)

+

m+1∑
k=0,
k 6=m

(−2πy)k−1

Γ(k)
ζ(1− k)ζ(1− k +m) + (−1)

m−1
2 ym−1Lm

(
1

y

)
,

where we used (2.18). Note that the first two lines reproduce exactly the asymptotic expansion

discussed in [7], and we have checked numerically that with the addition of this infinitely many

exponentially suppressed term (2.39) coincides with (2.1) within the numerical precision of

10−150 used. We will shortly show that for m = 1 the proposed non-perturbative terms are

crucial and we can prove that (2.39) is exact in this case.

Replacing y = −iτ the above equation gives us the quasi-modularity properties of Lm(τ) for

odd integral m:

Lm(τ)− τm−1Lm
(
−1

τ

)
=
[
mζ ′(1−m) + δm,1 log(

√
−2πiτ)

] (2πiτ)m−1

m!
(2.40)

+

m+1∑
k=0,
k 6=m

(2πiτ)k−1

Γ(k)
ζ(1− k)ζ(1− k +m) .

The function Lm(τ) is quasi-modular with weight 1−m and modularity gap given by a Taylor–

Laurent polynomial in τ plus possibly a logarithmic term in the case m = 1.

A comment is in order at this point. We see that for Lm(τ) with odd integral m both

the asymptotic tail (2.22) and the Stokes automorphism (2.31), related to the non-perturbative

terms, seem to vanish, however our hypothesis that the transseries parameter exponentiates to

σ = e±i
π
2

(1−m) is now crucial. This is an example of Cheshire-cat resurgence [4,28,29] for which

the non-perturbative terms are still present in transseries expansion for the Lambert series Ls(τ)

10



in the limit s → m odd integral despite the vanishing of the asymptotic tail. This analysis is

very similar to what we have observed in [27] in the context of modular graph functions.

When s = m ∈ N is instead an even integer we see that the transseries parameter (∓i)m−1 =

∓im−1 is purely imaginary and its only purpose is to cancel the residue at t = 1 of the directional

Borel transform (2.30) when θ → 0±. This is equivalent to a Cauchy principal value prescription

for the integral (2.30) when θ = 0, hence for s = m even we can write (2.35) as

Lm(y) =
[
mζ ′(1−m)− (log(2πy)− γ − ψ(m))mζ(1−m)

] (−2πy)m−1

m!

+

m+1∑
k=0,
k 6=m

(−2πy)k−1

Γ(k)
ζ(1− k)ζ(1− k +m) (2.41)

− (−1)m/2
ym−1

π

∞∑
n=1

σ−m(n) p.v.

∫ ∞
0

e
− 2πnt

y B(t) dt ,

where the perturbative part for the m = 0 case has to be understood as a further limit as

discussed around equation (2.19).

We can evaluate the principal value integral of the Laplace transform of (2.29) in terms of

exponential integral functions Ei and obtain

Lm(y) =
[
mζ ′(1−m)− (log(2πy)− γ − ψ(m))mζ(1−m)

] (−2πy)m−1

m!
(2.42)

+
m+1∑
k=0,
k 6=m

(−2πy)k−1

Γ(k)
ζ(1− k)ζ(1− k +m)

− (−1)m/2
ym−1

π

∞∑
n=1

σ−m(n)

[
e

2πn
y Ei

(
−2πn

y

)
+ e
− 2πn

y Ei

(
2πn

y

)]
.

While we have verified that this formula is numerically correct, it is not the most numerically

efficient way of evaluating the Lambert series inside the unit disk. For good numerics it is better

to use Borel–Padé approximants applied directly to the tail (2.22) without using the Dirichlet

series formula (2.23) to rewrite the coefficients.

2.3 An application to Eisenstein series

In this section we want to revisit the well-known case of holomorphic Eisenstein series in our

formalism to provide further consistency checks that the transseries proposed is indeed the

correct one.
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The generating function for the divisor function (2.3) is closely related to the holomorphic

Eisenstein series

G2n(τ) =
∑

(c,d)6=(0,0)

1

(c+ dτ)2n
= 2ζ(2n) +

2(2πi)2n

(2n− 1)!

∞∑
m=1

σ2n−1(m)qm

= 2ζ(2n) +G0
2n(τ) = 2ζ(2n)

(
1 +

2

ζ(1− 2n)

∞∑
m=1

σ2n−1(m)qm

)
, (2.43)

= 2ζ(2n)

(
1 +

2

ζ(1− 2n)
L1−2n(q)

)
.

for q = e2πiτ and n ∈ N with n ≥ 1. Here, we have defined the q-series G0
2n(τ) that equals

G2n(τ) with the constant term removed.

As discussed at the beginning of section 2, we can obtain the transseries expansion for

L−s(q) by applying the fractional derivative operator (q∂q)
s to Ls(q) for which we have already

computed (2.35). In particular for the present discussion, we are interested in the case where

s = m is an odd positive integer, so it is fairly simple to apply the standard differential operator

(q∂q)
m to the transseries (2.39) to obtain

L−m(y) =
ζ(1 +m)Γ(1 +m)

(2πy)m+1
+
ζ(1−m)

2πy
+ ζ(0)ζ(−m) + (−1)

m+1
2 y−m−1L−m

(
1

y

)
, (2.44)

where we notice that the second term is present only for m = 1 and vanishes otherwise due to

ζ(1−m) being evaluated at a negative even number.

From equation (2.43) we can easily obtain the transseries expansion for all the Eisenstein

series from the above equation upon setting m = 2n− 1 and y = −iτ . For example we have

G2(τ) =
π2

3
(1− 24L−1(τ)) (2.45)

=
π2

3

[
1− 24

(
1

24
− i

4πτ
− 1

24τ2
+ τ−2L−1

(
−1

τ

))]
,

where we used (2.44) with m = 1. We see that our proposed non-perturbative corrections

correctly reproduce the quasi-modularity properties of G2. We can in fact rewrite L−1(τ) back

in terms of G2(−1/τ) in the above equation to obtain

G2(τ) = τ−2G2

(
−1

τ

)
+

2πi

τ
, (2.46)

which is a standard result in the theory of modular functions, see for example the classic [30].

Note that in the present case, using equations (A.3), (A.4) and (2.45), we have that the

relation q∂qL1(q) = L−1(q) is exactly equivalent to:

− 4πi
d

dτ
η(τ) = G2(τ) , (2.47)

yet another well known identity [30]. Using the same method one can obtain similar known

differential identities for holomorphic Eisenstein series.
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Similarly it is simple to see that for n > 1 equation (2.43) combined with the transseries

(2.44) at m = 2n− 1 reduces to

G2n(τ) = 2ζ(2n)

(
1 +

2

ζ(1− 2n)
L1−2n(τ)

)
(2.48)

= 2ζ(2n)

[
1 +

2

ζ(1− 2n)

(
ζ(2n)Γ(2n)

(−2πiτ)2n
+ ζ(0)ζ(1− 2n) + (−1)n(−iτ)−2nL1−2n

(
−1

τ

))]
= τ−2n 2ζ(2n)

[
1 +

2

ζ(1− 2n)
L1−2n

(
−1

τ

)]
= τ−2nG2n

(
−1

τ

)
,

where we made use of Riemann’s functional equation to rewrite the first term in parenthesis

and used ζ(0) = −1/2 to cancel the constant term. The non-perturbative terms we propose are

crucial and the above equation manifestly shows the modular properties of the Eisenstein series

as modular forms of weight 2n, i.e. G2n(τ) = τ−2nG2n(−1/τ) valid for n > 1.

2.4 Expansions around other roots of unity

The method described by Zagier in [1] and discussed in the present paper below equation (2.7)

allows us to extract also the asymptotic expansion of (2.1) for q approaching any rational root

of unity from within the unit circle.

Let us consider q = e−2πy+2πip/c where y ∈ R+ and p, c ∈ N co-prime, i.e. (c, p) = 1. From

the physics point of view we can interpret this setup as an expansion in a background with

non-zero topological angle θ = 2πp/c and inverse coupling constant 1/g = 2πy. In particular

an expansion at a different cusp for instantons in string theory in the context of R4 curvature

corrections has been considered in [31]. We stress that our final results will only apply to the

case when c is a prime number but we postpone imposing this restrictions for the moment.

To obtain an asymptotic expansion for y → 0+ we make use of the representation for the

Lambert series given in (2.3) in terms of polylogarithms and rewrite the sum into congruence

classes modulo c

Ls
(
y − i p

c

)
=

c∑
h=1

∞∑
n=0

Lis(e
−2π(n+h̃)ỹ θhp) , (2.49)

where we defined h̃ = h/c, ỹ = cy and θ = exp(2πi/c). This analysis is similar to the one carried

out in [27].

As discussed at the beginning of section 2.1 in [1] an asymptotic expansion is derived for

series of the form
∑

n≥0 φ((n + h̃)ỹ) which, for φ(ỹ) = Lis(e
−2πỹθhp), is precisely of the form

(2.49) just presented. Similarly to what we have seen above we only need the Taylor expansion

for Lis(e
−2πỹθhp) near y = 0. However the case h = c has a slightly different expansion, see

equation (2.10), from the h 6= c cases, so we prefer to split the sum over h in (2.49) into the

1 ≤ h ≤ c− 1 sum and the h = c term which gives exactly the same series discussed above (2.6)

with shifted parameter y → ỹ = cy.

Hence using [1] we have

Ls
(
y − i p

c

)
= Ls(cy) +

∞∑
k=0

(−2πcy)k−1

Γ(k)

c−1∑
h=1

ζ

(
1− k, h

c

)
Lis+1−k

(
e2πihp

c

)
. (2.50)
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Before embarking on the general analysis, we make a few observations on a special case. The

case c = 2, p = 1, i.e. q → −1, is the simplest to discuss because in this instance we can make

use of the identities

ζ

(
k,

1

2

)
= (2k − 1)ζ(k) ,

Lis (−1) = (21−s − 1)ζ(s) ,

so that equation (2.50) becomes

Ls
(
y − i

2

)
= 2(1 + 2−s)Ls(2y)− Ls(y)− 21−sLs(4y) , (2.51)

or in terms of q variable

Ls(−q) = 2(1 + 2−s)Ls(q2)− Ls(q)− 21−sLs(q4) . (2.52)

Of particular interest is the s = 1 example discussed above, for which we have the relation

L1(−q) = 3L1(q2)− L1(q)− L1(q4) , (2.53)

which, due to equations (A.3)–(A.4), can be rewritten in terms of the Dedekind eta function

using q = e2πiτ and it becomes

η

(
τ +

1

2

)
= e

iπ
24

η(2τ)3

η(τ)η(4τ)
, (2.54)

a known identity for this modular function [30].

We can obtain similar relations for Re s < 0. In particular for s = −m with m ∈ N we have

L−m(−q) = 2(1 + 2m)L−m(q2)− L−m(q)− 21+mL−m(q4) . (2.55)

which thanks to equations (2.45)–(2.48) can be rewritten in terms of the Eisenstein series when

the integer m = 2n− 1 is odd:

G2n

(
τ +

1

2

)
= (2 + 4n)G2n(2τ)−G2n(τ)− 4nG2n(4τ) , (2.56)

and once more q = e2πiτ . This identity can also be derived from (2.3) making use of the

multiplicative property of the divisor function and equation (B.9) and it is a special case of a

more general identity that we derive below in (2.76), where we also also explain the relation to

Hecke operators.

We return now to the study of the general case (2.50). Starting from

Ls
(
y − i p

c

)
= Ls(cy) +

∞∑
k=0

(−2πcy)k−1

Γ(k)

c−1∑
h=1

ζ

(
1− k, h

c

)
Lis+1−k

(
e2πihp

c

)
, (2.57)
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first we want to rewrite the polylogarithm and Hurwitz zeta functions in the functionally reflected

form. To this end we make use of

Lis+1−k

(
e2πihp

c

)
=

Γ(k − s)
(2π)k−s

[
ie−i

π
2

(s+1−k)ζ(k − s, h̄
c

)− iei
π
2

(s+1−k)ζ(k − s, 1− h̄

c
)

]
, (2.58)

where we defined h̄ ≡ phmod c and h̄ ∈ {1, ..., c− 1}, alternatively h ≡ p−1h̄mod c with p−1 the

multiplicative inverse of p modulo c. Similarly we have

ζ

(
1− k, h

c

)
=

2Γ(k)

(2πc)k

c∑
l=1

ζ

(
k,
l

c

)
cos

(
πk

2
− 2π

hl

c

)
(2.59)

=
2Γ(k)

(2πc)k

c∑
l=1

ζ

(
k,
l

c

)
cos

(
πk

2
− 2π

h̄lp−1

c

)
.

Hence we can write

c−1∑
h=1

ζ

(
1− k, h

c

)
Lis+1−k

(
e2πihp

c

)
=

2Γ(k)Γ(k − s)
(2π)2k−sck

c−1∑
h̄=1

c∑
l=1

ζ

(
k,
l

c

)
ζ

(
k − s, h̄

c

)
(2.60)

×
[
e2πi h̄lp

−1

c cos
(πs

2

)
+ e−2πi h̄lp

−1

c cos

(
π(s− 2k)

2

)]
,

where we rewrote ζ(k − s, 1 − h̄
c ) changing summation variable h̄ → c − h̄. Note that this

expression is manifestly vanishing for k ≥ s+ 2 when s is an odd integer.

We then obtain the following truncating perturbative expansion for (2.50) when s is an odd

integer2

LP
s

(
y − i p

c

)
= −(cy)s−1

π

s+1∑
k=0

(−1)k
( cy

2π

)k−s
Γ(k − s) (2.61)

×

[
ζ(k)ζ(k − s)(c−s − c−k + 1)

(
cos
(πs

2

)
+ cos

(
π(s− 2k)

2

))

+ c−k
c−1∑
h̄,l=1

ζ

(
k,
l

c

)
ζ

(
k − s, h̄

c

)(
e2πi h̄lp

−1

c cos
(πs

2

)
+ e−2πi h̄lp

−1

c cos

(
π(s−2k)

2

))]
.

The terms c−s− c−k come from the l = c term in the sum, while the +1 next to them comes

from the Ls(cy) term in (2.57) whose perturbative expansion we have already computed. For

example we have

L3

(
y − i

3

)
=

π3

14580y
+

2iπ3

243
− ζ(3)

2
+

11π3y

108
+
y2(−4πiπ3 − 243ζ(3))

54
+
π3y3

180
, (2.62)

L3

(
y − 2i

3

)
= L3

(
y − i

3

)
.

2While it is not obvious from this expression, the final perturbative asymptotic piece only contains single

Riemann zeta values and no Hurwitz zeta values. This follows from the fact that we can in principle obtain the

expansion at any rational root of unity by an SL2(Z) transformation of the expansion at q = 1 which we showed

above to contain only Riemann zeta values.
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As a check we can see that the only singular term in y in (2.61) comes from the k = 0 term

which can be simplified dramatically to

LP
s

(
y − i p

c

)
=
ζ(s+ 1)

2πcs+1y
, (2.63)

exactly as already derived in a completely different way in [6].

We will focus now on the asymptotic tail which exists for s not an odd integer. Apart from

the k = 1 term that has to be understood as a limit, we can set k to be an integer and we can

rewrite the expression (2.60) as

c−1∑
h=1

ζ

(
1− k, h

c

)
Lis+1−k

(
e2πihp

c

)
=

2Γ(k)Γ(k − s)
(2π)2k−sck

c−1∑
h̄=1

c∑
l=1

ζ

(
k,
l

c

)
ζ

(
k − s, h̄

c

)
(2.64)

× cos
(πs

2

)[
e2πi h̄lp

−1

c + (−1)ke−2πi h̄lp
−1

c

]
.

Isolating the l = c term in the above expression we have

c−1∑
h̄=1

ζ (k, 1) ζ

(
k − s, h̄

c

)
cos
(πs

2

) [
1 + (−1)k

]
= ζ(k)ζ(k − s)(ck−s − 1)(1 + (−1)k) , (2.65)

hence we are left with studying sums of the form

c−1∑
h̄=1

c−1∑
l=1

ζ

(
k,
l

c

)
ζ

(
k − s, h̄

c

)
e±2πi h̄lp

−1

c . (2.66)

As we show in appendix B, such expressions can be evaluated in terms of Dirichlet characters

for the finite group Z/(cZ) and we assume from now on that c is a prime number.

The final result can be expressed via

χ±(N) = e±2πi p
−1N
c χ0(N) , (2.67)

where the character χ0(N) is equal to 0 when N ≡ 0 mod c and 1 otherwise. In terms of these

we have (cf. (B.6))

c−1∑
h̄=1

c−1∑
l=1

ζ

(
k,
l

c

)
ζ

(
k − s, h̄

c

)
e±2πi h̄lp

−1

c =
∑
N≥1

σ−s(N) c2k−s

Nk−s χ±(N) (2.68)

The resulting tail is then given by

LTs
(
y−i p

c

)
= −

(cy)s−1 cos
(
πs
2

)
π

∞∑
k=s+2

( cy
2π

)k−s
(2.69)

×
∑
N≥0

σ−s(N)

Nk−s

[
ck−s

(
χ−(N) + (−1)kχ+(N)

)
+
(

1 + c−s − c−sc−(k−s)
)

(1 + (−1)k)
]
,
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which is very reminiscent of the asymptotic tail (2.24) found previously. We stress that this

formula is only valid for c a prime number.

We can apply the same technique of Borel resummation as performed above, noticing that the

alternating terms (−1)k in the asymptotic tail will produce singularities of the Borel transform

along the negative real axis, hence irrelevant for our discussion of a non-perturbative completion.

As previously argued we will assume that the transseries parameter does indeed exponentiate

and we obtain for the non-perturbative terms

LNP
s

(
y − i p

c

)
=
(
ic2y

)s−1
c1−s

( ∞∑
N=1

σ−s(N)χ−(N)e
−2π N

c2y

)

+ (icy)s−1 (1 + c−s)Ls
(

1

cy

)
− (iy)s−1c−1Ls

(
1

y

)
= (icy)s−1Ls

(
1

c2y
+ i

p−1

c

)
, (2.70)

where we have used the simplification (B.8) derived in the appendix, and again we have picked

the sign for the transseries parameter corresponding to the lateral resummation S− for the

asymptotic perturbative series (2.61) as previously discussed in section 2.2.

Note that (2.70) is exactly the expected transformation for a modular form of weight 1− s.
The modular parameter we started with is τ = iy + p

c and in the limit y → 0+ it approaches a

rational point on the real line which is conjugate, via an SL2(Z) transformation, to the cusp at

τ → i∞. We just need considering the SL2(Z) matrix

γ =

(
−N −M
c −p

)
, (2.71)

with N,M ∈ Z such that Np+Mc = 1, which is possible since (p, c) = 1. With this choice of γ

we have that γ · τ = i
c2y
− N

c and it is obvious that N ≡ p−1 mod c. Using once more the slash

operator notation we would have that a modular form of weight 1− s would transform as(
f |1−sγ

)
(τ) = (icy)s−1f(γ · τ) = (icy)s−1f

(
i

c2y
− p−1

c

)
(2.72)

precisely as the above non-perturbative completion.

We also observe that if we consider an average over the non-trivial cth roots of unity

c−1∑
p=1

Ls
(
y − i p

c

)
(2.73)

we have that the term χ−(N) in (2.70) simply contributes as −1 because of the sum over roots

of unity which leads to

c−1∑
p=1

LNP
s

(
y − i p

c

)
=− c1−s (ic2y

)s−1 Ls
(

1

c2y

)
+ c(1 + c−s) (icy)s−1 Ls

(
1

cy

)
− (iy)s−1Ls

(
1

y

)
.
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Furthermore it is simple to see that, with the use of (2.60), the sum over non-trivial roots of

(2.57) simplifies dramatically the perturbative expansion (2.61) reducing it to a simple linear

combination of our initial perturbative asymptotic series (2.13)

c−1∑
p=1

LP
s

(
y − i p

c

)
= −c1−sLP

s

(
c2y
)

+ c(1 + c−s)LP
s (cy)− LP

s (y) . (2.74)

Finally we see that each perturbative term combines with a non-perturbative one allowing

us to use our complete transseries form (2.35), so that for prime c we are left with

c−1∑
p=0

Ls
(
y − i p

c

)
= −c1−sLs(c2y) + c(1 + c−s)Ls(cy) , (2.75)

which reduces to the special case (2.52) for c = 2. This equation can also be derived directly

from the q-series expansion by using properties of the divisor function for prime c.

When specialised again to the case s = 1− 2n with n ∈ N we can use (2.45)–(2.48) and the

above identity becomes

c−1∑
p=0

G2n

(
τ +

p

c

)
= −c2nG2n(c2τ) + (c+ c2n)G2n(cτ) , (2.76)

valid for c a prime number and generalization of (2.56). This identity can be understood by

recalling that the holomorphic Eisenstein series are eigenfunctions of the Hecke operators Tm
acting on holomorphic modular forms of weight k by [30, Chap. 6]

(Tmf)(τ) = mk−1
∑
d|m

d−k
d−1∑
p=0

f

(
mτ + pd

d2

)
. (2.77)

For the case of f = G2n evaluated at argument cτ and the Hecke operator Tc with c prime we

have

(TcG2n)(cτ) = c2n−1G2n(c2τ) + c−1
c−1∑
p=0

G2n

(
τ +

p

c

)
= σ2n−1(c)G2n(cτ) = (1 + c2n−1)G2n(cτ) , (2.78)

where the second line uses the known Hecke eigenvalue σ2n−1(c) of G2n. This last equation is

equivalent to (2.76). The Hecke algebra allows obtaining relations similar to (2.76) for Eisenstein

series in the case when c is not prime.

We note that the general Lambert series Ls defined in (2.3) is an eigenfunction of the Hecke

operators as the divisor sum satisfies the requisite property∑
d|n,m

d−sσ−s

(mn
d2

)
= σ−s(m)σ−s(n) (2.79)
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for any s and m,n > 0. The constraint on the sum is that d has to be a divisor of both m and

n, i.e. a divisor of gcd(m,n). The Hecke eigenvalues are

TnLs = σ−s(n)Ls , (2.80)

and our Lambert series is clearly Hecke normalised, i.e. the coefficient a1 in front of the q1 term

in the q-series expansion (2.3) is simply a1 = 1. This could also be used to obtain expansions of

Ls around roots of unity when c is not prime. One does not require exact modularity of Ls for

this, the almost modular transformation with weight k = 1− s is sufficient.

3 Generalised iterated Eisenstein integrals

We now return to the study of the more general q-series

Sα,β(q) =
∑
n,m≥1

n−αm−βqnm , (3.1)

for which clearly we have Sα,β(q) = Sβ,α(q). This series converges absolutely for all α, β ∈ C
provided |q| < 1.

Similar to the treatment for Lambert series it is very simple to show the following identities

Sα,β(q) =
∑
N≥1

σα−β(N)

Nα
qN =

∑
N≥1

σβ−α(N)

Nβ
qN (3.2)

=
∑
n≥1

n−αLiβ(qn) =
∑
m≥1

m−βLiα(qm)

= (q∂q)
−αLβ−α(q) = (q∂q)−βLα−β(q) ,

where again the operator (q∂q)
−α is to be thought of as a fractional derivative or fractional

integral operator, depending on the sign of α. (Similarly for (q∂q)
−β.) Furthermore we also

have q∂qSα,β = Sα−1,β−1 which will be useful later on.

Once more we will make use of [1] and, as discussed at the beginning of section 2.1, we

change variable q = e−2πy and rewrite

Sα,β(y) = yα
∑
n≥1

(ny)−αLiβ(e−2πny) = yα
∑
n≥1

φα,β(ny) , (3.3)

where φα,β(y) = y−αLiβ(e−2πy).

Proceeding as we did before we first obtain, using (2.10), the expansion of φα,β(y) near y = 0

φα,β(y) ∼ (2π)β−1yβ−α−1Γ(1− β) +

∞∑
k=0

(−2π)kyk−α

k!
ζ(β − k) , (3.4)

while the Riemann term is given by

Iα,β =

∫ ∞
0

φα,β(y)dy = (2π)α−1Γ(1− α)ζ(β − α+ 1) . (3.5)
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Note that this integral is convergent only for Reα < 1 ≤ Reβ or Reα < Reβ < 1, however the

asymptotic expansion we will derive will actually be valid for all α, β ∈ C. The reason is that

for the integral Iα,β to be divergent, φα,β(y) must have non-integrable singularities y−s with

Re s ≥ 1 at the origin but these singular terms can be treated separately, see [1], and we can

view the expression above as the correct analytic continuation valid also outside the domain of

convergence of the integral as a function of α and β.

Proceeding with the method described in [1] we have the asymptotic expansion

∑
n≥1

φα,β(ny) ∼
Iα,β
y

+ (2π)β−1Γ(1− β)

∞∑
n=1

(ny)β−α−1 +

∞∑
k=0

(−2π)kζ(β − k)

k!

∞∑
n=1

(ny)k−α (3.6)

which we analytically continue to derive the asymptotic expansion for Sα,β(q) when q = e−2πy

and y → 0+:

Sα,β(q) ∼ Γ(1− α)ζ(β − α+ 1)(2πy)α−1 + Γ(1− β)ζ(α− β + 1)(2πy)β−1 (3.7)

+
∞∑
k=0

(−2πy)k

k!
ζ(α− k)ζ(β − k) ,

which is manifestly symmetric in α↔ β.

Note that for generic α, β ∈ C the above expression — although completely regular — is

actually a factorially divergent asymptotic series, furthermore when α and/or β become integers

(2.1) or when α → β we have that various terms appear to be singular, however by taking

the appropriate limits, as discussed previously in section 2.1, we can always obtain a perfectly

regular, asymptotic power series which only in special circumstances will be truncating as we

will shortly see.

3.1 Iterated Eisenstein integrals

As we have seen in (2.43), the Lambert series Lβ−α(q) for β − α = 1 − 2n with n ∈ N is very

closely related to holomorphic Eisenstein series without the constant term. More precisely, we

have for the holomorphic Eisenstein series G2n(q) without constant term denoted by G0
2n(q)

in (2.43) that

G0
2n(q) = G2n(q)− 2ζ(2n) =

4ζ(2n)

ζ(1− 2n)
L1−2n(q) . (3.8)

Consider then a fixed β −α = 1− 2n and a non-negative integer α. Then (3.2) shows that Sα,β
leads to β-fold integral of G0

2n, i.e. an iterated Eisenstein integral of the type studied in the

literature. To make this connection more precise, we use the notation of [13] and define

E0(k1, . . . , kr; τ) = (−1)r
∫

0≤q1≤···≤qr≤q
dlog q1 · · · dlog qr

G0
k1

(q1)

(2πi)k1
· · ·

G0
kr

(qr)

(2πi)kr
, (3.9)

where the ki are integers in the set {0, 4, 6, 8, . . .} and by convention G0
0 = −1. The number

of non-zero ki is called the depth of the iterated integral. In the present work we shall only
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encounter iterated integrals of depth one, i.e., there is only one non-trivial G0
k but it can be

integrated many times. The definition (3.9) excludes the case k = 2, corresponding to the non-

modular Eisenstein series G2 however our analysis can be used to obtain expressions for iterated

integrals also of G2. The general q-series expansion of the iterated integral (3.9) can be found

in [13, Eq. (2.21)].

Our q-series are related to the iterated integrals (3.9) by

E0(α− β + 1, 0α−1; τ) = −
2Sα,β(q)

(α− β)!
, (3.10)

where we assume that α− β+ 1 = 2n and α is a non-negative integer forcing β to be an integer

as well, while 0α−1 is a shorthand notation for α − 1 successive zeros. In this formula we have

also taken without loss of generality α ≥ β. Special cases are

E0(k, 0−1; τ) = −2L1−k(τ)

(k − 1)!
, (3.11)

E0(k, 0k−2; τ) = −2Lk−1(τ)

(k − 1)!
,

with k ≥ 2 even integer.

Note that in the present work we are following the convention for iterated integrals given

in [13]. The integrals (3.9) under consideration can be written as linear combinations of powers

of τ and the objects:

G

[
j1 j2 ... jr
k1 k2 ... kr

; τ

]
=

i∞∫
τ

τ jrr Gkr(τr)dτr

i∞∫
τr

τ
jr−1

r−1 Gkr−1(τr−1)dτr−1 ...

i∞∫
τ2

τ j11 Gk1(τ1)dτ1 , (3.12)

where again ki are even positive integers and ji are non-negative integers.

The theory of iterated integrals (3.12) was developed by Brown in [8]. As thoroughly ex-

plained in [13] one can easily convert Brown’s integrals (3.12) to (3.9) however in the present

work we will only be working with depth one iterated integrals for which we have

(2πi)p+1−k

p!
G

[
p

k
; τ

]
=

p∑
a=0

(−1)a

(p− a)!
(2πiτ)p−aE0(k, 0a; τ)− 2ζ(k)

(2πi)k
(2πiτ)p+1

(p+ 1)!
, (3.13)

or the inverse relation:

E0(k, 0p; τ) =
(2πi)p+1−k

p!

p∑
a=0

(−1)a
(
p

a

)
τp−a G

[
a

k
; τ

]
+

2ζ(k)

(2πi)k
(2πiτ)p+1

(p+ 1)!
(3.14)

=
(2πi)p+1−k

p!

∫ i∞

τ
(τ − τ1)pGk(τ1)dτ1 +

2ζ(k)

(2πi)k
(2πiτ)p+1

(p+ 1)!
.

The endpoint divergences at the cusp τ → i∞ of the above integrals have to be understood

in the sense of tangential-basepoint prescription as described in [8], in practice for the present

case this simply amounts to the prescription
∫ i∞
τ τp1 dτ1 = −τp+1/(p+ 1).
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3.2 Laurent polynomials of iterated Eisenstein integrals

We will first be interested in iterated integrals E0(k, 0k−2−`; τ) which means α = k − ` − 1 and

β = −` with k ≥ 2 even and ` ∈ Z, i.e.

E0(k, 0k−2−`; τ) = −
2Sk−`−1,−`(q)

(k − 1)!
. (3.15)

Since k is even α and β have opposite parity. The cases (3.11) correspond to two special values

for `, namely ` = 0 and ` = k − 1. The case ` = 0 corresponds precisely to the quasi-modular

objects Lk−1(τ) studied above in section 2, while ` = k− 1 corresponds directly to the modular

Eisenstein series G0
k(τ), see (3.8).3

When α and β have opposite parity and are related to k as above, the asymptotic series (3.7)

actually truncates after n ≥ α + 1. Note furthermore that the first two terms can be singular

for α, β tending to integers, however, in this limit they are precisely compensated by the terms

with the same powers of y coming from the series, i.e. the n = α−1 and n = β−1 terms, which

are also singular to produce a finite result.

For example, we obtain the following asymptotic expansions

E0(4, 0, 0; τ) = − 2

3!
S3,0(q) = − 2

3!
L3(q) ∼ − 2

3!

(
π3

180y
− ζ(3)

2
+
π3y

36
− ζ(3)y2

2
+
π3y3

180

)
,

E0(4, 0; τ) = − 2

3!
S2,−1(q) = − 2

3!
(q∂q)L3(q)

∼ − 2

3!× (−2π)

(
− π3

180y2
+
π3

36
− ζ(3)y +

π3y2

60

)
, (3.16)

E0(4, 0, 0, 0; τ) = − 2

3!
S4,1(q) = − 2

3!
(q∂q)

−1L3(q)

∼ −2× (−2π)

3!

(
π3 log(2πy)

180
− ζ ′(4)

2π
− ζ(3)y

2
+
π3y2

72
− ζ(3)y3

6
+
π3y4

720

)
,

E0(4, 0, 0, 0, 0; τ) = − 2

3!
S5,2(q) = − 2

3!
(q∂q)

−2L3(q)

∼ −2× (−2π)2

3!

(
π3y log(2πy)

180
+
ζ(5)

24
− π3y

180
− ζ ′(4)

2π
y − ζ(3)y2

4
+
π3y3

216

− ζ(3)y4

24
+
π3y5

3600

)
.

We will refer to these as (holomorphic) Laurent polynomials of iterated integrals and the par-

ticular cases above have already been given in the literature [10, 11, 13, 23]. The novelty of our

approach is reflected for example in the constant ζ ′(4) term present in the E0(4, 0, 0, 0; τ) expan-

sion, while everything else could have been derived either by differentiation or integration from

the Lambert series L3(q) studied above. This term is an integration constant that is difficult to

determine in the approach of [13] which relies on the Cauchy–Riemann equation satisfied by the

iterated integral.

3Our formulas will also provide generalisations of (3.9) since in principle the parameters α and β need not be

integers so that a direct interpretation of (3.2) as a bona-fide iterated integral is unavailable.
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An example of such a Cauchy–Riemann equation following from the definition (3.9) is

∂τE0(4, 0, 0, 0; τ) = 2πiE0(4, 0, 0; τ) (3.17)

and integrating this directly as a holomorphic function requires fixing one integration constant

which can be fixed by studying the modular behaviour.4 Here it follows directly from a limit

of our general formula (3.7). Had we studied E0(6, 05; τ) we would have found ζ ′(6) appearing

and so on. The particular coefficient ζ ′(4) plays a rôle in the one-loop four-point amplitude

of the open superstring [32, Eq. (4.22)]. It is easy to generate the integration constants in

E0(4, 02+`; τ) = − 2
3!(q∂q)

−`L3(q) for any ` > 0 and the cases ` = 1 and ` = 2 are shown

in (3.16). Doing this one finds that the transcendentality of the integration constant is 3 + ` as

can be seen from the general formula (3.7).

3.3 Transseries completion and modular properties

From the asymptotic expansion (3.7) it is simple to derive the non-perturbative corrections

following the same line of reasoning as the one applied to the Lambert series in section 2.2.

Using the functional equation for the Riemann zeta functions we arrive at

STα,β(q) = −(2π)βyα−1

π

∞∑
n=1

σβ−α(n)

∞∑
k=0

( y

2πn

)k+1−α Γ(k + 1− α)Γ(k + 1− β)

Γ(k + 1)
(3.18)[

cos

(
π(α+ β)

2

)
− (−1)k cos

(
π(α− β)

2

)]
,

which for β = 0 and α = s reduces precisely to the Lambert case (2.24). We stress again that for

α, β integers of opposite parity this tail does actually truncate as is manifest from the cosines.

One can define the Borel transform in this case as

B(t) =
∞∑
k=0

tk−α
Γ(k + 1− β)

Γ(k + 1)

[
cos

(
π(α+ β)

2

)
− (−1)k cos

(
π(α− β)

2

)]
(3.19)

= Γ(1− β)t−α
[
cos

(
π(α+ β)

2

)
(1− t)β−1 − cos

(
π(α− β)

2

)
(1 + t)β−1

]
,

which clearly has two singular directions for arg t = 0 and arg t = π. Note that we chose in here

a slightly asymmetric form in α ↔ β only to obtain a simpler Borel transform, we could have

insisted in using expressions symmetric in α ↔ β and the Borel transform would have become

a hypergeometric function 2F1 without changing anything important in what follows.

From this Borel transform it is simple to compute

lim
θ→0+

Sθ
[
STα,β

]
(y)− S−θ

[
STα,β

]
(y) = S+

[
STα,β

]
(y)− S−

[
STα,β

]
(y)

=
∞∑
n=1

[
−2i cos

(
π(α+ β)

2

)]
(2π)βyα−1σβ−α(n) e

− 2πn
y U

(
β, 1 + β − α;

2πn

y

)
, (3.20)

4Also, Enriquez’ method to infer such integration constants from B-elliptic multiple zeta values does not apply

here (cf. appendix of [13]) since E0(4, 0, 0, 0; τ) cannot be realised as an elliptic multiple zeta value.
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where U denotes the confluent hypergeometric function.

Assuming as we did above that the transseries parameter i cos(π(α + β)/2) exponentiates

to σ = exp(±iπ2 (1− α− β)) we obtain that the non-perturbative completion of the asymptotic

series (3.7) becomes

SNP
α,β(y) = (∓iy)α+β−1

∞∑
n=1

σβ−α(n)

nβ
e
− 2πn

y

(
2πn

y

)β
U

(
β, 1 + β − α;

2πn

y

)
(3.21)

= (∓iy)α+β−1
∞∑
n=1

σβ−α(n)

nβ
e
− 2πn

y 2F0

(
α, β;− y

2πn

)
,

where the sign is according to the direction we choose to resum the Borel transform of (3.7)

and in the second expression we rewrote U(β, 1 + β − α; z) = z−β 2F0(α, β;−z−1) to make the

symmetry α↔ β manifest again. In particular notice that for the case α, β integers of opposite

parity the asymptotic tail vanishes and there is no Laplace integral to be performed, α+ β − 1

becomes an even integer and hence the sign does not matter so that, passing to the variable

τ = iy we have

Sα,β(τ) = SP
α,β(τ) + τα+β−1

∞∑
n=1

σβ−α(n)

nβ
e−

2πni
τ 2F0

(
α, β;

iτ

2πn

)
, (3.22)

where SP
α,β(τ) is a Laurent polynomial (plus possibly logarithmic terms) obtained by (3.7).

For α, β generic we have that the perturbative series does not truncate and are left with

Sα,β(τ) = Γ(1− α)ζ(β − α+ 1)(−2πiτ)α−1 + Γ(1− β)ζ(α− β + 1)(−2πiτ)β−1 (3.23)

+ S−
[
STα,β

]
(τ) + τα+β−1

∞∑
n=1

σβ−α(n)

nβ
e−

2πni
τ 2F0

(
α, β;

iτ

2πn

)
,

where S−
[
STα,β

]
(τ) denotes the lateral Borel resummation of the asymptotic (non-truncating)

series (3.18), i.e.

S−
[
STα,β

]
(τ) = −(2π)β(−iτ)α−1

π

∞∑
n=1

σβ−α(n)Γ(1− β) (3.24)

×
∫ ∞eiφ

0
e−

2πnit
τ t−α

[
cos

(
π(α+ β)

2

)
(1− t)β−1 − cos

(
π(α− β)

2

)
(1 + t)β−1

]
dt ,

with −π < φ < 0.

Note that this integral is not necessarily convergent near t ∼ 0, but only because we decided

to resum via Borel transform the complete asymptotic series (3.18), while to have a convergent

expression we should have first split the asymptotic series (3.18) into a finite order polynomial

by keeping 0 ≤ k ≤ [Reα], with [Reα] denoting the integer part of Reα, and an asymptotic tail

k > [Reα] that we can Borel resum with a genuine convergent integral. However for simplicity

we prefer to present (3.24) and interpret it as analytic continuation in α and this will produce

the same results.
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We can rewrite both in (3.22) and (3.23) the 2F0 in its (asymptotic) Gauss series form to

obtain the suggestive

Sα,β(τ) =SP
α,β(τ) +

∞∑
m=0

(α)m(β)m
m!

τα+β+m−1

(−2πi)m
Sα+m,β+m

(
−1

τ

)
, (3.25)

where we denoted schematically with SP
α,β(τ) either the truncating perturbative expansion ap-

pearing in (3.22), or the perturbative Borel resummed expansion appearing in the general case

(3.23). This expression suggests that the functions Sα,β(τ) transform as a vector-valued quasi-

modular form, with weight 1 − α − β and modularity gap given by τ1−α−βSP
α,β(τ) where the

perturbative part is intended as above.

We want to stress again two important points: firstly that the non-perturbative corrections

are completely encoded into the asymptotic perturbative data; and secondly that the non-

perturbative terms can be written precisely as a (possibly infinite) linear combination of our

original functions Sα′,β′(−1/τ) evaluated at S-dual modular parameter. This phenomenon that

the non-perturbative corrections provide exactly the S-dual vector-valued modular completion

of the asymptotic power series is closely reminiscent of the analysis carried out in [33] in the

context of 3-dimensional N = 2 Chern–Simons theories.

Going back to the iterated integrals E0(k, 0k−2−`; τ) we need to consider Sk−`−1,−`(τ). In

particular we have two special cases ` = 0, corresponding to E0(k, 0k−2; τ) and ` = k − 1

corresponding to E0(k, 0−1; τ). The key fact is that in both cases the 2F0 in (3.22) reduces to 1.

Let us focus on the ` = 0 case first which give us

E0(k, 0k−2; τ) = − 2

(k − 1)!

[
SP
k−1,0(τ) + τk−2

∞∑
n=1

σ1−k(n)e−
2πni
τ

]
(3.26)

= − 2

(k − 1)!
SP
k−1,0(τ) + τk−2E0

(
k, 0k−2;−1

τ

)
,

where SP
k−1,0(τ) is precisely the Laurent polynomial obtained for the original Lambert series

(2.20) for m = k − 1 odd.

The above equation tells us that E0(k, 0k−2; τ) is a quasi-modular form of weight 2− k with

‘modularity gap’ given by τ2−k 2
(k−1)!S

P
k−1,0(τ). We can derive the same expression starting from

Brown’s version of the iterated integrals (3.14). Changing integration variables τ1 → −1/τ1 and

using the modularity properties of Gk(τ) we can easily derive

E0(k, 0k−2; τ) =
rk(τ)

(2πi)(k − 2)!
+

2ζ(k)(τ−1 + τk−1)

(2πi)(k − 1)!
+ τk−2E0

(
k, 0k−2;−1

τ

)
, (3.27)

where rk(τ) is precisely the period polynomial [34] of G0
k (using the tangential-basepoint regu-

larization as mentioned above):

rk(τ) =

∫ i∞

0
(τ − τ1)k−2G0

k(τ1)dτ1 (3.28)

= −4
ζ(k)

ζ(1− k)

k−2∑
n=0

(k − 2)!

(k − 2− n)!

ζ(n+ 1)ζ(n+ 2− k)

(2πi)n+1
τk−2−n ,
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where in this expression we have already explicitly evaluated the L-series associated to G0
k using

(2.43).

We can then rewrite the Laurent polynomial discussed above

− 2

(k − 1)!
SP
k−1,0(τ) =

rk(τ)

(2πi)(k − 2)!
+

2ζ(k)(τ−1 + τk−1)

(2πi)(k − 1)!
, (3.29)

which is then guaranteed [8, 34] to satisfy the cocycle conditions

SP
k−1,0

∣∣∣
2−k

(1 + S) = 0 , SP
k−1,0

∣∣∣
2−k

(1 + U + U2) = 0 , (3.30)

where U = TS =
(

1 −1
1 0

)
and the notation means the sum of the actions of the SL(2,Z) group

elements.

For the ` = k − 1 case we have E0(k, 0−1; τ) = − G0
k(q)

(2πi)k
, where

G0
k(q) =

(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)qn =
(2πi)k

(k − 1)!
L1−k(q) (3.31)

is the standard holomorphic Eisenstein series without constant term. We can specialise equation

(3.22) to the case ` = k − 1 and obtain

E0(k, 0−1; τ) = − 2

(k − 1)!

[
SP

0,1−k(q) + τ−k
∞∑
n=1

σk−1(n)e−
2πni
τ

]
(3.32)

= − 2

(k − 1)!
SP

0,1−k(q) + τ−kE0

(
k, 0−1;−1

τ

)
.

It is simple to realise that

SP
0,1−k(q) = (q∂q)

k−1SP
k−1,0(q) = (2πi)1−k∂k−1

τ SP
k−1,0(τ) =

ζ(k)Γ(k)

(2πiτ)k
− ζ(2− k)

2πiτ
− ζ(k)Γ(k)

(2πi)k

(3.33)

where we notice that the second term is non-vanishing only for k = 2 (remember k is an even

positive integer). Rearranging the terms we obtain

G0
k(τ) + 2ζ(k) = τ−k

[
G0
k

(
− 1

τ

)
+ 2ζ(k)

]
+

2πi

τ
δk,2 , (3.34)

which is precisely telling us that the holomorphic Eisenstein series Gk(τ) = G0
k(τ) + 2ζ(k) are

modular forms of weight k for k ≥ 4 even and quasi-modular for k = 2, as we had already

derived before in section 2.3.

To understand the modular properties of the iterated integrals E0(k, 0k−2−`; τ) we now have

three interesting intervals to consider: ` = −β ∈ {0, ..., k − 2}, ` = −β ≥ k − 1 and finally

` = −β < 0.

The first two intervals are the easiest to understand and the key property is that when the

parameter β is a negative integer the hypergeometric function appearing in (3.22) is actually a

polynomial of degree ` for ` = −β ∈ {0, ..., k − 2} or of degree ` − (k − 1) for ` ≥ k − 1. In
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particular, given the discussion above, we notice that for ` ≥ k − 1 we are actually just taking

l−(k−1) derivatives of the holomorphic Eisenstein series Gk(−1/τ) which is a modular function,

hence the modularity properties will be “spoilt” by the derivative but they are very simple to

recover.

For the case E0(k, 0k−2−`; τ) with ` = −β ∈ {0, ..., k − 2} we can just expand the hypergeo-

metric function in (3.22) to obtain

E0(k, 0k−2−`; τ) =
∑̀
p=0

Γ(k − 1− p)
Γ(k − 1− `)

(
`

p

)
τk−2−`−p

(2πi)`−p
E0

(
k, 0k−2−p;−1

τ

)
(3.35)

− 2

Γ(k)(2πi)`
∂`τS

P
k−1,0(q) ,

and note that (2πi)−`∂`τS
P
k−1,0(q) = SP

k−1−`,`(q). We can also invert the above expression

E0

(
k, 0k−2−`;−1

τ

)
=
∑̀
p=0

(−1)`+p
Γ(k − 1− p)
Γ(k − 1− `)

(
`

p

)
τ `+p+2−k

(2πi)`

[
(2πi)pE0(k, 0k−2−p; τ) (3.36)

+
2

Γ(k)
∂pτS

P
k−1,0(q)

]
,

which reduces to the two special cases discussed above for ` = 0 and ` = k − 1.

This equation nicely exhibits an upper triangular structure where the S-transformation of

E0(k, 0k−2−`; τ) involves all other iterated integrals E0(k, 0k−2−p; τ) with p ∈ {0, ..., `}. It should

thus be thought of as a finite upper triangular matrix. If we consider all the E0(k, 0k−2−`; τ)

with ` ∈ {0, ..., k−2} as a (k−1) dimensional vector, we then have that under S-transformation

this vector transforms with a (k − 1) × (k − 1) upper triangular matrix (plus a (k − 1) vector

of cocycles, i.e. the Laurent polynomials in τ). This vector can be thought of as arising from a

(k − 1) dimensional representation of SL2(R) [8, 11].

This finiteness property of the S duality transformation does not happen in the remaining

case to analyse, i.e. the case ` = −β < 0, for which it is worth noticing that this range of

parameters lies outside the class analysed in [8]. Let us consider for example E0(4, 0, 0, 0; τ) for

which α = 4 and β = 1. Using (3.22) we have

E0(4, 0, 0, 0; τ) = EP
0 (4, 0, 0, 0; τ)− 2

3!
τ4
∞∑
n=1

σ−3(n)

n
e−

2πni
τ 2F0

(
4, 1;

iτ

2πn

)

= EP
0 (4, 0, 0, 0; τ) + τ4

∞∑
p=0

(4)p

(
iτ

2π

)p
E0

(
4, 03+p;−1

τ

)
, (3.37)

where the perturbative part EP
0 (4, 0, 0, 0; τ) was presented in (3.16). It is manifest that the

S-transform of an iterated integral outside the range ` ≤ k − 2 produces an infinite tower of

higher and higher iterated integrals, it is only for E0(k, 0k−2−`; τ) with ` ≥ 0 that we produce a

finite upper triangular tower. As we have already mentioned this case does not fall within the

class of objects studied in [8,11], however it is tantalising to think that perhaps this case might
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correspond to an ∞-dimensional representation of SL2(R) (such as a Verma module) rather

than a finite-dimensional one.

We notice that our dictionary (3.15) between iterated integrals and the q-series studied is still

meaningful even when we consider k ∈ N odd, for example by slight abuse of notation E0(3, 0; τ)

can still be understood as genuine iterated integral of the q-series L−2(q) =
∑

n≥1 σ2(n)qn as in

(2.3).

We can then consider E0(k, 0k−2; τ) with k ∈ N odd and proceed as above to derive its

modular property under τ → ±Sτ . The only difference with the k even case (3.26) lies in the

fact that the perturbative series does not truncate in this case. Using (2.36)-(2.37) we know

that the new “cocycles” will not be Laurent polynomials (3.29) any longer but rather they will

be given by the multi-valued lateral resummations (3.24) S∓
[
STk−1,0

]
(τ). It would be extremely

interesting to understand whether one can generalise the cohomological arguments of [35] to

accommodate for this more general case of multi-valued “cocycles”.

As a last comment for this section, similar to the observation at the end of section 2, we

note that the q-series Sα,β(q) defined in (3.1) has weight given by k = 1 − α − β and it is an

eigenfunction of all Hecke operators Tn that were defined in (2.77). Using the property (2.79)

and the expansion (3.2) it is easy to show that

TnSα,β = n−βσβ−α(n)Sα,β = n−ασα−β(n)Sα,β , (3.38)

for any α and β, and clearly Sα,β is Hecke normalised. Given the relation to iterated Eisenstein

integrals of depth one stated in (3.15), this means that we have also

TnE0(k, 0k−2−`; τ) = n`+1−kσk−1(n)E0(k, 0k−2−`; τ) . (3.39)

Some connections between Hecke operators and iterated integrals were explored in [12].

4 Single-valued prescription

In this final section, we study the relation between our results and the elliptic analogue of the

single-valued map (denoted esv in what follows) [13, 22–25]. From a string theory perspective,

the map esv is meant to provide the one-loop generalisation of the single-valued relation between

open and closed string tree-level amplitudes [36–43]. Unlike the tree-level case the exact form

of the map esv is unknown with conjectured pieces of it given in [13,22,24], and for the present

discussion we will mainly use the ingredients of [13, 24]. The q-series Sα,β(q) was related to

holomorphic Eisenstein series for special values of α and β, but also produced generalisations

thereof. We shall now investigate how the images of Sα,β under the elliptic single-valued map

are related to non-holomorphic Eisenstein series.

To explain expressions to which the map esv can be applied, we begin, following [13], with an

iterated integral over the A-cycle of the genus-one string torus, apply an S-duality transformation

to obtain an iterated integral over the B-cycle. Here it is important to start with zero weight

expressions which at depth one means according to (3.25) that we need to consider the case
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α+ β = 1, or equivalently α = k, β = 1− k and study

E0(2k, 0k−1; τ) = − 2

Γ(2k)
Sk,1−k(τ) , (4.1)

where for the moment we will consider k ∈ N\{0}. The above can be thought of as the ‘balanced,

weight zero, middle case’ in terms of possible iterated integrals. Let us first consider

− Γ(2k)

Γ(k)
E0

(
2k, 0k−1;−1

τ

)
=

2

Γ(k)
Sk,1−k

(
−1

τ

)
, (4.2)

using the general formula (3.35) and then apply the esv prescription. Specialising (3.35) to

k → 2k and `→ k − 1 we have

−Γ(2k)

Γ(k)
E0

(
2k, 0k−1;−1

τ

)
= −Γ(2k)

Γ(k)

k−1∑
p=0

Γ(2k − 1− p)
Γ(k)

(
k − 1

p

)
(−2πiτ)p+1−kE0(2k, 02k−2−p; τ)

+
2

Γ(k)
SP
k,1−k

(
−1

τ

)
, (4.3)

wich can be rewritten as

−Γ(2k)

Γ(k)
E0

(
2k, 0k−1;−1

τ

)
=− Γ(2k)(−2πiτ)

k−1∑
p=0

(
2k − 2− p
k − 1

)
(−2πiτ)p−k

p!
E0(2k, 02k−2−p; τ)

+
2

Γ(k)
SP
k,1−k

(
−1

τ

)
. (4.4)

Before applying the esv prescription let us focus on the purely perturbative truncating part

obtained from (3.7):

SP
k,1−k

(
−1

τ

)
=

(
2πi

τ

)k−1

Γ(1− k)ζ(2− 2k)

+
( τ

2πi

)k
Γ(k)ζ(2k) +

k∑
n=0

(−2πi/τ)n

n!
ζ(k − n)ζ(1− k − n) . (4.5)

At the present time we are interested in the case of k ∈ N hence the first term and the n = k−1

in the sum have to be rewritten making use of Riemann’s functional equation to arrive at an

expression containing only zetas at positive arguments given by

2

Γ(k)
SP
k,1−k

(
−1

τ

)
(4.6)

=
(2k − 3)! 42−k

(k − 2)!(k − 1)!

(
−iπτ

2

)1−k
ζ(2k − 1)(1 + ζ(0)) + (−1)k−1 B2k

(2k)!
4k
(
−iπτ

2

)k
+ 22−k

k−2∑
n=0

(k)n
n!

cos

(
π(k + n)

2

)
ζ(k − n)ζ(k + n)

πk−n (iπτ)n
− 21−k (2k − 1)!

k! (k − 1)!

ζ(2k)

(−iπτ)k
.

29



The ζ(0) part of the first term comes precisely from the n = k−1 term in the perturbative sum,

while the last term in the above expression comes from the n = k term.

The (conjectural) esv prescription amounts to (for n > 0) [13,24]5

esv :


τ → τ − τ̄ = 2iτ2 = 2iy

π ,

E0 → 2Re E0 ,

ζ(2n) → 0 ,

ζ(2n+ 1) → 2ζ(2n+ 1) .

(4.7)

Note that in all above expressions we used the combination −iπτ
2 so that esv

(−iπτ
2

)
= y;

hence we see that once we apply esv to (4.6) only the first two terms survive: in the sum the

cosine forces k and n to have the same parity, which implies that both ζ(k ± n) are even zetas

and the last term is directly an even zeta. Putting (4.4) together with (4.6) we arrive at

esv
[
− Γ(2k)

Γ(k)
E0

(
2k, 0k−1;−1

τ

)]
=

4(2k − 3)!

(k − 2)!(k − 1)!
ζ(2k − 1) (4y)1−k + (−1)k−1 B2k

(2k)!
(4y)k

− 8yΓ(2k)

k−1∑
p=0

(
2k − 2− p
k − 1

)
(4y)p−k

p!
Re
[
E0(2k, 02k−2−p; τ)

]
= Ek(τ) , (4.8)

where Ek denotes now the non-holomorphic Eisenstein series in the normalisation

Ek(τ) = π−k
∑

(c,d)6=(0,0)

(Im τ)k

|cτ + d|2k

=
2ζ(2k)

πk
τk2 +

2Γ(k − 1
2)ζ(2k − 1)

Γ(k)πk−1/2
τ1−k

2

+
4
√
τ2

Γ(k)

∑
n∈Z\{0}

σ1−2k(|n|) |n|k−
1
2 e2πinτ1Kk− 1

2
(2π|n|τ2) . (4.9)

In the above formula we have shown the general Fourier expansion of the non-holomorphic

Eisenstein series that is valid for any value of k. If k is an integer the Bessel function has an

exact expansion for large τ2 that gives a rise to an explicit series in qn + q̄n that agrees with the

one of the real part of the iterated Eisenstein integral. Our expression (4.8) matches precisely

equation (2.34) of [13].

Let us try and repeat this analysis for the case k generic. In this case the expression

E0(2k, 0k−1;− 1
τ ) cannot really be thought anymore of a proper iterated integral, e.g. for k = 3/2

we would have E0(3, 0
1
2 ;− 1

τ ) so a fractional number of integrations. We will however interpret

this as its associated q-series expansion and start again from the expression in terms of Sk,1−k
via

− Γ(2k)

Γ(k)
E0

(
2k, 0k−1;−1

τ

)
=

2

Γ(k)
Sk,1−k

(
−1

τ

)
. (4.10)

5The variable y agrees with y in [13] and is introduced here to ease the comparison.
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We have to consider now the general case (3.23) specialised to α = k, β = 1 − k. Let us begin

with the non-perturbative terms

2

Γ(k)
SNP
k,1−k

(
−1

τ

)
=

2

Γ(k)

∞∑
n=1

σ1−2k(n)

n1−k e2πniτ
2F0

(
k, 1− k;− i

2πτn

)
(4.11)

=
2

Γ(k)

∞∑
n=1

σ1−2k(n)

n1−k qn (−2πinτ)1−k U(1− k, 2− 2k;−2πinτ) .

We can apply the esv prescription is a simple way now via τ → 2iτ2 and qn → qn + q̄n (note

that for this prescription we think of q as independent of τ) and after rearranging the sum we

obtain

esv

[
2

Γ(k)
SNP
k,1−k

(
−1

τ

)]
=

2

Γ(k)

∑
n∈Z\{0}

σ1−2k(|n|)
|n|1−k

e2πinτ1e−2π|n|τ2 (4π|n|τ2)1−k U(1− k, 2− 2k; 4π|n|τ2)

=
4
√
τ2

Γ(k)

∑
n∈Z\{0}

σ1−2k(|n|) |n|k−
1
2 e2πinτ1Kk− 1

2
(2π|n|τ2) , (4.12)

where we rewrote the confluent hypergometric function U in terms of modified Bessel function

of the second kind K. For k integer the Bessel function reduces to a spherical Bessel and can

actually be written as an exponentially suppressed term e−2πnτ2 times a polynomial of degree

k − 1 in 1/τ2. This is the reason why in the single-valued prescription for the k integer case,

given by equation (4.8), we only have a finite sum over iterated integrals.

For the present case of k generic the Bessel function does not truncate but it is still expo-

nentially suppressed as τ2 → +∞. Let us move to the first two perturbative terms in (3.23)

which after the S duality transformation τ → −1/τ are of the form

2

Γ(k)

(
2πi

τ

)k−1

Γ(1− k)ζ(2− 2k) +
2

Γ(k)

( τ

2πi

)k
Γ(k)ζ(2k) (4.13)

=
2Γ(k − 1

2)ζ(2k − 1)

Γ(k)πk−1/2

(
−iτ

2

)1−k
+

2ζ(2k)

πk

(
−iτ

2

)k
,

similarly to what we obtained above for the integer k case but with two major differences.

Firstly we notice that for k generic ζ(2k − 1) and ζ(2k) will remain untouched, and we are

not aware of a similar extension of the single-valued map applied to the zeta function at a

generic argument. Secondly we see that the term containing ζ(0) in (4.6) is now absent from

the asymptotic perturbative series (3.24)

S−[STk,1−k]

(
−1

τ

)
=

∞∑
n=1

σ1−2k(n)

n1−k (−2πinτ)1−k U(1− k, 2− 2k;−2πinτ) (4.14)

∼
∞∑
m=0

(−2πi/τ)m

m!
ζ(k −m)ζ(1− k −m) ,
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where we evaluated the Borel resummation (3.24) for the particular case α = k , β = 1−k, which

we know is asymptotic to (3.7). We note how similar the resummed asymptotic perturbative

series is to the non-perturbative terms (4.11) with the only difference given by the absence of

the qn term in the summand.

In this general k case we are not aware of any argument why the esv prescription should

remove the resummed perturbative expansion, hence we obtain the expression

esv
[ 2

Γ(k)
Sk,1−k

(
−1

τ

)]
= esv

[2Γ(k − 1
2)ζ(2k − 1)

Γ(k)πk−1/2

(
−iτ

2

)1−k
+

2ζ(2k)

πk

(
−iτ

2

)k
+

2

Γ(k)
SNP
k,1−k

(
−1

τ

)
+

2

Γ(k)
S−[STk,1−k]

(
−1

τ

)]
=

2Γ(k − 1
2)ζ(2k − 1)

Γ(k)πk−1/2
τ1−k

2 +
2ζ(2k)

πk
τk2 +

4
√
τ2

Γ(k)

∑
n∈Z\{0}

σ1−2k(|n|) |n|k−
1
2 e2πinτ1Kk− 1

2
(2π|n|τ2)

+ esv
[ 2

Γ(k)
S−[STk,1−k]

(
−1

τ

)]
= Ek(τ) + esv

[ 2

Γ(k)
S−[STk,1−k]

(
−1

τ

)]
, (4.15)

where again Ek(τ) denotes the non-holomorphic Eisenstein series for any k. It is interesting to

notice that the case k half-integer has to be understood as a limiting case of the generic case,

in particular the coefficients of the term τ1−k
2 despite being now a zeta even ζ(2k − 1) is not

projected to zero, while the coefficient of the τk2 term despite being now a zeta odd ζ(2k) is not

doubled by the esv prescription.

The case k integer is very subtle since both the τ1−k
2 and τk2 have non-trivial esv projections

and must be combined with esvS−[STk,1−k] to produce equation (4.6). It seems that for generic

k it is only the multi-valued analytic function S−[STk,1−k] that produces an obstruction to the

equivariance under SL2(Z) of esvSk,1−k in the sense of [11]. It would be extremely interesting

to understand the role played by the resummed perturbative series S−[STk,1−k] from an iterated

integral point of view and possibly find a modified esv prescription that would take care of it.

Finally we notice how the functional equation Γ(k)Ek(τ) = Γ(1 − k)E1−k(τ) can be easily

derived using the symmetry of Sk,1−k(τ) = S1−k,k(τ).

A An application to q-Pochhammers

In this appendix, as a further check of our proposed transseries expansion, we analyse a particular

case of the Lambert series (2.1) directly related to a certain q-Pochhammer symbol.

The q-Pochhammer symbol is defined as the infinite product

(a, q)∞ =
∞∏
n=0

(1− aqn). (A.1)
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By setting a = q, the q-Pochhammer symbol can be related to the Lambert series at s = 1. The

proof is straightforward once we use Li1(q) = − log(1− q)

L1(q) =
∞∑
n=1

Li1(qn) = −
∞∑
n=1

log(1− qn) = − log
∞∏
m=0

(1− q · qm) = − log(q, q)∞ , (A.2)

hence we have

(q, q)∞ = e−L1(q) . (A.3)

The q-Pochhammer symbol is also closely related to the Dedekind η function via

(q, q)∞ = q−1/24η(τ) , (A.4)

where τ is the half-period ratio and q = e2πiτ is the square of the nome.

Since equation (A.3) relates the q-Pochhammer (q, q)∞ to the Lambert series L1(q), we need

to specialise equation (2.39) to the m = 1 case and obtain

L1(e−2πy) =
log y

12
+

π

12
(y−1 − y) + L1(e

− 2π
y ) , (A.5)

where again q = exp(−2πy).

Passing to q-Pochhammers we have

(e−2πy, e−2πy)∞ =
1
√
y
e
π
12(y−y−1)

(
e
− 2π

y , e
− 2π

y

)
∞
, (A.6)

or equivalently going back to the q variable

(q, q)∞ =

√
2π

log(1/q)
e

π2

6 log q q−
1
24

(
e

4π2

log q , e
4π2

log q

)
∞
. (A.7)

Note that for q → 1− we have e
4π2

log q → 0 and since (0, 0)∞ = 1 we have that (A.7) can be

approximated by

(q, q)∞ '

√
2π

log(1/q)
e

π2

6 log q q−
1
24 , (A.8)

as already derived in [7].

Using formula (A.4) we see that the proposed transseries does indeed produce the correct

transformation under the action of the modular group. Starting from (A.6) we use y = −iτ so

that

(e2πiτ , e2πiτ )∞ =
1√
−iτ

e
iπ
12(τ+τ−1)

(
e−

2πi
τ , e−

2πi
τ

)
∞
, (A.9)

which we can rewrite in terms of η(τ) from (A.4)

q−
1
24 η(τ) =

1√
−iτ

q−
1
24 η

(
−1

τ

)
, (A.10)

trivially reproducing the known S-transformation for the Dedekind η:

η(τ) =
1√
−iτ

η

(
−1

τ

)
. (A.11)

This supports our claim that the transseries parameter does indeed exponentiate the way we

presented.
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B Dirichlet characters and Hurwitz sums

In this appendix, we derive some of the intermediate identities used in section 2.4 when studying

the limit of the Lambert series Ls(q) for q approaching a rational root of unity e−2πy+2πip/c with

y → 0+ and p and c co-prime integers.

Our first object of study appears in (2.66) that we recall here for convenience:

c−1∑
h̄=1

c−1∑
l=1

ζ

(
k,
l

c

)
ζ

(
k − s, h̄

c

)
e±2πi h̄lp

−1

c . (B.1)

The Hurwitz zeta has the following Dirichlet series representation valid for (c, l) = 1

ζ

(
k,
l

c

)
=

ck

φ(c)

∑
χ

χ̄(l)L(χ, k) , (B.2)

where φ(c) denotes the Euler totient function of c and the sum runs over all the Dirichlet

characters modulo c, denoted by χ, while L(χ, k) is the associated L-series, i.e. L(χ, k) =∑∞
n=1 χ(n)n−k.

To avoid dealing with non-trivial subgroups of the cyclic group modulo c we will assume that

c is a prime number, hence the number of Dirichlet characters modulo c is precisely φ(c) = c−1

since every l ∈ {1, ..., c − 1} is coprime with c, i.e. (c, l) = 1. Making use of (B.2) we can then

write

c−1∑
h̄=1

c−1∑
l=1

ζ

(
k,
l

c

)
ζ

(
k − s, h̄

c

)
e±2πi h̄lp

−1

c =
∑
χ,χ′

c2k−s

φ(c)2
L(χ, k)L(χ′, k − s)

c−1∑
h̄,l=1

χ̄(l)e±2πi h̄lp
−1

c χ̄′(h̄).

(B.3)

First we notice that the sum over h̄, l imposes χ = χ′ hence the sum over (χ, χ′) reduces to a single

sum over all the Dirichlet characters χi with i ∈ {0, ..., φ(c)− 1}. To prove this orthogonality of

Dirichlet characters in Fourier space we take an integer j such that (j, c) = 1 and consider

χ̄(j)
c−1∑
h̄,l=1

χ̄(l)e±2πi h̄lp
−1

c χ̄′(h̄) =
c−1∑
h̄,l=1

χ̄(jl)e±2πi h̄lp
−1

c χ̄′(h̄) (B.4)

=

c−1∑
h̄,l′=1

χ̄(l′)e±2πi h̄l
′j−1p−1

c χ̄′(h̄) =

c−1∑
h̄′,l′=1

χ̄(l′)e±2πi h̄
′l′p−1

c χ̄′(h̄′j)

= χ̄′(j)
c−1∑

h̄′,l′=1

χ̄(l′)e±2πi h̄
′l′p−1

c χ̄′(h̄′) ,

so that we must have χ = χ′. In the above argument first we made use of the complete

multiplicative properties of the Dirichlet characters and then changed summation variables to

l′ ≡ lj( mod c) and h̄′ ≡ h̄j−1( mod c), with j−1 the multiplicative inverse of j modulo c.
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At this point, we can use the completely multiplicative property of the Dirichlet characters

for the associated L-series

L(χi, k)L(χi, k − s) =
∑
n,m≥1

χi(n)χi(m)

nkmk−s =
∑
N≥1

σ−s(N)χi(N)

Nk−s . (B.5)

Putting everything together we obtain the expression

c−1∑
h̄=1

c−1∑
l=1

ζ

(
k,
l

c

)
ζ

(
k − s, h̄

c

)
e±2πi h̄lp

−1

c

=
∑
N≥1

σ−s(N)c2k−s

Nk−s
1

φ(c)2

φ(c)−1∑
i=0

χi(N)
c−1∑
h̄,l=1

χ̄i(l)e
±2πi h̄lp

−1

c χ̄i(h̄) . (B.6)

The final double sum can be simplified by

1

φ(c)2

φ(c)−1∑
i=0

χi(N)
c−1∑
h̄,l=1

χ̄i(l)e
±2πi h̄lp

−1

c χ̄i(h̄) =
1

φ(c)2

φ(c)−1∑
i=0

χi(N)
c−1∑
h,l=1

χ̄i(l)e
±2πihl

c χ̄i(hp)

=
1

φ(c)2

φ(c)−1∑
i=0

χi(N)χ̄i(p)

c−1∑
h,l=1

χ̄i(l)e
±2πihl

c χ̄i(h)

=
1

φ(c)2

φ(c)−1∑
i=0

χi(Np
−1)

c−1∑
h,l=1

χ̄i(l)e
±2πihl

c χ̄i(h)

=
1

φ(c)

φ(c)−1∑
i=0

χi(Np
−1)

c−1∑
h̃=1

χ̄i(h)e±2πi h̃
c (B.7)

=
c−1∑
h̃=1

e±2πi h̃
c

1

φ(c)

∑
χ

χ(Np−1)χ̄(h̃)

= e±2πi p
−1N
c χ0(N)

≡ χ±(N) ,

where the character χ0(N) is equal to 0 when N ≡ 0 mod c and 1 otherwise. In here we simply

changed summation variables defining hl ≡ h̃mod c and used the fact that
∑

χ χ(n)χ̄(a) is equal

to 1 if n ≡ amod c and 0 otherwise.

35



The next expression we want to simplify occurs in (2.70) and reads

∞∑
N=1

σ−s(N)χ−(N)e
−2π N

c2y

=
∑

N 6=0 mod c

σ−s(N)e−2πi p
−1N
c e

−2π N
c2y

= Ls
(

1

c2y
+ i

p−1

c

)
−
∑
N≥1

σ−s(cN)e
−2π N

cy (B.8)

= Ls
(

1

c2y
+ i

p−1

c

)
− (1 + c−s)

∑
N 6=0 mod c

σ−s(N)e
−2π N

cy −
∑
N≥1

σ−s(c
2N)e

−2πN
y

= Ls
(

1

c2y
+ i

p−1

c

)
− (1 + c−s)Ls(

1

cy
) +

∑
N≥1

[
(1 + c−s)σ−s(cN)− σ−s(c2N)

]−2πN
y

= Ls
(

1

c2y
+ i

p−1

c

)
− (1 + c−s)Ls

(
1

cy

)
+ c−sLs

(
1

y

)
,

where first we have written out the character defined in (B.7) and then used the fact that for

(c,N) = 1 and c prime we have σ−s(cN) = (1 + c−s)σ−s(N). Moreover, the following identity

(1 + cas)σs(c
aN)− σs(c2aN) = casσs(N) , (B.9)

valid for c prime not necessarily coprime with N and for any integer a ≥ 0 was used.
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