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Abstract 

A constitutive model is proposed for Reduced-Activation Ferritic-Martensitic (RAFM) steel 

Eurofer97 at high temperatures by combining formulae from previous modeling approaches to 

describe and predict mechanical behaviors under various cyclic loading conditions. Two failure 

modes, fatigue fracture and over-accumulated strain (ratcheting) are able to be simulated by the 

combined constitutive model. Cyclic softening and the effect of magnitude, symmetry and rate of 

external loading on ratcheting behavior are also able to be described by the new model. 

Parameter values are fitted based on strain-controlled and stress-controlled isothermal uniaxial 

experiments on Eurofer97 batch two at 450°C and 550°C. The simulated results are presented to 

compare with corresponding experimental data, to show the performance of the new 

constitutive model. 
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1. Introduction 

Eurofer97 is considered as one of the candidates of structural materials for first wall and blanket 

systems of future fusion power plant [1-3]. Due to frequent startups, shutdowns and load 

fluctuations, the components in fusion power plant are under complex cyclic thermo-mechanical 

loadings which can lead to different mechanical damages. 

 

In part 1, mechanical behaviors including cyclic softening, fatigue crack and ratcheting of 

Eurofer97 have been evaluated. Since these phenomena will appear simultaneously under 

complex cyclic loading, they shall be all considered in the design of construction rules for the 

structural materials in reactor. 

 



According to experiments presented in part 1, cyclic softening and fatigue crack appear in 

strain-controlled low cycle fatigue (LCF) tests, and ratcheting appears in stress-controlled cyclic 

tests. A constitutive model is expected, which is able to simulate and predict mechanical 

behaviors in both strain- and stress-controlled cyclic loadings.  

 

In the previous researches, a constitutive model has been proposed to describe the ratcheting 

behavior of mod. 9Cr-1Mo ferritic martensitic (FM) steel P91 [4]. Comparing to other modeling 

approaches for ratcheting [5-11], the model presented in [4] follows the Aktaa-Schmitt model [2], 

a modification of the Chaboche model [12]. This model in [4] has inherited from Aktaa-Schmitt 

model the equations for describing visco-plasticity, and the Armstrong-Frederick equation [13] 

for kinematic hardening.  

 

The difference is that, the model in [4] has reduced the number of back stress (BS) components 

from four, eight and even 12 in [5-11] to only two. And conversely, this model has increased the 

number of BS from only one in Aktaa-Schmitt model [2] to two, since one BS component 

described by Armstrong-Frederick equation leads to overestimation of ratcheting. Note that in 

the theory of solid mechanics concerning flow laws, back stress is referred to as “kinematic 

hardening variable”. It is also known as the “microstress component” [13]. More back stress 

components add together to describe the kinematic hardening.  

 

Although generally a model with more parameters can be more precise to describe and predict 

the real world, it increases the efforts to find the correct parameters. It has been found that two 

BS components are enough to describe the ratcheting behavior: both follow the 

Armstrong-Frederick model, one is to describe the stress-strain hysteresis loops, another one is 

to match the accumulated strains in ratcheting.   

 

On the other hand, to describe and predict the fatigue crack under cyclic loading, a damage 

variable is required in the constitutive model. In the previous study on the deformation and 

damage behavior of Eurofer97 batch one under LCF loading [2], a damage variable has been 

proposed. 

 

Note that however, in the previous modeling for P91 [4], the damage variable is eliminated since 

no macro fatigue fracture has appeared on any ratcheting specimens. And an initial modeling for 

Eurofer97 at 550°C has been reported in [14], however also without damage variable. Comparing 

to the modeling approach reported in [4] and [14], the damage variable is included in the current 

work, and the parameter values for Eurofer97 at 550°C have been further fitted for better 

modeling performance. 

 

2. Requirements in modeling 

Based on the experimental results reported in part 1, a database including strain-controlled LCF 

tests and stress-controlled ratcheting tests for Eurofer97 batch two at both 450°C and 550°C is 



built. To analyze the mechanical behavior and predict material responses under more arbitrary 

loading conditions, a model was built to simulate the mechanical behavior of Eurofer97.  

 

The model description should agree with material responses qualitatively and quantitatively. 

According to experimental results, the simulated results should fulfill the following criteria: 

 

1. Fitting on accumulated strain under multiple loading conditions. 

2. Fitting on fatigue lifetimes in strain-controlled LCF tests. 

3. Showing cyclic softening in strain-controlled LCF tests. 

4. Higher peak stress leads to higher ratcheting rate.  

5. Highest ratcheting rate with stress ratio between -1 and -0.9. 

6. Higher ratcheting rate with lower stress rate and vice versa. 

 

Since the over-accumulated strain in ratcheting and the fatigue fracture are considered as failure 

modes, the first two criteria are the most important ones. 

 

3. Modeling 

Firstly the total strain is combined by elastic and inelastic strains: 

𝛆=𝜺𝑒𝑙 + 𝜺𝑖𝑛 eq. 1 

 

The elastic strain follows the Hooke’s law for isotropic materials: 

 

𝜺𝑒𝑙 =
(1 + 𝜐)

𝐸
𝝈̃ −

𝜐

𝐸
(𝑡𝑟𝑎𝑐𝑒(𝝈̃))𝟏 

eq. 2 

 

𝝈̃ =  
𝝈

1 − 𝐷
 

eq. 3 

 

 

𝝈̃ is the effective stress tensor due to damage D. The damage factor is supposed to describe the 

total effect of porosities including e.g. fatigue induced micro- and macro crack. The effective cross 

section of the specimen is 𝐴̃ = 𝐴(1 − 𝐷). In the extreme situation, the as received specimen has 

D = 0 and the totally broken specimen has D = 1. Hence, the effective stress 𝝈̃ is as in eq. 3. 𝐸 

is Young’s modulus and 𝜐 is Poisson’s ratio. 

 

The development of inelastic strain 𝜺̇𝑖𝑛 follows the Aktaa-Schmitt model[2], as shown in eq. 4. 

𝐾 , 𝑍  and 𝑛  are material and temperature dependent parameters. 𝑍  and 𝑛  control the 

visco-plasticity of the material. 𝜴𝟏 and 𝜴𝟐 are two tensor variables as BS components to 

describe the kinematic hardening. 𝐾 defines the magnitude of the initial elastic regime, under 

which, there is absolutely no inelastic deformation. The cyclic softening is expressed by a scalar 

variable 𝜓 which is introduced in the flow rule (eq. 4) in a way allowing the consideration of the 

impact of cyclic softening on all parts of the stress among others the kinematic hardening. Note 

that in other modeling approach such as [15] for mod. 9Cr-1Mo FM steel, the cyclic softening is 



expressed by a decreasing magnitude of the elastic regime 𝐾. However, based on the discussion in 

[2], the cyclic softening not only reduces the elastic regime, but also the capacity for kinematic 

hardening as well as its viscosity.  

 

 

𝜺̇𝑖𝑛 =
3

2
〈
𝛴𝑒𝑞−𝐾

𝑍
〉𝑛
𝜮

𝛴𝑒𝑞
 

with 𝜮 =
𝒔̃

𝜓
− 𝜴𝟏 −𝜴𝟐 , 𝒔̃ =  𝝈̃ − 1

3
𝑡𝑟𝑎𝑐𝑒(𝝈̃)𝟏  and 𝛴𝑒𝑞 =

√
3

2
𝜮:𝜮 

eq. 4 

 

 

 

𝜓 is a combination of 𝜓1 and 𝜓2. 𝜓1 describes the softening rate during the second cyclic 

softening stage. 𝜓2 describes the softening rate during the initial rapid softening. ℎ, c , c𝑠  

and 𝜓𝑠  are material and temperature dependent parameters. 

 

𝜓 =  𝜓1 +  𝜓2 

𝑤𝑖𝑡ℎ 𝜓1(𝑡 = 0) = 0 ,  𝜓2(𝑡 = 0) = 1 
eq. 5 

 

𝜓̇1 = −ℎ𝑝̇  

𝜓̇2 = 𝑐(𝜓𝑠 −𝜓2)𝑝̇ − 𝑟𝜓|𝜓2 − 𝜓𝑟|
𝑚𝜓−1(𝜓2 −𝜓𝑟) 

 𝑤𝑖𝑡ℎ 𝜓𝑠 = 1 −𝜓𝑠,∞(1 − exp (−𝑐𝑠  max
−∞<𝜏<𝑡

|𝜀𝑖𝑛(𝜏)|)) 

 

𝑝̇ is the rate of the accumulated inelastic deformation and is determined by the tensor of 

inelastic strain 𝜺̇𝑖𝑛 as 

𝑝̇ = √
2

3
𝜺̇𝑖𝑛:𝜺̇𝑖𝑛 eq. 6 

 

 

 

 

Figure 1 Comparison between simulation with and without cyclic softening, with stress 

alternating between 380 and -342Mpa 

 

The inclusion of the cyclic softening variable is crucial in the modeling for ratcheting. As shown in 



Figure 1, if the softening variable is eliminated from the constitutive model, the simulated result 

(red curve) underestimates the accumulated strain. 

 

The equation for the damage variable follows the equation in the previous study[2]: 

𝐷̇ = 〈
𝜒(𝝈)

𝐴
〉𝑟 𝑝̇ (1 − 𝐷)−𝜅  

 

eq. 7 

𝜒(𝝈) is simplified to be √
3

2
𝒔: 𝒔 with 𝒔 = 𝝈 −

1

3
𝑇𝑟𝑎𝑐𝑒(𝝈)𝟏. 

 

Part 1 of the current work has discussed the reason, why there is no fatigue fracture on any 

specimens in ratcheting tests. The inelastic strain ranges during two tests have been compared: 

one for the strain-controlled LCF test with total strain range 1%, the other one for the 

stress-controlled ratcheting test with stress alternating between 380 and -342MPa. It has been 

found that the inelastic strain in the strain-controlled test is much larger than that in the 

stress-controlled test. Also, the initial stress range in this strain-controlled test is around 900MPa, 

which is larger than the constant stress range 380+ 342 = 722MPa. According to eq. 7, the 

damage accumulates much earlier in this strain-controlled test. Besides, damage also accelerates 

the increase of itself. Hence the initial larger inelastic strain and larger stress lead to larger 

damage and earlier fatigue fracture in the strain-controlled LCF tests. 

 

The equations of the two BS components are: 

 

𝜴̇𝟏 =
2

3
𝐻1𝜺̇

𝑖𝑛 − 𝐶1𝜴1𝑝̇ − 𝑅1𝐽(𝜴1)
𝑚1−1𝜴1 

with 𝐽(𝜴1) = √
3

2
𝜴1:𝜴1 

eq. 8 

𝜴̇𝟐 =
2

3
𝐻2𝜺̇

𝑖𝑛 − 𝐽(𝜴2)
𝑛2−1𝜴2 〈𝜺̇

𝑖𝑛:
𝜴2
𝑟2
〉−𝑅2𝐽(𝜴2)

𝑚2−1𝜴2 

with 𝐽(𝜴2) = √
3

2
𝜴2:𝜴2 

eq. 9 

 

The equation for BS component 1 (𝜴1) follows the conventional Armstrong-Frederick model [13] 

with 𝐶1𝜴1𝑝̇  as dynamic recovery of kinematic hardening and 𝑅1𝐽(𝜴1)
𝑚1−1𝜴1  as static 

recovery of kinematic hardening. 

 

The equation for BS component 2 (𝜴2) originates from the Armstrong-Frederick model, as similar 

to other modeling approaches for ratcheting [5, 7, 11]. However, the current equation for 𝜴2 

includes a specially chosen term for the dynamic recovery of 𝜴2, so that no more than two BS 

components are required to describe the ratcheting behavior. 

 

As well known in the modeling for ratcheting [5-11], with only one BS component following 

Armstrong-Frederick, the model will overestimate the ratcheting. In the current modeling 

approach, BS 2 is included to minimize the effect of mean stress of the external loading. As an 



example, shown in Figure 2 a), the mean value of BS1 and BS2, as well as their summation in each 

loading cycle are shown, for the case of peak stress 380MPa and stress ratio -0.9.  

 

The mean stress of the external loading is 19MPa. With the carefully designed equation of BS2, 

the mean value of BS2 is close to 19MPa. Hence the effect of asymmetric external loading is 

largely reduced. The effect is much clearer if cyclic softening is not included in simulation, as 

shown in Figure 2 b). The sum of mean values of BS1 &2 is kept at 18.8MPa after around 10 initial 

cycles, which is very close to 19MPa as the external mean stress. 

 

On the other hand, it is demonstrated that, with this equation for BS2 (eq. 9), the model is 

already able to match the accumulated strains in various experimental ratcheting results. 

Therefore no additional BS components are necessary. 

  

a)          b) 

Figure 2 Simulated mean values of BS 1&2 in each loading cycle, with stress alternating between 

380 and -342MPa. a) with cyclic softening variable. b) without cyclic softening variable. 

 

While choosing the equation for 𝜴2, several alternatives for the dynamic recovery part have 

been tested in simulation: 

𝐽(𝜴2)
𝑛2−1𝜴2〈𝑝̇〉 〈

𝜴2
𝑟2
〉 eq. 10 

𝐽(𝜴2)
𝑛2−1𝜴2|𝑝̇| 〈

𝜴2
𝑟2
〉 eq. 11 

|𝐽(𝜴2)
𝑛2−1𝑝̇|𝜴2 〈

𝜴2
𝑟2
〉 eq. 12 

〈𝐽(𝜴2)
𝑛2−1𝑝̇〉𝜴2 〈

𝜴2
𝑟2
〉 eq. 13 

𝐽(𝜴2)
𝑛2−1𝜴2 |𝜺̇

𝑖𝑛:
𝜴2
𝑟2
| eq. 14 

 

It is found that eq. 10 to eq. 13 do not yield negative accumulated strain when the mean stress is 

negative. 

 

However, the difference between simulated results by applying eq. 9 and eq. 14 is marginal. The 

difference lay on the Macaulay bracket 〈𝑥〉 =
𝑥+|𝑥|

2
 and the absolute value |𝑥|. The Macaulay 



bracket is more reasonable based on the hypothesis that the dynamic recovery is supposed to 

occur only when BS and inelastic strain rate having the same direction. This hypothesis follows 

the modeling approach of the Ohno-Wang model [6]. However, according to the 

Armstrong-Frederick model [13], dynamic recovery also occurs when BS and inelastic strain rate 

have opposite directions. The physical background was not discussed in Ohno and Wang’s reports 

[5, 6], or in Armstrong and Frederick’s report [13]. Ohno and Abdel–Karim [7] simply combined 

ideas from [5, 6, 13] into eq. 15 without further discussion from the physical point of view. 

 

𝜴̇𝑖 =
2

3
𝐻𝑖𝜺̇

𝑖𝑛 − 𝜇𝑖𝐶𝑖𝜴𝑖𝑝̇ − 𝐻𝑠(𝑓𝑖)𝐶𝑖〈𝜆̇𝑖〉𝜴𝑖 

With 𝜆̇𝑖 = 𝜺̇
𝑖𝑛:

𝜴𝑖

𝑟𝑖
− 𝜇𝑖𝑝̇, 𝑓𝑖 = 𝜴̅𝑖

2
− 𝑟𝑖

2 

eq. 15 

 

𝐻𝑠 in eq. 15 denotes the Heaviside step function, which operates as 𝐻𝑠(𝑥) = 0 when 𝑥 < 0 

and 𝐻𝑠(𝑥) = 1 when 𝑥 ≥ 0. 

 

The section in which the BS and inelastic strain rate having opposite signs is illustrated in red in 

the stress–strain hysteresis loop shown in Figure 3. In spite of the difference from the physical 

point of view, the simulated results are similar when using the Macaulay bracket (eq. 9) and the 

absolute value (eq. 14). Figure 4 illustrates the comparison of increasing rate of BS 2 between 

application of the Macaulay bracket (blue curve) and the absolute value (red curve). As can be 

seen, the blue and red curves coincide with each other, except for two short sections, and the 

deviation is relatively small. Hence, the simulated results are similar. 

 

Figure 3 Simulated stress–strain hysteresis loop of 200th cycle in the strain-controlled LCF test 

performed with ∆ε = 1.5% at 550 °C 



 

Figure 4 Comparison between applying Macaulay bracket and absolute value, simulated result: 

200th cycle of the strain-controlled LCF test performed with ∆ε = 1.5% at 550 °C, increasing rate 

of BS 2 vs. inelastic strain 

 

In the current study, only uniaxial LCF and ratcheting tests are performed. Hence the multiaxial 

form of the constitutive model is transformed to a uniaxial form.  

 

The stress tensor under uniaxial loading is  

𝝈 = 𝜎 (
1

0
0

) 
eq. 16 

 

 

Hence the following uniaxial formulation is obtained:  



̇ = ̇𝑖𝑛 + ̇𝑒𝑙 eq. 17 

 𝑒𝑙 =


𝐸(1 − 𝐷)
 eq. 18 

𝐷̇ = 〈


𝐴
〉𝑟 |̇𝑖𝑛| (1 − 𝐷)−𝜅 eq. 19 

̇𝑖𝑛 = 〈
|| − 𝐾

𝑍
〉𝑛 𝑠𝑔𝑛()   𝑤𝑖𝑡ℎ  =



𝜓(1 − 𝐷)
− 𝛺1 − 𝛺2 eq. 20   

𝜓 =  𝜓1 +  𝜓2 , 𝑤𝑖𝑡ℎ 𝜓1(𝑡 = 0) = 0 𝑎𝑛𝑑 𝜓2(𝑡 = 0) = 1 eq. 21    

𝜓̇1 = −ℎ|̇
𝑖𝑛| eq. 22     

𝜓̇2 = 𝑐(1 − 𝜓𝑠,∞ − 𝜓2)|̇
𝑖𝑛| − 𝑟𝜓|𝜓2 −𝜓𝑟|

𝑚𝜓−1(𝜓2 −𝜓𝑟) eq. 23     

𝛺̇1 = 𝐻1̇
𝑖𝑛 − 𝐶1𝛺1|̇

𝑖𝑛| − 𝑅1|𝛺1|
𝑚1−1𝛺1 eq. 24     

𝛺̇2 = 𝐻2̇
𝑖𝑛 − |𝛺2|

𝑛2−1𝛺2 〈̇
𝑖𝑛 𝛺2
𝑟2
〉 − 𝑅2|𝛺2|

𝑚2−1𝛺2 eq. 25    

Table 1 Equations of the constitutive model in uniaxial form 

 

Comparing to multiaxial form, 𝑝̇ is written as |̇𝑖𝑛|. The strain tensor under uniaxial loading is  

𝜺̇𝑖𝑛 = 𝜀̇𝑖𝑛

(

 
 

1

−
1

2

−
1

2)

 
 

 
eq. 26 

 

 

The tensors of the two back stress components are 

𝜴̇𝟏,𝟐 = 𝛺̇1,2

(

 
 
 

2

3

−
1

3

−
1

3)

 
 
 

 
eq. 27 

 

 

4. Modeling results 

The parameters (𝐸, 𝐾,  𝑍,  𝑛,  ℎ,  𝑐,  𝑟𝜓, 𝜓𝑟 , 𝑚𝜓,  
𝑠,∞

, 𝑐𝑠   𝐻1,  𝐶1, 𝑅1,  𝑚1,  𝐻2, 

 𝑟2, 𝑅2, 𝑚2, 𝑛2, 𝐴, 𝑟, 𝜅) are fitted using a program named MINUIT developed at CERN which 

uses variable-metric method with inexact line search to find the minimum of functions [16].  

 

Detailed fitting steps are similar to the ones presented in the previous work [2] which 

focuses on the cyclic softening and fatigue fracture of Eurofer97 batch 1 as well as steel F82H 



mod. The concept of the fitting steps is initially to fit several parameters with some relevant 

experimental data, for instance ratcheting data for fitting 𝐻2, 𝑟2, 𝑅2, 𝑚2, 𝑛2; and data of 

low cycle fatigue lives for fitting 𝐴, 𝑟, 𝜅. After one group of parameters is fitted, these values 

are fixed and the next group will be fitted. In the end, all parameters are fitted with all 

experimental data, to find a compromise between various parameter values. 

 

It is found that some alternatives of parameter values also lead to less satisfying however 

acceptable simulation results. The current fitting result is limited to the current available 

experimental data. The parameter values can be modified after more experiments performed in 

the future, under more loading conditions. 

 

On the other hand, one of the achievements in the current modeling approach is reducing the 

number of parameters, by reducing the number of back stress components from four, eight or 

even 12 [5-11] to only two. Each back stress component includes at least two parameters in the 

constitutive model. 

 

The fitted parameter values for Eurofer97 batch two are listed in Table 2. 

 



 Eurofer97  

550°C 

Eurofer97   

450°C 

𝐸 (𝑀𝑃𝑎) 165800 186700 

𝐾 (𝑀𝑃𝑎)  24.562 219.34 

𝑍 (𝑀𝑃𝑎 𝑠
1
𝑛⁄ ) 364.67 177.31 

𝑛 24 20.608 

𝐻1 (𝑀𝑃𝑎) 198980 96255 

𝐶1  1959.8 1683.1 

𝑅1(𝑀𝑃𝑎
1−𝑚1𝑠−1) 6.45× 10−12 1.964× 10−7 

𝑚1 4.5984 2.6797 

𝐻2 (𝑀𝑃𝑎) 25700 88643 

𝑟2 23.855 0.8447 

𝑅2(𝑀𝑃𝑎
1−𝑚2𝑠−1) 1× 10−12 0 

𝑚2 9.536× 10−6 / 

𝑛2 6.596 / 

ℎ 1.6 × 10−3 8 × 10−3 

𝑐 2.5 1.6445 

𝑟𝜓 (𝑠
−1) 3.27 × 10−4 2.624 × 10−6 

𝜓𝑟 0.99 0.830 

𝑚𝜓 0.9636 1.0563 


𝑠,∞

 0.4233 0.20239 

𝑐𝑠  1200 2000 

𝐴 3233.9 1866.3 

𝑟 2.0818 3.0615 

𝜅 18.98 43.16 

 

Table 2 Fitted parameter values for Eurofer97-2 at 450°C and 550°C 

 

The fitted value of 𝑅2 for 450°C is negligible. Hence the static recovery of BS2 is set to zero. 

 

Due to the complexity of the constitutive model, it is possible that various combinations of 

parameter values generate similar simulated results. Since, except the Young’s modulus, all other 

parameters cannot be directly measured with physical method, the possibility exists, that the 

parameter values would be further optimized, or even the formulation of the constitutive model 

would be modified with more available experimental data of the material. 

 

 



      

a)           b) 

Figure 5 Hysteresis loops of the first loading cycle with various total strain ranges. a) 550°C b) 

450° C. 

 

Figure 5 shows the comparison between the simulated hysteresis loops (curves) and the 

experimental data (markers), with various total strain ranges in strain-controlled LCF tests.  

 

  

a)           b) 

Figure 6 Relationships of total strain ranges vs. number of cycles to failure. a) 550°C b) 450° C. 

 

Figure 6 shows the simulated curves of total strain ranges vs. number of cycles to failure (lifetime), 

with experimental data for comparison. Dashed curves are drawn to illustrate the half and twice 

of the simulated lifetime, namely “factor two”. The experimental data points located within the 

factor two ranges, both for 450°C and 550°C. Hence the simulation performance of the model is 

satisfying in terms of lifetime prediction. 

Despite the lack of experimental data, the currently available data have already covered 

most of the range of total strain in the usual evaluation of low cycle fatigue. For a 

comprehensive data base of Eurofer97 batch 2, more fatigue tests shall be performed at 

various testing temperatures. Such testing campaign will be done in the future by various 

laboratories in European Union as for batch 1 material [17, 18].  

 



 

a)           b) 

Figure 7 Peak stress in each loading cycle, with total strain range 1%. a) 550°C b) 450° C. 

 

Figure 7 shows the simulated and experimental results of peak stresses in each loading cycle in 

the strain-controlled LCF tests with total strain range 1%, and with one example for each testing 

temperature. Both simulated and experimental results show rapid decrease of peak stresses in 

the initial loading cycles and a saturated decrease afterwards, followed by again rapid decrease 

of the peak stress. The rapid decrease of the peak stresses near the end of lifetime is due to 

damage variable D, which describes the effect of fatigue crack growth in the experiments. It is 

obvious that the model is able to describe the cyclic softening of the material. 

 

 
Figure 8 Average ratcheting rates vs. peak stresses in ratcheting tests. 

 

Figure 8 shows the relationship between the average ratcheting rate and the peak stresses in 

stress-controlled ratcheting tests. At 550°C, the peak stresses range from 250MPa to 350MPa. At 

450°C, the peak stresses range from 325MPa to 425MPa. The stress ratios are kept at -0.9. The 

simulated curves match well with the experimental data points. Hence, the model satisfies the 

criterion “higher peak stress leads to higher ratcheting rate.” 

 



  
a)           b) 

Figure 9 Average ratcheting rates vs. stress ratios in ratcheting tests. a) 550°C b) 450° C. 

 

Figure 9 shows the relationship between the average ratcheting rates and the stress ratios in 

stress-controlled ratcheting tests. The stress ratios range from -1 to 0, which means that the 

loading change from symmetric loading to monotonic tensile loading. At 550°C, the peak stresses 

are kept at 300MPa. At 450°C, the peak stresses are kept at 380MPa. Both simulated and 

experimental results show hill-like relationship, with its peak between stress ratio -1 and -0.9. The 

ratcheting behavior is relatively negligible when stress ratio is between -0.5 and zero, due to lack 

of inelastic deformation. Detailed discussion of such hill-like relationship shown in Figure 9 can be 

found in part 1.  

 

 

Figure 10 Average ratcheting rates vs. stress rates in ratcheting tests. 

 

Figure 10 shows the relationship between the average ratcheting rate and the stress rates for 

both 550°C and 450°C. The stress rates in experiments are 10, 50 and 250MPa/s. At 550°C, the 

peak stresses are 300MPa, stress ratios are -0.9. At 450°C, the peak stresses are 380MPa, stress 

ratios are -0.9. Obviously, higher stress rates lead to slower ratcheting, both in experimental and 

simulated results. Further, the influence of stress rate is larger at 550°C than at 450°C, which 

indicates higher visco-plasticity at higher temperature. 

 

Generally speaking, a comprehensive constitutive model should be able to predict mechanical 

and failure behavior under as many loading conditions as possible. However modeling is usually 



limited to describe some certain type of mechanical behavior. As the second part of the work, 

which focuses on the modeling approach, the purpose is to build a constitutive model to 

describe the experiments presented in part 1. Part 1 focuses on the physical background of 

the uniaxial and isothermal cyclic behavior of Eurofer97 at 450°C and 550°C, including the 

strain-controlled low cycle fatigue and stress-controlled ratcheting. In the future, more 

experiments, e.g. multi-axial ratcheting tests, will be planned in order to validate the prediction 

ability of the proposed model in the current work.  

 

The long term purpose of the research is to build a model for finite element method to 

predict the life time of components in nuclear power plants with working temperatures 

between 450°C and 550°C. 

 

5. Conclusions 

The new proposed constitutive model has combined damage variable, softening variable and 

with two back stress components. The simulation performance of this model is demonstrated to 

be satisfying, since fatigue fracture, over-accumulated strain as two failure modes have been 

described. The new model continues to be able to describe cyclic softening. Further, the new 

model also describes the effects of three influencing factors on ratcheting behavior:  

1. higher peak stress leads to faster ratcheting.  

2. highest ratcheting rate with stress ratio between -1 and -0.9.  

3. higher ratcheting rate with lower stress rate and vice versa. 

 

Parameter values have been fitted based on experimental data of Eurofer97 batch two at two 

testing temperatures: 450°C and 550°C. The simulated results matches fairly well with the 

material’s mechanical behavior. Further mechanical tests at other temperatures are expected 

aiming a constitutive model which is able to describe and predict the mechanical behavior under 

arbitrary loading conditions. 
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