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SUMMARY

Sensory systems need to reliably extract information
from highly variable natural signals. Flies, for
instance, use optic flow to guide their course and
are remarkably adept at estimating image velocity
regardless of image statistics. Current circuit models,
however, cannot account for this robustness. Here,
we demonstrate that the Drosophila visual system
reduces input variability by rapidly adjusting its sensi-
tivity to local contrast conditions. We exhaustively
map functional properties of neurons in the motion
detection circuit and find that local responses are
compressed by surround contrast. The compressive
signal is fast, integrates spatially, and derives from
neural feedback. Training convolutional neural net-
works on estimating the velocity of natural stimuli
shows that this dynamic signal compression can
close the performance gap between model and or-
ganism. Overall, our work represents a comprehen-
sive mechanistic account of how neural systems
attain the robustness to carry out survival-critical
tasks in challenging real-world environments.

INTRODUCTION

Visual motion represents a critical source of sensory feedback

for navigation. Self-motion results in particular patterns of local

directional cues across the retina. Detection of these optic flow

fields allows animals to estimate and control their current head-

ing [1]. Flies, for instance, react to whole-field retinal motion by

turning in the same direction as their surroundings. This optomo-

tor response enables them to maintain a straight path under per-

turbations as well as over long distances [2, 3].

For the reflex to work effectively, biological motion detectors

need to respond reliably and independently of the particular vi-

sual statistics of the environment. This poses a challenge given

the complexity of natural scenes [4, 5]. Motion vision systems

therefore need to employ processing strategies that maintain

robust performance despite the variability of natural visual

input.
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Recent circuit mapping efforts have yielded unprecedented

insight into the neural substrate ofmotion detection inDrosophila

[6, 7]. The fly optic lobe consists of sequential neuropils (retina,

lamina, medulla, lobula, and lobula plate) and is arranged in

columns that process visual input retinotopically. In various com-

binations, lamina cells L1–L5 feed into a light-sensitive ON or a

dark-sensitive OFF pathway, each comprising at least four cell

types in the medulla [8]. Medulla units fall into two classes char-

acterized either by transient temporal filtering and moderate

center-surround antagonism in their spatial receptive field (Mi1

and Tm3 for ON; Tm1, Tm2, and Tm4 for OFF) or by tonic re-

sponses and strong antagonistic surround (Mi4 and Mi9 for

ON; Tm9 for OFF) [9–13]. Postsynaptic T4 and T5 cells then

compute local ON and OFF motion, respectively, by comparing

medulla signals with different dynamics across neighboring col-

umns [8, 14–19]. Jointly, they are necessary for the optomotor

response [20]. By pooling appropriate T4 and T5 signals, lobula

plate tangential cells (LPTCs) detect optic flow fields that corre-

spond to rotations around different body axes and ultimately

control turning [3, 21–23].

For artificial stimuli, fly motion processing is well explained by

correlation-based detector models that rely on multiplication of

spatially adjacent, asymmetrically filtered luminance signals

[24]. These elementary motion detectors (EMDs) account for

subtle features of behavioral and neural responses such as

pattern-induced shifts in velocity tuning [25, 26], intrinsic velocity

gain control [27], or reverse-phi sensitivity [28, 29]. However,

EMD output strongly depends on contrast as defined by the

average difference between light and dark [26]. EMDs thus

invariably confound image contrast with velocity. Since local

contrast varies substantially within natural images [4], output

from individual EMDs is sparse and fluctuates heavily under

naturalistic conditions (Figures S1A–S1C). Motion responses in

flies, however, have been shown to be highly robust, across

both time and different natural scenes [30, 31].

Various general mechanisms for adaptation to naturalistic

signals have been described in the fly visual system. These

include gain control in photoreceptors or LPTCs [32–34], redun-

dancy reduction through lateral inhibition [35], subtractive

enhancement of flow field selectivity [36], and tailoring of

processing to fundamental natural scene statistics [31, 37,

38]. However, none effectively address the problem of contrast

fluctuations.
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Figure 1. Flies Respond More Robustly to

Natural Scene Variability Than Predicted

by Correlation-Based Motion Detectors

(A) Illustration of behavioral set-up. Tethered wild-

type Drosophila were stimulated with translating

natural images.

(B) Left: turning responses for images moving at

80�s�1 (n = 16 flies). Each color indicates a distinct

scene. Images moved during gray-shaded period.

Right: velocity tuning curves for all measured

scenes (averaged between 0 and 1 s after motion

onset).

(C) Illustration of fly visual system. Photoreceptor

signals are processed in five retinotopically ar-

ranged neuropils. Wide-field lobula plate tangen-

tial cells (LPTCs) respond to particular optic flow

fields.

(D) Left: membrane potential of horizontal system

LPTCs in response to images moving at 20�s�1

(n = 11 cells from 9 flies). Right: velocity tuning

curves (averaged between 0 and 3 s after motion

onset).

(E) Schematic of an individual correlation-based

elementary motion detector (EMD; t denotes

delay line; 3, multiplication; –, subtraction).

(F) Left: responses of an array of EMDs to stimu-

lation with natural images moving at 20�s�1. Right:

velocity tuning curves of EMD array (evaluated like

LPTC output). Note that in contrast to experi-

ments, model responses were averaged across

many different starting phases. Shaded areas

around curves indicate bootstrapped 68% confi-

dence intervals.

See also Figure S1 and Table S2.
In vertebrate visual systems, contrast sensitivity is continu-

ously regulated through the mechanism of divisive normalization

[39–41]. Here, the response of a neuron is effectively divided by

local contrast, estimated as the average activity within a popula-

tion of neighboring neurons. The process compresses signals of

varying contrast into a fixed range by dynamically adjusting gain

to current conditions [5] and renders the neural representation of

stimuli largely invariant with respect to contrast. However, so far,

no comparable mechanism has been described for the inverte-

brate visual system.

Here, we investigate how the fly visual system copes with

contrast variability and demonstrate that dynamic signal

compression based on divisive contrast normalization renders

motion processing robust to the challenges imposed by natural

visual environments.

RESULTS

Fly Motion Responses Are Robust to Natural Scene
Variability
To rigorously assess the robustness of Drosophila motion pro-

cessing, we measured optomotor responses to a diverse set

of moving naturalistic panoramas on a walking treadmill setup

(Figure 1A). Fly turning was highly consistent across images

and velocity tuning curves showed virtually no variation over

different scenes, matching previous findings [31] (Figure 1B; Fig-

ure S1). To quantify reliability at the neural level, we recorded the

membrane potential of horizontal system LPTCs that detect
210 Current Biology 30, 209–221, January 20, 2020
optic flow fields corresponding to yaw rotation (Figure 1C).

Potential was tuned to scene velocity and again exhibited little

image-dependent variation (Figure 1D). Additionally, membrane

voltage proved highly stable across time. This was consistent

with earlier work in hoverflies [30].

To perform a consistent comparison, we tested the robust-

ness of EMDs on the same set of stimuli as in behavior and elec-

trophysiology (Figure 1E). As anticipated from a multitude of

similar studies [31, 37, 42, 43], responses were remarkably unre-

liable across time and images (Figure 1F). For most images,

temporally resolved output fluctuated strongly, average ampli-

tudes differed, and tuning curves exhibited peaks at different

velocities. Overall, EMDs provided a poor readout of true image

velocity. This stands in stark contrast to the experimentally

observed robustness of motion responses and leads to the

central question: how does the fly visual system compensate

for natural contrast variability?

Sensitivity of Optomotor Response Is Modulated by
Surround Contrast
We designed an optomotor stimulus to establish whether

Drosophila dynamically adapt the sensitivity of motion-induced

turning to image contrast, which could serve to normalize varia-

tion within natural scenes. The stimulus segregated the visual

field into a background and a foreground pattern (Figure 2A).

The background contained random luminance fluctuations but

no net motion. Pattern movement within the foreground window

triggered turning. For both, average contrast could be controlled
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Figure 2. Sensitivity of Drosophila Optomo-

tor Response Is Controlled by Surround

Contrast

(A) Experimental set-up. Visual display is separated

into two areas whose contrast can be set inde-

pendently.

(B) Bottom: space-time plot of base stimulus.

Foreground pattern moved during time span indi-

cated by dashed lines; background is dynamic but

contains no coherent motion. Top: time-averaged

response of EMD array along azimuth. Only fore-

ground produced net activity.

(C) Turning responses for extreme background

contrast conditions (n = 16 wild-type flies) at

foreground contrast 12.5%. Gray-shaded area in-

dicates motion.

(D) Mean rotation (averaged between 0 and 1 s after

stimulus onset) as a function of foreground contrast

for two background conditions (n = 16; gray arrow

indicates foreground contrast depicted in C).

(E) Heatmap of mean rotation for multiple back-

ground conditions. With increasing background

contrast, optomotor sensitivity shifted rightward

(n = 16).

(F) Example stimulus for mapping magnitude of

sensitivity shift. Background contrast was modu-

lated at 1 Hz.

(G) Left: baseline turning response in the absence of

background contrast (n = 16, foreground contrast

25%). Right: turning response for sinusoidal change

in background contrast (data taken from spatial

experiment evaluated in I at distance 15�). During
high-contrast phase, optomotor response was

suppressed; turning modulation allowed readout of

background-induced changes in gain.

(H) Illustration of spatial oscillation experiment.

Distance indicates separation between centers of

foreground motion and flanking background.

(I) Turning response modulation as a function of

distance between motion stimulus and background

(n = 16). Gray-shaded bar indicates 68% confi-

dence interval around baseline modulation in the

absence of background.

(J) Turning response modulation as a function of

carrier frequency for either foreground (n = 13) or

background (n = 13). Shaded area around curves

indicates bootstrapped 68% confidence interval.

See also Figure S2, Table S2, and Videos S1 andS2.
independently. We confirmed that the background by itself pro-

duced no net activity in EMDs (Figure 2B).

At zero background contrast, foreground motion induced a

reliable optomotor response (Figure 2C). Turning was fully sup-

pressed at maximum background contrast, proving that turning

gain is controlled by surround contrast. Average field luminance

was constant for all conditions, so linear processing could not

account for the phenomenon. A full measurement of contrast

tuning curves for foreground motion revealed a smooth shift of

the dynamic range of the optomotor response toward the current

surround contrast (Figures 2D and 2E).

To efficiently map features of contrast gain control in a single

stimulus condition, we sinusoidally modulated background

contrast over time, which resulted in oscillations around mean

turning (Figures 2F and 2G). Whenever background contrast

was high, syndirectional rotation in response to motion was
transiently suppressed. Evaluating oscillation amplitude thus

allowed a readout of the level of contrast-induced gain adjust-

ment. We determined the spatial scale of suppression by varying

the spacing between foreground and a windowed background,

separated by uniform gray (Figure 2H). Modulation fell with dis-

tance between motion stimulus and background stripe and

dropped to baseline at approximately 35�, so contrast estimation

was non-local but spatially limited (Figure 2I; Figures S2A and

S2B; full width at half maximum of 43.8� for zero-centered

Gaussian least-squares fit to mean tuning curve).

When we varied oscillation frequency in the background, sup-

pression followed contrast changes up to fast timescales

beyond 3Hz (Figure 2J; Figures S2C–S2F). However, modulation

decreased at lower frequencies than for equivalent foreground

oscillations, which is indicative of temporal integration. We

additionally evaluated the lag between contrast oscillation and
Current Biology 30, 209–221, January 20, 2020 211



turning by means of cross-correlation (Figures S2G and S2H).

The maximum suppressive effect of background modulation

was delayed with respect to the effect of foreground modulation

by approximately 70ms (bootstrapped 95%CI: 33–114ms). This

supported the previous conclusion that themechanism for back-

ground contrast estimation operates on slower timescales than

the primary motion pathway. Silencing T4 and T5 cells abolished

all contrast-guided oscillatory turning (Figures S2I–S2K), sug-

gesting that contrast adaptation is not mediated by a system

parallel to motion detection [44]. Our experiments thus point to

a rapid, spatially distributed gain control mechanism that arises

in early visual processing.

Signal Compression Emerges in Transient Medulla
Neurons
We next used two-photon calcium imaging to locate the neural

origin of contrast adaptation. The calcium indicator GCaMP6f

was genetically expressed in particular cell types [45]. We tar-

geted visual stimuli to individual neurons by determining recep-

tive field coordinates through a combination of stochastic stimuli

and online reverse correlation (Figures 3A and 3B; STAR

Methods). This procedure additionally yielded estimated linear

receptive fields for L1–L5, analogously to the ones previously

described for medulla neurons [9] (Figures S3A–S3T). Consistent

with earlier functional work [29, 46], spatiotemporal filters group-

ed into tonic (L3) or transient units (L1, L2, L4, and L5) like they

did in the medulla. In contrast to all other lamina cells, we found

that the polarity of the L5 receptive field center is ON.

To precisely map context-dependent changes in contrast

sensitivity for a given cell type, we then presented drifting sine

gratings with separately controlled contrast in the foreground

(as defined by a 25� circular window centered on the receptive

field) and the background (Figure 3C). At a fixed foreground

contrast, L1 activity followed local grating luminance and was

independent of background contrast (Figure 3D). Responses in

downstream synaptic partner Tm3, however, showed the signa-

ture of gain control as signal amplitude was increasingly sup-

pressed by growing surround contrast (Figure 3E).

We performed these experiments for all major columnar cell

types in the circuit as well as T4 and T5 cells (Figure 3F). To

obtain contrast tuning curves, we evaluated calcium modulation

at the stimulus frequency. Lamina units tracked foreground

contrast but were weakly, if at all, modulated by the surround

except for a vertical shift at low levels (Figures 3G–3K). This

was likely due to background leaking into the receptive fields

since antagonistic surrounds extend beyond 25� for some cell

types (Figure S3) [9]. In the medulla (Figures 3L–3U), tonic Mi4,

Mi9, and Tm9 showed similar tuning as L1–L5 and again little sur-

round dependency. However, for all transient cells (Mi1 and Tm3

for ON; Tm1, Tm2, and Tm4 for OFF), increasing background

contrast had a strongly suppressive effect, which is a hallmark

of divisive contrast normalization [41].

As with the corresponding behavioral experiments (Figure 2),

linear receptive fields could not explain the effect given that

the average luminance was constant for all conditions. Curves

were shifted rightward on the logarithmic axis, which corre-

sponds to divisive stretching in linear contrast space. Impor-

tantly, preferred direction responses in T4 and T5 were also

strongly background dependent (Figures 3P and 3U) even
212 Current Biology 30, 209–221, January 20, 2020
though not all their medulla inputs are subject to gain control.

Finally, sensitivity to foreground contrast was generally higher

in ON than OFF units.

Several cell types—particularly medulla transient cells—

showed a dependency between fluorescence modulation at

the target frequency and average response (Figure S4), possibly

due to temporal integration by the calcium indicator [47].

Depending on this average activity, a saturating transformation

between calcium signal and GCaMP fluorescence could by itself

introduce compression of strong signal amplitudes due to ceiling

effects at the far end of the sensor’s dynamic range. To rule this

out, we directly compared mean activity with oscillation ampli-

tude and found no region in which this correlation was negative

(Figures S4Q–S4S).

To quantify tuning curves in detail, we fit a closed-form model

resembling commonmodels of divisive normalization to the data

(Figure 3V; STARMethods) [41, 48]. Here, response gain is regu-

lated by a divisive term that depends on background contrast

while a linear term represents the combined contribution of fore-

ground contrast and background leakage. The model accurately

reproduced tuning curves for each cell type (Figure 3W; Table

S1). Critically, it accounted for vertical shifts as well as sigmoidal

tuning curves and context-dependent changes in contrast

sensitivity.

We computed a normalization index from model parameters

that estimates the degree of normalization. Given that different

cell types had different baseline sensitivities and that horizontal

shifts on a logarithmic scale correspond to multiplication, we

quantified the relative factor by which tuning curves would shift

when background contrast was increased from 0% to 100%

(STAR Methods). This index was substantially higher in transient

medulla cells (Mi1, Tm3, Tm1, Tm2, and Tm4) and direction-

selective T4 and T5 cells than in L1–L5 or tonic medulla units

(Mi4, Mi9, and Tm9; Figure 3X). Interestingly, L2 and L5 exhibited

mildly elevated normalization indices. For L2, this may be related

to previously described non-linearities in its receptive field

structure [49].

Normalization Relies on Fast Integration of a Pool of
Transient Units
Overall, fly contrast gain control appeared to be based on divi-

sive normalization that predominantly originates in medulla units

with transient response dynamics. We focused on these neurons

to investigate the mechanism in detail. Responses in Mi1, Tm1,

Tm2, and Tm3 were equally suppressed for all background

grating directions relative to a reference stimulus with zero back-

ground contrast (Figure 4A). Temporal frequency tunings for

suppression resembled band-pass filters with a peak at 2 Hz

(Figure 4B). Crucially, static backgrounds did not have a sup-

pressive effect. Suppression steadily increased with the outer

diameter of an annulus containing the background pattern,

which again indicated an extended integration area (Figure 4C).

Spatiotemporal features of neural gain control thus matched our

findings from behavior (Figure 2).

To determine the temporal scale of normalization, we de-

signed a contrast-step stimulus in which the foreground was

replaced by a single light pulsematching each cell type’s polarity

(Figure 4D). By varying the time interval between motion onset of

the background grating and the onset of the pulse, we scanned
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Figure 3. Contrast Normalization Emerges in Transient Medulla Neurons

(A) Schematic of experimental procedure. (1) White noise stimulus. (2) Receptive field reconstruction from single-neuron calcium signals. (3) Drifting grating with

different contrasts in foreground and background.

(B) Two-photon image of L1 axon terminals expressing GCaMP6f. Green line indicates example region of interest.

(C) Experimental protocol. Darker color shade corresponds to higher background contrast as used in (G)–(U). Zero background contrast condition is shown in

black.

(D and E) Average calcium responses of L1 (D) and Tm3 (E) for fixed foreground and various background contrasts.

(F) Schematic of the motion circuit including all neurons measured.

(G–K) Contrast tuning curves measured as amplitude of calcium signals at stimulus frequency for L1–L5. Shaded areas show bootstrapped 68% confidence

intervals around the mean (L1 in G: 21/7 cells/flies, L2 in H: 26/8, L3 in I: 23/6, L4 in J: 19/6, L5 in K: 18/9).

(L–P) Contrast tuning curves for ON pathway neurons (Mi1 in L: 20/5, Tm3 in M: 21/8, Mi4 in N: 20/13, Mi9 in O: 21/9, T4 in P: 23/10).

(Q–U) Contrast tuning curves for OFF pathway neurons (Tm1 in Q: 21/7, Tm2 in R: 20/6, Tm4 in S: 20/13, Tm9 in T: 19/6, T5 in U: 21/9).

(V) Illustration of divisive normalization model for tuning curves. Increasing background contrast cbg shifts the sigmoidal tuning curve from baseline sensitivity c50
to higher contrasts.

(W) Example fit of model for Tm1.

(X) Normalization index for all neurons shown asmedian with 68% bootstrapped confidence intervals. Transient medulla neurons Mi1, Tm3, Tm1, Tm2, and Tm4,

as well as T4 and T5, exhibited strongest degree of normalization.

See also Figures S3 and S4, Tables S1 and S2, and Video S3.
the temporal profile of the suppressive signal. For the tested

neurons Tm3 and Tm2, we found virtually immediate response

reduction within a measurement precision of 50 ms given by

the smallest tested onset difference. We observed transient

ringing of suppression strength at the background temporal fre-

quency. Ringing was stronger when the grating was present
before motion onset compared to when it was masked by uni-

form gray. A similar effect has been described in LPTCs [26],

where it results from neural integration of multiple transient,

out-of-phase inputs. In sum, these findings indicated that sur-

round suppression derives from a pool of transient neurons

that are not selective for direction. Both isotropy and frequency
Current Biology 30, 209–221, January 20, 2020 213
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Figure 4. Neural Contrast Normalization

Relies on Rapid Integration of a Pool of

Transient Units

(A) Polar plot of response amplitude for different

directions of background motion. Black dashed

line represents response to reference stimulus

with background contrast of 0%. For each neuron,

foreground contrast was chosen to maximize

possible background suppression (Mi1: 16%,

Tm3: 32%, Tm1: 64%, Tm2: 100%).

(B) Responses for different background contrast

frequencies, revealing band-pass tuning of sup-

pression.

(C) Suppression strength increased with outer

diameter of background annulus (Mi1: 21/9

cells/flies, Tm3: 20/6, Tm1: 18/6, Tm2: 21/4 in A–C).

(D) Top left: x-y and x-t plots of contrast-step

stimulus for Tm3 (ON center). Background

contrast frequency was 3 Hz. Center left: velocity

function vbg(t) of background and intensity func-

tion Icen(t) of center pulse. Bottom left: mean re-

sponses of Tm3 for different time intervals Dt.

Right: mean peak amplitude for Tm3 and Tm2

(Tm3: 19/6, Tm2: 20/5). Black line shows condi-

tion where the background grating was masked

before onset; red where background was visible

but static.

Shaded areas around curves indicate boot-

strapped 68% confidence intervals. See also

modeling in Figure S5, Table S2, and Video S4.
tunings were strikingly similar to filter properties of the transient

lamina and medulla units involved in motion detection (Figures

S3U and S3V). This suggested that one or more of these cell

types provides input to the suppressive pool.

To determine whether a mechanism that integrates transient

units across space to divisively suppress local responses could

reproduce our findings, we built a time-resolved, data-driven

model. The model faithfully predicted direction, frequency, and

size tunings, as well as contrast-step ringing, T4 and T5 re-

sponses, and LPTC output for our behavioral stimuli (Fig-

ure S5A–K).

Neural Feedback Is Critical for Contrast Normalization
Spatial pooling, however, could occur over either feedforward

signals from the lamina or feedback from themedulla (Figure 5A).

In vertebrate systems, it has provendifficult to distinguish the two

[41, 50, 51]. Fly transient units in the laminaormedullahavesimilar

temporal properties (Figures S3U and S3V), and both implemen-

tations produce equivalent steady-state output [48], so we used

genetic silencing to pinpoint the source. We co-expressed a cal-

cium indicator and the tetanus toxin light chain (TNT; STAR

Methods) [52] in different medulla cell types, blocking chemical

synaptic output and thus feedback from the entire neuron array

but leaving feedforward input and calcium signals intact.

For the ON pathway unit Tm3, we observed significantly

reduced suppression across background frequencies when

compared to controls with inactive TNT (Figures 5B and 5C).
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When measuring tuning curves (similar to

Figure3butonly for backgroundcontrasts

0% and 100%), baseline contrast sensi-

tivity as measured by the semi-saturation
constant of model fits was significantly increased (Figure 5D).

This suggests that Tm3 cells were disinhibited due to a reduced

pool signal.Weobserved similar effects forON-sensitiveMi1 cells

(Figures 5E and 5F), but the impact was less pronounced than for

Tm3 cells. Absolute signal amplitude was generally not affected

by silencing, demonstrating that cells remained visually respon-

sive in the presence of TNT (see Figure 5B).

In the OFF pathway, blocking Tm1 cells did not have any sig-

nificant effects (Figures 5G and 5H). In contrast, when blocking

Tm2, we observed an almost complete loss of background sup-

pression across frequencies (Figure 5I). For this cell type, we did

not observe any change in contrast tuning curves for the 0%

background condition, and consequently, the fitted semi-satura-

tion constant was not affected (Figure 5J). For full background

contrast, however, suppression at high foreground contrasts

was strongly reduced. Additionally, background leakage at low

foreground contrasts increased substantially compared to con-

trol flies. As with Tm3 and Mi1, this is compatible with Tm2 cells

being disinhibited due to the silencing of a suppressive signal

derived from recurrent output. We therefore conclude that in

the fly, contrast normalization is at least partially based on feed-

back from a combination of medulla neurons.

Contrast Normalization Improves Robustness to Natural
Scene Variability
Could this type of response normalization account for the

robustness of fly motion detection? Previous work on EMDs
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Figure 5. Neural Feedback Underlies Contrast

Normalization

(A) Schematic of feedforward and feedback model

for surround suppression.

(B) Mean responses of Tm3 for TNT block (red) and

TNTin controls (black) at background frequency

16 Hz (dashed line indicates reference response and

solid line the response at full background contrast;

Tm3 block: 21/5 cells/flies, Tm3 control: 20/5).

(C) Left: frequency tuning for block experiment. Black

dashed line represents response to reference stim-

ulus. Right: average amplitude over all frequencies

was higher for Tm3 block flies (Mann-Whitney U: 8,

***p < 0.001).

(D) Left: foreground contrast tuning for block exper-

iments at 0% and 100% background contrast. Right:

contrast sensitivity was increased for Tm3 block flies

as measured by lowered semi-saturation constant

c50 (Mann-Whitney U: 39, ***p < 0.001).

(E) Blocking results for Mi1 (as in C). Average ampli-

tude over all frequencies was reduced for Mi1 block

flies (Mi1 block: 20/5, Mi1 control: 21/6; Mann-

Whitney U: 143, *p = 0.04).

(F) Blocking results for Mi1 (as in D). Contrast sensi-

tivity was increased for Mi1 block flies (Mann-Whit-

ney U: 128, *p = 0.02).

(G) Blocking results for Tm1 (as in C). No significant

effect was found for Tm1 block flies (Tm1 block: 20/5,

Tm1control: 19/5;Mann-WhitneyU: 169,NSp=0.28).

(H) Blocking results for Tm1 (as in D). Sensitivity was

not affected (Mann-Whitney U: 158, NS p = 0.19).

(I) Blocking results for Tm2 (as in C; Tm2 block: 20/5,

Tm2 control: 25/6; Mann-Whitney U: 17, ***p < 0.001).

(J) Blocking results for Tm2 (as in D; Mann-Whitney

U: 239, NS p = 0.49). Semi-saturation constant at 0%

background contrast did not change for Tm2 block

flies. Shaded areas show bootstrapped 68% confi-

dence intervals around the mean. Error bars show

bootstrapped 68% confidence intervals around the

median.

See also Table S2.
and natural scenes has exploited compressive transforms but

did so heuristically or without surround-dependent gain control

[42, 43, 53]. We evaluated natural image responses in the
Curren
data-driven LPTC model and found moder-

ate reduction of cross-image variability

compared to a model with bypassed

normalization (Figures S5L–S5N). However,

post hoc ablation may specifically disad-

vantage the simpler model. To investigate

performance limits in a principled way, we

pursued a task-driven approach.

Recent progress in deep artificial net-

works has made it feasible to use image-

processing models of neural systems for

rigorously assessing performance on real-

world problems [54–56]. EMD-like architec-

tures are concisely expressed asmulti-layer

convolutional networks [54] and fully differ-

entiable, rendering them amenable to opti-

mization methods like gradient descent.
We designed a fly-like neural network and independently trained

possible types of contrast processing such that eachmodel class

could optimally adapt to a specific, behaviorally relevant task.
t Biology 30, 209–221, January 20, 2020 215
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Figure 6. Contrast Normalization Enhances

Robustness to Natural Scene Variability

(A) Schematic of single convolutional input filter.

Motion stimuli are sequentially processed by a

spatial 3 3 3 3 1 (azimuth, elevation, time) and a

temporal 1 3 1 3 30 filter. Through a transfer

function, the signal is combined with a normali-

zation signal generated by a 11 3 11 3 1 convo-

lution operating on full-wave rectified input signal.

The output of two distinct channels is processed

analogously to multiplicative EMDs.

(B) Input-output relationships for linear, static, and

dynamic models. In the dynamic model, response

sensitivity is a function of normalization field activity.

(C) Training mean squared error (MSE) for two

example models during stochastic gradient

descent.

(D) Spatial and temporal receptive fields for the

two channels of a typical dynamic model. De-

picted are normalized filter weights.

(E) Spatial receptive field of normalization pool for

the model from (D).

(F) Model output for individual images moving at

20�s�1 during gray-shaded period. Gray line in-

dicates target velocity. Left: example model

without non-linearity. Right: example model with

dynamic non-linearity.

(G) Velocity tuning curves of example dynamic

model for individual images (averaged between

0 and 3 s after motion onset). Gray line indicates

true velocity. Gray-shaded area indicates the 99th

percentile of absolute velocities in training set.

(H) Mean performance of trained models on held-

out test set, estimated as root mean square error

(RMSE; n = 22/23/16 for linear/static/dynamic;

*p < 0.001, t = 9.01, Student’s t test with assumed

equal variance; only difference between static and

dynamic was tested). Error bars indicate boot-

strapped 68% confidence intervals.

See also Figure S6.
All models featured linear, spatiotemporally separable input

convolutions (Figure 6A). We evaluated three alternatives for

contrast transformation: a linear stage where output was trans-

mitted unchanged, a statically compressive stage that limited

signal range independently of context, and a dynamic compres-

sion stage with adaptive gain depending on the output of a

contrast-sensitive surround filter (Figures 6A and 6B; STAR

Methods). Resulting output from two distinct channels was

then processed according to a multiplicative EMD scheme.

Through backpropagation and stochastic gradient descent,

models were trained to estimate the true velocity of natural im-

ages translating at random speeds.

All models successfully learned the task on the training set

(Figure 6C). We initialized convolutions randomly but after

training observed antagonistic spatial filters and transient tem-

poral filters where one channel was phase delayed with respect

to the other (Figure 6D; Figures S6A–S6C). Models thus made

extensive use of redundancy reduction through center-surround

configurations [35] and discovered the EMD strategy of delay

and compare [26]. Normalization fields for the dynamic model

spanned approximately 30� in azimuth and invariably excluded

information from the center of the filter (Figure 6E; Figure S6C).

Interestingly, dynamic models exploited normalization in both
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channels and switched normalization strategies during training,

transitioning from purely static to purely context-dependent

compression (Figures S6D and S6E). Overall, normalized net-

works acquired representations that matched filtering and gain

control properties of the fly medulla.

When tested on previous experimental stimuli (Figure 1), linear

models exhibited improved velocity tuning curves compared to a

standard EMD (Figures 1F and 6F; Figure S6F), but estimates still

varied substantially across time. Dynamic models, on the other

hand, proved extremely robust at extracting scene motion

across time, images, and velocities within the velocity range of

the training set (Figures 6F and 6G). Given that all networks

were based on amultiplicative EMD scheme, typical phenomena

like the velocity optimum were still present. We compared

average estimation error on a held-out test set and found both

types of non-linear compression to vastly outperform the linear

stage (Figure 6H). The performance of static compression indi-

cates that simple response saturation already enhances robust-

ness to contrast fluctuations in natural scenes. However, fly-like

context sensitivity consistently decreased test error over the

static non-linearity (error reduction 22.0%–29.2%; bootstrapped

95% CI). Finally, we benchmarked generalization on a fully inde-

pendent image set (Figure S6G), where linear models failed



catastrophically while both compressive stages retained perfor-

mance. This was particularly pronounced when testing images

with high dynamic range (STAR Methods). Critically, on all data-

sets, dynamic compression resulted in substantial error reduc-

tion with respect to both linear transfer and static compression.

DISCUSSION

In summary, our work represents the first demonstration that

divisive contrast normalization occurs in the fly visual system

and offers a comprehensive look at non-linear response proper-

ties in a virtually complete motion vision circuit. We established

at multiple levels of motion processing that responses to moving

panoramas are substantially more robust than predicted by

correlation-based models of the system. Our behavioral experi-

ments indicate that the sensitivity of the optomotor response is

regulated by average contrast in a spatially confined part of the

visual field. Critically, we traced the emergence of this dynamic

signal compression to local elements in the medulla of the fly

optic lobe and used targeted circuit manipulation to identify

neural feedback as a critical underlying mechanism. Finally,

our task-driven approach revealed that the inclusion of spatial

contrast normalization drastically improves velocity estimation

in correlation-based models of fly motion vision.

Implications for Fly Motion Vision
Previous work on the function of local units in the Drosophila

optic lobe mostly explored linear properties of light responses,

often relying on first-order systems identification techniques

like reverse correlation [9–11, 29]. Investigation of non-linear

contributions generally focused on computations in direction-

selective T4 and T5 cells [13–19, 57, 58].

Here, we describe a powerful non-linearity, adaptive gain con-

trol that occurs in a majority of columnar neurons involved in the

detection of motion. This casts doubt on the extent to which

existing functional descriptions can be generalized. Linear filter

estimates are typically based on responses to dynamic noise

stimuli of fixed amplitude [9, 10, 29]. Our work suggests that

this contrast regime only corresponds to one particular adapta-

tion state for anymeasured cell type, so filter properties may well

differ for stimuli with differing contrast characteristics. Step and

edge responses, for instance, are usually measured on back-

groundswith uniform luminance [11, 12, 18, 59]. This places cells

in a maximally sensitive state due to lack of surround inhibition

and is likely to affect both response amplitude and kinetics.

Signal compression may reconcile observed discrepancies be-

tween studies conducted with different stimuli.

Interestingly, visual interneurons exhibited qualitatively

different sensitivity curves even at constant background contrast.

In the lamina, for instance, only tonic cell type L3 responded lin-

early to increasing visual contrast. Sensitivity curves of transiently

responding cell types like L1 and L2, on the other hand, proved

approximately logarithmic. This is in line with expectations from

previous work in other fly species [60] but deviates from predic-

tions based on white noise characterizations [29].

Moreover, we observed a stark discrepancy in baseline sensi-

tivity between ON- and OFF-sensitive neurons, where tuning

curves of dark-selective units were shifted toward higher pattern

contrast. Notably, due to strong surround suppression, full-field
gratings elicited comparatively weak responses in T5 units

whereas T4 cells were driven effectively by the same stimuli.

This adds to previous work on ON-OFF asymmetries in the

Drosophila visual system [31, 38]. We conclude that even at pri-

mary processing stages, the fly visual system represents

contrast in a multiplexed fashion where individual channels

diverge with respect to how they transmit information about

luminance differences. The function of these asymmetries re-

mains to be investigated.

The proposed model based on divisive normalization accu-

rately captures most features of the observed contrast tuning

curves (see Figure 3; Figure S5; Table S1). Certain discrep-

ancies remain. For instance, the normalization model predicts

that responses for different background contrasts eventually

plateau at the same level. However, we observed in both

behavior (Figure 2E) and T4 responses (Figure 3P) that in the

absence of background contrast, saturation occurred at a lower

level than for other conditions. To explain such non-monotonic

behavior, further investigation of the underlying mechanism is

required.

Divisive normalization of local motion signals has previously

been suggested to occur at the level of LPTCs, through either

isotropic pooling of EMDs in hypothetical secondary cell types

[33] or passive membrane properties of LPTCs [61, 62]. Here,

we show that gain control already originates upstream of mo-

tion-sensitive cell types T4 and T5. However, LPTC-intrinsic

gain control mechanisms, including temporal adaptation [32],

could well be complementary such that at each processing

stage, the fly visual system makes use of compression to opti-

mize the reliability of output signals.

In flies, there is ample evidence for changes in visual coding

that depend on the behavioral state of the animal. Various inter-

neurons within the optic lobe, for instance, are affected by the

activity of octopaminergic projection units, leading to drastic

shifts in response gain or temporal tuning [9, 59, 63–67]. Our cal-

cium imaging experiments were performed in immobilized

Drosophila. It will be of interest to explore whether the properties

of contrast gain control are modulated by locomotion, particu-

larly in highly state-sensitive units like Mi4 [59].

Mechanism of Signal Compression
Our experiments suggest that neural feedback plays a crucial

role in gain adjustment. At this point, the cellular origin of feed-

back is unknown. Present experiments indicate a visual integra-

tion field that spans many columns (Figures 2 and 4). Moreover,

the observed contrast compression appears to be suppressive.

All tested medulla cell types with strong background contrast

dependency emit acetylcholine, which, in the Drosophila visual

system, is generally thought to be excitatory [68, 69]. Inhibitory

interneurons could mediate the required synaptic sign reversal.

Signal compression could then be implemented through lateral

neighbor-to-neighbor interactions between columnar medulla

units where suppressive signals spread through a local network.

Alternatively, we hypothesize that wide-field interneurons pool

local medulla units across multiple columns and provide recur-

rent inhibitory input to the same cells. In our data-driven model,

such a pool cell mechanism accounted for all observed spatio-

temporal properties of signal compression including ringing ef-

fects (Figure S5). Finally, our TNT-based intervention strategy
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should leave coupling via electrical synapses intact [52, 70]. We

can therefore not exclude that gap junctions are also involved in

shaping contrast response properties.

Silencing feedback from individual medulla cell types had dif-

ferential effects, ranging from completely abolished suppression

in Tm2 to unchanged responses in Tm1 (Figure 5). This suggests

either that multiple cell types feed into the pool signal with vary-

ing weight or that alternative mechanisms provide the compres-

sive signal, for example, in Tm1. Moreover, it is an open question

whether all cell types are suppressed by one or multiple pool cell

types. Asymmetries in sensitivity between ON and OFF path-

ways, for instance, could be an indicator for polarity-specific

sources of suppression.

In both distal and proximal layers of the medulla, the class of

neuropil-intrinsic Dm and Pm neurons contains approximately

20 cell types and offers a possible substrate for the mechanism

[71, 72]. These neurons arborize within the medulla and exhibit

diverse stratification and tiling patterns, often spanning dozens

of columns and thus approximately matching the observed sup-

pression field of local units. Dm and Pm units release either

GABA or glutamate for which receptors in the fly visual system

are mostly inhibitory [68], pointing to these cell types as potential

candidates for gain control.

Functional Relevance
Normalization has often been described as a generic mechanism

for removing higher-order correlations from natural signals [5,

73–75]. Here, we close the loop between neural mechanism

and an ecologically critical behavior, the optomotor response,

and demonstrate how contrast gain control can render motion

detection resilient to challenges imposed by natural scene statis-

tics. Specifically, normalization serves to distinguish between

ecologically relevant parameters like retinal image velocity and

nuisance factors like image contrast.

Various biomimetic modeling studies have incorporated

compressive transforms along the motion processing cascade

to improve robustness under naturalistic visual conditions [43,

53, 76]. In contrast to our work, these normalization stages

were not based on experimental evidence, required ad hoc

parameter tuning, and generally operated in the temporal

domain. Interestingly, the fly visual system bases gain control

on a temporally immediate, spatially extended estimate of

contrast. This represents a trade-off where spatial resolution is

sacrificed in favor of temporal resolution, whichmay be advanta-

geous for global optic flow estimation in rapidly moving animals.

To assess the exact causal contribution of contrast compres-

sion to the robustness of velocity estimation in Drosophila, one

would need to disrupt this mechanism specifically while leaving

all other visual processing intact. Silencing the synaptic output of

medulla neurons (Figure 5) demonstrates the importance of neu-

ral feedback for gain control but should additionally affect feed-

forward processing in downstream units, particularly T4 and T5

[11, 12, 77, 78]. Future mapping of the circuits underlying

contrast compression will provide the tools for establishing

causality.

The convolutional network (Figure 6) solves the task of esti-

mating velocity across diverse environments and at little compu-

tational cost, particularly compared to standard optic flow

algorithms like the Lucas-Kanade method [79]. Present findings
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may thus aid the design of low-power, low-latency machine

vision systems suitable for autonomous vehicles [80, 81].

Comparison with Other Sensory Systems
Gain control in the Drosophila optic lobe bears a striking resem-

blance to normalization in other systems and modalities like fly

olfaction [82] or mammalian auditory cortex [83] as well as pro-

cessing in vertebrate visual areas from retina to V1 [48, 84–86].

Spatial and temporal tuning or isotropy of non-linear surround

suppression in the lateral geniculate nucleus, in particular, qual-

itatively match that of transient units in the fly medulla [40]. The

present study suggests differences at the implementation level.

For instance, investigations into divisive normalization in

mammalian V1 cells point to feedforward mechanisms underly-

ing gain control whereas the fly visual system appears to rely pri-

marily on feedback signals (Figure 5) [50]. Both systems, howev-

er, realize a similar algorithm. This provides further proof for

evolutionary convergence on canonical solutions in neural sen-

sory processing [41].

Overall, our work establishes the Drosophila visual system

with its defined cell types, known connectivity patterns, powerful

genetic toolkit, and direct correspondence between circuit and

task as a novel model for the study of normalization. It thus

lays the foundation for future mechanistic inquiries into the func-

tional, cellular, molecular, and biophysical underpinnings of a

crucial computation in sensory processing.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Experimental data (behavior, electrophysiology,

and calcium imaging)

This study https://github.com/borstlab/

normalization_paper

Experimental Models: Organisms/Strains

D. melanogaster: WT: Canton S N/A N/A

D. melanogaster: L1-AD: w1118; VT027316-AD; + Courtesy of A. Nern / Janelia

Research Campus

N/A

D. melanogaster: L1-DBD: w1118; +; R40F12-DBD Courtesy of A. Nern / Janelia

Research Campus

RRID: BDSC_69935

D. melanogaster: L2-AD: w1118; R53G02-AD; + [87] RRID: BDSC_68990

D. melanogaster: L2-DBD: w1118; +; R29G11-DBD [87] RRID: BDSC_70173

D. melanogaster: L3-AD: w1118; R59A05-AD; + [87] RRID: BDSC_70751

D. melanogaster: L3-DBD: w1118; +; R75H07-DBD [87] RRID: BDSC_69459

D. melanogaster: L4-AD: w1118; R20A03-AD; + [87] RRID: BDSC_68957

D. melanogaster: L4-DBD: w1118; +; R31C06-DBD [87] RRID: BDSC_68978

D. melanogaster: L5-AD: w1118; R21A05-AD; + [87] RRID: BDSC_70588

D. melanogaster: L5-DBD: w1118; +; R31H09-DBD [87] RRID: BDSC_68980

D. melanogaster: Mi1-AD: w1118; R19F01-AD; + [12] RRID: BDSC_68955

D. melanogaster: Mi1-DBD: w1118; +; R71D01-DBD [12] RRID: BDSC_69066

D. melanogaster: Tm3-AD: w1118; R13E12-AD; + [12] RRID: BDSC_68830

D. melanogaster: Tm3-DBD: w1118; +; R59C10-DBD [12] RRID: BDSC_69153

D. melanogaster: Mi4-AD: w1118; R48A07-AD; + [12] RRID: BDSC_71070

D. melanogaster: Mi4-DBD: w1118; +; R13F11-DBD [12] RRID: BDSC_69722

D. melanogaster: Mi9-AD: w1118; R48A07-AD; + [12] RRID: BDSC_71070

D. melanogaster: Mi9-DBD: w1118; +; VT046779-DBD [12] RRID: BDSC_74714

D. melanogaster: Tm1-AD: w1118; R41G07-AD; + [68] RRID: BDSC_71049

D. melanogaster: Tm1-DBD: w1118; +; R74G01-DBD [68] RRID: BDSC_69767

D. melanogaster: Tm2: w1118; +; VT012282 [11] N/A

D. melanogaster: Tm2split-AD: w1118; R28D05-AD; + [68] RRID: BDSC_68974

D. melanogaster: Tm2split-DBD: w1118; +; R82F12-DBD [68] RRID: BDSC_69250

D. melanogaster: Tm4: w1118; +; R35H01 [11] RRID: BDSC_49922

D. melanogaster: Tm9: w1118; +; VT065303 [11] N/A

D. melanogaster: T4-AD: w1118; VT016255-AD; + Vienna Drosophila Resource Center N/A

D. melanogaster: T4-DBD: w1118; +; VT012314-DBD Vienna Drosophila Resource Center N/A

D. melanogaster: T5-AD: w1118; VT013975-AD; + Vienna Drosophila Resource Center N/A

D. melanogaster: T5-DBD: w1118; +; R42H07-DBD Bloomington Drosophila Stock Center RRID: BDSC_69609

D. melanogaster: T4/T5-AD: w1118; R59E08-AD; + [44] RRID: BDSC_71101

D. melanogaster: T4/T5-DBD: w1118; +; R42F06-DBD [44] RRID: BDSC_69285

D. melanogaster: w+; P{20XUAS-IVS-GCaMP6f}attP40; + Bloomington Drosophila Stock Center RRID: BDSC_42747

D. melanogaster: w+; +; PBac{20XUAS-IVS-

GCaMP6f}VK00005

Bloomington Drosophila Stock Center RRID: BDSC_52869

D. melanogaster: UAS-TNT: +; UAS-TNT; + [52] N/A

D. melanogaster: UAS-TNTin: +; UAS-IMPTNT-Q; + [52] N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Custom-written software in Python This study https://github.com/borstlab/

normalization_paper

ScanImage 3.8 [88] http://scanimage.vidriotechnologies.

com/display/SIH/ScanImage+Home

Other

Natural images for experiments and modeling [43] N/A

Natural images for modeling [89] https://doi.org/10.4119/unibi/2689637
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Aljoscha

Leonhardt (leonhardt@neuro.mpg.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster were kept on a 12 h light/12 h dark cycle at 25�C and 60% humidity on standard cornmeal-agar medium.

Genetic expression of effectors was targeted through the Gal4-UAS system [90]. Resulting genotypes and their abbreviations are

listed in Table S2.

Unless stated otherwise, locomotion and tangential cell responses were recorded in wild-type Canton S flies 1 to 5 days after

eclosion (Figures 1 and 2). We used the genetically encoded calcium indicator GCaMP6f [45] to determine the functional properties

of individual cell types (Figures 3, 4, and 5). Throughout silencing experiments (Figure 5; Figure S2), we expressed tetanus toxin

light chain (TNT) or an inactive version (TNTin) in the cell type of interest [52]. For calcium imaging experiments involving silencing

(Figure 5), one day old flies were collected and put on 29�C for 3 days to boost expression of TNT or TNTin.

METHOD DETAILS

Natural image sets
For electrophysiology, behavioral, and modeling experiments, we used images from a published set of 20 natural panoramic scenes

[43] termed dataset A. All images were independently processed as follows: We averaged across color channels and downsampled

the scene to a resolution of 1,600 3 320 pixels (covering 360� sampled at 0.225 pixels per degree along the azimuth) using linear

interpolation. To be able to render 12 bit images on conventional screens with 8 bits of dynamic range, we first performed standard

gamma correction by raising raw pixel values to a power of 0.45 and then clipped the top percent of pixel intensities. The resulting

image was scaled to fill the range between 0 and 255.

For optomotor experiments (Figure 1), we selected a subset of 8 images that covered different types of terrain. From this set, we

again selected a subset of 6 images to determine tangential cell responses. We used all 20 images to build the convolutional network

(Figure 6), randomly assigning 15 scenes to the training and 5 to the test set. Finally, we validated the trained convolutional model with

images from an independent panoramic scene collection [89] consisting of 421 images (Figure S6G). These scenes were kept at their

native resolution of 927 3 251 pixels (corresponding to an azimuthal sampling rate of 0.39 pixels per degree) and processed as

above, yielding dataset B. We then generated two test sets: One had gamma correction applied to limit the images’ bit depth

(‘‘low dynamic range’’ or LDR) and the other one was left at 12 bit depth to produce a dataset with high dynamic range (HDR).

Behavioral experiments
Experiments on the treadmill setup were conducted as described before [20, 31, 44]. Briefly, we tethered flies to a thin metal rod and

placed them on air-cushioned polyurethane balls whose movement was tracked at 4 kHz, allowing for direct readout of rotational

motion along all three axes. Temperature within the vicinity of the fly was 25�C at the start of each experiment. Using a closed-

loop thermoregulation system, we linearly increased it to 34�C within 15 min to encourage locomotion.

For visual stimulation, we used three identically calibrated computer screens that were placed in a rectangle surrounding the fly. To

simulate a cylindrical display, all stimuli were rendered onto a virtual cylinder and distorted accordingly before projection onto

screens. Our setup covered approximately 270� in azimuth and 120� in elevation of the visual field. All stimuli were displayed at

144 Hz and at a spatial resolution greatly exceeding that of the fly eye. Screens had a maximum luminance of approximately

100 cd m-2 and a luminance depth of 8 bit; for all descriptions below, we assume pixel brightness to range from 0 to a maximum

of 1. Patterns were generated in real-time and programmed in Python 2.7 using the game engine Panda3D.
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Wemeasured velocity tuning curves (Figure 1) for 8 distinct natural images at 6 logarithmically spaced velocities ranging from 5 to

1,280�s-1. Initial image phase was randomized on each trial. Scenes were displayed at their native gamma-corrected mean

luminance and contrast (see above). On each trial, images stood still for 1.5 s, then were rotated at the chosen velocity for 0.5 s,

and remained fixed for another 1.5 s.

The optomotor contrast stimulus separated the visual field into two areas (see Figure 2A; Figure S2). For the so-called background,

we tiled the visual field with pixels of size 5� x 5�. At each pixel location we drew a temporal frequency f from a normal distribution

(m = 0 Hz, s = 1 Hz) and a starting phase l from a uniform distribution covering 0 to 360�. Instantaneous luminance of each pixel iwas

then determined by a random sinusoid of the form

IiðtÞ = 0:5+ 0:5 cbggðsinð2p fi t + liÞÞ
where the experimental parameter cbg runs from 0 to 100% and controls the effective contrast of the background. To increase

average contrast in the visual field, we applied the compressive transform

gðxÞ = x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+a2

1+a2x2

r

where a = 5 determined the degree of curve flattening. Using this method, we generated stochastic and dynamic visual input at a

controllable contrast level without introducing coherent motion (see Figure 2B).

The so-called foreground delivered a coherent motion stimulus driving the optomotor response. It consisted of two vertical stripes

that were placed at plus and minus 90� from the frontal axis of the fly, each spanning 20� in azimuth and the full screen elevation. We

again tiled each stripe with pixels covering an area of approximately 5� x 5�. For each pixel i, luminancewas fixed over time and deter-

mined by

IiðtÞ = 0:5+ 0:5cfggðsinðliÞÞ
where the experimental parameter cfg controls the effective motion contrast and l was independently drawn from a uniform dis-

tribution covering 0 to 360�. The pixelated noise pattern smoothly wrapped around the azimuthal borders whenmoving. Note that for

all instantiations of the stimulus, mean luminance across the visual field was 0.5.We verified that at typical scales of visual processing

in Drosophila (approximated as a Gaussian filter with FWHM = 25� that covers a majority of the receptive fields of visual neurons; see

[9]), variation in average luminance around this mean was small (Figure S2L).

For the basic contrast tuning experiment (Figures 2A–2E; see Video S1), we exhaustively measured combinations of logarithmically

spaced values for cfg (1.6, 3.1, 6.3, 12.5, 25, 50, and 100%) and cbg (0, 25, 50, and 100%). At the beginning of each trial we simul-

taneously presented the dynamic background and the static foreground pattern. Between 1.5 and 2.0 s following stimulus onset, the

foreground pattern moved at a fixed velocity of 50�s-1. For oscillation experiments (Figures 2F–2J), the motion period was extended

to 6 s.While the foreground pattern wasmoving, we sinusoidally modulated the contrast of either fore- or background between 0 and

100% around a mean value of 50% and at the specified temporal frequency (see Figure 2F; Figures S2A, S2C, and S2E; Video S2).

When mapping the spatial extent of the contrast-induced modulation, we set the modulation frequency to 1 Hz and restricted the

background pattern to two stripes of 10� width flanking each foreground pattern (see Figure S2A). The distance parameter (15,

17.5, 20, 22.5, 25, 27.5, 30, 35, or 40�) determined the separation between centers of foreground and background. In this experiment,

we additionally measured a zero-contrast background condition to obtain an appropriate modulation baseline. Here, the motion

stimulus had a contrast of 25% and luminance in the rest of the field was set to a uniform 0.5. Example traces in Figure 2G are taken

from this spatial experiment (for distance 15� or no background). For the temporal experiments, wemeasured oscillation frequencies

of 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, and 10 Hz (Figure 2J). Background contrast was zero when measuring foreground tuning; for back-

ground tuning, foreground contrast was set to 25%.

All stimulus patterns were displayed twice throughout optomotor experiments, once in clockwise and once in counterclockwise

direction of motion. We recorded multiple trials to obtain robust turning responses for each fly (15 trials for natural image stimuli,

20 for contrast tuning, 25 for oscillation stimuli). Presentation order was shuffled across conditions within any trial to mitigate adap-

tation effects. Individual experiments lasted between 60 and 120 min.

Electrophysiology
Our patch-clamp recordings from tangential cells followed established protocols [11]. Cell bodies of horizontal system (HS) units

were targeted visually through a microscope. We confirmed their preferred direction by stimulation with oriented moving sine

wave gratings before each experiment.

Visual stimulation was delivered using a cylindrical projector-based arena as previously described [9]. Briefly, the screen of the

arena covered a viewing angle of the fly of 180� in azimuth and 105� in elevation. Stimuli were generated at a framerate of 180 Hz

using green light spanning approximately 500 nm to 600 nm in wavelength. The maximum luminance this arena achieved was

276 ± 48 cd m-2 (mean ± SD across devices). All visual stimuli were rendered using custom software written in Python 2.7 and the

Panda3D framework. Membrane potential was recorded using custom software written in MATLAB (MathWorks, MA).

We measured tuning curves for 6 distinct natural image panoramas at 9 logarithmically spaced velocities ranging from 2.5 to

640�s-1 (Figure 1). On each presentation, the scene was displayed at a fixed phase, stayed still for 1 s, and then rotated horizontally

for 3 s at the chosen constant velocity. Image movement was always in the preferred direction of the HS unit. We showed images at
e3 Current Biology 30, 209–221.e1–e8, January 20, 2020



their native gamma-corrected mean luminance and contrast (see above). Each condition was repeated 5 times. Conditions and trials

were randomly interleaved to exclude adaptation effects along any stimulus dimension.

Calcium imaging
Calcium imaging experiments were performed using custom-built two-photon microscopes as described before [9]. The imaging

acquisition rate was 11.8 Hz for all experiments, or 23.7 Hz for the experiment in Figure 4D, with imaging resolutions ranging from

32 3 32 to 64 3 128 pixels. Image acquisition was controlled using the ScanImage software (version 3.8) [88]. We prepared flies

as previously described [9, 14]. Briefly, Drosophila were anesthetized on ice and glued onto an acrylic glass holder with the back

of their head exposed to a perfusion chamber filled with Ringer’s solution. Then the cuticula was surgically opened to allow optical

access.

Stimuli were presented using the same projector system as in electrophysiological experiments, with additional long-pass filters

(cut-off wavelength of 550 nm) in front of the projectors to spectrally separate visual stimulation from GCaMP fluorescence signals.

To identify receptive field (RF) positions of individual neurons, white noise stimuli of 3 min length were used (except for T4 and T5

cells, see below). The stimuli were pre-rendered at 60 Hz and generated as previously described [9]. Briefly, the spatial resolution of

all white noise stimuli was 2.8� of visual angle corresponding to 64 pixels across the 180� screen. For all lamina cells, the same stim-

ulus was used in order to provide a systematic description of their spatiotemporal filtering properties (Figure S3). This stimulus had a

Gaussian autocorrelation with a standard deviation of approximately 45 ms in time and a contrast of 25% around a mean intensity

value of 50 on an 8 bit grayscale. For some medulla cell types, variants of this stimulus with higher contrast or longer time constants

were used if necessary to reliably locate their RFs on the arena. Specifically, wemapped RFs for Tm4,Mi4,Mi9 and Tm9with a binary

stimulus at 100% contrast and a temporal cut-off frequency of 1 Hz. For Mi9, we chose a 1D version of this stimulus, consisting of

horizontal (1.5 min) and vertical bars (1.5 min) instead of pixels.

For T4 and T5, we relied on a novel stochastic motion noise stimulus to determine RF coordinates. First, we determined the

preferred direction of an ROI using drifting gratings. Then we displayed a stimulus consisting of 20 randomly distributed 15� wide

circular windows. Inside of each window, a 30� wavelength sine grating drifted at 30�s-1 in the preferred direction (Figure S3X).

The positions of these 20 windows were changed and randomly chosen every second over 4 min. Reverse correlation of T4 and

T5 responses with the area covered by those windows at a given time point yielded motion-sensitive RFs which were fit with a

Gaussian to determine center coordinates (Figure S3Y). These were verified by presenting 25� windows containing full contrast drift-

ing gratings at the estimated RF center and 6 hexagonally distributed positions around the center. Cells responded only to the grating

in the RF center (Figure S3Z).

For the experiments shown in Figure 3, a 25� circular window around the RF center of a cell defined the foregroundwhereas the rest

of the screen was defined as background. Before stimulus presentation, we verified that RF centers were sufficiently distant from the

border of the screen to allow full display of the foreground. A drifting sine grating with 30� wavelength and a velocity of 30�s-1 was

shown, starting with medium gray at the center of the RF and moving for 4 s after stimulus onset (see Video S3). The contrast of the

grating was varied independently between background and foreground. A stimulus matrix of 7 foreground contrasts (1.6, 4, 8, 16, 32,

64 and 100%) and 6 background contrasts (0, 8, 16, 32, 64 and 100%) at a constant mean luminance of 0.5 was presented.

For the experiments shown in Figures 4A–4C, the foreground contrast was chosen depending on the cell type as the point where

the suppression elicited by 100% background contrast (as measured in Figure 3) would be greatest. This was 16% for Mi1, 32% for

Tm1, 100% for Tm2 and 64% for Tm3. The background had 100% contrast and 30� wavelength. We varied either its direction, its

velocity (0, 0.25, 0.5, 1, 2, 4, 8, 16, 32 or 64�s-1), or restricted its presentation to an annulus with changing outer diameter. A reference

condition with 0% background contrast was added to the stimulus protocol.

For the contrast-step stimulus experiments shown in Figure 4D (see Video S4), the background grating had 30� spatial wavelength,

drifted with 90�s-1 after motion onset and its initial phase was randomized. For Tm2 it had full contrast, for Tm3 44%contrast. The 25�

foreground windowwas 50%gray and we placed a 5� wide dot in the center. For Tm3, the dot was initially black and set to white for a

duration of 50ms at a given time interval aftermotion onset of the background grating. For Tm2, the dot was initially white and then set

to black. The time interval was varied in steps of 50 ms from –250ms to 500 ms and then in steps of 100ms. Negative values indicate

that the surround grating started to move after the dot changed its intensity. Additional time intervals were –500 ms and –1 s. The

block experiments in Figure 5 were performed with the same frequency tuning stimuli as before (Figure 4B). For the contrast tunings,

the same stimuli as in Figure 3 were used but with background contrast of either 0 or 100% only.

All stimuli were repeated three times in randomized condition order to prevent adaptation to any stimulus features.

Modeling
Natural motion stimuli

To evaluate the performance of our models under naturalistic conditions, we generated a synthetic set of motion sequences that

closely mimicked the experimental stimuli described above. For each sequence we translated 360� images at a fixed horizontal ve-

locity through a virtual window spanning 100� in azimuth. Given their panoramic nature, scenes wrapped around seamlessly at each

border. Movies were generated at a time resolution of 100 Hz. To reduce jitter for small velocities, we linearly interpolated non-integer

pixel shifts. Fly eye optics were simulated ahead of time. We blurred each frame with a Gaussian filter (full width at half-maximum of

4�) to approximate the acceptance angle of each photoreceptor [26] and then sampled individual signals from a rectangular grid with

isotropic spacing of 4� (yielding 23 3 17 receptor signals per frame for dataset A and 23 3 23 for dataset B, as described above).
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For the comparison in Figure 1, we modeled the exact stimulus parameters of the electrophysiological experiment including an

approximation of the image’s starting phase on the arena. We generated sequences for our convolutional detector models (Figure 6)

as follows: The set of 20 panoramic images was randomly split into a training group consisting of 15 scenes and a test group con-

sisting of 5 scenes. For each sequence, a random image was drawn from the appropriate set. The stimulus lasted 5 s. Between 1 and

4 s, scene velocity stepped from zero to a fixed value drawn from a Gaussian distribution with SD = 100�s-1. The initial window phase

followed a uniform distribution spanning 360�. To further augment the dataset, we flipped the underlying image along the horizontal

and vertical axes with a probability of 50%. We generated 8,192 such sequences for the training set and 512 for the test set.

Experimental stimuli

For all modeling experiments in Figure S5, we replicated the experimental protocols described above as precisely as feasible. All

stimuli were projected onto a field of view that spanned 120� in azimuth and 90� in elevation at a spatial resolution of 1� for calcium
imaging experiments and 0.5� for behavioral experiments. Frames were then blurred and sampled as described for natural image

stimuli. Brightness values for all stimuli ran from 0 to 1 and we fixed the mean level for contrast stimuli at 0.5. For calcium imaging

stimuli, we always placed the foreground disk at the center of the field of view. Patterns were rendered and processed at 100 Hz.

Tuning curves for the basic contrast experiment (Figures S5B–S5D), the frequency experiment (Figure S5F), and the background

diameter experiment (Figure S5G) were estimated from a single trial per parameter setting. For the background orientation experi-

ment (Figure S5E) and the step interval experiment (Figure S5H) we averaged 100 trials with randomized background pattern phases

to approximate the experimental phase stochasticity that results from individual cell receptive fields being located in different parts of

the visual field. We averaged 200 trials for the behavioral stimuli (Figure S5K) to account for the intrinsic stochasticity of the stimulus

and to generate reliable model responses. Throughout Figure S5, we calculated point estimates for all tuning curves exactly as

described for the behavioral and calcium data.

Tuning curve normalization model

The analytical model for divisive normalization (Figures 3V–3X) resembles previous formulations in the literature [48, 50, 86]. The

steady-state response R of a neuron is given by

R
�
cfg; cbg

�
=
Lfgc

p
fg + Lbgc

p
bg

cp
50 + cp

fg +Sp

where cfg and cbg are foreground and background contrast and Lfg and Lbg are weight factors defining the respective amount of

linear contribution of foreground and background to the response. The semi-saturation constant c50 determines the contrast at which

the cell responds with 50% strength and the parameter p defines the steepness of the saturation curve.

The normalization term

S = wpool$c
q
bg

gives the amount of divisive surround suppression which is proportional to background contrast to a power of q, which accounts

for possible non-linear scaling behavior, with a proportionality weight constant wpool. In this model, the normalization indexwpool/c50
quantifies how much the sigmoidal tuning curve shifts to the right when cbg is increased from 0 to 1 (full contrast), in relation to the

semi-saturation constant. It thus describes the fold decrease in contrast sensitivity between no background contrast and full back-

ground contrast.

For evaluation of the normalization index (Figure 3X), this model was fit individually for each cell. Parameter fits to the average

tuning curve per cell type are listed in Table S1. Since tuning curves from individual cells are subject to measuring inaccuracies,

we cross-validated fit quality. We optimized model parameters for the average tuning curve of 50% of all measured cells per type

and evaluated variance explained for the other 50%. This was repeated 100 times with shuffled training and validation sets. For

all cell types, cross-validated variance explained was more than 90% (see R2
DivisiveNorm in Table S1). When we repeated this proced-

ure with a fully linear model

R
�
cfg; cbg

�
= Lfgcfg + Lbgcbg

variance explained dropped substantially for all units except L3 (see R2
linear in Table S1).

This analysis was implemented using Python 2.7 and NumPy 1.11.3. Optimization of model parameters was performed using the

L-BFGS-B algorithm in SciPy 0.19.0.

Data-driven detector model

The reference model in Figure 1 was based on a standard implementation of the Reichardt-type correlational motion detector [26].

Briefly, all receptor signals of the two-dimensional input grid (see above) were filtered with a first-order high-pass (t = 150 ms). We

then multiplied each local signal with the delayed horizontal neighbor (first-order low-pass, t = 50 ms). This was done twice in a

mirror-symmetrical fashion and resulting output was subtracted. Finally, we summed across all local detectors to derive a model

of tangential cell output. For the illustration in Figure S1C, we simulated the receptor array at the full image resolution without blurring.

These models were implemented in Python 3.6 using PyTorch 0.4.1.

We simulated time-resolved cell models for three basic response types: a purely linear low-pass unit (modeled after L3; Fig-

ure S5B), a strongly normalized band-pass unit (modeled after Mi1; Figure S5C), and a weakly normalized low-pass unit (modeled

after Mi9; Figure S5D). We hand-tuned parameters based on our and previous work [9] to qualitatively match response properties
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of the corresponding cell. Models were implemented as signal processing cascades (see Figure S5A). First, signals at each location in

the field of view were filtered with a spatial difference of Gaussians kernel that had a central full-width at half-maximum (FWHM) of 6�

and a FWHM of 20� in the surround. In accordance with results from receptive field mapping (Figure S3), the weight ratio between

surround and center was 100% for low-pass units and 50% for the band-pass model. Full-field flashes would thus produce no acti-

vation in low-pass units. This was followed by first-order temporal filters: a single low-pass filter for low-pass units (t = 80ms) or serial

low- (t = 50 ms) and high-pass filters (t = 150 ms) for band-pass units. We then left the signal as is for ON cells or sign-inverted it for

OFF cells and half-wave rectified the output by setting all negative values to zero.

For normalized cell models, we calculated local input Pi from the normalization field by pooling across rectified signals xi with a

Gaussian kernel (FWHM = 30�). Final output was then calculated using the divisive normalization equation

fðxiÞ = xpi
cp
50 + xpi + ðwpoolPiÞp

where i indexes across points in space and time, c50 determines baseline sensitivity, exponent p regulates the static response non-

linearity, andwpool adjusts sensitivity to the normalization field signal.Wemanually tuned normalization parameters for the band-pass

(c50 = 0.012, p = 1.3, wpool = 1.5) and the low-pass cell (c50 = 0.12, p = 1.1, wpool = 3.0) to match critical features of the empirical

contrast tuning curves (Figures S5C and S5D).

To generate simulated T4 responses (Figures S5I and S5J), wemultiplied the output of spatially adjacent low- and band-pass units.

For the linear reference model we bypassed the final normalization step in both arms of the detector. We built the LPTC model (Fig-

ure S5K) as a spatial array of T4 and T5 cells covering the full field of view, analogously to the previously described two-quadrant

detector [28]. For the T5 model, we used two OFF-sensitive input units with identical parameters as for ON cells. Output from

syndirectionally tuned T4 and T5 motion detectors was summed and subtracted from a mirror-symmetric, oppositely tuned array

to produce LPTC model output. The same model was used to simulate natural scene responses (Figures S5L–S5N). All models in

Figure S5 were implemented using Python 3.6 and NumPy 1.15.

To quantify the robustness of velocity tuning for models and LPTCs (Figure S5N), we calculated per-velocity coefficients of vari-

ation as the ratio between response standard deviation across images and response mean across images. For neural data, we used

cell-averaged mean potential to estimate these parameters.

Task-driven detector model

We implemented the trained detector model as a four-layer convolutional neural network consisting of linear input filters, a normal-

ization stage, local multiplication, and linear spatial summation. In contrast to typical deep architectures used for object recognition,

this network processed three-dimensional inputs spanning two dimensions of space as well as time.

First, receptor signals of shape 23 3 17 3 500 or 23 3 23 3 500 (azimuth, elevation, time), depending on the dataset, were

processed in two independent convolutional channels. The convolutions were temporally causal and spatiotemporally separable.

Each of the channels was composed of a 3 3 3 x 1 spatial filter (covering 3 simulated receptors in azimuth and elevation) followed

by a temporal filter of shape 13 1 x 30 (corresponding to 300 ms at the chosen time resolution of 100 Hz). Convolutions had no bias

parameter. In contrast to standard Reichardt detectors, each filter weight was allowed to vary freely during optimization.

Second, we passed local output signals xi (where i indexes points in space and time) through one of three types of local normal-

ization: a simple pass-through (termed ‘‘linear’’)

fðxiÞ = xi

a static and contrast-independent compression stage (termed ‘‘static’’)

fðxiÞ = tanh
�xi
c

�

where the trained parameter c determines the sensitivity of the saturating function, or an adaptive saturation stage (termed

‘‘dynamic’’)

fðxiÞ = tanh

�
xi

c+Pi

�

where c again determines the baseline sensitivity and Pi is the instantaneous output of a 113 113 1 spatial filter (centered on the

location of xi and operating on full-wave rectified output signals |xi|; see Figure 6A). This models the fast and spatially distributed

normalization we observed during experiments. We chose the hyperbolic tangent because it generalizes to positive and negative

input values, the transformation closely resembles the normalization model described above, and it is more commonly used in

the field of deep learning. Spatiotemporal filters were optimized independently for each of the two channels while the sensitivity

parameter c was shared.

Third, we then combined signals from both channels in a EMD-type scheme where adjacent signals were multiplied and output

from two mirror-symmetric pairs was subtracted. This stage was parameter-free. Finally, resulting signals were summed across

space and multiplied by a trained scalar amplification factor to generate the final time-resolved output of the model. The base model

without normalization had 79 trainable parameters; static normalization added one parameter and dynamic normalization

another 242.
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We trained each model architecture to estimate the true velocity of translation stimuli using automatic differentiation, backpropa-

gation, and stochastic gradient descent. The loss function we applied was the mean squared error (MSE) between model output and

current velocity of the scene. Weights were updated using the Adam optimizer [91], with parameters set to standard values (b1 = 0.9,

b1 = 0.999, ε = 10-8). Models were trained over 800 epochs with a batch size of 128; no early stopping was used. We set the initial

learning rate to 0.025 and divided it by a factor of 4 after 400, 500, and 600 steps. Input convolutional layers were initialized to random

values drawn from a uniform distribution. For the pooling receptive field, we initialized each weight with 0.0001 and the sensitivity

factor c with 1.0. Static sensitivity as well as pooling weights were constrained to be positive. In the dynamic normalization model,

we applied a L2 penalty of 400.0 to the spatial weights of the pooling stage. Hyperparameters were determined in preliminary exper-

iments with an independent image set. We optimized each architecture 16 to 23 times with different random number generator seeds

to assess reliability and did not select models post hoc.

We implemented all architectures in Python 3.6 using PyTorch 0.4.1 for automatic differentiation. Depending on model type, a

single optimization run took between 6 and 14 hs on an NVIDIA Titan Xp GPU.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data evaluation for behavioral experiments
To ensure data quality, we excluded all flies whose average forward velocity during the experiment was below 0.25 cm s-1 andwhose

average turning tendency was either slowly drifting or far from 0�s-1. Fewer than 20% of all experiments failed these criteria.

Measurements of ball movement were downsampled via linear interpolation for further processing (to 50 Hz for natural image stimuli,

Figure 1; 20 Hz for contrast tuning, Figure 2; 100 Hz for oscillation stimuli, Figure 2). Trials were averaged.

Responses for clockwise and counterclockwise motion were subtracted and divided by two to minimize residual deviations from

straight forward walking. Traces for natural image and contrast tuning stimuli were filtered using a first-order low-pass with a time

constant of 100ms. For the contrast oscillation experiments, we evaluatedmodulation at the relevant carrier frequency by calculating

the zero-padded Fourier Transform of the turning trace and averaging the amplitude spectrum in a window of width 0.2 Hz centered

on the target frequency. These values were normalized per experiment such that themodulation peak after averaging was 100%.We

applied a Savitzky-Golay filter (window length 11 samples, 5th order polynomial) before plotting traces from oscillation experiments;

this did not affect the analysis.

All analysis for behavioral experiments was performed in custom-written software using Python 3.6, NumPy 1.15, and SciPy 1.1.

Data evaluation for electrophysiological experiments
Voltage data were digitized at 1,000 Hz. To account for slow drift in potential, we subtracted the average voltage in a 1 s window

before stimulus onset from each trace per stimulus condition and trial. Signals were then low-pass filtered (8th order Chebyshev

Type 1) and resampled at 100 Hz. Finally, we averaged cell responses across trials. Cells whose mean depolarization during full-

contrast sine grating presentation in preferred direction remained below 5 mV were discarded before further analysis. All analysis

for electrophysiological experiments was performed in custom-written software using Python 3.6, NumPy 1.15, and SciPy 1.1.

Data evaluation for calcium imaging experiments
Calcium imaging stacks were registered in order to correct for translational movement artifacts of brain tissue using custom-written

software. Responses of individual neurons were extracted by manually selecting small regions of interest (ROI) encompassing

individual anatomical structures. For T4 and T5 these corresponded to single or few axon terminals; for Mi and Tm cells, individual

axon terminals could be identified clearly through visual inspection. For ON pathwaymedulla cells, signals weremeasured in layer 10

of the medulla, for OFF pathway medulla cells in layer 1 of the lobula. For lamina cells L1–5, signals were measured at axon terminals

in corresponding layers 1–5 in the medulla. For T4 and T5, signals were recorded in the lobula plate.

To reconstruct RFs, calcium signals were mean subtracted and reverse-correlated with the stimulus as previously described [9].

1DGaussians were fit to horizontal and vertical cross-sections of spatial receptive fields to obtain precise RF coordinates. For lamina

cells (Figure S3), all reconstructed RFs were peak-aligned and analyzed as previously [9]. For 1D projections of spatial RFs (Figures

S3F–S3J), an average of 1D projections of 2D RFs along 3600 evenly distributed projection angles between 0� and 360� was calcu-

lated. This enhanced the visibility of the center-surround structure but neglected possible anisotropies in the spatial structure of RFs

[49]. For impulse responses (Figures S3K–S3O) the temporal receptive field of the 9 center pixels was averaged; frequency responses

(Figures S3P–S3T) are the Fourier-transformed impulse responses. Deconvolution (Figures S3U and S3V) was performed by dividing

the frequency spectra with the frequency response of a 1st order low-pass filter with time-constant 350 ms as a proxy for calcium

indicator dynamics [9, 92].

Relative fluorescence changes (DF/F) from raw calcium traces were obtained by adapting an automatic baseline detection algo-

rithm [93]. Briefly, raw data were first smoothed with a Gaussian window (full-width at half maximum, FWHM = 1 s). Then, minima

within a 90 s long sliding window were extracted and the resulting trace smoothed with a Gaussian window (FWHM = 4 min). The

result was used as a dynamic baseline F0 and DF/F values were computed as DF/F = (F–F0)/F0.

For further evaluation, only recordings with good signal-to-noise ratio (SNR) were taken. The criterion was that the standard

deviation of the mean signal averaged over trials had to be at least 120% of the mean standard deviation over trials. This criterion

filtered out cells with an inter-trial variance larger than the typical cell response (caused by movement artifacts or photobleaching).
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In addition, the standard deviation of the mean signal had to be larger than 25% DF/F. On average, 90% of all cells measured passed

these criteria with slight variations due to different levels of GCaMP expression depending on the genotype.

For experiments with drifting gratings, the driving foreground contrast frequency was 1 Hz. For these experiments, we evaluated

the amplitude of the 1 Hz component of the signal. This was achieved by computing the Fourier coefficient at that frequency, using

the equation

F =

						
1

T

ZT

0

dt s tð Þ e�2pi$1Hz$t

						
where s(t) denotes the signal and T the stimulation time. For experiments in Figure 4D, we evaluated the peak response of the

calcium signal. For Figure S4, we additionally evaluated the average calcium signal (F0) during stimulus presentation and normalized

it to the maximum amplitude of the 1 Hz component (F1).

Amplitudes were averaged over trials and normalized to the maximum, then averaged over cells and normalized to the maximum.

For Figures 4 and 5, amplitudes were normalized to the response amplitude for the reference stimulus.

Statistical tests
Unless indicated otherwise, error bars show bootstrapped 68% confidence intervals around the mean (estimated as corresponding

distribution percentiles after resampling the data 1,000 times). All statistical tests were two-tailed and performed at a 5% significance

level. Normality of data distributions was assessed visually but not tested formally. Sample sizes are given in each figure legend and

were not based on power analysis but predetermined in line with standards in the field. We did not blind experimenters to genotypes

or conditions during data gathering and analysis.

DATA AND CODE AVAILABILITY

Code and experimental data are available on GitHub (https://github.com/borstlab/normalization_paper).
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