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Using remarkability to define coastal flooding
thresholds
Frances C. Moore1* & Nick Obradovich2

Coastal flooding is increasingly common in many areas. However, the degree of inundation

and associated disruption depend on local topography as well as the distribution of people,

infrastructure and economic activity along the coast. Local measures of flooding that are

comparable over large areas are difficult to obtain. Here we use the remarkability of flood

events, measured by flood-related posts on social media, to estimate county-specific flood

thresholds for shoreline counties along the east coast of the United States. While thresholds

in most counties are statistically-indistinguishable from minor flood thresholds of nearby tide

gauges, we find evidence that several areas experience noticeable flooding at tide heights

lower than existing flood thresholds. These 22 counties include several major cities such as

Miami, New York, and Boston, with a total population over 13 million. Our analysis implies

that large populations might currently be exposed to nuisance flooding not identified via

standard measures.
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Coastal floods and inundation are projected to produce
some of the primary social impacts of climate change,
imposing significant costs on communities around the

world1–3. Flooding due to high tides, storm surges, or a combi-
nation of the two is increasingly common in many coastal areas
and is projected to become more frequent and severe as sea-levels
rise globally4–6. Understanding where coastal floods happen,
identifying which meteorological and tide conditions produce
floods, and grasping the consequences for flood-affected com-
munities and infrastructure is critical for coastal flood prepara-
tion and response3.

Understanding the drivers and consequences of coastal flood-
ing can be challenging, however, because the extent of flooding
may be highly variable within a small geographic area, depending
on local topography and bathymetry7. Moreover, for
planning and response purposes, the effects of flooding on resi-
dents and businesses are arguably more important than the
simple geographic extent of flooding8,9. The same degree of
inundation could have substantively different social impacts,
depending on the distribution of people, infrastructure and eco-
nomic activity along the coast. Measuring the effects of floods
therefore requires highly localized measures of inundation and
the effects of that inundation for coastal communities8,10.

Despite the importance of localized information on the extent
of coastal flooding and its impacts, gauge stations measuring tide
heights are sparse. For example, along the 3700 miles of coast
making up the eastern and Gulf seaboards of the United States,
there are only about 132 tidal gauge stations with long-term
records. Further, translating tide heights into local inundation is
not straightforward. Most gauges have three tide heights asso-
ciated with minor, moderate or major flooding. However, the
frequency of exceeding these thresholds varies widely—the frac-
tion of days experiencing minor flooding since 2004 ranges from
25% in Wilmington, NC, to 0% in Bar Harbor, ME. Moreover, the
severity of the different types of flooding is also not well stan-
dardized across gauges. A moderate flood at one gauge might
imply very different consequences from a moderate flood at a
different gauge11.

Here, we use geolocated social media data with high temporal
resolution to estimate local coastal flood thresholds12. We pro-
pose using the remarkability of a particular high-tide event, as
measured by the volume of tweets about flooding generated in a
particular day, as a measure of flood occurrence and severity.
Other scholars have used social media data to identify
damage13,14 and aid management15,16 of severe natural disasters,
such as earthquakes17–19, heat waves20, hurricanes21,22, snow-
storms23, and wildfires24. Researchers have also recently exam-
ined the ability to use social media to detect public attention paid
to other climatic factors25. Although there have been case studies
using text and pictures on social media to map inundation for
specific inland flood events26,27, this paper presents a novel,
general method for assessing the severity of regular coastal flood
events across a wide geographic area.

There are two principle benefits of our approach to measuring
floods. Firstly, because of the wide geographic coverage and
relatively high density of Twitter data, we are able to estimate
localized (i.e., county-specific) flooding thresholds, rather than
relying on extrapolation from a sparse network of tide gauges.
Secondly, our remarkability metric naturally integrates a measure
of the social consequences of flooding, which is theoretically
standardized within a particular county and time period. A flood
that covers an important roadway will be more remarkable than
one of the same extents that only covers farmland. Similarly, a
flood in a highly populated part of a county will affect more
people and be more remarkable than a similar flood in sparsely
populated area. Thus, these social media derived flooding

thresholds implicitly integrate information on the distribution of
people and infrastructure along the coast and the vulnerability to
flooding at different tide heights. As such they can complement
existing flood planning tools. In particular, social media might
provide a sensitive instrument to measure nuisance coastal
flooding that is both more regular and less consequential than the
flooding covered by other tools, such as the FEMA flood maps of
1 in 100 and 1 in 500 year floodplains.

Results
Changes in flood frequency. Figure 1a shows flood frequency
since 2004 for each tide gauge in the dataset. Neighboring gauge
stations tend to experience flooding at similar times, likely due to
nearby areas being affected by the same meteorological events.
Figure 1b shows the average monthly number of floods, with
evidence for a steady increase in the average number of flood
events over time. Noticeably though, flood frequency differs
substantially across the different gauges (Fig. 1a). During the
primary period of analysis (March 2014 to November 2016), the
gauge in Wilmington, NC, recorded over 150 flood days, or over 4
per month on average, whereas other stations experienced only
one or two over the whole period. This variation likely reflects
real differences in the susceptibility to coastal flooding across
regions, but may also reflect idiosyncratic variation in the
determination of flooding thresholds. It is possible that tide
heights above the minor flood threshold are more consequential
in places with that experience them rarely than in places that
experience them frequently, even though both events might be
formally classed as minor floods.

Flood tweets and tide height. We first combine data on social
media posts about flooding with data on weather and tide
heights. The starting set of social media data is all Twitter posts
geolocated within shoreline counties along the Atlantic and
Gulf coasts of the United States between March 2014 and
November 2016. Tweets about flooding are classified using a
simple bag-of-words approach, where any post containing at
least one word or phrase identified as possibly referring to flood
events was labeled as a flood tweet (see “Methods” section). We
aggregate the total number of tweets, the total number of flood
tweets, and the number of Twitter users to the county-by-day
level.

We combine these social media data with tide gauge data on
maximum daily tide height from active tidal gauge stations
along the Atlantic and Gulf coasts active since at least 2009.
Local flood thresholds for minor, moderate, and major floods
were obtained from NOAA’s Advanced Hazard Prediction
System (AHPS)28 and, where no match could be found, were
estimated based on approximations used in ref. 11. We matched
each county to the closest tide gauge based on the population-
weighted centroid of the county. We also add control variables
for total daily rainfall (4th order polynomial) and cumulative 5-
day rainfall (quadratic)29. The resulting dataset has 413,000
observations from 237 counties, and includes 473,000 flood-
related tweets from a population of over five million
twitter users.

Figure 2 shows evidence from the full dataset, aggregated to
the weekly level, that across all counties in the sample, flood-
related tweets do respond to objective metrics of the magnitude
of inundation (measured by maximum tide height and local
flood threshold). The estimated average response across the
sample shows a small threshold effect at the minor flood
threshold, with a steep increase in the number of tweets above
that threshold. This specification includes county, state-by-
month and year fixed effects (dummy variables) and controls
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for cumulative 5-day precipitation (quadratic) and the number
of Twitter users in a county-week. The functional form and
additional details are given in the “Methods” section. Our
subsequent analysis examines data from each county indepen-
dently and identifies a county-specific threshold that best
explains the pattern of flood-related posts.

County-specific flood thresholds. In order to determine county-
specific flooding thresholds using kinks in the relationship
between flood-related tweets and maximum tide height, we per-
form a model selection exercise for each county using daily data
(see “Methods” section). We use the number of daily flood-related
tweets as a county-specific measure of the seriousness of coastal
flooding in a particular county and day. For each county we fit a
local response function relating the number of flood-related tweets
and maximum daily tide height of the following form:

ycd ¼ βc þ β1I hcd >Acð Þ þ β2ðhcd � AcÞ ´ I hcd >Acð Þ þ Xcd;

ð1Þ

where ycd is the number of tweets in county c on day d, hcd is the
maximum daily tide height and Xcd is a vector of controls
including polynomial functions of 5-day cumulative precipitation
(2nd order) and daily rainfall (4th order), the total number of
Twitter users in that county and day, and month fixed effects to
flexibly control for county-specific seasonal effects. βc is a county-
specific intercept and I(hcd >Ac) is an indicator variable taking a
value of one if daily tide height exceeds a threshold value of Ac and
0 otherwise. Therefore Ac is a county-specific threshold, above
which flood-related tweeting increases linearly with tide height.
We find changepoints (Ac) for each county that best fits the
observed relationship between flood posts and tide height using
the minimum AIC criterion, searching between the 50th and 99th
percentile of observed tide height in 2-cm intervals. Given the
dependent variable is a count variable, all regressions are fit as
negative binomial models. To ensure sufficient data to estimate a
response, we require that at least 20% of days have some posts
about flooding and require that estimated coefficients are positive
(consistent with the proposed interpretation of increasing
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Fig. 1 Geographic and temporal patterns of tidal flooding in the Atlantic and Gulf Coasts of the United States. a Representation of flood frequency for
83 tidal gauge stations along the Atlantic and Gulf coasts of the United States. Each row is a different gauge and dots show days when maximum tide
height exceeded minor flood stage for that gauge. Gauges are ordered geographically from north to south along the Atlantic coast, and then east to west
along the Gulf coast. Colors show the state of each gauge. b Average number of days per month with maximum tide height exceding minor flooding
threshold for the 83 gauges shown in a. The line shows a loess regression through the data with 95% confidence interval.
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remarkability), leaving 140 counties for which models were suc-
cessfully estimated. Additional information on data and methods
is given in the “Methods” section.

We define a remarkable threshold for coastal flooding,
corresponding to a 25% increase in the volume of posts about
flooding, given by the selected model for each county. Figure 3a, b
gives two measures of how this threshold compares with flood
thresholds of the nearest tide gauge. Figure 3a gives the absolute
threshold above the mean lower low water (MLLW) datum. In
general the remarkability threshold qualitatively tracks the minor
flooding threshold, although on average it tends to be lower.
Figure 3a shows a strong correlation between the remarkability
threshold and the minor flooding threshold, but this is mostly
driven by the large variation in tidal range (the difference between
high and low water), which varies from <0.5 m along much of the
Gulf Coast to over 3 m in Maine. Much of this variation is
captured mechanically through our threshold search process.
Another way of comparing our estimated remarkable thresholds
with the minor flooding thresholds of nearby gauges is the
probability of exceedance, shown in Fig. 3b. This accounts for
differences in both tidal range and seasonal variability across
locations.

Outlier counties. Outlier counties are identified as those where
there is 95% confidence that the noticeable flooding threshold is
different from that of the minor flood threshold of the nearest
tide gauge (highlighted in Fig. 3). For most counties, the
remarkability threshold is not statistically different from the
minor flood threshold. We identify 22 counties where we estimate
noticeable flooding is more common than given by the tide gauge
threshold (lower right, Fig. 3b) and two counties where it is less
common (upper left, Fig. 3b). In general these outlier counties
have a higher fraction of their population living at low elevations
compared with other coastal counties (Supplementary Fig. 1).
Other characteristics of these counties are given in Supplementary
Table 1.

Figure 3c maps the difference between estimated and gauge
thresholds in terms of the quantiles of tide height distribution,
together with the location of tide gauges used in the analysis,
and the locations of identified outliers. Although outlier

counties are distributed across a number of states along the
Atlantic and Gulf coasts, there are several geographic clusters
that stand out. There are notable clusters around the Boston,
New York, and southern New Jersey areas. These clusters are
notable in that neighboring counties that may be assigned to
different tide gauges or may even be in different states are
identified as experiencing more frequent flooding, despite
regression analysis being conducted independently by county
(Supplementary Table 1). In addition, almost a quarter of
outlier counties are along the Texas Gulf Coast: five of the seven
Texas counties for which models were successfully estimated
are identified as outliers where flooding occurs significantly
more frequently than would be inferred from tide gauge
measures. Finally, Florida also has a number of outlier
counties distributed throughout the state, including in popu-
lous Miami-Dade and Jacksonville counties. Figure 4 shows the
fitted response functions with both the noticeable tide height
and the minor flood threshold for a subset of the 24 outlier
counties.

The set of outlier counties also suggest there may be two
reasons why flood frequency estimated through social media
posts might differ from that established from nearby tide gauges.
In a small number of cases, (white rows in Supplementary
Table 1), counties are several miles from the nearest gauge
suggesting that in some cases the density of tide gauge
measurement is simply not sufficient to capture the heterogeneity
of local conditions along the coast. In most cases, however, the
matched tide gauge is either within the county or in a neighboring
county (green rows in Supplementary Table 3), suggesting that in
these cases, minor tidal flooding that is remarkable to residents
happens at a tide height different from that defining minor
coastal flooding.

The case of Wilmington, NC, is illustrative. Sweet et al.11 point
out that this gauge has one of the lowest flood thresholds, relative
to the mean higher high water (MHHW) datum, resulting in
minor flooding being recorded every 4–5 days. However, this
flooding only affects one minor, low-lying, and undeveloped
highway11. Our results suggest that flooding noticeable to
residents in the area happens at 0.33 m above MHHW rather
than at the 0.25 m flood threshold, resulting in remarkable floods
occurring approximately once every 2 weeks or half as frequently
as would be implied by the gauge threshold.

For most of the outlier counties, however, we find the opposite:
that remarkable flooding is more common than would be inferred
from gauge thresholds. This is particularly the case for areas along
the Texas coast (Fig. 3b, c). The largest difference between
estimated and established flood thresholds, in terms of probability
of exceedance, occurs near Beaumont, TX, where in two
neighboring counties, we independently estimate significant tide
heights to occur 0.5 m below the established level. Over the
relevant period (March 2014 to December 2016), tide heights
above the minor flood stage are not observed at this gauge. And
yet for two neighboring counties we precisely estimate response
functions showing an increase in flood-related posts at much
lower tide heights (Fig. 4).

Inspection of the tweets from these counties demonstrates at
least ten moderately or very serious flood events over the
relevant time period with residents reporting consequences,
such as canceled school, unsafe driving conditions, or an
inability to get to or from work. These events are almost
universally associated with moderate-to-heavy rainfall, but the
statistical analysis suggests that high tides contribute to
drainage problems in the area, exacerbating flood conditions.
Maximum tide height is a significant explanatory variable even
after flexibly controlling for daily precipitation and cumulative
5-day rainfall.
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Fig. 2 Estimated relationship between weekly maximum tide height and
the % change in flood-related tweets, using the functional form given in
Eq. (1). This is estimated using data from all counties, aggregated to the
weekly level. Fixed effects by county, state-month, and year are included, as
well as controls for cumulative weekly rainfall (quadratic) and the number
of users (see “Methods” section). Shaded areas show the 95% confidence
intervals, with standard errors clustered at the state level.
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Discussion
Here, we show firstly that flood-related tweets can be used to
measure the remarkability of coastal flooding events. Pooling data
from across the study area, we show that the volume of tweets
about flooding responds in expected ways to tide height and local
flood thresholds. Secondly, we identify thresholds for remarkable
flooding based on best-fit, county-specific functions relating local
tweets about flooding to tide height at the nearest gauge, identi-
fying several locations where flooding appears to occur at levels
different from the minor flood threshold.

Despite the fact that our models are fitted independently by
county, a number of the identified counties are geographic neigh-
bors, increasing confidence in the conclusion that flood conditions
in these areas differs from that implied by gauge flood thresholds.

Inspection of the outlier counties reveals that discrepancies may
arise for two reasons: counties are geographically distant from the
nearest gauge or, more commonly, local flood thresholds do not
reflect the average experience of flooding for residents in that
county. Although there are exceptions, remarkable flooding tends to
happen at lower tide heights, with implications for the vulnerability
of these areas to future sea-level rise.

Some care should be taken in interpreting these findings. In
particular, our remarkability thresholds are estimated using the
population of Twitter users, which is a subset of the general
population. Demographics of Twitter users—as compared with
the general population—are not available but to the extent dif-
ferences between the two groups are correlated with factors that
determine whether people are affected by flooding, they will affect
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Fig. 3 Relationship between estimated noticeable threshold (25% increase in flood-related posts) and the minor flood threshold of the nearest tide
gauge. Shown in absolute terms as meters above mean lower low water (a MLLW) and as quantiles of the observed distribution of daily tide heights over
the period (b). Much of the variation in absolute tide heights (a) is driven by large differences in the tidal range between gauges. Circled points show
24 counties where the estimated noticeable threshold can be statistically distinguished from the minor flood threshold at the 95% confidence level. Given
the number of comparisons, six false positives would be expected. c Map showing the study area (shoreline counties along the Atlantic and Gulf coasts of
the United States) and difference between estimated noticeable flooding thresholds and the minor flood threshold of the nearest tide gauge in terms of
quantiles of the tide height distribution for counties where sufficient data exist to estimate a response function. Red dots show tide gauge locations.
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the generalizability of results beyond the population of Twitter
users. In addition, we note that the number of Twitter users in a
county is likely related to the variance of the estimated response
functions—counties with more people Tweeting produce more
data and therefore may have a more precisely estimated response.
We do find evidence for this effect (Supplementary Table 2), but
no evidence that the number of Twitter users in a county sys-
tematically biases estimated thresholds in either direction. This
does mean that rural areas are less likely to be identified as
outliers in our analysis due to higher variance estimates resulting
from fewer Twitter posts in rural areas.

In addition, we note that one potentially confounding effect is
the changing remarkability of flood events with repeated expo-
sure. Moore et al.25 showed that temperature anomalies become
less remarkable when experienced repeatedly over a period of
2–8 years. It may be the case that a similar effect applies to
nuisance flooding, such that the same level of inundation gra-
dually evokes a smaller response on Twitter as it becomes less and
less surprising. Supplementary Fig. 2 shows some suggestive
evidence across the whole sample that this is the case: minor
floods (as defined by tide gauge thresholds) produce a larger
response when the last flood was a long time ago compared with
when it was more recent. This result should be interpreted with
caution though as it is not clear whether the effect is driven by
normalization (floods in places where they happen regularly are
simply less remarkable) or adaptation (places with regular floods
have adjusted to minimize the impact of flooding).

Our analysis has also demonstrated the potential role that
remarkability metrics derived from social media data could play
in understanding the significance of specific hydrometeorological
events. Because they are temporally continuous and spatially
dense, social media data potentially allow for a more localized
mapping of impacts than may be possible with standard data
sources. In addition, these data integrate over multiple pathways
by which residents are affected, which may differ from location to
location, and measure a more standardized impact, in terms of
social consequences, than metrics based exclusively on physical

thresholds. For both these reasons, impact thresholds based on
remarkability may be particularly useful for comparing the sen-
sitivity of communities across large geographic areas, in addition
to being of use to local planners and communities.

Methods
Data sources and processing. Twitter data are all tweets geolocated within
235 shoreline counties along the Atlantic and Gulf coasts of the United States
between March 2014 and November 2016. The sample contains Tweets from over
five million unique users. The number of Twitter users steadily increases over time,
with a sharp drop in late 2014 likely associated with a change in Twitter’s policy on
geolocating Tweets (Supplementary Fig. 3). The number of Twitter users is
included as a control variable in all regressions.

Tweets about flooding were identified using a simple bag-of-words approach
where any tweet containing one of the following phrases was identified as being
about coastal flooding:

flood, floods, flooded, flooding, flood hazard, aquatic hazard, storm drain, storm
drains, stormdrain, stormdrains, subside, subsiding, drain, drains, drainage, rising
waters, rising water, crest, crested, waters have risen, water has risen, waters rose,
water level, river rose, sea rose, tide, tidal, record high, sandbag, sandbags, high
water, high waters, covered by water, water level, doused, douse, drenched, drench,
drenches, inundate, inundated, inundates, low-lying, low lying, low elevation.

The error rate in this classification system and the implications of those errors
for our conclusions were systematically assessed through a manual validation of all
3305 tweets identified as being flood related from three counties randomly selected
from the set of outlier counties. This analysis indicates that while the false-positive
rate is high (64%), this error is not correlated with tide height and therefore is
unlikely to bias estimates in our analysis (additional discussion Supplementary
Table 3). The total number of tweets, total number of flood-related tweets, and total
number of Twitter users are aggregated to the county-by-day level.

Tide data for 132 gauge stations along the Atlantic and Gulf coasts were
obtained from NOAA. Gauges had to be active between 2014 and 2016 and have a
record dating back to 2009. Following Sweet and Park28 flooding thresholds for
each gauge were obtained from the NOAA’s AHPS. For gauges where the closest
AHPS station was more than one mile away, approximations based on Sweet
et al.11, in which flooding thresholds are defined based on the great tidal range at
the gauge (difference between MHHW and MLLW), were used.

Each county was mapped to the tide gauge that was nearest to the population-
weighted centroid of the county30, resulting in 82 stations used in the analysis.
Daily total and cumulative 5-day rainfall were calculated for each county as a
spatial average of PRISM data29.

Definition and estimation of noticeable flood thresholds. To estimate an
aggregate, average response function across the whole sample (Fig. 2), data from all
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Fig. 4 Fitted relationship between tide height and flood-related social media posts for a subset of the 24 outlier counties that represent the
geographic clusters of outlier counties. a Florida (represented by Miami-Dade county) (b) New York and Long Island Sound (c) Boston, Cape Cod and Rhode
Island (d) the Texas Coast (e) southern New Jersey, and (f) Wilmington, NC. Vertical lines show the minor flood threshold of the nearest tide gauge (dotted
line) and the estimated noticeable flooding threshold corresponding to a 25% increase in flood-related tweets. Shaded areas show the 95% confidence interval.
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counties are pooled and aggregated to the weekly level. At the weekly level, there is
a sufficient number of flood-related tweets that the variable can be treated as
continuous and the regression estimated using OLS (Eq. 2).

asinhðycwÞ ¼ βc þ β1I hcw > Fcð Þ þ β2ðhcw � FcÞ ´ I hcw >Fcð Þ þ Xcw ð2Þ
With variables defined as described in the main text except all variables are at

the weekly (w) instead of daily (d) level and the threshold for each county is the
minor flood stage of the nearest tide gauge (Fc). The inverse hyperbolic sine
transformation is similar to a log transformation for nonnegative variables
except it allows zeroes to be retained in the analysis31. The vector of control
variables (Xcd) includes a quadratic in cumulative 5-day precipitation, the
inverse hyperbolic sine of the number of Twitter users in that county and week,
and fixed effects (dummy variables) for county, state-month, and year.
Collectively these fixed effects flexibly control for all time-invariant differences
between county, state-specific seasonal effects, and common time trends.
Standard errors are clustered at the state level, accounting for within-state spatial
and temporal autocorrelation.

To estimate county-specific flood thresholds, analysis is done at the daily level.
For each county with a sufficient density of flood-related tweets (at least 25% of
days with more than 0), a negative binomial model is fit using the formula given in
Eq. (1). Negative binomial models account for the discrete nature of the number of
flood-related posts at the daily level, while allowing for overdispersion of the data.
All thresholds between the 50th and 99th percentile of observed tide heights are
tested, in 2 cm increments. The model with minimum AIC is selected, after
constraining the set of models to those with positive coefficients for the tide height
coefficients. This leaves 140 counties for which there are sufficient data where
models are successfully identified.

The noticeable flood threshold for each county (Tc 25) is defined as the
threshold for the selected model (A�

c ) if the discontinuity at the threshold is >25%,
or the point above the threshold where flood-related tweets increase by 25% (Eq. 3)

Tc 25 ¼ maxðA�
c ;A

�
c þ

0:25� β1
β2

Þ ð3Þ
Standard errors for Tc 25, used to identify outlier counties where Tc 25 is

statistically different from the minor flood threshold, are calculated using the delta
method32.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data to generate all manuscript figures are provided with the manuscript. Tide
gauge data are from https://tidesandcurrents.noaa.gov/. Precipitation data are from
PRISM http://www.prism.oregonstate.edu/. We collected our Twitter data from the
public domain in adherence with Twitter’s Developer Agreement. Twitter data are
restricted from public redistribution by the Twitter terms of service. Raw Twitter data
may be procured through Twitter’s GNIP service.

Code availability
Code and data to reproduce all figures in the manuscript is available at https://franmoore.
faculty.ucdavis.edu/publications.
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