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Hierarchically-structured metalloprotein composite
coatings biofabricated from co-existing condensed
liquid phases
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Complex hierarchical structure governs emergent properties in biopolymeric materials; yet,

the material processing involved remains poorly understood. Here, we investigated the multi-

scale structure and composition of the mussel byssus cuticle before, during and after for-

mation to gain insight into the processing of this hard, yet extensible metal cross-linked

protein composite. Our findings reveal that the granular substructure crucial to the cuticle’s

function as a wear-resistant coating of an extensible polymer fiber is pre-organized in con-

densed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto-

granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the

sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with

iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the

granule. We posit that this hierarchical structure self-organizes via phase separation of

specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring

that governs cuticle function.
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The ability to endow polymeric materials with nano-scale
and meso-scale structural hierarchy via self-assembly is an
important materials design challenge with implications for

tissue engineering, drug delivery and smart polymer engineer-
ing1–4. Polymer scientists aim to achieve control of multiscale
organization through precisely defined chemical structure and
engineered supramolecular interactions2,5,6, which can be
employed for example, as scaffolds for guiding polymerization of
materials with defined hierarchy (e.g., mesoporous silica)7–9.
Similarly, proteins also possess an inherent capacity for supra-
molecular self-organization—determined by amino acid sequence
—that has been harnessed through evolution for fabricating bulk
materials/tissues with enhanced function, controlled through
multiscale hierarchical structure10–15. Therefore, elucidating the
physical and chemical underpinnings of biological material
assembly provides a rich source of inspiration for designing
bottom-up processes to fabricate hierarchically structured, func-
tional polymeric materials.

The mussel byssus is a hierarchically structured protein-based
material that has emerged as an exciting model system for
understanding supramolecular assembly of complex material
structures under sustainable processing conditions (Fig. 1)11,13.
Mussels fabricate a byssus as an attachment holdfast for
anchoring on rocky surfaces in seashore habitats (Fig. 1a), where
they face forces from crashing waves16. Each byssal thread is
covered by a thin protective cuticle at its distal end (i.e., away
from the mussel) (Fig. 1), which is highly extensible, yet stiff and
hard17–21. These typically opposing properties likely function to
protect the stretchy fibrous core within and originate from the
composite-like structure of micron-sized inclusions known as
granules embedded in a continuous matrix18 (Fig. 1f–h). While it
was originally proposed that the granules are hard inclusions in a
softer matrix17,18, more recent results suggest that granules
function to retain water at low hydration, behaving softer than
the matrix under dry conditions21. Regardless, nanoindentation
experiments indicate that the cuticle acquires nearly 85% of its
stiffness/hardness from metal coordination cross-links between
metal ions (such as Fe and V) and 3,4-dihydroxyphenylalanine
(DOPA), a post-translational modification of Tyrosine elevated in
the cuticle protein, mussel foot protein 1 (mfp-1) (Fig. 1i)20.
Notably, the DOPA-metal interactions are more concentrated in
the granules than the matrix17. (n.b. species specific forms of
mfp-1 are named according to the species; e.g., mefp-1 for
Mytilus edulis)

Numerous reviews highlight recent efforts to mimic the DOPA-
metal cross-link strategy with mussel-inspired catechol-functio-
nalized polymers22–25; yet, none of these materials reproduces the
complex hierarchical structure of the cuticle or its properties.
Indeed, little is understood about how the nanostructure of the
cuticle and granules is achieved. It is known that the proteins that
comprise the cuticle are stored within secretory vesicles in the
mussel foot—the organ responsible for synthesizing and stock-
piling the proteins that make the byssus (Fig. 1b, c)13,26,27. Self-
assembly of the cuticle occurs within minutes via release of vesicle
contents into a groove running along the foot, during which they
coalesce and spread over the already formed collagenous core of
the byssus fiber (Fig. 1b–e)13. However, many questions remain
concerning how the intricate cuticle substructure emerges via self-
assembly and how metal ions are infiltrated to cure the formed
cuticle.

Here, we report an in-depth compositional and ultrastructural
investigation of the structure and self-assembly of the mussel
byssus cuticle. Specifically, we investigate the 3D nanostructure
and elemental composition of the secretory vesicles and the
cuticle itself, utilizing a combination of focused ion beam scan-
ning electron microscopy (FIB-SEM), transmission electron

microscopy (TEM) and scanning transmission electron micro-
scopy with energy dispersive X-ray spectroscopy (STEM-EDS).
By examining the different stages of assembly, we gain important
new insights into the formation process and function of this
complex biological material, with bearing on the design of tech-
nically and biomedically relevant composite materials.

Results
Nanostructural investigation of cuticle secretory vesicles. Pre-
vious investigations have identified that the precursor proteins
forming the cuticle are stored in secretory vesicles in the mussel
foot within a region known as the enzyme or cuticle gland
(Fig. 1d)13,26. Transmission electron microscopy (TEM) imaging
of post-stained thin sections of the cuticle gland of Mytilus edulis
revealed that each micron-sized secretory vesicle possesses at least
two distinctive regions—a darker outer phase (more heavily
stained with Os) and a lighter, less-stained inner phase (Fig. 2a).
The distinctive biphasic brain-like texture of the inner phase
consisting of lighter stained connected layers was previously
observed in cuticle secretory vesicles of another species, Mytilus
galloprovincialis26, and is highly reminiscent of native thread
cuticle granule structure (Fig. 1h)—leading us to name this the
proto-granule and the outer phase, the proto-matrix. A third, very
lightly stained crescent-shaped phase is also observed at the outer
periphery of most cuticle secretory vesicles. FIB-SEM of chemi-
cally fixed foot tissue samples enabled 3D rendering of secretory
vesicles in a small region of the cuticle gland close to the secretion
point, revealing a tightly packed arrangement of nearly spherical
vesicles (Fig. 2b, c). Consistent with TEM, there are at least three
discernible phases in these vesicles that stain differently, corre-
sponding to the proto-granule, proto-matrix and crescent phase
(Fig. 2b–d). Volumetric analysis of the 3D data of 28 individual
cuticle secretory vesicles indicates similar distribution of volume
fractions of the three phases in all vesicles suggesting a highly
regulated formation process (Supplementary Fig. 1).

Compositional investigation of cuticle secretory vesicles.
Compositional analysis of cuticle secretory vesicles was per-
formed with STEM-EDS, revealing an elevated and uniform
nitrogen content in cuticle secretory vesicles compared with the
surrounding intracellular material (Fig. 2e). In contrast, there is
an approximately two to three-fold higher sulfur content in the
proto-matrix relative to the proto-granules (Fig. 2e, f). Notably,
recent transcriptomic studies have identified a family of putative
cysteine-rich proteins (mfp-16–mfp-19) within the cuticle gland
of a related species Mytilus californianus28. This is consistent with
previous cytochemical studies predicting the presence of cysteine-
rich proteins within the cuticle secretory vesicles of Mytilus gal-
loprovinicialis26. The fact that the proto-granule contains a lower
sulfur signal substantiates the previous supposition that the
granules mainly contain mefp-1, which completely lacks
cysteine17. Furthermore, cysteine is a strong target of OsO4

staining29,30, which helps explain the contrast observed in TEM
and FIB-SEM. Notably, within the sensitivity limit, we did not
detect peaks indicative of transition metal ions (e.g., Fe and V) in
the EDS spectra from unstained cuticle secretory vesicles (Sup-
plementary Fig. 2), even though these metals were previously
detected in the mature cuticle17,19,20. This result is consistent with
recent findings suggesting that metal ions are added into the
cuticle in a post-secretion curing step13.

Structural investigation of cuticle formation. To investigate the
dynamic transition from the storage phase of cuticle secretory
vesicles into a hard and flexible mesostructured coating, TEM was
performed on vesicles secreted into the foot groove. Vesicle
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secretion was induced by injection of 0.56 M KCl into the pedal
nerve of the foot, as previously used to study thread
formation13,31. TEM images of the distal region of induced
threads chemically fixed several minutes into the formation
process reveal that cuticle secretory vesicle contents fuse and
coalesce already within the secretory ducts leading from the
glands to the foot groove (Fig. 3a). This reveals that the proto-
matrix retains a liquid-like behavior as it coalesces with the
contents of other vesicles, showing no apparent boundaries.
However, the proto-granules remain as separate entities with the
biphasic brainy structure intact. Within the groove, the coalesced
secretory vesicles spread over the collagenous core forming a thin
layer, as previously shown with histology and confocal Raman
spectroscopy (Figs. 1e, 3b, c)13. This granular morphology is very
similar to the native cuticle structure (Fig. 1h). Taken together
with the TEM-EDS measurements (Fig. 2e, f), these observations
suggest that the cuticle secretory vesicles contain two immiscible

protein phases represented by the proto-matrix and proto-
granule that are pre-organized within the vesicles to facilitate
rapid assembly of a hierarchically structured coating.

Nanostructural investigation of native cuticle. The nanoscale
structural and compositional details of the native cuticle were
next investigated with FIB-SEM and STEM-EDS on chemically-
fixed distal thread samples, both of which revealed that M. edulis
thread cuticles consist of a single layer of granules, rather than the
several layers observed in other Mytilus species18,21. FIB-SEM
analysis enabled the visualization of the matrix and granules, as
well as the convoluted brain-like internal substructure of the
granules (Fig. 4a, b). 3D reconstruction of the image stacks
revealed the connectivity of the matrix phase and heavily stained
part of the granule in three dimensions and further indicates that
the lightly stained (darker) region within the granules is

Core

Cuticle

GranuleMatrix

Core

Cuticle

Core

Cuticle

Core

Cuticle

Cuticle
vesicles

Core
vesicles

Cuticle
gland

Foot
groove

Foot
groove

Foot cross section

Core
gland

Plaque
gland

Tris-DOPA-metalmefp-1 decapeptide

Y* = DOPA
(3,4 dihydroxyphenylanine)

[A-K-P-S-Y*-P-P-T-Y*-K]

Mussel
foot

Byssal
thread

Mytilus edulis

a f

g

h

i

b c

d

e
Cuticle
vesicles

Foot groove
OH

OH

R

O

O

O O

O

O

Fig. 1 Overview of byssus cuticle formation and structure. a Marine mussels (Mytilus edulis) synthesize byssal threads using an organ known as the foot.
b CT image of the distal region of a mussel foot highlighting the foot groove, in which the thread forms. c Schematic of a foot transverse cross-section from
a region of the foot indicated by white dashed line in c showing location of specific glands in which thread-forming proteins are stockpiled. d Trichrome
stained transverse section of foot gland tissue showing the core (blue) and cuticle (red) secretory vesicles. Scale bar= 10 µm. e Trichrome stained
longitudinal thread section captured during induced formation showing the core and formation of the cuticle. Clusters of cuticle secretory vesicles coalesce
and are partially spread over the core surface creating the cuticle. Scale bar= 4 µm. f Trichrome stained longitudinal section of a native distal byssal thread
fixed on a glass slide. Scale bar= 4 µm. g SEM image of a native distal thread surface with false coloring to differentiate the cuticle (red) and exposed core
(blue). Scale bar= 1 µm. h TEM image of a thin osmium stained transverse cross-section of a native distal byssal thread with false coloring to indicate the
cuticle and fibrous core. Scale bar= 500 nm. i The cuticle is known to be partially comprised of a protein called mefp-1, with an extended domain made of
decapeptide repeats containing 3,4-dihydroxyphenylalanine (DOPA), which is believed to be coordinated to metal ions including vanadium and iron. Panels
b, d–f are adapted from ref. 13 under the Creative Commons License.
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comprised of a connected network of flattened layers resembling
a bicontinuous phase of a micro phase-separated block co-
polymer (Fig. 4c, d)32. Image analysis reveals the flattened layers
of multiple granules within a given thread possess a highly-
defined thickness of ~20 nm, although this varied between dif-
ferent threads (Fig. 4d and Supplementary Fig. 3; Supplementary
Table S1). Additionally, the flattened layers within the granules
are oriented along a common direction approximately 45° to the
fiber axis (Fig. 4c)—the orientation of which is consistent between
different granules within the same thread. The 3-dimensional
(spherically averaged) autocorrelation functions of the different
measured granules are similar to each other within a given thread,
indicating a high homogeneity in their structural features (Sup-
plementary Fig. 3).

Compositional investigation of native cuticle. At first glance,
STEM-EDS compositional studies of the mature cuticle are lar-
gely consistent with those measured on the cuticle secretory
vesicles. Similar to the proto-granules and proto-matrix in the
vesicles, the granules and matrix have uniform nitrogen levels,
while the matrix phase has a significantly higher sulfur signal
than the granules (Fig. 4e, S4). However, while transition metal
ions were not detected in the cuticle secretory vesicles (Supple-
mentary Fig. 2), both Fe and V were detected by EDS in the native
cuticle (Fig. 4e). Unexpectedly, however, metal distribution was
micro-partitioned within the cuticle, with V explicitly associated
with the granules and Fe associated only with the matrix with a
sharp interface at the boundary. This is consistent with previous
Raman spectroscopic measurements across different Mytilid
species showing that DOPA-V coordination is predominantly
detected in native cuticles, rather than DOPA-Fe coordination—
although it should be noted that Fe can be artificially introduced
and coordinated following removal of V with EDTA17,20. Because
the metals are not present in the secretory vesicles, this finding
also implies that the metal ions spontaneously segregate between

the matrix and granules when introduced during distal thread
formation.

Discussion
The findings of this study suggest that the granular mesostructure
of the cuticle is achieved through a membrane-bound
liquid–liquid phase separation (LLPS) consisting of immiscible
fluid protein phases. Co-existing condensed liquid protein phases
are observed in nucleolar subcompartments and believed to be
important for tuning the vectorial transport and processing of
rRNA33. In contrast, within the cuticle secretory vesicles, the co-
existing LLPS leads to a micro-scale to nano-scale distribution of
proteins with different functional groups (i.e., DOPA and
Cysteine) that contribute to cross-linking the liquid phase to solid
when triggered during assembly. This effectively tunes the vis-
coelastic properties of the final material at the mesoscale. Based on
our current understanding of the role of metal coordination
complexes in the byssus cuticle, we posit that microscale parti-
tioning of specific metal coordination cross-links between the
granules and matrix has important implications for the dynamic
properties of this material, and it is important to understand why
and how this occurs. Current models postulate different
mechanical properties in the matrix and granules—either hard
granular inclusions in a soft matrix17,18 or soft, water-absorbent
granules in a stiffer matrix (at least under low hydration condi-
tions)21. However, both models rest on results from quasistatic
mechanical indentation performed at a single loading rate, which
do not access the dynamic nature of the metal coordination bonds.
On the other hand, rheological investigations of mussel-inspired
catechol-enriched metallopolymers have demonstrated clearly that
DOPA-V coordination bonds possess a more than 10-fold longer
bond lifetime (and thus, slower relaxation time) than DOPA-Fe
bonds34. This is functionally relevant considering that mussels face
an enormous range of mechanical loading rates from rapid
crashing waves with velocities up to 30m/s to the extremely slow
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loading from predators such as sea stars16. Thus, it seems plausible
that the physical demands of life in the intertidal have led to
evolution of an adaptive coating that responds to a wide range of
loading conditions (e.g., strain rates, extensions, and forces),
achieved through hierarchical organization of dynamic bonds.

Fabricating this functional composite structure reproducibly
requires a remarkable degree of process control during assembly,
which is apparently achieved by pre-organizing the various cuticle
components into co-existing phase-separated liquid phases within
the secretory vesicles prior to assembly (Fig. 2). Until recently,
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only DOPA-rich mefp-1 was confirmed to be present in the
cuticle (Fig. 1i). However, as mentioned, transcriptomics has
identified four new putative cuticle proteins (mfp-16–mfp-19) in
a closely related species28, all of which are enriched in cysteine
and likely present primarily in the proto-matrix/matrix, based on
our STEM-EDS findings and previous cytochemical evidence26.
The rapid coalescence of the proto-matrix into a solid material
during formation is likely related to the well-known ability of
cysteine to participate in various covalent and non-covalent
interactions35. However, as previously proposed, cysteines in
byssus proteins likely also perform a crucial role in redox cycling
of the DOPA catechol moiety36. Both putative roles will be dis-
cussed later in more detail. Evidence that mefp-1 is localized in
the granule comes from the previous Raman-based localization of
DOPA-V interactions in the granules17,20, the different

susceptibilities of the granule to chymotrypsin vs. pepsin diges-
tion in cytochemical studies26 (Supplementary Fig. 5) and the
lower sulfur content in the granules observed here with STEM-
EDS (Figs. 2e, f, 4e).

Given these compositional findings, what is then the source of
complex nano-structure observed in the secretory vesicles and
thus, the final cuticle structure? We propose that the bicontinuous
structure and lower sulfur signal of granules arises from the
immiscibility of mefp-1 and the Cys-rich protein, which is driven
by the amphiphilic block co-polymer-like structure of mefp-1
(Fig. S6). Mefp-1 consists of numerous repeats of the decapeptide
consensus motif [AKPSYPPTYK]n in which the tyrosine (Y)
residues are largely converted to DOPA (total content of 10–15
mol%) and known to interact with metal ions (Fe, V) (Figs. 1i, 5
and Supplementary Fig. 6)17,20. The repetitive region of mefp-1
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possesses a hydrophilic character due to the high content of
conserved Lysine (K) residues. Recombinant expression of trun-
cated mfp-1 consisting of 12 or 22 repeats of the hydrophilic
decapeptide have been demonstrated to undergo spontaneous
LLPS under high salt conditions mediated via pi-cation interac-
tions37, offering support to the coacervate-like nature in the
cuticle secretory vesicles. However, at the N-terminus of native
mefp-1 and mgfp-1 from M. galloprovincialis is an 60–80 amino
acid non-repetitive domain that is markedly less hydrophilic,
giving the overall protein an amphiphilic profile (i.e., block co-
polymer-like) (Fig. 5 and Supplementary Fig. 6). We propose here
that the non-repetitive domain provides the impetus for forma-
tion of a bicontinuous phase (also observed in M. gallopro-
vincialis), forming the well-defined ~20 nm thick layers
characteristic of the granules, while the positively charged DOPA-
rich phase interacts with the cysteine-rich proteins to produce the
heavily stained phase of variable thickness between the flattened
layers (Fig. 5). The fact that osmium has a very high affinity to
cysteine under the alkaline staining conditions supports this
model29,30. The matrix on the other hand, seems to consist
mostly of the cysteine-rich proteins.

Based on this new model of how the observed meso-structures
and nano-structures form in the cuticle secretory vesicles, we
consider next how the condensed fluid phase within the vesicles
suddenly transitions into a hard, yet stretchy composite material.
Our TEM investigation of induced thread formation indicates
that the cysteine-rich proto-matrix fuses during assembly,
creating the continuous matrix of the cuticle in which the pre-
assembled granules are embedded. As mentioned, cysteine is
a highly promiscuous cross-linker with the ability to form
covalent bonds via disulfide linkages35 or through oxidative
cross-linking with DOPA residues36. In fact, 5-cysteinyl-DOPA

was previously purified from byssus material38. However, con-
sidering that nearly 85% of cross-links in the cuticle depend on
metal ions20, cysteine-based covalent bonds are not the domi-
nant cross-linking mechanism in the matrix. Based on the co-
localization of cysteine and Fe in the matrix, we find the
possibility that sulfur–Fe interactions may contribute as load-
bearing cross-links highly compelling. While typically found in
enzymes involved with redox pathways in cells, recent AFM
single molecule force spectroscopic reveal that Fe–S clusters can
function as reversible sacrificial cross-links in proteins with
mechanical breaking force comparable to other metal coordi-
nation complexes39.

A secondary, but equally important role of the cysteine residues
within the granules may be as a reducing agent to stall sponta-
neous DOPA oxidation in the basic environment of the ocean
(Fig. 5). Another cysteine-rich protein called mfp-6 was pre-
viously identified in the adhesive secretion of the byssus38 and
was shown in vitro to prevent DOPA from spontaneously oxi-
dizing to DOPA-quinone (a less effective adherent) through
redox cycling36. Similarly, DOPA-quinone is inefficient at form-
ing strong metal coordination complexes40. Considering that at
least 85% of cross-linking in the cuticle is based on metal coor-
dination bonds20, the proposed reducing role of cysteine may be
crucial to achieving the dynamic properties, and is likely
enhanced by the proposed co-localization with the DOPA-rich
repetitive domain of mefp-1 in the granules (Fig. 5).

Shortly after the cuticle forms during assembly via fusion of the
proto-matrix, transition metal ions (Fe and V) are apparently
added, providing secondary mechanical reinforcement via metal
coordination bonding13,17,20. Currently, it is unclear if metal
addition is an active or passive process. Cuticles stripped of metal
with the metal chelator EDTA are able to uptake metal passively
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from millimolar metal chloride solutions17,20. However, pulse-
chase studies have clearly shown that radiolabeled Fe is actively
taken up by mussels and is stored temporarily in the soft tissue
from where it is transferred into the byssus fibers over a period of
several days41. Regardless of the source of the metal ions, Raman
spectroscopic investigation of the cuticle revealed that DOPA is
able to bind both V and Fe within the cuticle when exposed to
only the individual ions during in vitro experiments17,20. How-
ever, all Raman spectra reported for native byssal threads across
several species are dominated by the DOPA-V signal, rather than
DOPA-Fe17,20. It is tempting to propose that this partitioning
may reflect the inherent differences in dissociation rates of the
DOPA-Fe and DOPA-V complexes previously revealed by
rheological studies of mussel-inspired catechol-functionalized
hydrogels, showing that DOPA-V has more than an order of
magnitude longer bond lifetime than DOPA-Fe complexes34. The
slower bond dissociation of DOPA-V implies that it will be less
likely to exchange with Fe once coordinated, leading to its con-
centration in the mfp-1-enriched granules over time through
dissociation and diffusion. However, the longer bond lifetime, not
only affects the distribution of metals, but as already pointed out,
will also determine local viscoelastic relaxation behavior defined
by the compartmentalization of mfp-1 within the granules.
Taking for granted that varying the viscoelastic response on the
mesoscale is important to the function of the cuticle (e.g., being
hard and extensible, retaining water in dry conditions and/or
responding to a range of loading rates17,18,20,21), this assembly
mechanism provides a degree of control over dynamic mechan-
ical response that is not possible in current engineered polymers.
Indeed, mimicking this fabrication process and thus, this
remarkable degree of control over soft matter response could
inspire the design of new responsive smart polymers for a range
of applications from flexible electronics and actuated structures to
drug delivery and dynamic tissue scaffolds.

Methods
Materials. Blue mussels (M. edulis) purchased from the Alfred-Wegener-Institut
were maintained at ~14 °C in an aquarium with artificial salt water. Native threads
were harvested from mussels upon arrival and were stored at 4 °C in water prior to
use. Investigations were performed either on native byssal threads (5–8 cm in
length) or on the foot organ of adult mussels removed with a scalpel (n= 2). To
investigate cuticle assembly, protein secretion was induced by injecting a small
volume of 0.56 M KCl solution in the base of the mussel feet13,31. Induced mussel
feet were dissected after at ~5 min following KCl injection to investigate vesicle
secretion and after ~20 min to investigate the induced thread cuticle structure. We
have complied with all relevant ethical regulations for testing and research of
Mytilus edulis.

Chemical fixation and embedding. Dissected feet (induced or not) were carefully
rinsed with cold water, blotted with a paper towel to remove mucus and pre-fixed
for 30 min at 4 °C in 3% glutaraldehyde, 1.5% paraformaldehyde, 650 mM sucrose
in 0.1 M cacodylate buffer pH 7.2. The foot tissue was then cut into thin cross-
sections comprising the groove and part of the gland tissue and then fixed for 2 h at
4 °C in the same buffer as above. Fixed samples were rinsed 5× with 0.1 M caco-
dylate buffer, pH 7.2 at 4 °C and post-fixed with 1% OsO4 for 1 h at 4 °C. Tissue
samples prepared for elemental analysis were not treated with OsO4. Samples were
rinsed again in 0.1 M cacodylate buffer pH 7.2 (3 × 5 min at 4 °C), followed by
series dehydration in ethanol (50%, 70%, 90%, 3 × 100%) for 10 min each step at
RT. Dehydrated samples were embedded either in low viscosity Spurr´s resin
(Electron Microscopy Sciences, # 14300) for TEM/STEM-EDS or in Hard Plus
resin 812 (Electron Microscopy Sciences, # 14115) for FIB-SEM and polymerized at
70 °C for at least 48 h. Ultrathin sections of 100 nm for TEM investigations were
prepared using a PowerTome Model XL ultramicrotome (Boeckeler Instruments,
Inc.) and mounted on carbon coated Cu grids (200 mesh) for imaging and on
Lacey carbon coated Cu grids (200 mesh) for EDS measurements. In order to reveal
the internal structure of the protogranule, some grids were post-stained with 2%
uranyl acetate for 10 min.

The distal region of native threads were washed 3 × 5 min in cold double
distilled H2O and cut into small pieces of ~3 mm in length. Fixation was carried
out for 1 h at 4 °C in 2.5% glutaraldehyde and 1.5% paraformaldehyde in 0.1 M
cacodylate buffer pH 7.4. Samples were rinsed 3 × 10 min in 0.1 M cacodylate
buffer at 4 °C before post-fixation with 1% OsO4 for 1 h. Samples for EDS

measurements were not stained with OsO4. A second rinsing step in 0.1 M
cacodylate buffer pH 7.4 (3 × 5 min at 4 °C) was followed by dehydration in ethanol
(50%, 70%, 90%, 3 × 100%) for 10 min each step at RT. Threads were embedded in
low viscosity Spurr´s resin (Electron Microscopy Sciences, # 14300) at 65 °C over
2 days. The resulting resin blocks were trimmed to the region of interest and
sectioned to 100 nm using an ultramicrotome (PowerTome Model XL). Ultrathin
sections were mounted on lacey carbon coated copper grids (200 mesh) for
imaging and EDS measurements.

Transmission electron microscopy. TEM was performed with a Zeiss EM 912
Omega with an acceleration voltage of 120 kV and a Jeol JEM ARM200F equipped
with a cold field-emission electron source and a silicon drift detector (SSD),
operated at 200 kV acceleration voltage and 15 µA emission current. TEM mode
was used exclusively for imaging (Bright Field imaging) at magnifications of
10,000× and 16,000×, whereas STEM mode was used for energy dispersive spec-
troscopy (EDS) and high angle annular dark field (HAADF) imaging. In STEM
mode a fine electron probe scans the surface of the sample pixel-by-pixel enabling
identification of the area of the sample that generates certain characteristic X-rays
with nanometric resolution. Overview elemental maps of foot sections were
acquired at a magnification of 50,000× with a pixel size of 17 nm × 17 nm and an
exposure of 1 s per pixel. For thread sections, elemental maps (59 × 89 pixel) were
acquired at a magnification of 200,000× with a pixel size of 9.3 × 9.3 nm and an
exposure of 1 s per pixel using a SDD.

FIB-SEM. Resin blocks containing samples were polished in order to expose the
tissue or thread at the block surface. Samples were sputter-coated with three
Carbon layers (~5 nm each) and one platinum layer (~5–10 nm) and transferred to
the Zeiss Crossbeam 540 (Carl Zeiss Microscopy GmbH, Germany). At the region
of interest, a trench for SEM imaging was milled into the sample surface using the
65 nA FIB current at 30 kV acceleration voltage. The resulting cross-section was
finely polished using the 1.5 nA FIB probe at 30 kV. Measurement of foot tissue
and threads required different parameters. Thin slices of samples were removed in
a serial manner by FIB milling (300 pA, 30 kV, slice thickness 17.5 nm for foot
tissue; 700 pA, 30 kV, slide thickness 10.5 nm for threads). After each milling step,
the specimen was imaged by SEM using the secondary and backscattered electron
detector (acceleration voltage= 2 kV for foot tissue and 2.5 kV for threads). For
foot tissue and threads, the image resolution was 2048 × 1536 pixels and 1024 × 785
pixels, respectively with a lateral image pixel size of 12.4 nm and 4.8 nm, respec-
tively. Images were recorded using line averaging (N= 4 for foot tissue and N= 31
for threads) and a dwell time of 200 ns.

FIB-SEM data processing. The resulting secondary and back-scattered electron
images were processed using the SPYDER3 (Scientific Python Development
Environment) (Python 3.6) software. Custom-written python scripts were devel-
oped and provided by Luca Bertinetti. For data analysis of cuticle gland tissue,
images were automatically aligned using enhanced correlation coefficient align-
ment. Total variation denoising was performed by applying the Chambolle´s
projection algorithm (100,000 iterations, weight 0.07, 0.001 eps) in 3D mode.
Segmentation of cuticle vesicles was performed using the ZIB version of Amira 3D
(Thermo Fisher Scientific, USA). Vesicle shapes of 28 individual granules were
segmented manually from 392 processed back-scattered electron images using the
brush tool. The inner phase, which corresponds to the proto-granules as well as the
proto-matrix phase were automatically segmented using the Magic Wand tool. 3D
visualization of both phases was realized by volume rendering of segmented
structures.

For data analysis of the thread cuticle structure, secondary electron images were
automatically aligned using the Fourier shift theorem for detecting the translational
shift in the frequency domain and vertical stripes arising from the waterfall effect
by FIB milling were removed by Fourier filtering. Total variation denoising was
performed by applying the Chambolle algorithm in 3D mode. The images were
inverted afterwards with Fiji and Sauvola's local thresholding computation was
applied with a block size of 11, a k value of 0.005 and r value of 1.7. As the
thresholded images contained regions resulting from statistical noise in the image,
only thresholded regions containing minimum 40 pixels were selected. Images were
median 3D filtered with Fiji and x, y, z radii were set to 1.5. Segmentation of five
adjoining cuticle granules was performed using the ZIB version of Amira 3D
(Thermo Fisher Scientific, USA). Granule shapes were segmented manually from
352 processed and inverted secondary electron images using the brush tool. In a
second step, the lightly staining (ls) granule phase was segmented automatically
from local threshold computed and median 3D filtered image stacks using the
Magic Wand tool.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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