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1 Introduction

Liouville theory arises as the universal gravitational action (Wess-Zumino action) of matter

described by a conformal field theory (CFT), coupled to two-dimensional gravity in the

conformal gauge [2]. As such, it provides an important toy model for approaching four-

dimensional quantum gravity in the conformal limit [3–5]. Liouville theory is itself a CFT,

and when considered as a model of 2d gravity it has central charge cL = 26 − cm, where

cm is the central charge of the matter CFT.

The Liouville action is characterized by two parameters: the sign of the kinetic term

ε = ±1 (see [6] for an earlier use of this parametrization), and the background charge

Q ∈ C. The central charge depends on these two parameters as

cL := 26− cm := 1 + 6 εQ2. (1.1)

In the CFT language, the parameters ε and Q appear in the OPEs of the U(1) current and

of the energy-momentum tensor. The theory is called spacelike when ε = 1, and timelike

when ε = −1.

We are mainly interested in the case where 2d gravity is defined by its path integral.

First, it is the most common approach in the literature and it may be more familiar than
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the CFT approach to most readers. Second, it directly generalizes to the case where the

matter is not a CFT. In this case, the only known formulation is through the path integral,

and the gravitational action is given by the Liouville action plus corrections which are not

conformally invariant [7–13]. Third, most higher-dimensional theories of quantum gravity

are defined from an action.

When defining Liouville gravity from the path integral, it is common to consider the

action (2.25) to be real (at least for the Gaussian part), this requires Q to be real. Having

Q ∈ R is also more natural when interpreting the Liouville theory as the limit d → 2 of

higher-dimensional Einstein-Hilbert gravity [5, 14–16]. Indeed, the factor 1/Q2 sitting in

front of the action in the semi-classical limit can be identified with an appropriate limit

of the d-dimensional Newton’s constant, which is usually taken as real. The condition

Q ∈ R leaves three possible ranges of parameters: spacelike with cL ≥ 25 and Q ≥ 2,

spacelike with cL ∈ (1, 25) and Q ∈ (0, 2), and timelike with cL ≤ 1 and Q ∈ R. We will

focus on these three regimes when discussing applications of this paper. However, reality

of the action (or, more generally, any condition on the action) is restrictive since there are

interesting theories with a complex Lagrangian or which do not have a Lagrangian at all.1

Since Liouville theory is a two-dimensional CFT, it can be completely defined using only

CFT techniques. It is within this framework that Liouville theory can be written for Q ∈ C
without ambiguities.

While the spacelike theory is well understood for cL ≥ 25 from different points of

view [29–33], it is not the case for the other parameter ranges. The most interesting

case is the timelike theory with cL ≤ 1, studied extensively in [6, 34–44]. Indeed, this

theory serves as a toy model for four-dimensional quantum gravity since the kinetic term

of the conformal factor is negative definite in d = 4 [45] (see also [1, 3–5, 46, 47]). The

main obstacle in understanding this regime has been that different quantization procedures

(minisuperspace, bootstrap, BRST. . . ) give different spectra. It was proposed in [1] to

use BRST quantization as the fundamental guiding principle to determine the spectrum,

since it encodes the constraints from the diffeomorphism invariance, the gauge symmetry

of gravity.

It was recently proven numerically that the spacelike Liouville theory (ε = +1) is a

consistent CFT for all cL ∈ C as it solves the conformal bootstrap constraints [31, 48] (see

also [49–51] for a connection to statistical loop models). The 3-point function which solves

the conformal bootstrap constraints depends only on the value of the central charge: it is

given by the DOZZ formula everywhere in the complex cL-plane except for the real strip

cL ≤ 1, where it is instead given by the “cL ≤ 1 structure constant” (also called timelike

DOZZ formula) [37, 40–42]. Convergence of the 4-point function also determines the in-

ternal spectrum, defined as the set of states on which the correlation functions factorize.

The internal spectrum is unique for cL ∈ C and made of states with real momenta. With

these ingredients, the 4-point function is crossing symmetric.

A complete definition of the timelike Liouville theory with cL ≤ 1 on the sphere has

1Minimal models [17] are one such example: it is well-known [18, chap. 9] that they can be obtained

from the Coulomb gas theory with c ≤ 1, which has a complex Lagrangian since Q ∈ iR, using Felder’s

resolution [19–21]. Another category of interesting theories with complex Lagrangians are PT-symmetric

CFTs [22–28].
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been proposed in [1]: it provides a spectrum of external states and a definition of the 3-

and 4-point correlation functions which can be generalized to higher orders. We provide a

brief summary of the results [1]:

• The spectrum is computed in [1] from the BRST quantization. Earlier works on the

cL ≤ 1 Liouville theory [34–38, 43] approached the question using the minisuperspace

approximation, but there are subtelties: the Hamiltonian is not Hermitian, the spec-

trum does not match the one of the conformal bootstrap and displays strange discrete

states, and the 3-point function does not match the cL ≤ 1 structure constant. This

motivated the use of the BRST quantization to determine the physical spectrum.

In [1], the BRST cohomology has been computed only when the matter is made of

free scalar fields. Generalizing this computation to other types of CFT matter is the

main objective of this paper.

In [48], the spectrum of the theory is defined as the internal states on which the

correlation functions factorize. However, they are different from the states found

in the BRST cohomology. For this reason, [1] concludes that this definition is too

restrictive and that one must distinguish between the internal spectrum and external

or physical spectrum, in the same way that one differentiates between off-shell and

on-shell states in QFT. As indicated above, the internal spectrum is constrained by

the convergence of the 4-point function, so it cannot be changed arbitrarily.

• The correlation functions are described explicitly in [1] up to four points. The 2-point

function is the direct analytic continuation of the spacelike theory one as proposed

in [44] since it is analytic in Q, well defined for any external complex momentum

and matches the saddle-point computations in the semi-classical limit. The 3-point

function is given by the cL ≤ 1 structure constant derived in [37, 39–42]. Indeed,

the path integral and Coulomb gas computations from [6, 44] convincingly show that

this is the correct 3-point function for the timelike theory. It is also analytic in

the external momenta. Moreover, solving the full crossing equations shows that the

3-point function is unique for a given central charge [31, 48].

The timelike 4-point function is defined by analytic continuation of the spacelike 4-

point function with the same central charge [1]. This analytic continuation is inspired

from string field theory [52–55] and generalizes the usual Wick rotation from QFT

to the case where the momentum integrand diverges exponentially for large imagi-

nary momenta (real energy). Under this procedure, external and internal momenta

change differently, which explains the need to distinguish between the external phys-

ical spectrum and the internal one used for factorization. This provides a solution to

the factorization as was called for in the conclusion of [44].

Something special happens in the case of the cL ≤ 1 timelike theory (but would

not generalize to other values of the central charge): there is no need to modify the

internal states, such that the same 4-point correlation function as in [48] can be used

to define the cL ≤ 1 timelike theory. As a consequence, the difference with [48] for

cL ≤ 1 boils down to the external states. In particular, it was proven in [48] that
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this 4-point function is crossing symmetric for external states with general complex

momenta. Hence, this implies that the definition of the timelike theory given in [1]

is crossing symmetric.

We refer the reader to the original paper [1] for more details on the various aspects and on

the comparison with previous works.

As indicated above, the main goal of this paper is to completely characterize the

BRST cohomology of cL ≤ 1 timelike Liouville, thus generalizing the computation in [1]

done solely for a free scalar matter theory. To this aim, we study the BRST cohomology

of Liouville theory for generic values of the parameters ε and Q, coupled to a spacelike

Coulomb gas and a generic transverse CFT. This also generalizes previous studies for the

spacelike Liouville theories with cL ≥ 25 [56] (see also [57–67]) and cL ∈ (1, 25) [68].

The BRST cohomology is computed by generalizing the derivation of Bouwknegt,

McCarthy and Pilch [56], where the Liouville theory is represented by a Coulomb gas.

Indeed, we generalize all formulas to depend on ε and Q, so that they are applicable for any

Liouville range. As a consistency check, we rederive the results from [56] for the spacelike

Liouville theory (cL ≥ 25). Imposing that the BRST charge is Hermitian truncates the

BRST cohomology to a subset: for most cases, the states in this sector are ghost-free. This

proves the no-ghost theorem in full generality for the Hermitian timelike Liouville theory,

and for some of the spacelike Liouville cases. Finally, we provide an argument to match the

cohomology of the Liouville and Coulomb gas when the Fock space of the latter contains no

degenerate states for Hermitian momenta.2 To the best of our knowledge, the connection

between Hermiticity, no-ghost theorem and the cosmological constant is a new observation.

Moreover, this generic derivation of the cohomology — while following directly from known

methods — has never been presented with a unified notation.

The BRST analysis presented in this paper shows that there are spectra which dis-

tinguish between ε = ±1 even for identical values of cL, and contrary to the bootstrap.3

Moreover, the spectrum given by the conformal bootstrap for cL ≤ 1 is not compatible

with Hermitian Virasoro operators, which also means that the BRST charge is not Hermi-

tian. On the other hand, the Hermitian sector of the BRST cohomology is not empty for

its timelike counterpart. These differences justify the importance of keeping track of both

parameters ε and Q.

We also revisit the Liouville theory with cL ∈ (1, 25) studied in [68] by using a differ-

ent Hermiticity condition. Finally, it should be possible to consider generalized minimal

models [39] for the matter sector by generalizing Felder’s construction [19–21]. This would

provide 2d gravity models for all central charges cL ≥ 25. However, the details of general-

izing Felder’s resolution to generalized minimal models is outside the scope of this paper

and left for a future study.

The outline of the paper is as follows. Section 2 provides a summary of the CFT

systems needed in the analysis. In section 3, we present a general derivation of the BRST

2Subtleties related to the cosmological constant in the general case and its possible effect on the Her-

miticity condition is beyond the scope of this paper; the reader is referred to [1] for some discussions.
3The central charges of two theories with parameters (ε = 1, Q) and (ε = −1, iQ) are equal, see (1.1).
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cohomology for a CFT with (at least) two Coulomb gases, generalizing known results.

The formulas are then applied to Liouville theory in different regimes in section 4, and, in

particular, to the timelike theory in section 4.1. Finally, we discuss our results in section 5.

2 Conformal field theories

In this section, we set the notations and gather the relevant expressions for the CFTs

involved in this paper: the Coulomb gas, the Liouville theory, and the bc ghosts. The main

goal of this section is to derive unified expressions — which do not appear comprehensively

elsewhere to our knowledge — which apply to both the spacelike and timelike theories

(positive- and negative-definite kinetic terms) by introducing a parameter ε = ±1, similarly

to [6]. Normal ordering is implicit and we consider only the holomorphic sector in all

the paper.

2.1 Coulomb gas

The Coulomb gas CFT [18] consists of a free scalar field X in the presence of a background

charge Q

S =
ε

4π

∫
d2σ
√
g (gµν∂µX∂νX +QRX) (2.1)

where R is the Ricci scalar. The field X can be spacelike or timelike4 depending on the

sign of the kinetic term:

ε =

{
+1 spacelike,

−1 timelike,

√
−1 = i. (2.2)

The main advantage of using this parametrization is that it is not necessary to introduce

different sets of notation for the spacelike and timelike cases as it is standard in the Liouville

literature. This also allows to present a unified computation of the BRST cohomology for

both cases. Finally, there is no risk to make sign mistakes in complex conjugation by trying

to obtain formulas for one theory from the other by analytic continuation.

The charge Q is parametrized in terms of another parameter b as

Q =
1

b
+ εb , (2.3)

which is defined such that the conformal weight (2.17) of the vertex operator Vb = e2bX is

hb = 1.

The energy-momentum tensor T := Tzz on flat space reads

T = −ε (∂X)2 + εQ∂2X, (2.4)

and the associated central charge is

c = 1 + 6 εQ2. (2.5)

4This terminology refers to the signature of the corresponding target space.
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The real values of the central charge in terms of Q and ε are summarised in table 1. The

action (2.1) changes by a constant term under a constant shift of X. This leads to the

conserved current

J = iε ∂X, (2.6)

which is anomalous at the quantum level if Q 6= 0. Correlation functions have been

computed in [69, 70].

Mode expansions. The Fourier expansion of the Coulomb gas field is

X =
x

2
− ε α ln z +

i√
2

∑
n 6=0

αn
n
z−n. (2.7)

where we use the rescaled zero-mode α := iε α0/
√

2. The zero-mode α is related to the

charge of the conserved current as

α =
1

4π

∮
dz J. (2.8)

It is hence interpreted as the momentum on the plane and, because of the current’s anomaly,

it is related to the momentum P on the cylinder as

α = ε
Q

2
+ iP. (2.9)

The Virasoro operators are

Lm =
ε

2

∑
n 6=0

αnαm−n +
i√
2

(
εQ(m+ 1)− α

)
αm . (2.10)

The expression of the zero-mode can be simplified to

L0 = N + α (Q− ε α) = N + ε

(
Q2

4
+ P 2

)
, (2.11)

where the level operator N is defined in terms of the number operators Nn at level n > 0 as

N =
∑
n>0

nNn , Nn =
ε

n
α−nαn . (2.12)

The canonical commutation relations are

[x, α] = − ε
2
, [x, P ] = i

ε

2
, [αm, αn] = εm δm+n,0. (2.13)

The commutator of the modes with the Virasoro operators is

[Lm, αn] = −nαm+n + i
Q√

2
m(m+ 1) δm+n,0. (2.14)

The commutators of the creation modes (n > 0) with the number operators are

[Nm, α−n] = α−mδm,n. (2.15)
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Fock space. The operator ∂X is primary with conformal weight h = 1 only if Q = 0.

For any Q, the vertex operators

Va = e2aX (2.16)

are primaries and eigenstates of the zero-mode α with α = a ∈ C. Their conformal weight is

ha = a (Q− ε a). (2.17)

According to the anomalous shift (2.9), they correspond to the operators

Vp = e2ipX , hp =
εQ2

4
+ ε p2 (2.18)

on the cylinder, with eigenvalue P = p such that the eigenvalues are related by

a =
εQ

2
+ ip. (2.19)

Henceforth we will use Vp or Va indistinguishably. From the expression of the conformal

weights, it follows that the operators Va and VεQ−a, or equivalently Vp and V−p, have the

same weight:

ha = hεQ−a, hp = h−p. (2.20)

Note that ha, hp ∈ R only if Q, p ∈ R ∪ iR, which also implies c ∈ R. Hence, it makes

sense to restrict ourselves to these values of the parameters (however, it is possible to define

CFTs for complex values of the central charge and conformal weights [48]).

A set of Fock vacua |p〉 are obtained by acting with the vertex operators on the SL(2,C)

vacuum |0〉
|p〉 = Vp |0〉 . (2.21)

The Fock space F(p) of the theory is generated by all the states obtained by applying

creation operators α−n with n > 0 on the vacuum

|ψ〉 =
∏
n≥1

(α−n)Nn√
nNnNn!

|p〉 , Nn ∈ N. (2.22)

The momenta and conformal weights of degenerate states are given by:

pr,s = i

(
rb

2
+

s

2b

)
, ar,s =

εQ

2
+ ipr,s, hr,s =

εQ2

4
− ε
(
rb

2
+

s

2b

)2

, (2.23)

for all r, s ∈ N.

Hermiticity conditions. The Virasoro modes are Hermitian (Ln)† = L−n if the

Coulomb gas modes satisfy (signs are correlated across) [31, 71–73]

Q∗ = ±Q, α†n = ±α−n, α† = ±(εQ− α), P † = ±P, x† = ±x. (2.24)

This implies that Q ∈ R ∪ iR and p ∈ R ∪ iR. The first condition gives c ∈ R while

both together give hp ∈ R. The Hermiticity condition is chosen such that Q ∈ R → 0

– 7 –



J
H
E
P
0
5
(
2
0
2
0
)
0
2
9

reproduces the standard results for the free scalar CFT (in particular, that its momentum

is Hermitian). Further, given that α = a for the vertex operators, it follows that a∗ =

±(εQ− a).

Comparing the expressions of the degenerate momenta (2.23) and of the Hermiticity

conditions (2.24), we find that they are incompatible for both ε = ±1 and cL /∈ (1, 25).

Indeed, outside this range, b and Q are both either real or imaginary. Thus, (2.24) implies

that p and b must be both either real or imaginary, but the presence of i in (2.23) makes

this impossible.

2.2 Liouville theory

Liouville theory corresponds to a Coulomb gas deformed by an exponential interaction

representing the coupling to the cosmological constant µ

SL =
ε

4π

∫
d2σ
√
g
(
gµν∂µφ∂νφ+QRφ+ 4πε µ e2bφ

)
. (2.25)

Thanks to the relation (2.3) between b and Q, this is a marginal deformation.

Fock space. The presence of the exponential potential in the Liouville action entails a

time-dependence of the field Fourier modes. For this reason, the mode expansion of the

Liouville field φ is complicated. However, the conformal bootstrap program (see [29, 31]

for reviews) shows that the theory can be completely defined in terms of the current J

and of the vertex operators Va, which satisfy the same properties as the Coulomb gas

ones. This implies that the central charge (2.5), the definition of Q (2.3) in terms of b, the

relation between the plane and cylinder momenta (2.9) and the conformal weights (2.17)

are identical. The intuition is that, in the regime of small parameter b, the exponential

wall is only relevant for high values of the field. For most of the field range, the theory

is effectively a Coulomb gas. One can then understand the effect of the cosmological

constant as a reflecting wall which mixes the positive- and negative-frequency modes. As

a consequence, Liouville vertex operators Vp are linear combinations of V±p such that

Vp := Vp +R(p)V−p = R(p)V−p, (2.26)

where R(p) is the reflection coefficient and satisfies R(p)R(−p) = 1. It can be shown [31]

that R(p) is proportional to the cosmological constant µ and vanishes when the latter is

set to zero.

Liouville regimes. As for the Coulomb gas, the difference between spacelike and timelike

is only determined by the sign of the kinetic term, i.e. ε (or of the current-current OPE in

the CFT language).5 Together with the value or range of Q, both parameters completely

define the Liouville theory under consideration, giving rise to different regimes.

The most studied and well-known regimes are the ones where the background charge

Q is real. This implies that the central charge is real, and that the (quadratic part of the)

5In [48], the range of the spectrum is used to define the theory as spacelike or timelike. However, this

is a less primitive concept (compared to the OPE) and, as emphasized in [1], it is possible to give several

definitions for the spectrum of a theory.
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action is also real, a property which has been motivated in the introduction. Like for the

Coulomb gas, spacelike Liouville, ε = 1, corresponds then to a central charge cL ≥ 1. For

the exponential term in the action to be real, it is further necessary for b to be real. This

implies Q ≥ 2, that is cL ≥ 25, which is the regime typically referred to as “the spacelike

Liouville theory”. Giving up on the reality of the exponential gives the range b ∈ iR or

cL ∈ (1, 25).

The regime typically referred to as “the timelike Liouville theory” corresponds to a

timelike kinetic term ε = −1 and real Q, hence with cL ≤ 1. It can also be obtained

after an analytic continuation of the field and all parameters (except for the cosmological

constant) in the action.

We emphasize that another two regimes compatible with a real central charge exist:

that of spacelike Liouville with Q ∈ iR hence cL ≤ 1 (considered in [48]), and that of

timelike Liouville also with Q ∈ iR and hence cL > 1. All different regimes compatible

with real central charge are summarized in table 1.

Finally, the most general regime follows from letting the background charge, or equiva-

lently the central charge, to be complex. The description of 2d gravity coupled to conformal

matter only requires the total central charge cancellation cm + cL = 26 and, as such, the

regimes with Q imaginary or complex should also be regarded as plausible gravitational

models. Such cases can be important when one is interested in non-Lagrangian theories,

in which case the reality of the action is not a relevant feature. One aim of this paper is

precisely to consider all possible regimes by introducing the distinguishing notation (ε,Q),

and elucidate the differences between the different regimes, especially within each pair with

the same central charge.

Depending on the central charge, two different 3-point functions are compatible with

the degenerate crossing equations of the Liouville theory: the first, for cL /∈ (−∞, 1), is

given by the DOZZ formula [48, 74, 75], while the second is valid for cL /∈ (25,∞) [39–

42, 48]. However, the latter range gets restricted to cL ∈ (−∞, 1] when considering the

full set of crossing equations [48]. Note that these two ranges are specified by the value of

the central charge, regardless of the value of ε = ±1 because the bootstrap is insensitive to

the sign of the current-current OPE. Hence, the choice of the 3-point function is uniquely

fixed by the central charge, not by the regime.

Finally, the conformal bootstrap selects a specific spectrum, the internal spectrum, for

the OPE to ensure that the 4-point function is well defined (convergence of the integration

over the internal states given by the OPE). It is characterized by p ∈ R for ε = 1, p ∈ iR for

ε = −1, but since the associated operators have the same conformal weights (and the same

lower bound (cL − 1)/24) for identical central charges, they can be identified (remember

that the definition of p is ε-dependent). However, this does not prevent to consider different

spectra — which may be required by other consistency conditions — if the theory can be

consistently defined by analytic continuation [1].

Analytic continuation. The theories (ε = 1, Q ∈ R) and (ε = −1, Q ∈ iR) are related

by the following analytic continuation:

φ = iχ, Q = iq, b = −iβ, a = −iα, p = −iE. (2.27)
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c
Q ∈ R

Q ∈ iR
Q ∈ [0, 2) Q ∈ [2,∞)

spacelike: ε = +1 c ∈ [1, 25) c ≥ 25 c < 1

timelike: ε = −1 c < 1 c > 1

Table 1. Range of real values of the Liouville (or Coulomb gas) central charge depending on the

parameters Q and ε. For the spacelike case ε = 1, the two different ranges Q ∈ [0, 2) and Q ≥ 2

correspond to b ∈ eiR and b ∈ R respectively. What is typically known as the spacelike Liouville

theory corresponds to the regime ε = 1 and Q ≥ 2, and the range typically known as the timelike

Liouville theory corresponds to ε = −1 and Q ∈ R.

Indeed, starting from (2.25) with ε = 1, this analytic continuation yields the timelike

Liouville action:

StL =
1

4π

∫
d2σ
√
g
(
−gµν∂µχ∂νχ− qRχ+ 4π µ e2βχ

)
. (2.28)

This is usually how one gets “the timelike Liouville theory” from “the spacelike Liouville

theory” at the classical level, as presented in the common literature. However, this is only

a simple way to translate certain classical expressions from one theory to the other (in the

usual case, both Q and q are taken to be real).

Most quantities (like 3-point correlation functions and higher), though, are not analytic

in the central charge, such that this analytic continuation cannot be used to derive the

properties of the timelike theory from those of the spacelike one [31, 37–39, 43, 44, 48].

Following [1], another proposal is to define the timelike theory at a given cL as the analytic

continuation of the spacelike theory with the same cL. Then, this analytic continuation

is not performed on the complex plane of the central charge, but rather on the energies

of external and internal states through a generalized Wick rotation [52–55]. It was shown

in [1] how such an analytic continuation preserves the finiteness and crossing-symmetry of 4-

point correlators, thus avoiding the singularities encountered when analytically continuing

on the central charge plane.

2.3 Ghosts

In two-dimensional gravity, the gauge fixing of the metric to the conformal gauge introduces

b and c ghosts with action

Sgh =
1

4π

∫
d2σ
√
g bµν

(
∇µcν +∇νcµ − gµν∇ρcρ

)
. (2.29)

The energy-momentum tensor on the plane reads

T gh = −∂(bc)− b∂c (2.30)

from which it is straightforward to compute the central charge and conformal weights of

the ghosts

cgh = −26, hb = 2, hc = −1. (2.31)
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The ghost action is invariant under an anomalous U(1) global symmetry with current

j = −b c. The associated charge is called the ghost number Ngh and is normalised such that

Ngh(b) = −1, Ngh(c) = 1 (2.32)

on the plane.

Mode expansions. The mode expansions of the ghosts are

b(z) =
∑
n

bn z
−n−2, c(z) =

∑
n

cn z
−n+1. (2.33)

The Virasoro operators are

Lgh
m =

∑
n

(m− n) bm+nc−n , Lgh
0 = N b +N c − 1, (2.34)

where the zero-mode is written in terms of the ghost level and number operators

N b =
∑
n>0

nN b
n , N b

n = b−ncn , N c =
∑
n>0

nN c
n , N c

n = c−nbn . (2.35)

The anticommutation relations between the ghosts are

{bm, cn} = δm+n,0 , (2.36)

which imply that bn and cn with n > 0 are respectively annihilation operators for c−n and

b−n. The commutation relations with the Virasoro and number operators are

[Lghm , bn] = (m− n) bm+n, [Lghm , cn] = −(2m+ n) cm+n, (2.37a)

[N b
m, b−n] = b−mδm,n, [N c

m, c−n] = c−mδm,n. (2.37b)

Fock space. The SL(2,C)-invariant vacuum |0〉 is defined by

∀n ≥ −1 : bn |0〉 = 0, ∀n ≥ 2 : cn |0〉 = 0. (2.38)

However, there exists a 2-fold degenerate state with a lower energy since |0〉 is not annihi-

lated by c1. The degeneracy arises because b0 and c0 commute with the Hamiltonian. The

two ground states are given by

| ↓〉 = c1 |0〉 , | ↑〉 = c0c1 |0〉 . (2.39)

They are annihilated by all positive frequency modes bn, cn with n > 0, and are related as

b0 | ↓〉 = 0, c0 | ↓〉 = | ↑〉 , c0 | ↑〉 = 0, b0 | ↑〉 = | ↓〉 . (2.40)

The two ghost ground states have a vanishing norm and their inner product is normalised

to one

〈↓ | ↓〉 = 〈↑ | ↑〉 = 0, 〈↓ | ↑〉 = 〈0| c−1c0c1 |0〉 = 1. (2.41)

By analogy with the critical string, we take | ↓〉 to be the physical vacuum and we use

it to build the Fock space Fgh by acting with the creation and annihilation operators

|ψ〉 = c
Nc

0
0

∏
n≥1

(b−n)N
b
n(c−n)N

c
n | ↓〉 , N b

n, N
c
n = 0, 1. (2.42)
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Hermiticity conditions. The Virasoro modes are Hermitician (Lgh
n )† = Lgh

−n if

b†n = b−n , c†n = c−n . (2.43)

3 BRST cohomology: general derivation

Consider a general CFT with a Coulomb gas scalar field X and a Liouville field φ, with

background charges QX , Qφ, and a generic transverse CFT. In this section, we derive the

relative BRST cohomology and the conditions under which the BRST charge is Hermitian.

Following the standard literature, the Liouville field mode expansions are taken to be those

of a Coulomb gas.6 The field X is taken to be spacelike, while the field φ can be spacelike

or timelike, i.e. formulas depend on εφ. We consider all values of Qφ ∈ R, iR, for which

the central charge of φ is real and for which the BRST operator can be Hermitian. This

generalizes to all regimes (ε,Q) the results from [56, 68] for spacelike Liouville, and those

of [1] to a general transverse CFT.

3.1 Setup

The quantities associated to each scalar are distinguished by an index φ or X, placed as a

superscript for the modes, as a subscript otherwise. For example, the mode operators of

the two scalar fields φ and X are written as αφn and αXn , and the zero modes as αφ and αX .

Together, the two scalar fields and the ghosts form the longitudinal sector. The transverse

CFT is unitary and is only characterized by its energy-momentum tensor T⊥ (we do not

need to be more precise). The Hilbert space H of the theory is

H = H‖ ⊗H⊥, H‖ := Fφ(pφ)⊗FX(pX)⊗Fgh, (3.1)

where pφ and pX correspond to the momenta of the scalar vacua and H⊥ is the Hilbert

space of the transverse CFT. A basis state of this Hilbert space is given by

|ψ〉 = c
Nc

0
0

∏
m>0

(αφ−m)N
φ
m(αX−m)N

X
m (b−m)N

b
m(c−m)N

c
m |pφ, pX , ↓〉 ⊗ |ψ⊥〉 (3.2)

with |ψ⊥〉 a state of the transverse CFT, |pφ, pX , ↓〉 := |pφ〉⊗|pX〉⊗| ↓〉. The total Virasoro

zero-mode operator L0 is

L0 = L⊥0 −m2 − 1 + L̂
‖
0 (3.3)

where L̂
‖
0 is the total longitudinal level operator

L̂
‖
0 = Nφ +NX +N b +N c, (3.4)

and the mass m2 corresponds to the vacuum energy of the scalars

−m2 = aX(QX − aX) + aφ(Qφ − εφaφ) =
Q2
X + εφQ

2
φ

4
+ p2X + εφp

2
φ. (3.5)

6We do not discuss in this paper possible subtleties coming from the presence of the cosmological constant

and the exponential potential wall. See [1] for a discussion.
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The total central charge vanishes as required by gauge invariance of the two-dimensional

gravitational theory:

ctot = 2 + 6(Q2
X + εφQ

2
φ) + c⊥ − 26 = 0. (3.6)

This leads to a condition on the charges:

Q2
X + εφQ

2
φ = 4− c⊥

6
(3.7)

with which the total Hamiltonian can be written in terms of the transverse CFT central

charge and the momenta of the two scalars:

L0 =

(
L⊥0 −

c⊥
24

+
(
p2X + εφp

2
φ

))
+ L̂

‖
0. (3.8)

BRST operator. In the following, we use the superscripts “gh” and “m” to denote the

ghost and matter sectors, where the latter includes the two scalars and the transverse CFT.

The BRST current is given by:

jB(z) = c(z)Tm(z) +
1

2
c(z)T gh(z) +

3

2
∂2c(z). (3.9)

It is primary only if cm = 26. The mode expansion of the associated conserved charge

QB reads

QB =
∑
n

cn

(
Lm−n +

1

2
Lgh−n

)
=
∑
n

cnL
m
−n +

1

2

∑
m,n

(n−m) c−mc−nbm+n − c0. (3.10)

Its ghost number is Ngh(QB) = 1 and it is nilpotent Q2
B = 0 if cm = 26. Importantly, the

Virasoro operators are BRST exact:

Ln = {QB, bn}, [QB, Lm] = 0. (3.11)

3.2 Relative cohomology

Physical states are those states in the Hilbert space which belong to the BRST cohomology

Habs, i.e. which are QB-closed but non-exact:

Habs(QB,H) =
{
|ψ〉 ∈ H

∣∣ QB |ψ〉 = 0, @ |χ〉 ∈ H : |ψ〉 = QB |χ〉
}
. (3.12)

The subscript refers to the absolute cohomology, as opposed to the relative cohomology

which will be defined shortly.

The general method to construct the absolute cohomology follows [56]. Other works

and reviews include [59, 68, 71, 76–80]. The strategy is to find a sequence of isomorphisms

between cohomologies of simpler BRST operators. This is achieved by finding a “contract-

ing homotopy” operator which inverts the BRST operator in some subspace. Then, one

can restrict the BRST operator in the orthogonal subspace to compute the cohomology, be-

cause a BRST closed state with a definite eigenvalue of the contracting homotopy operator

is necessarily exact. Restricting to this subspace is what defines the relative cohomology, in
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which the BRST operator takes a simpler form. Introducing a light-cone parametrization

and iterating the procedure allows to construct the states explicitly. Finally, one needs

to map them to the original space, which is an easy task when the states have no ghosts

beyond the one of the vacuum.

A necessary condition for a state |ψ〉 to be an element of the BRST cohomology is to

be on-shell, i.e. that its conformal weight vanishes:

L0 |ψ〉 = 0. (3.13)

Indeed, if |ψ〉 is closed but not on-shell, QB |ψ〉 = 0 and L0 |ψ〉 6= 0, then one can use the

identity L0 = {QB, b0} to write:

|ψ〉 =
1

L0
{QB, b0} |ψ〉 =

1

L0
QB
(
b0 |ψ〉

)
. (3.14)

The state b0 |ψ〉 corresponds to another state in the Hilbert space. As a consequence, |ψ〉
is exact and does not belong to the cohomology.

It is convenient then to consider the subspace of on-shell states that further satisfy the

condition b0 = 0 (Siegel gauge), which we denote by H0

H0 =
{
|ψ〉 ∈ H

∣∣ L0 |ψ〉 = 0, b0 |ψ〉 = 0
}
, (3.15)

since the additional condition b0 |ψ〉 = 0 is sufficient to ensure on-shellness of BRST closed

states. The relative cohomology is defined as the restriction of the absolute cohomology

on this subspace:

Hrel(QB,H) =
{
|ψ〉 ∈ H

∣∣ QB |ψ〉 = 0, b0 |ψ〉 = 0, @ |χ〉 ∈ H : |ψ〉 = QB |χ〉
}
. (3.16)

Studying this cohomology is very convenient because the following observation allows to

simplify the BRST operator when working in this subspace. The BRST operator (3.10)

can be decomposed in terms of the ghost zero-modes as:

QB = c0L0 − b0M + Q̂ (3.17)

where

Q̂ =
∑
n 6=0

c−nL
m
n −

1

2

∑
m,n 6=0
m+n 6=0

(m− n) c−mc−nbm+n , M =
∑
n 6=0

n c−ncn. (3.18)

Nilpotency of the BRST operator implies the relations:

[L0,M ] = [Q̂,M ] = [Q̂, L0] = 0, Q̂2 = L0M. (3.19)

In the subspace H0, the BRST operator reduces then to Q̂, which also becomes nilpotent

|ψ〉 ∈ H0 =⇒ QB |ψ〉 = Q̂ |ψ〉 , Q̂2 |ψ〉 = 0. (3.20)

It is then sufficient to work out the BRST cohomology for the Q̂ operator:

Hrel(QB,H) ' H(Q̂,H0). (3.21)

Note though that on-shellness does not imply b0 |ψ〉 = 0, i.e. there are on-shell states that

have b0 |ψ〉 6= 0. Hence, once the relative cohomology has been constructed, one needs to

build the absolute cohomology by relaxing the condition b0 = 0.
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3.3 Light-cone parametrization

Following the general method, it is useful to introduce a light-cone parametrization for the

scalar fields. We generalise it here to include both the spacelike and timelike field cases by

introducing the parameter εφ:

α±n =
1√
2

(
αφn ±

i
√
εφ
αXn

)
, α± =

1√
2

(
εφ αφ ±

i
√
εφ
αX

)
, (3.22a)

x± =
1√
2

(
εφ xφ ±

i
√
εφ
xX

)
, P± =

1√
2

(
εφ Pφ ±

i
√
εφ
PX

)
, (3.22b)

Q± =
1√
2

(
Qφ ±

i
√
εφ
QX

)
. (3.22c)

Using α = εQ/2 + iP , one obtains:

α± =
Q±

2
+ iP±. (3.23)

The commutations relations are

[α+
m, α

−
n ] = εφmδm+n,0, [x±, P∓] = i

εφ
2
. (3.24)

The light-cone level and number operators are defined as:

N± =
∑
n>0

nN±n , N±n =
εφ
n
α±−nα

∓
n , (3.25)

such that

NX +Nφ = N+ +N−. (3.26)

Using these definitions, the expression (3.3) for the total Virasoro zero-mode becomes

L0 = L⊥0 −m2 − 1 + L̂
‖
0, (3.27a)

L̂
‖
0 = N+ +N− +N b +N c, (3.27b)

−m2 =
εφ
2

(
Q+Q− + 4P+P−

)
= 1− c⊥

24
+ 2εφP

+P−. (3.27c)

We further define the momenta7

P±n = −iα± +
i

2
Q±(n+ 1) = P± +

i

2
Q± n, (3.28)

whose zero-modes are related to the cylinder light-cone momenta as

P±0 = P±. (3.29)

7In [1], the notation for the generalised momenta is K± := P±.
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3.4 Reduced cohomology

Introducing the above light-cone parametrization into the Q̂ operator allows to further

decompose it as

Q̂ = Q0 +Q1 +Q2, (3.30)

where

Q1 =
∑
n 6=0

c−nL
⊥
n +

∑
m,n 6=0
m+n 6=0

c−m

(
εφ α

+
−nα

−
m+n −

1

2
(m− n) c−nbm+n

)
,

Q0 = εφ
√

2
∑
m 6=0

P+
m c−mα

−
m, Q2 = εφ

√
2
∑
m 6=0

P−m c−mα
+
m.

(3.31)

The subscripts 0, 1, 2 refer to the degree of the operator defined as N+ −N− + N c −N b.

Nilpotency of Q̂ gives the following conditions:

Q2
0 = Q2

2 = 0, {Q0, Q1} = {Q1, Q2} = 0, Q2
1 + {Q0, Q2} = 0. (3.32)

Therefore, Q0 and Q2 are both nilpotent and define a cohomology. The whole point of this

decomposition and of the light-cone parametrisation is that the cohomologies of Q̂ and Q0

are isomorphic8

H(Q̂,H0) ' H(Q0,H0) (3.33)

when there is at most one degree for each ghost number [56]. In particular, this holds

automatically if there are no ghosts and no light-cone oscillators. Note that Q0 commutes

with L0 and b0: to compute the cohomology of Q̂, one can compute the cohomology of Q0

for the Fock space H and restrict it at the end to H0.

The computation of the Q0- and Q2-cohomologies requires to invert either one of the

momenta P±n . A subtlety therefore arises if both P±n vanish for some integers. In this case,

some oscillators are not present in the expression of the contracting homotopy operator and

one finds more states in the cohomology. For this reason, we will deal separately with the

two cases: 1) P+
n 6= 0 for all n 6= 0 (P−n can vanish for some value) and 2) P+

r = P−s = 0 for

some r, s 6= 0. The case P−n 6= 0 for all n 6= 0 (P+
n can vanish for some value) is analogous

to the first case by reversing the definition of the degree.

Non-vanishing P±
n : continuous states. When P+

n 6= 0 for all n, one can introduce

the contracting homotopy operator

B =
1√
2

∑
n 6=0

1

P+
n
α+
−nbn (3.34)

such that

L̂
‖
0 = {Q0, B}. (3.35)

8The role of Q0 and Q2 can be reversed by changing the sign in the definition of the degree and the role

of P±n .

– 16 –



J
H
E
P
0
5
(
2
0
2
0
)
0
2
9

A state |ψ〉 ∈ H is in the Q0-cohomology only if

L̂
‖
0 |ψ〉 = 0. (3.36)

Indeed, following the same reasoning as in (3.14), one finds that

|ψ〉 =
1

L̂
‖
0

Q0

(
B |ψ〉

)
(3.37)

if L̂
‖
0 |ψ〉 6= 0, then |ψ〉 is Q0-exact hence not in the cohomology. Since L̂

‖
0 = N+ + N− +

N b +N c is a sum of positive numbers, (3.36) implies that each of them has to vanish. As

a consequence, states in the cohomology do not contain any α±n , b or c excitations. Since

these states are built only from transverse excitations, they cannot be Q0-exact.

The next step is to prove that L̂
‖
0 = 0 states are closed. These states have Ngh = 1

since they contain only the ghost vacuum | ↓〉 (N b = N c = 0). Further, given that L̂
‖
0 and

Q0 commute, as follows from (3.35), one has

0 = Q0L̂
‖
0 |ψ〉 = L̂

‖
0Q0 |ψ〉 . (3.38)

Since Q0 increases the ghost number of |ψ〉 by 1, one can invert L̂
‖
0 in the last term since

L̂
‖
0 6= 0 in this subspace. This gives

Q0 |ψ〉 = 0, (3.39)

hence these states are closed as announced. Hence, L̂0 = 0 is both a necessary and sufficient

condition.

Finally, since these states only contain the ghost vacuum, they automatically satisfy

b0 |ψ〉 = 0. The only remaining condition to impose is the on-shell condition L0 |ψ〉 = 0

with the zero-mode given by (3.8), which on these states becomes:

L0 = L⊥0 −
c⊥
24

+
(
p2X + εφ p

2
φ

)
= 0. (3.40)

As a consequence, states in the cohomology do not contain any α±n , b or c excitations:

they don’t contain ghosts and correspond to the ground state of the Fock space Fφ ⊗ FX
with momenta constrained by the above condition. The states satisfying this condition will

be called continuous states9 since one of the momenta varies continuously. Since they all

have the same degree, one can apply the theorem A.3 from [56] to show that they are also

elements of the Q̂-cohomology.10

Vanishing P±
n : discrete states. If there exist two non-zero integers r and s such that

the operators P±n vanish

∃ r, s ∈ Z∗ : P+
r = P−s = 0, (3.41)

9This term is used in opposition to “discrete states”, to be defined shortly. However, the momentum

may not be continuous if the Coulomb gas X is reduced to minimal models and if the transverse CFT has

a discrete spectrum. In [1], these states were named standard.
10The theorem states that the Q0- and Q̂-cohomologies are isomorphic if states at fixed ghost number

have all the same degree.
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one can instead introduce a modified contracting homotopy operator:

Br =
1√
2

∑
n 6=0,r

1

P+
n
α+
−nbn (3.42)

such that

L̂
‖
0,r = {Q0, Br}. (3.43)

By the same argument as in the previous case, a state |ψ〉 is in the cohomology only if

L̂
‖
0,r |ψ〉 = 0. (3.44)

Given that

L̂
‖
0 − L̂

‖
0,r = {Q0, B −Br} = εφ{c−rα−r , α+

−rbr}, (3.45)

the level operator differs from the modified one by

r > 0 : L̂
‖
0 = L̂

‖
0,r + r

(
N+
r +N c

r

)
(3.46)

r < 0 : L̂
‖
0 = L̂

‖
0,r − r

(
N−−r +N b

−r
)

(3.47)

since br (cr) is an annihilation operator associated to c−r (b−r) and α+
−r (α−−r) is a creation

operator associated to α−r (α+
r ) for r > 0 (r < 0). States in the cohomology can hence be

built by acting with the corresponding creation operators on the vacuum and are called

discrete states:

r > 0 : (α+
−r)

u (c−r)
v |pφ, pX , ↓〉 ⊗ |ψ⊥〉 , (3.48a)

r < 0 : (α−r )u (br)
v |pφ, pX , ↓〉 ⊗ |ψ⊥〉 , (3.48b)

where u and v are some positive integers to be determined in each case by consistency with

the other conditions. The allowed values for v are 0 and 1: the cohomology will hence

contain states with ghost number Ngh = 0, 1, 2.

We now impose the on-shell condition. The vanishing of the two momenta (3.41), can

be used to recast the expression of the momenta (3.28) as:

P+
m =

iQ+

2
(m− r), P−m =

iQ−

2
(m− s). (3.49)

In particular, one finds

P+P− = −εφ
rs

2

(
1− c⊥

24

)
. (3.50)

These states will be called discrete states because their momenta always take on discrete

values, as follows from (3.49). The on-shell condition (3.27a) becomes

L0 = L⊥0 + (1− rs)
(

1− c⊥
24

)
− 1 + L̂

‖
0 = 0. (3.51)

If there is no transverse CFT, this equation can only have a solution if rs > 0. On the

other hand, this equation may admit solutions with rs < 0 if there is a transverse CFT.11

11We have ignored the subtleties at zero-momentum since that requires to know the transverse CFT.

Indeed, if pφ = pX = 0 but there is another scalar field in the transverse CFT, then it is possible to use

that one instead of X.
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Applying the on-shell condition (3.51) on the states (3.48) yields

L0 = L⊥0 + (1− rs)
(

1− c⊥
24

)
− 1 + |r|(u+ v) = 0. (3.52)

For fixed momenta of the vacuum pX and pφ, the values of the indices r and s are

determined from the vanishing of P+
r and P−s (given that the charges Qφ and QX are fixed

by the theory). Hence, once the momenta are fixed, only one case between r > 0 or r < 0

can take place: states in the cohomology of a fixed-momentum sector differ by at most one

ghost number (i.e. Ngh = 1, 2 or Ngh = 0, 1).

It is not possible to apply theorem A.3 from [56] to show that the discrete states (3.48)

are also elements of the Q̂-cohomology. Indeed, there can be states of different degrees

with Ngh = 1 satisfying the on-shell condition (3.52). One such example is the case where

QX = 0 and the transverse CFT is made of D − 1 scalars [68].

On the other hand, discrete states contain ghost excitations and can have negative-

norm states. For these reasons, it is useful to project them out, which can be achieved by

imposing Hermiticity of the BRST charge.

Hermiticity and absolute cohomology. Hermiticity of the BRST charge follows from

the Hermiticity of the Virasoro operators of each sector. For the Coulomb gas, the standard

Hermiticity conditions (2.24) require P † = P if Q ∈ R, and P † = −P if Q ∈ iR.

For continuous states, this simply restricts the range of the momenta pX and pφ. Note

that this is independent of εφ = ±1.

To study the discrete states, we first rewrite the momenta for the scalar fields when

P+
r = P−s = 0 hold:

Pφ = −
iεφ
4

(r + s)Qφ +

√
εφ

4
(r − s)QX , (3.53a)

PX = −
√
εφ

4
(r − s)Qφ −

i

4
(r + s)QX , (3.53b)

using (3.28) and (3.22b), (3.22c). As a consequence, restricting the BRST cohomology to

its Hermitian sector imposes constraints on the possible values of r and s. Tables 2 and 3

display the conditions for which X is Hermitian for the timelike and spacelike Liouville

cases respectively:

Timelike case. We find that the only allowed possibility is for r = s = 0 when both fields

are Hermitian, and hence there are no discrete states.

Spacelike case. When both fields are Hermitian, the only solution is r = s = 0 if one

charge is real and the other imaginary. On the other hand, there are solutions with

r = −s when the charges are either both real or both imaginary. If there is no trans-

verse CFT, then r = −s does not solve the on-shell condition (3.52) since rs < 0.12

We leave open the case where there is a transverse CFT.

12If there is a transverse CFT, then c⊥ < 24 and it looks difficult for solutions to (3.52) to exist when both

charges are real. More generally, if the transverse CFT contains a scalar field (with or without background

charge), it can be used instead of X. In that case, one may reduce the computations of the cohomology to

another case of the table and find that, in fact, there are no discrete states.
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εφ = −1 QX ∈ R QX ∈ iR
Qφ ∈ R r = s = 0 r + s = 0

Qφ ∈ iR r + s = 0 r = s = 0

Table 2. Conditions on the integers r and s for a timelike φ following from the Hermiticity of X.

Imposing further φ to be Hermitian reduces all conditions to r = s = 0, in which case there are no

solutions.

εφ = +1 QX ∈ R QX ∈ iR
Qφ ∈ R r + s = 0 r = s = 0

Qφ ∈ iR r = s = 0 r + s = 0

Table 3. Conditions on the integers r and s for a spacelike φ following from the Hermiticity of X.

Hermiticity of φ does not impose further conditions.

In conclusion, there are no discrete states, hence no ghosts, in the Hermitian subsector

of the BRST cohomology in most cases. Indeed, in the case the Liouville field (or one of the

two Coulomb gases) is timelike, only continuous states remain. In that case, it is possible

to apply theorem A.3 from [56] which implies that the Q0-cohomology is isomorphic to

the relative cohomology. Finally, the absolute cohomology follows trivially as Habs =

Hrel ⊕ c0Hrel [56]. It should be noted that the Hermiticity conditions preventing discrete

states to appear in the spectrum are those of the two Coulomb gas fields X and φ. However,

we assume Hermiticity of the whole matter sector so that the BRST charge is Hermitian.

Cosmological constant. Finally, we outline a simple argument to argue that restoring

the cosmological constant does not change the cohomology beyond identifying states with

p and −p. This relies on the isomorphism between the Fock basis {α−n} and the Virasoro

basis {L−n}, which holds when the momentum of the vacuum |p〉 (2.21) is not equal to

the momentum (2.23) of a degenerate state, p 6= pr,s [81–84].13 This is mostly the case

since, as discussed below (2.24), there are no degenerate states for Hermitian momenta

when cL /∈ (1, 25) for both εφ = ±1. The argument is as follows:

1. The cohomology is computed for the Coulomb gas in the oscillator basis {α−n}, that

is, as a subspace of the Fock space built on all primaries V±p.

2. The isomorphism is used to rewrite all states in the Virasoro basis {L−n}, which is

possible when there are no degenerate states. In particular, we map the states from

the cohomology.

3. The Liouville states are written as linear combinations (2.26) of Coulomb gas states

in the Virasoro basis. This can be done because Liouville primaries are given by

Vp = Vp +R(p)V−p. (3.54)

13A hint of the proof is the following. Both bases have the same number of states at a given level because

α−n can be replaced with L−n, or the other way around. In particular, both characters are proportional

to η(τ)−1. There is a map from the Virasoro basis to the Fock basis using (2.10). It remains to show that

the map is one-to-one. The Fock basis is obviously not degenerate, so the same must hold for the Virasoro

basis, which can be checked using the Kac determinant.
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Therefore their descendents are generated by the Virasoro basis {L−n} acting on

these. Since they are written as linear combinations of states V±p, which have iden-

tical conformal weights hp, they also have a well-defined conformal weight (and sim-

ilarly for the descendents).

4. The BRST charge QB is completely determined by the Virasoro algebra, and its

result depends only on the conformal weight of the states and the central charge cL.

Since the central charges and conformal weights of the Liouville theory and of the

corresponding Coulomb gas are the same, the Liouville cohomology follows from the

one of the Coulomb gas.

Notice that it follows from (3.40) that if a continuous state Vp is in the cohomology, so is

V−p. (This is not the case though for discrete states, so the cosmological constant could

have a different effect for these states.) In particular, this works for both the spacelike

and timelike Liouville theories at cL ≤ 1 and cL ≥ 25 when restricting to the Hermitian

subspace.14

For another approach which could be extended to more general cases, the reader is

referred to [1].

4 Applications

In this section, we apply the results from section 3 to the three Liouville theories which

have a real action (at least for the Gaussian or Coulomb gas part): spacelike with cL ≥ 25,

with cL ∈ (1, 25), and timelike with c ≤ 1. Due to the reality of the action, these models

are the most natural ones for defining a theory of 2d gravity. In each case, we consider the

coupling to different simple models of spacelike matter.

The relevant formulas to solve for each theory are the relation (3.7) between the

Coulomb charges and the central charge of the transverse CFT, the on-shell condi-

tions (3.40) and (3.52), and the expressions for the momenta in the presence of discrete

states (3.53).

4.1 Timelike Liouville with cL ≤ 1

We consider the timelike Liouville theory εφ = −1 with cL ≤ 1, that is Qφ ∈ R. Since

the charge is real, the Hermiticity condition implies that the Liouville momentum is

real, pφ ∈ R.

Free scalar fields. We consider D ≥ 25 scalar fields XI = (X,X i) with i = 1, . . . , D−1

and such that c⊥ = D − 1, QX = 0 [1].15 The momenta are denoted as p = (pX , p
i) and

the transverse level operator by N⊥ ∈ N. The background charge is related to D as

Q2
φ =

D − 25

6
. (4.1)

14For this approach to work, it is necessary to restrict the states to Hermitian momenta from the out-

set, since the isomorphism (which relies on Hermiticity) must be used before computing the Liouville

cohomology.
15In [1], the notation used is Y i := Xi for the transverse scalars, the Liouville field is denoted χ instead

of φ, and the momenta are ki := pi, K := pX and E := pφ.
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The on-shell condition reads

p2 − p2φ +N⊥ =
D − 1

24
. (4.2)

This equation is solved as

pφ = ±
√
p2 +N⊥ −

D − 1

24
. (4.3)

According to the Hermiticity conditions, pφ,p ∈ R, which puts a lower bound on |p| for

the square root to have a positive argument. As noted previously, there are no ghost states

and this reproduces the results from [1] when those are restricted to the Hermitian sector.

For Qφ = 0 one recovers string theory in D = 26 dimensions.

Real Coulomb gas. Consider the coupling of Liouville to a single Coulomb gas. In this

case, the vanishing of the total central charge gives the relation

Q2
X −Q2

φ = 4, (4.4)

which implies that QX ∈ R. The solutions to the on-shell condition are

pφ = ±pX ∈ R (4.5)

which is compatible with Hermiticity.

Real Coulomb gas. We recall the relation (3.7) between the Coulomb charges and the

central charge of the transverse CFT

Q2
X +Q2

φ = 4− c⊥
6
. (4.6)

In order to describe the continuous states, one just needs to solve the on-shell condi-

tion (3.40)

L0 = L⊥0 −
c⊥
24

+ p2X + p2φ = 0. (4.7)

In this case, there are no ghost states and no light-cone oscillators.

In the spacelike case, there can be discrete states (3.48). The corresponding on-shell

equation (3.52) reads:

L0 = L⊥0 + (1− rs)
(

1− c⊥
24

)
− 1 + |r|(u+ v) = 0. (4.8)

where r and s are such that P+
r = P−s = 0. Then, the momenta of the discrete states are

given by (3.53):

Pφ = −
iεφ
4

(r + s)Qφ +

√
εφ

4
(r − s)QX ,

PX = −
√
εφ

4
(r − s)Qφ −

i

4
(r + s)QX .

(4.9)
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4.2 Spacelike Liouville with cL ≥ 25

For the spacelike Liouville theory εφ = 1 with cL ≥ 25, Qφ is real and Qφ ≥ 2. Since the

background charge is real, the Hermiticity condition implies that the Liouville momentum

is real, pφ ∈ R.

We consider two matter models without transverse CFT such that

Q2
φ +Q2

X = 4. (4.10)

Since Qφ ≥ 2, this admits a solution only if QX = 0 or QX ∈ iR.

According to the discussion in section 3.4, the on-shell condition for discrete states ad-

mits no solutions if there is no transverse CFT, since in this case rs ≤ 0. As a consequence,

there are no ghost states in the Hermitian subsector.

Free scalar field. In this case, X is a free scalar field CFT with cX = 1 and QX = 0, [56,

section 5] and [58, 60], which implies Qφ = 2 and cL = 25. The on-shell equation for

continuous states reads

p2X + p2φ = 0 (4.11)

whose Hermitian solutions are:

pφ ∈ R, pX = ±ipφ ∈ iR. (4.12)

Imaginary Coulomb gas. We consider the case where X is a Coulomb gas with imag-

inary charge QX ∈ iR such that cX ≤ 1. The on-shell equation is the same as for the free

scalar and the Hermitian solutions are:

pφ ∈ R, pX = ±ipφ ∈ iR. (4.13)

In this case of an imaginary Coulomb gas, cX matches the central charge of a minimal

model at some specific values. Indeed, minimal models Mp,q are obtained when b2 = −q/p,
with p, q ≥ 2, is a rational number such that

cm = 1− 6(p− q)2

pq
< 1. (4.14)

Minimal models can be defined from a Coulomb gas with imaginary background charge

thanks to Felder’s resolution [19, 21] (see also [56]) to obtain irreducible representations;

this is well known and we refer the reader to the literature [56, 59, 61, 63] for more details.

We expect this to be also true for generalized minimal models [31, 39, 48]. These

models exist for any complex central charge c ∈ C, but only on the sphere. Coupling them

to gravity gives the so-called “generalized minimal gravity” [39] which allows to extend

minimal gravity defined at discrete points in cL ∈ [25,∞) to all central charges cL > 25 (in

fact, also to cL ≤ 25). The first step would be to generalize Felder’s resolution to describe

these models from the Coulomb gas.
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4.3 Spacelike Liouville with cL ∈ (1, 25)

For the spacelike Liouville theory εφ = 1 with cL ∈ (1, 25), Qφ is real and Qφ ∈ (0, 2)

Since the background charge is real, the Hermiticity condition implies that the Liouville

momentum is real, pφ ∈ R. The BRST cohomology of this theory has been studied in [68],

but with a different Hermiticity condition.16

Real Coulomb gas. We consider the case where there is no transverse CFT. The

equation for the background charge becomes

Q2
X +Q2

φ = 4, (4.15)

which implies that QX ∈ (0, 2) ∈ R. In this case, the on-shell condition for continuous

states reads:

p2X + p2φ = 0. (4.16)

The only solution in the Hermitian sector pX , pφ ∈ R corresponds to pX = pφ = 0. This

means that the only state in the cohomology is the vacuum.

Hermiticity allows discrete states with r = −s, however, the on-shell condition does

not have any solution since rs < 0.

Free scalar fields. We consider D ∈ (1, 25) scalar fields XI = (X,X i) with i =

1, . . . , D−1 and such that c⊥ = D−1, QX = 0 (if QX 6= 0, then one can perform a rotation

in the field space to recover this case [68]). The momenta are denoted as p = (pX , p
i) and

the transverse level operator by N⊥ ∈ N. The background charge reads

Q2
φ =

25−D
6

. (4.17)

The on-shell equation is

p2 + p2φ +N⊥ =
D − 1

24
. (4.18)

Since D > 1, the r.h.s. is positive and the solutions are

pφ = ±
√
D − 1

24
− p2 −N⊥ , (4.19)

with the values of |p| and N⊥ bounded from above such that the square root is positive

and pφ ∈ R consistent with the Hermiticity condition.

The on-shell condition for the discrete states is:

(pi)2 +N⊥ + (1 + r2)

(
25−D

24

)
− 1 + |r|(u+ v) = 0. (4.20)

This admits non-trivial solutions and thus this model can contain ghost states. The mo-

menta of the discrete states are given by (3.53):

pφ = 0 pX = −r
2
Qφ. (4.21)

16In [68], the oscillator zero-mode receives an additional shift (for ε = 1): Ln(α)† = L−n(εQ − α). This

leads to the same conditions as in (2.24) except for P † = ∓P . However, this implies that the momentum

is anti-Hermitian in the limit Q ∈ R→ 0.
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5 Discussion

In this paper, we have analyzed the BRST cohomology of all possible models where the

matter CFT contains at least two Coulomb gases, one which is possibly timelike. This

provides a solid basis to study generic matter models coupled to the timelike Liouville

theory with cL ≤ 1 defined in [1]. The main result of our analysis is that its spectrum

as determined from the Hermitian sector of the BRST cohomology associated to 2d dif-

feomorphisms, is free from negative-norm states. When states with Hermitian momenta

cannot be degenerate, we provided an argument to extend the cohomology to include the

effect of the cosmological constant.

Another conclusion of our analysis is that two theories with the same value of the

central charge can have different BRST spectra. Indeed, consider the Liouville theories

with (εφ = −1, Qφ ∈ R) and with (εφ = +1, Qφ ∈ iR), both coupled to the same spacelike

Coulomb gas with QX ∈ iR and the same transverse CFT. The two have the same central

charge cL ≤ 1, yet the first one only has continuous states in the spectrum, while the

second one will generically also contain discrete states. This should not come as a surprise:

as it is well known in string theory, the cohomology is empty in Euclidean signature but

not in Lorentzian signature. This highlights the convenience of using two parameters (ε,Q)

to distinguish between the four possible regimes of Liouville theory, as following from the

choices of the sign of the kinetic term on the one hand and the reality of the background

charge on the other. Additionally, and as explained in the introduction, one same theory

can exhibit different spectra depending on the quantization procedure.

The next step would be to define correlation functions in each case, as was done for the

cL ≤ 1 timelike Liouville theory [1]. Following [1], we expect that correlation functions of a

more general timelike theory must be defined by analytic continuation of the external states

of correlation functions of the spacelike theory with the same central charge. This contrasts

with the folk lore that the timelike cL ≤ 1 theory is obtained from the spacelike cL ≥ 25

theory by analytic continuation of the Coulomb charge. Keeping the central charge fixed

is a natural generalization of the Wick rotation following string field theory [52–55]. The

motivation for this definition is that correlation functions are not analytic in the central

charge [31, 48]. Consider the 4-point function for definiteness: using factorization, it can

be written as an integral of two 3-point functions connected by the conformal block. As

one analytically continues the external states, the poles of the integrand move and the

integration contour must be deformed to avoid them. An important simplification happens

for cL ≤ 1 since the poles of the integrand don’t move due to the properties of the cL ≤ 1

structure constant [1]. However, the poles do move for cL /∈ (−∞, 1], which ultimately

motivates the general prescription proposed in [1].

Finally, it would be interesting to study the discrete states for their own sake as they

possess a rich mathematical structure in the spacelike cL ≤ 25 theory [60, 63–67].
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