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Abstract

Mathematical modeling of animal cell growth and metabolism is essential for the

understanding and improvement of the production of biopharmaceuticals.

Models can explain the dynamic behavior of cell growth and product formation,

support the identification of the most relevant parameters for process design,

and significantly reduce the number of experiments to be performed for process

optimization. Few dynamic models have been established that describe both

extracellular and intracellular dynamics of growth and metabolism of animal

cells. In this study, a model was developed, which comprises a set of 33 ordinary

differential equations to describe batch cultivations of suspension AGE1.H-

N.AAT cells considered for the production of α1‐antitrypsin. This model com-

bines a segregated cell growth model with a structured model of intracellular

metabolism. Overall, it considers the viable cell concentration, mean cell

diameter, viable cell volume, concentration of extracellular substrates, and

intracellular concentrations of key metabolites from the central carbon meta-

bolism. Furthermore, the release of metabolic by‐products such as lactate and

ammonium was estimated directly from the intracellular reactions. Based on

the same set of parameters, this model simulates well the dynamics of four

independent batch cultivations. Analysis of the simulated intracellular rates

revealed at least two distinct cellular physiological states. The first physiological

state was characterized by a high glycolytic rate and high lactate production.

Whereas the second state was characterized by efficient adenosine triphosphate

production, a low glycolytic rate, and reactions of the TCA cycle running in

the reverse direction from α‐ketoglutarate to citrate. Finally, we show possible

applications of the model for cell line engineering and media optimization with

two case studies.
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1 | INTRODUCTION

Batch cultivation is one of the most commonly used operation modes

for animal cell culture–based production of high‐value biopharma-

ceuticals, that is, recombinant proteins and vaccines. The manu-

facturing of biopharmaceuticals requires a cell line with specific

characteristics, which is generated through careful clone develop-

ment and selection. Typically, in biopharmaceutical production, the

price per dose of the final product is very high and careful process

optimization and design is required to keep production costs low. In

addition, it is necessary to guarantee product quality, safety, and

efficacy to conform to the guidelines of regulatory authorities. For

process optimization, detailed knowledge about the impact of para-

meters such as pH value, dissolved oxygen, and carbon dioxide

concentration as well as medium composition on cell growth and

product formation is often required. The optimization of these

parameters is crucial for each cell line as specific characteristics can

be scale dependent and vary for every cell line (Li, Vijayasankaran,

Shen, Kiss, & Amanullah, 2010). In the past, the optimization of

biological processes often relied on trial and error using a high

number of experiments. With the additional use of mathematical

methods, however, process design and optimization can be sig-

nificantly accelerated (Mandenius & Brundin, 2008; Vicente, Mota,

Peixoto, Alves, & Carrondo, 2011). In particular, decision‐making

based on models is a more rational approach regarding critical

factors and responses of the process under investigation. One option

is the use of design of experiments (DoE) approaches, where ex-

periments are planned in a statistically optimal way to reduce the

number of cultivations to be performed and to investigate the impact

of parameters on product yield and product quality (Brendel &

Marquardt, 2008; Kreutz & Timmer, 2009; von Stosch &

Willis, 2017). A drawback of these methods, however, is their in-

ability to handle more complex systems dynamics, for example,

changes in critical cell properties or medium composition with pro-

cess time, the release of inhibitory compounds into the cultivation

broth, or the decrease in specific precursor concentrations required

for product synthesis. Furthermore, conventional DoE approaches

cannot explicitly consider the intracellular dynamics of animal cells,

that is, crucial aspects of the central energy and carbohydrate

metabolism.

Another option for process optimization and design is the well‐
known constraint‐based modeling. This approach relies mainly on the

estimation of flux distributions of metabolic networks using a

pseudo‐steady‐state assumption (Kyriakopoulos et al., 2018;

Stephanopoulos & Sinskey, 1993; Stephanopoulos & Stafford, 2002).

As this approach deals with intracellular dynamics, it can support the

establishment of DoE approaches. Examples are metabolic flux ana-

lysis (MFA) and flux balance analysis, which solve a linear system of

equations to estimate the flux distribution in large‐scale network

models without taking into account any kinetic information (Hwang,

Stephanopoulos, & Chan, 2004; Lee, Gianchandani, & Papin, 2006;

Orth, Thiele, & Palsson, 2010; Stephanopoulos, 1999). For animal

cells, various MFA models have been derived that rely on

steady‐state or pseudo‐steady‐state assumptions (Gombert &

Nielsen, 2000). With these types of models, the response of a me-

tabolic network can be used to assess possible steps toward

achieving a significant increase in product yields. Furthermore, such

models allowed a detailed characterization of several biotechnolo-

gical processes and the unraveling of cell line‐specific properties

(Galleguillos et al., 2017; Gombert & Nielsen, 2000; Lee, Park, &

Kim, 2011). Despite their widespread usage and simplicity, these

models have limited applicability (due to their pseudo‐steady‐state
assumption) and usually include no information about the reactions

kinetics involved (Müller & Bockmayr, 2012).

For more realistic scenarios, dynamic models should be used to

allow for the handling of complex and high‐dimensional experimental

data. Typically, this is achieved with the simulation of changes (such

as metabolite concentration) over the time course using a set of

ordinary differential equations (ODEs) with defined initial conditions

and simplified, but biologically valid assumptions regarding cell

growth, product formation, and enzyme kinetics (Bailey, 1998; Batt &

Kompala, 1989). In particular, the formulated model should support a

detailed analysis of interactions between different parts of the me-

tabolic network (Sidoli, Mantalaris, & Asprey, 2004). Based on this,

the understanding of the complex behavior of animal cells regarding

growth and product formation can be increased. Linking such models

with a more detailed description of protein glycosylation taking place

in the endoplasmic reticulum and the Golgi apparatus, might even

allow to uncover correlations of cultivation conditions with critical

product quality attributes (i.e., antennary composition, sialylation,

or core fucosylation) (Aghamohseni et al., 2014; Blondeel &

Aucoin, 2018; Jimenez del Val, Nagy, & Kontoravdi, 2011). Even-

tually, options for increasing cell concentrations and product

yields can be evaluated (Sidoli et al., 2004), and thus supporting

processes intensification.

Despite these benefits, few dynamic models have been estab-

lished that describe both cell growth and intracellular metabolism of

animal cells. In contrast, various complex models have been im-

plemented for Escherichia coli and yeasts that are validated and fre-

quently used in metabolic redesign (Chassagnole, Noisommit‐Rizzi,
Schmid, Mauch, & Reuss, 2002; Khodayari, Zomorrodi, Liao, &

Maranas, 2014; Rizzi, Baltes, Theobald, & Reuss, 1997). A widespread

practice is the development of a dynamic model for cell growth and a

constraint‐based model for intracellular metabolism. For instance, for

the human suspension cell line AGE1.HN, a simple model for cell

growth (Rath et al., 2014) and a constraint‐based model to describe

intracellular metabolism (Niklas, Priesnitz, Rose, Sandig, &

Heinzle, 2012; Priesnitz, Niklas, Rose, Sandig, & Heinzle, 2012) was

established. So far, most models also focus only on a small part of

intracellular pathways, that is, glycolysis (König, Bulik, &

Holzhütter, 2012; Noguchi et al., 2013) and TCA (Bazil, Buzzard, &

Rundell, 2010; Nazaret, Heiske, Thurley, & Mazat, 2009). These

limitations can be attributed to the complexity of eukaryotic cells,

scarcity of experimental data, and computational limitations. A

particular challenge is the complexity of the metabolism of animal

cells, which arises from the multitude of regulatory mechanism as

1534 | RAMOS ET AL.



well as the high number of substrates taken up and by‐products
released. The lack of experimental data can be pinpointed to the

laborious process of data collection and the lack of uniform quanti-

fication methods established to measure intracellular metabolite

concentrations and enzyme activities; quenching of metabolism and

sampling are also challenging. Finally, the establishment of dynamic

models can be hampered by the availability of computational re-

sources and limitations of algorithms required to estimate the large

number of often poorly defined parameters.

In this study, a dynamic mathematical model was established

for the human designer cell line AGE1.HN (provided by ProBioGen

AG, Germany) that combines a segregated cell growth model with

a structured model of intracellular metabolism. It was based on a

model proposed by Rehberg et al. for adherent Madin–Darby

canine kidney (MDCK) cells (Rehberg et al., 2013a,b; Rehberg

et al., 2014a,b), where significant changes were required to de-

scribe cell growth of a suspension cell. Furthermore, in this case,

the cell‐death phase is considered, which is often neglected in cell

growth models. More importantly, several aspects of the in-

tracellular metabolic network were considered in more detail, such

as the reactions that connect glycolysis and TCA and vice versa,

and intracellular rates were used to simulate the accumulation of

metabolic by‐product in the extracellular environment. The model

comprises a set of 33 ODEs accounting for cell growth (con-

centration of viable cells, mean cell diameter, volume of viable

cells), and the concentration of key substrates and metabolites

both at the intracellular and extracellular level. To describe the

formation of the product α1‐antitrypsin, a simple mass action law

kinetic is used. Model validity was assessed using experimental

data of four independent batch cultivations performed at 0.5 and

2.5 L scale in a chemically defined medium (42‐MAX‐UB)
(Rath et al., 2014). Using the same set of parameters and specific

initial conditions for each experiment, the model simulations

capture well the overall dynamics of all experiments. Few excep-

tions include the dynamics of the intracellular concentrations of

ribose‐5‐phosphate and succinate. The model is used to predict the

impact of changes in media composition and maximum enzyme

activity on the intracellular metabolism. Finally, the model ad-

dresses options for improving cell growth and measures toward

the establishment of a more efficient metabolism.

2 | MATERIALS AND METHODS

2.1 | Cell line

The suspension cell line AGE1.HN was developed and patented by

ProBioGen AG. It was derived from primary cells of human brain

tissue and immortalized using adenoviral E1 A and B genes of human

adenovirus type 5. Cells were then further modified to express the

structural protein act 9 (pIX) of the same virus, which is known to be

involved in the stabilization of the viral capsid and also in the control

of apoptosis (Blanchard et al., 2011; Parks, 2005). The AGE1.HN.AAT

cell line is a clone from AGE1.HN cells, which constitutively produces

product α1‐antitrypsin (Blanchard et al., 2011).

2.2 | Batch cultivation

Precultures were grown at 37°C in either 50ml or 150ml medium

supplemented with 5mM glutamine in 125ml and 250ml baffled

shaker flasks, respectively.

The 0.5 and 2.5 L batch experiments were performed in stirred

tank bioreactors (CellFerm‐pro®; DasGip AG, Germany) using a

chemically defined medium (42‐MAX‐UB; Teutocell AG, Germany)

with initial cell concentration ranging from 5.5 to 7.5 × 105 cells/ml.

The medium was supplemented with 30mM glucose and 5mM

glutamine. Process parameters were controlled at pH 7.15, 40% pO2,

and 37°C, respectively. The experimental procedure and protocols

used for the cultivations used here have been described in detail

elsewhere (Borchers et al., 2013; Rath, 2017; Rath et al., 2014).

2.3 | Analytics

All samples were taken in triplicates and cell viability was determined

with trypan blue. A Vi‐Cell analyzer (TM XR; Beckman Coulter,

Germany) was used to determine viable cell counts and cell dia-

meters. The latter was determined by taking up to 100 stationary

pictures of the cell broth sample. The overall mean cell diameter was

estimated by averaging the mean cell diameter obtained from 100

images per sample. The total cell volume was obtained with the

product of the mean cell volume and viable cell concentration.

For most of the extracellular metabolites, the quantification was

done with a Bio‐profile 100 Plus (Nova Biomedical). An exception

was the quantification of pyruvate, which was performed by anion

exchange chromatography (BioLC Dx‐320 and DX‐600; Thermo

Scientific, Germany) as described by Genzel et al. (2005). Intracellular

metabolites were measured using liquid chromatography–mass

spectrometry according to Ritter, Wahl, Freund, Genzel, and Reichl

(2010). Maximum enzyme activities were measured based on a

protocol established by Janke (2012) for adherent MDCK cells that

was modified for sampling of suspension cells. α1‐Antitrypsin con-

centration in the supernatant of cell culture was determined with a

sandwich enzyme‐linked immunosorbent assay using a 95 well plate,

established by Rath (2017). Additional information regarding ex-

perimental data is provided in Supporting Information Material S1

and the experimental procedure and protocols used for the

cultivations used here have been described in detail elsewhere

(Borchers et al., 2013; Rath, 2017; Rath et al., 2014).

2.4 | Model definition

The dynamic model developed describes both cell growth and

metabolism by coupling a segregated growth model, which describes

RAMOS ET AL. | 1535



cell growth dynamics in batch culture, with a structured model of the

central carbon metabolism, which describes intracellular metabolite

dynamics and connects extracellular product accumulation to the

intracellular metabolic network. The segregated cell growth model is

based on a model proposed for adherent MDCK cells (Rehberg et al.,

2013a), which considers different cell size classes. This enables the

estimation of the mean cell diameter and consequently the cell vo-

lume. Modeling cell volume was essential for the coupling of the cell

growth model with the structured model of the intracellular meta-

bolism considering that volumetric maximum enzyme activities

depend on the cell‐specific volume (Equation 42 in Supporting In-

formation Material S2, enzyme concentration affected by changes in

cell‐specific volume). Further aspects regarding this modeling ap-

proach, including a discussion concerning the number of cell

classes required in the segregated model, can be found elsewhere

(Rehberg et al., 2013a,b; Rehberg et al., 2014b). Regarding the

number of cell classes, five cell classes with linearly increasing dia-

meter were chosen as to describe the experimental data collected for

AGE1.HN.AAT cells. This was found as the minimum number of cell

class required to describe the experimental data (data not shown)

and it is in accordance with the number previously reported for

MDCK cells (Rehberg et al., 2013a). In contrast, however, various

modifications of the model developed for adherently growing cells

were required to describe growth and metabolism of AGE1.HN.AAT

suspension cells. The most important change concerned the lack of a

surface area limitation, which is only relevant for growth of contact‐
inhibited adherent cells. In addition, due to the rather long cultivation

time, cell death was taken into account to handle the loss of cell

viability typically observed after substrate depletion. Although cell

death phase is typically not relevant in industrial settings, this

allowed detailed analyses of the switch from exponential cell growth

to cell death and its implication on the cell metabolism. For the

structured central carbon metabolism model, most assumptions re-

garding the set of active reactions were made according to previous

studies of metabolism of this cell line (Niklas et al., 2011b; Priesnitz

et al., 2012; Rath et al., 2014). An overview of the structure of the

metabolic network is shown in Figure 1. The list of symbols used can

be found in Supporting Information Material S5 and the model is

provided in Supporting Information Material S6. Following in struc-

ture and basic assumptions the work for MDCK cells (Rehberg et al.,

2013a,b; Rehberg et al., 2014a,b) and others (Mulukutla, Yongky,

F IGURE 1 Simplified model of the central carbon metabolism of
AGE.HN.AAT cells. In green: metabolites and product measured by
Rath et al. (2014); in gray: metabolites not measured. Ellipsoids:
enzymes considered in the model. Arrows: reactions or transport,

with the arrowhead indicating the reaction or transport direction
(for simplification, reversible reactions have an arrow for both
directions). Gray rectangles: sinks or metabolites not accounted for

in the model. Red triangles: all the reactions included in the energy
balance. Abbreviations of metabolites and the product: 3PG,
3‐Phosphoglycerate; AAT, α1‐antitrypsin; AcCoA, acetyl coenzyme

A; ATP, adenosine triphosphate; cAc, cis‐Aconitate; Cit, citrate;
F16P, fructose 1,6‐biphosphate; F6P, fructose‐6‐phosphate; Fum,
fumarate; G6P, glucose‐6‐phosphate; Glc, glucose (intracellular);

Glcx, glucose (extracellular); Gln, glutamine (intracellular); Glnx,
glutamine (extracellular); Glu, glutamate (intracellular); Glux,
glutamate (extracellular); IsoCit, isocitrate; Keto, α‐ketoglutarate;
Lacx, lactate (extracellular); Mal, malate; NH4, ammonium

(intracellular); NH4x, ammonium (extracellular); OAA, oxaloacetate;
PEP, phosphoenolpyruvate; Pyr, pyruvate (intracellular); Pyrx,
pyruvate (extracellular); R5P, ribose‐5‐phosphate; SUC, succinate;
UDPGlc, uridine diphosphate glucose. Abbreviations of enzymes and
transport rates: HK, hexokinase; G6PDH, glucose‐6‐phosphate
dehydrogenase; rdR5P, reaction rate accounting for ribose‐
5‐phosphate consumption; UT, Uridyl transferase; GLYS, glycogen
synthetase; ruGLC, reaction rate accounting for other uridine
diphosphate glucose consumption; GPI, glucose‐6‐phosphate
isomerase; TATKF6P, transaldolase and transketolase; TATK3PG,

transaldolase and transketolase; PFK, phosphofructokinase; ALD,
aldolase; rqAAT, reaction rate accounting for product formation; ENO,
rnolase; rCCM, reaction rate accounting for overall ATP production;
rdATP, reaction rate accounting for overall ATP consumption; PK,
pyruvate kinase; PEPCK, phosphoenolpyruvate‐kinase; LDH, lactate
dehydrogenase; PC, pyruvate carboxylase; PDH, pyruvate

dehydrogenase; AlaTA, alanine transaminase; ME, malic enzyme; CS,
citrate synthetase; CL, citrate lyase; ACO, aconitase; ICDH, isocitrate
dehydrogenase; KDH, ketoglutarate dehydrogenase; AspTA,

aspartate transaminase; SDH, succinate dehydrogenase; FMA,
fumarase; MDH, malate dehydrogenase; GLDH, glutamate
dehydrogenase; GS, glutamine synthetase; GLNase, glutaminase;
rAAex, amino acids degradation; rGLUT, reaction rate accounting for

extracellular glucose consumption; rPyrtrans
x , reaction rate accounting

for extracellular pyruvate consumption; rNH4trans
x , reaction rate

accounting for ammonium production from intracellular rates;
rGlntrans

x , reaction rate accounting for extracellular glutamine
consumption; rGlutrans

x , reaction rate accounting for extracellular
glutamate consumption and/or production from intracellular rates

[Color figure can be viewed at wileyonlinelibrary.com]
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Grimm, Daoutidis, & Hu, 2015), reaction kinetics used were either

simple or modified versions of first order kinetics, that is, Michaelis–

Menten or Hill kinetics. In addition, the model explicitly takes into

account maximum enzyme activities measured experimentally (Rath

et al., 2014) and the degradation of amino acids (rAAex) was estimated

as proposed for MDCK cells (Rehberg et al., 2013b). In extension of

the model proposed for MDCK cells (Rehberg et al., 2013b; Rehberg

et al., 2014b), reactions that link the glycolytic pathway to the TCA

cycle and vice versa were considered. Furthermore, various aspects

of the intracellular metabolic network were considered in more de-

tail. For instance, the ATP dynamic takes into account all reactions in

which it is either directly consumed or produced, as well as other

sources such as redox cofactors nicotinamide dinucleotide (NADH)

and flavin‐adenine‐dinucleotide (FADH2) (Xie & Wang, 1996).

Furthermore, in contrast to the previous models, consumption rates

of all extracellular substrates (glucose, glutamine, glutamate, lactate)

were used as inputs for the intracellular metabolic network. The

accumulation of extracellular by‐products (lactate, ammonium, and

glutamate) was estimated directly from intracellular metabolic rates.

Another aspect of metabolism considered is the transamination of

oxaloacetate (OAA) to ketoglutarate. The latter was added since

previous studies of AGE1.HN cells suggested that this pathway

strongly influences ammonium release and OAA synthesis (Priesnitz

et al., 2012). Finally, due to lack of data regarding the distribution of

intracellular metabolites in the cytoplasm and the mitochondria, it is

assumed that all intracellular metabolites are homogeneously

distributed.

In this modeling approach, the segregated cell growth model

describes the macroscopic scale (dynamics of cells, product for-

mation, and extracellular metabolites) while the structured model

describes the intracellular metabolism including glycolysis, TCA,

transamination, and energy metabolism on the microscopic scale.

Accordingly, the macroscopic scale needs to be linked with the

intracellular scale and vice versa (Equation 1) using rmacro

(mmol·min−1·L−1 for the volume referring to the bioreactor) and

the corresponding intracellular rates ri (mmol·min−1·L−1 for the

volume referring to the cells)

=r r
V X

V
.i

s
c

v

w
macro

(1)

With cell‐specific cell volume (Vs
c, L/cell; Equation 11), the viable

cell concentration (Xv , cells/ml; Equation 6) and the conversion factor

to the reference working volume of 1 ml (Vw , −10 3) to convert viable

cell volume per ml to viable cell volume per L. In the following, the

ODEs for the segregated cell growth model and the structured model

for the central carbon metabolism of AGE1.HN.AAT cells are

introduced.

2.5 | Segregated cell growth model

The segregated cell growth model describes the dynamics of viable

cells, substrates, product formation, and metabolic by‐products on

the macroscopic scale. It is assumed that cells transition from a first

class (X1, cells with the smallest diameter) to the last class (X5, cells

with the largest diameter) before dividing into two daughter

cells (Equation 2–4).

= ( − ) −
dX
dt

r X X f k X2 ,d
1

trans 5 1 1
(2)

= ( − ) −
dX
dt

r X f X k X ,d
2

trans 1 2 2
(3)

= ( − ) − = …−
dX
dt

r X X k X i N, for 3, .i
i i d i

c
trans 1

(4)

As in Rehberg et al. (2013a), five cell classes were considered to

describe changes in the mean cell diameter during the time course

of cultivation. In these five cell classes ( =N 5c ), the transition rate

(rtrans, Equation 5) controls the rate of cell division, the inhibition

factor (f , Equation 7) limits the amount of cells that undergo cell

division, and a cell death rate (kd , Equation 8) accounts for cell death

which occurs during the cultivation and specifically after substrate

depletion.

The specific transition rate (rtrans, Equation 5) is estimated based

on a Michaelis–Menten kinetic (μ) using the extracellular glucose

concentration Glcxmultiplied with a constant (δ).

=

⎧

⎨

⎪

⎩
⎪

=
[ ]

+ [ ]

=
−/

r

k
with

Glc

Glc

1

2 1

x

m x

N

trans

max
Glc

1

x

c

μδ

μ μ

δ

(5)

This constant (δ) depends on the number of different cell

classes considered in the model (for a mathematical explanation;

Rehberg et al., 2013a). The parameters maxμ , Glcx , and k m
Glcx are the

maximum specific cell growth rate, the extracellular glucose con-

centration, and the Michaelis–Menten constant, respectively.

The viable cell concentration (Xv ) is given by the sum of cells in

each class.

∑=
=

X X .v
i

N

i
1

c

(6)

The inhibition factor (f ) accounts for a growth inhibition of

viable cells by taking into account the extracellular glucose

concentration (Glcx).

= −
−f e1 .

Glc
X

x

v
α (7)

Note that this inhibition factor corresponds to the fraction of

cells that start the division process (transition from the first class to

the last cell class). Therefore, it has a maximum value of 1 (corre-

sponding to 100% of the first cell class starting the division process)

and a minimum of 0 (when 0% of the cells of the first cell class start

the division process). To adjust the changes on the inhibition factor in

all cultivations a scaling constant (α) is used. Note that the fraction of

nondividing cells from the first cell class was not considered in the
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growth‐related glucose consumption (Equation 12), but only in the

maintenance related glucose consumption (Equation 13).

To account for the loss of cell viability, especially after substrate

depletion (Figures 2 and 3), the specific cell death rate (kd) considers

a basal cell death rate (kd
min ) during the exponential cell growth phase

(caused by cell damage, age, etc.) plus an additional term which ap-

proaches kd
max . The increase of kd

max is considered to be inversely

correlated with the effective cell growth rate (), a correlation that has

been used previously (Sanderson, Barford, & Barton, 1999; Zhou, Bi,

Zeng, & Yuan, 2006).

( )= +
+

k k k
f

.d d d
min max

2
β

β μ
(8)

The parameter β is a constant manually adjusted to fit the overall

increase in kd with cultivation time. This implies that the cell death is

not explicitly assumed to depend on the accumulation of by‐products
such as ammonium or lactate as described in various other cell

growth models. Implicitly, however, inhibition is accounted for to a

certain degree as by‐products accumulate while substrates such as

glucose, glutamine, and pyruvate are consumed and the substrate

level (i.e., glucose concentration) directly influences the effective

F IGURE 2 Suspension AGE1.HN.AAT cell growth in a chemically
defined medium for four small‐scale cultivations. Viable cell
concentration (A1–2), mean cell diameter (B1–2), and viable cell volume

(C1–2). Data and error bar represent mean and standard deviation of
three technical triplicates for four independent experiments (0.5 L ,
and 2.5 L , stirred tank bioreactors); lines: model simulations.
Experimental data used for parameter estimation (A1, B1, C1)

[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Extracellular substrates and metabolic

by‐products for suspension AGE1.HN.AAT cell growth in a
chemically defined medium. Glucose (A1–2), lactate (B1–2),
glutamine (C1–2), extracellular ammonium (D1–2), pyruvate
(E1–2), and glutamate (F1–2). Data and error bar represent

mean and standard deviation of three technical triplicates for
four independent experiments (0.5 L , and 2.5 L , stirred
tank bioreactors); lines: model simulations. Experimental data

used for parameter estimation (A1, B1, C1, D1, F1). The gray
lines indicate the limit of quantification for each metabolite and
the gray data points are under the limit of quantification

[Color figure can be viewed at wileyonlinelibrary.com]
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growth rate. If required, the corresponding term for by‐product ac-
cumulation could be easily added to the kd kinetics.

Taking into account the total number of cells of each class

(Xi), the mean cell diameter (d ) is determined by Equation (9).

∑= ⎛
⎝

+
−

−
( − )⎞

⎠=

d d
d d
N

i
X
X1

1 .
i

N

m
c m

c
i

v1

c

(9)

With equidistant cell diameters ranging from a minimum value (dm),

where cell division is initiated (if not inhibited), to a critical value (dc),

where it divides in two daughter cells (i.e., the first cell class [X1] has the

lowest diameter [dm] and the last cell class [X5] has the largest diameter

[dc]). The estimated mean cell diameter in the model is fitted to the

mean cell diameter calculated from the experimental data collect by

Rath et al. (Borchers et al., 2013; Rath et al., 2014). Note that both dc

and dm were manually adjusted for each experiment to minimize the

difference between the experimental and simulated viable cell volume.

Based on the mean diameter (dc), it is possible to calculate the viable cell

volume (Vc, Lμ ) and the cell‐specific cell volume (Vs
c, L/cell) using

Equations (10) and (11), respectively.

= −V
d

X
6

10 ,c
v

3
9π (10)

= −V
V
X

10 .s
c

c

v

6 (11)

Cells consume substrates and release metabolic by‐products
over the time course of cultivations, that is, glucose, glutamine, and

glutamate as well as lactate and ammonium. Regarding glucose

consumption, growth ( /rx Glcx) and maintenance ( /rm Glcx) rates are

considered as described in Rehberg et al. (2013a).

∑=
⎛

⎝
⎜ +

⎞

⎠
⎟/

=

/r X f X Y ,x
i

N

i xGlc 1

2

Glcx

c

xμ (12)

where the cell growth‐specific yield is /Yx Glcx . And for maintenance:

= Θ[ ]/r m V Glc ,m
c x

Glc Glcx x (13)

where mGlcx is a constant and Θ is a step function, which is one for

>Glc 0x and zero otherwise.

This yields the following ODE that describes the dynamics of

extracellular glucose uptake.

[ ]
= − −/ /

d
dt

r r
Glc

.
x

X mGlc Glcx x (14)

In contrast to glucose, for other extracellular metabolites such as

glutamine and pyruvate, a simpler approach to describe their con-

sumption was used since cell growth was assumed to be independent

of their presence in the medium. For this reason, the dynamics of the

remaining extracellular substrates and the metabolic by‐products
were described with a Michaelis–Menten‐like kinetic. This applica-

tion is similar to the approach previously used for this cell line (Rath

et al., 2014) and other authors (Barford, Phillips, & Harbour, 1992;

de Tremblay, Perrier, Chavarie, & Archambault, 1992; Luni, Marth, &

Doyle, 2012; Marín‐Hernández et al., 2011; Uldry, Ibberson, Hoso-

kawa, & Thorens, 2002). Furthermore, it is assumed that the in-

tracellular concentration of certain amino acids, such as glutamate

and glutamine, has an impact on their consumption rate as their

intracellular concentration has been shown to impact transporter

capacity (Hyde, Taylor, & Hundal, 2003). Note that, ammonium ac-

cumulation was simulated accounting for the spontaneous degrada-

tion of extracellular glutamine, as reported in Ozturk and Palsson

(1990), and all other intracellular reactions where it is either con-

sumed or produced. These reactions include two enzyme‐catalyzed
reactions (glutaminase, glutamine synthetase) and amino acid cata-

bolism (rAAex), which were lumped in one reaction (rNH4 x
trans

). Since the

intracellular ammonium concentration could not be quantified, it is

assumed that ammonium does not accumulate intracellularly. Finally,

product formation is assumed to be growth‐related and a mass action

kinetic was used. Refer to Supporting Information Material for each

kinetic (Equations in Supporting Information Material S2).

[ ]
= − −

d
dt

r r
Gln

,
x

dGln Glnx x
trans

(15)
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r
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V
Glu
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x

s
c

v

w
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(16)

[ ]
= +

d
dt

r r
NH4

,
x

dGln NH4x x
trans

(17)

[ ]
= −

d
dt

r
V X

V
r

Lac
,

x
s

c
v

w
LDH Lacx

trans
(18)

[ ]
= −

d
dt

r
Pyr

,
x

Pyrx
Trans

(19)

[ ]
=

d
dt

r
AAT

qAAT.
(20)

2.6 | Structured model of the central carbon
metabolism

The structured model for central carbon metabolism includes reac-

tions from glycolysis, citric acid cycle, glutaminolysis, transamination,

and the pentose phosphate pathway. To cover changes in extracellular

and intracellular metabolites concentrations, this model requires sev-

eral growth‐related variables such as mean cell volume and glucose

uptake rate, so it was linked to the segregated cell growth model.

2.7 | Glycolysis

The following set of equations (Equations 21–29) was used to describe

the dynamics of intracellular metabolites involved in the glycolytic

pathway. In each ODE, changes in the intracellular metabolite con-

centrations were obtained considering consumption or production in

different reactions or transport. Refer to Supporting Information Ma-

terial S2 for individual reactions kinetics. Note that the term [ ]f Cμ

expresses the dilution of each intracellular metabolite (C) by changes in

the cell volume caused by the effective growth rate ( fμ ).
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[ ]
= − − [ ]

d
dt

r r f
Glc

Glc ,GLUT HK μ (21)

[ ]
= − − − − [ ]

d
dt

r r r r f
G6P

G6P ,HK GPI G6PDH UT μ (22)

[ ]
= − + − [ ]

d
dt

r r r f
F6P

F6P ,GPI PFK TATKF6P μ (23)

[ ]
= − − − − [ ]

d
dt

r r r r f
R5P

R5P ,G6PDH TATKF6P TATK3PG dR5P μ (24)

[ ]
= − − − [ ]

d
dt

r r r f
UDPGlc

UDPGlc ,UT cUGlC GLYS μ (25)

[ ]
= − − [ ]

d
dt

r r f
F16P

F16P ,PFK ALD μ (26)

[ ]
= − + − [ ]

d
dt

r r r f
3PG

2 3PG ,ALD ENO TATK3PG μ (27)
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2.8 | Citric acid cycle, glutaminolysis, and
transamination

Glycolysis was linked to the TCA cycle through different enzymes

like pyruvate dehydrogenase (PDH), phosphoenolpyruvate carbox-

ylase (PEPCK), pyruvate carboxylase (PC), and malic enzyme (ME).

The following set of equations (Equations 30–40) introduces the

ODEs used to describe the dynamics of the different metabolites of

this pathway. For individual enzyme kinetics, refer to Supporting

Information Material S2.

[ ]
= − − [ ]

d
dt

r r f
AcCoA

AcCoA ,PDH CS μ (30)

[ ]
= − − − [ ]

d
dt

r r r f
Cit

Cit ,CS ACO CL μ (31)

[ ]
= − − [ ]

d
dt

r r f
cAc

cAc ,ACO ACO2 μ (32)

[ ]
= − − [ ]

d
dt

r r f
Isocit

Isocit ,ACO2 ICDH μ (33)
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Glu ,

GLU Glnase AAex GS GLDH AspTAtrans

μ (35)

[ ]
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d
dt

r r r r f
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Keto ,ICDH KDH GLDH AspTA μ (36)

[ ]
= − − [ ]

d
dt

r r f
Suc

Suc ,KDH SDH μ (37)

[ ]
= − − [ ]

d
dt

r r f
Fum

Fum ,SDH FMA μ (38)

[ ]
= − − − [ ]

d
dt

r r r f
Mal

Mal ,FMA MDH ME μ (39)

[ ]
= + + + − − − [ ]

d
dt

r r r r r r f
OAA

OAA .MDH AspTA CL PC PEPCK CS μ

(40)

2.9 | Energy metabolism

ATP is either generated directly in some reactions or produced from

several precursors such as NADH and FADH2 through oxidative

phosphorylation (Equation 41). On the other hand, ATP is consumed for

cell growth, maintenance metabolism, various other reactions of gly-

colysis and the TCA cycle, and in several futile cycles. Here, ATP pro-

duction and its usage were lumped in the rates rCCM and rdATP,

respectively. Furthermore, we assume that energy precursors are not

accumulated but used directly in the oxidative phosphorylation (elec-

tron transport) pathway, and that 2.5 ATP are produced from NADH

and 1.5 ATP from FADH2 as reported in Salway (2004) and Xie and

Wang (1996). For simplification and lack of experimental data for most

of these cofactors, their regulation or their homeostasis‐driven regula-

tion are no taken into account, which evidently could limit model pre-

dictions. The following ODE (Equation 41) was used.

[ ]
= − − [ ]

d
dt

r r f
ATP

ATPCCM dATP μ (41)

2.10 | Parameter fitting and model simulation

Parameter fitting and visualization of the results was carried out in

MATLAB (version R2012b; Mathworks, Inc.). For handling of the

model and the data, the Systems Biology Toolbox 2 developed by

Schmidt and Jirstrand (2006) was used. Integration of ODEs was

performed with CVODE from SUNDIALS (Cohen & Hindmarsh, 1996);

the enhanced scatter search (eSS) algorithm was used for stochastic

global optimization (Egea, Balsa‐Canto, García, & Banga, 2009; Egea,

Martí, & Banga, 2010).

In a first step, parameters from the segregated cell growth model

(Equations 2–14) were fitted using one of the available experimental

data sets. For optimization, the initial values of parameters were

estimated from experimental data (i.e., the specific cell growth rate),

or taken from literature (Rehberg et al., 2013b; Rehberg et al.,

2014b). Next, variables from this model (growth‐related glucose

consumption rate, maintenance related glucose consumption rate,

cell‐specific volume, cell growth rate) were used as input for the

structured central carbon metabolism model and the parameters of

this model were fitted to the same data set as before. In this step,

dynamics of some extracellular metabolites (extracellular glutamine,

extracellular pyruvate, extracellular lactate, extracellular glutamate)

were also considered since these were predicted directly from the

intracellular ODEs. Overall, 132 parameters were fitted using about

353 data points. Due to model complexity, data variability, and the

fact that only one data set was used for parameter estimation,

overfitting cannot be excluded.

The established model was used with different initial conditions,

and the same parameter set to simulate three other batch cultivations.

Therefore, the initial conditions for the state variables of the
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segregated cell growth model were adjusted manually within the error

of the experimental data at the start of the cultivation. The initial

conditions of the structured intracellular model states were obtained

from the simulation of a preculture from the late exponential growth

phase. To simulate the preculture growth until the exponential growth

phase (about 75 hr), the known concentrations of all compounds in the

medium was used as initial conditions. The initial values of the in-

tracellular states were taken from the first sampling time point (in

cases where no data was available, we used reasonably low initial

concentrations from previous studies of our group and general lit-

erature). Next, the estimated basal cell death rate (kd
min ) was increased

by a factor of 300 for 7min cultivation time to take into account the

drop in intracellular metabolite concentrations resulting from sam-

pling, centrifugation, and resuspension of cells before measurements

were performed. Note that sampling, centrifugation, and resuspension

of cells lasted around 7min in this case and thus it was assumed that

the cells metabolic activity would persist.

3 | RESULTS AND DISCUSSION

3.1 | Model simulation of the cell growth dynamics

In the following, model simulations and experimental data for the

concentration of viable cells, the mean cell diameter, and the total

cell volume are shown (Figure 2) for four cultivations at 0.5–2.5 L

scale performed by Rath et al. (Borchers et al., 2013; Rath

et al., 2014). Model simulations are based on specific initial condi-

tions of each cultivation but use the same set of parameters (Table 3

in Supporting Information Material S3). Note that the simulations

also cover the time period after achieving the maximum cell con-

centration starting at about 130 hr after inoculation, which is often

neglected in cell growth models, for instance in previous studies

dealing with the same cell line (Borchers et al., 2013).

After inoculation with about 6.105 cells/ml, all cultivations star-

ted with exponential cell growth until maximum cell concentration

ranging from 3.8 to 4.6 × 106 cells/ml at about 130 hr were achieved.

Following a similar trend as cell concentration, the viable cell volume

(Vc) increased from about 1.3 µl to a maximum in the range of 9 to

10.2 µl, before onset of cell lysis. Similar to findings of Rehberg et al.

(2013a) for adherent MDCK cells, the variation between cultivations

is low for Vc and, to a lesser degree, also for cell diameters. Initially,

cell diameters ranged from 15.8 to 16.2 µm (Figure 2b). After about

18 hr, a mean cell diameter of 16.5–17.0 µm was achieved, which

decreased after about 110 hr to a minimum of 15.1–15.8 µm. Al-

though the experimental data is rather noisy, the same trend (higher

mean cell diameter which decreases at later growth cell growth

phase) is observed for all cultivations, as it is also typically observed

for suspension cell line cultivations. The model simulations described

well the changes in cell concentration and the variations in mean cell

diameters over the cultivation period (Figure 2a,b). Based on the

good estimation of the mean cell diameter, the viable cell volume was

also fitted well (Figure 2c). Modeling the cell volume is essential

because usually a delay between the increase in viable cell con-

centration compared to the viable cell volume during cell growth is

observed (Nielsen, Reid, & Greenfield, 1997) and this delay was ac-

counted for in other parts of the model. In particular, the model

simulations cover changes of the mean cell diameter of about 10%

during the cultivation of AGE1.HN.AAT cells. Modeling such minor

changes in diameter is relevant since the consideration of this effect

results in up to 30% variation of the mean cell‐specific volume (Vs
c)

(Equations 10–11 in Supporting Information Material S2, Figure S1b

in Supporting Information Material S4). Furthermore, since the

maximum enzyme activity is expressed per Vs
c (Equation 42), this

would lead to up to 15% change in the volumetric maximum enzyme

activities

=K
v E

V
,e

e

s
c

max level (42)

where the volumetric maximum enzyme activity (Ke
max ) is dependent

on the cell‐specific volumetric enzyme activity ve, a constant measured

experimentally, the enzyme level (Elevel, constant), and the cell‐specific
volume (Vs

c). The enzyme level (Elevel) is a term proposed for MDCK

cells (Rehberg et al., 2014b) and corresponds to the experiment‐
specific relative enzyme level of the cell population, which indicates

that total enzyme content changes for each experiment when com-

pared with a standard value. As for intracellular metabolite con-

centrations, the volumetric maximum enzyme activity was not constant

due to changes in the mean cell diameter over time (Figure 2b), which

correlates with the cell‐specific volume. In other words, a smaller cell‐
specific volume would lead to a higher volumetric maximum enzyme

activity and vice versa. This correlated well with experimental ob-

servations for this cell line by Rath et al. (2014), where the overall

volumetric enzyme activity of AGE1.HN cells was higher during the

stationary growth phase compared to the exponential phase. Increased

cell diameters were also found during the exponential growth phase of

adherent MDCK cells (Rehberg et al., 2013a,b; Rehberg et al., 2014b).

Similar changes in maximum enzyme activities could also be due to

changes in transcriptomics and subsequent alterations in intracellular

protein concentrations. Corresponding assays could, however, not be

performed within the scope of this study.

Overall, the segregated growth model used in this study described

well the growth of suspension AGE1.HN.AAT cells. Taking explicitly

into account changes in the mean cell diameter enables the estimation

of the time course of the cell‐specific volume. This facilitates the es-

tablishment of structured intracellular models in case maximum en-

zyme activities are measured, as both changes in rates as well as

changes in enzyme activities can be considered for model fitting.

3.2 | Model simulation of substrate and metabolic
by‐product dynamics

In the following, model simulations are presented alongside experi-

mental data for extracellular substrates and metabolic by‐products
for the four cultivations at 0.5–2.5 L scale.
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Extracellular glucose (Figure 3a), which was considered as

the main substrate for cell growth, was consumed rapidly until

about 130 hr (note: both glutamine and pyruvate were depleted

before glucose). Shortly before its complete depletion, the cell

death increased significantly (Figure 2a). Lactate (Figure 3d)

accumulated in the bioreactor until about 130 hr when glucose

was depleted. During this phase, glucose was converted mostly to

pyruvate producing ATP and other energy precursors. Lactate

was produced from pyruvate by a reversible reaction catalyzed

by LDH, one of the fastest enzymes of glycolysis that is highly

regulated. Here, a noncompetitive inhibition by ATP and pyr-

uvate, previously reported in Brown and Wittenberger (1972)

and Coulson and Rabin (1969), with a Michaelis–Menten kinetic

was used as this led to a good approximation of the lactate

production rate. ATP concentration influences the LDH rate since

lactate conversion to pyruvate can regenerate NADH from NAD+

and, NADH can be converted to ATP. It is likely that for this

reason after glucose depletion, cells partially consumed the ex-

tracellular lactate. Taking this into account it was possible to

capture the increase of ATP concentration observed in the

experimental data after glucose and glutamine, and subsequently,

pyruvate, were depleted (Figure 3d and further discussion on

energy metabolism and product formation in the next section).

Lactate consumption by cells has also been observed in other cell

lines under different cultivation conditions, and might be con-

trolled by signaling cascades (Genzel et al., 2005; Genzel, Fischer,

& Reichl, 2006; Hartley, Walker, Chung, & Morten, 2018;

Martínez et al., 2013; Mulukutla et al., 2015; Ryll, Valley, &

Wagner, 1994; Schmid & Blanch, 1992; Xie et al., 2015). As an

example, for the parental cell line AGE1.HN lactate production

has been correlated with PDK4 gene inhibition (Scholz

et al., 2011), and in other continuous cell lines its consumption

correlated with lactic acidosis (Xie et al., 2015). In this study, two

kinetics for LDH were used to account for the switch between

lactate production (first 130 hr of cultivation) and consumption

(after 130 hr), since intracellular lactate concentration was not

considered in the model (Equation 23 in Supporting Information

S2, Figure S1b in Supporting Information S4).

Extracellular glutamine and pyruvate (Figures 3c and 3e, re-

spectively) were consumed rapidly and were depleted before

glucose at about 100–115 hr. Nevertheless, cell growth continued

even after their depletion for a short period of time. Ammonium

(Figure 3d) accumulated over the complete cultivation period,

with a partial increase of the accumulation rate after glutamine

depletion. Finally, glutamate (Figure 3f) accumulated in the media

with short periods of uptake on some instances. Interestingly,

even after glutamine depletion, glutamate still accumulated. This

phenomenon is not uncommon cell cultivations as glutamate is a

nonessential amino acid and it is also produced from sources

other than glutamine, for example, through lysine and proline

catabolism (Lohr et al., 2014; Sonnewald, 2014). Although extra-

cellular amino acids were not quantified in these experiments,

batch cultivations with a similar medium composition performed

for this cell line demonstrated that most amino acids were not

depleted at the end of exponential cell growth phase (Priesnitz

et al., 2012). It is thus plausible to assume that even when TCA

and glycolysis were shutdown, amino acids catabolism persisted.

Another argument for this is the fact that experimental data

shows that ammonium, which is released mainly from amino acid

catabolism, accumulated until the end of the cultivation

(Figure 3d). Assuming that glutamate is mainly produced from

amino acid catabolism, it is likely that the glutamate excretion by

cells is related to its intracellular excess. This is predicted in our

model simulations, where the amino acid degradation rate

(Figure S1b in Supporting Information Material S4), which corre-

lates with glutamate production was slightly higher for later cul-

tivation time. This might still be biologically relevant as one of the

mechanism that the cells use to keep amino acid homeostasis is

the control of amino acid entry or exit through corresponding

transporters (Bröer & Bröer, 2017). Overall, for the most

important substrates and metabolic by‐products, model simula-

tions are well in agreement with experimental data (Figures 3a

and 3f). In particular, the segregated cell growth model allowed

the estimation of the consumption rates of the substrates glucose,

glutamine, and pyruvate (Figures S1a and S1b in Supporting In-

formation Material S4). With these rates as an input for the

structured intracellular model of metabolism (below), it was also

possible to estimate the release of the metabolic by‐products
lactate, ammonium, and glutamate (rates used in Figures S1a and

S1b in Supporting Information Material S4).

3.3 | Model simulation of intracellular metabolism

In the following, experimental results and model simulations that

describe the dynamics of key metabolites of glycolysis, TCA, and

energy metabolism for the four cultivations at 0.5–2.5 L scale per-

formed by Rath et al. (Borchers et al., 2013; Rath et al., 2014) are

shown. Afterwards, the most relevant intracellular reactions are

addressed for two distinct cellular physiological states of AGE1.H-

N.AAT cells identified over the time course of cultivations for all four

batches.

3.4 | Intracellular metabolite concentrations of
glycolysis

In the following, model simulations of key metabolites of glycolysis

are shown for experimental data over a cultivation period of about

200 hr for all four experiments.

Regarding the upper glycolytic pathway, two interesting dy-

namics can be observed (Figure 4). The first was a slow accumu-

lation of glucose‐6‐phosphate (G6P) and fructose‐6‐phosphate
(F6P) until about 96 hr followed by their decrease until depletion.

The second was a peak‐like accumulation of fructose‐1,6‐
biphosphate (F16P) between 96 and 130 hr. Further aspects
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F IGURE 4 Experimental data and model simulations for key metabolites of glycolysis for suspension AGE1.HN.AAT cell growth a chemically

defined medium. G6P (A1–4), uracil diphosphate‐glucose, UDPGlc (B1–4), F6P (C1–4), fructose‐1,6‐biphosphate (D1–4), 3‐phosphoglutarate
(E1–4), phosphoenolpyruvate (F1–4), and intracellular pyruvate (G1–4). Data and error bar represent mean and standard deviation of three
technical triplicates for four independent experiments (0.5 L , and 2.5 L , stirred tank bioreactors); lines: model simulations.

Experimental data used for parameter estimation (A1, B1, C1, D1, F1, G1). The gray lines indicate the limit of quantification for each metabolite
and the gray data points are under the limit of quantification. F6P, fructose‐6‐phosphate; G6P, glucose‐6‐phosphate; UDPGlc, uridine
diphosphate glucose [Color figure can be viewed at wileyonlinelibrary.com]
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include a high concentration of 3‐phosphoglutarate (3GP), uridine

diphosphate glucose (UDPGlc) and phosphoenolpyruvate (PEP),

which were maintained at relatively high levels until the extra-

cellular glucose was depleted at about 130 hr (Figure 3a). Also, the

concentration of intracellular pyruvate decreased over the culti-

vation time after it achieved its peak concentration at about 20 hr.

The fact that most metabolite concentrations remained about

constant or even increased until around 96 hr suggests that glu-

cose was not limiting. On the other hand, after glucose was de-

pleted at about 130 hr it coincided with the depletion of all the

metabolites of glycolysis.

In all four experiments, experimental data showed similar

dynamics for the key metabolites of glycolysis and the model si-

mulations capture these dynamics well. This suggests that useful

assumptions regarding the specific kinetics for the glycolytic en-

zymes were made. Nevertheless, based on the same parameter

set, model simulations showed some discrepancies, that is, for

PEP and 3PG. This implies that mechanisms used to describe, for

instance enolase (ENO) or pyruvate carboxylase (PK) kinetics,

might need further improvements. Nevertheless, results also

indicate that reasonable assumptions were made for the most

critical enzymes in glycolytic control, that is, hexokinase (HK),

phosphofructokinase (PFK), and lactate dehydrogenase (LDH)

(Tanner et al., 2018). PFK has been described to be closely linked

to oscillations frequently found in glycolytic rates (Sola‐Penna, Da

Silva, Coelho, Marinho‐Carvalho, & Zancan, 2010; Yalcin, Telang,

Clem, & Chesney, 2009). Furthermore, it is one of the highly

controlled enzymes of this pathway with allosteric regulation by

energy precursors such as ATP, ADP, and cAMP (Smolen, Baxter,

& Byrne, 2014; Sola‐Penna et al., 2010; Westermark & Lans-

ner, 2003; Yalcin et al., 2009). For this particular case, a kinetic

similar to the Hill kinetic previously applied for other allosteric

enzymes was used here (Smolen et al., 2014). With this kinetic for

PFK (Equation 15 in Supporting Information Material S2), the

glycolytic rates are negatively correlated with the intracellular

ATP concentration when glucose was present in the medium

(0–130 hr). Another critical enzyme was aldolase (ALD). Without a

proper selection of its kinetic (Equation 21 in Supporting In-

formation Material S2), it was not possible to simulate the

peak‐like behavior of F16P. It was found that the dynamic of

F16P is negatively correlated with the specific cell growth rate

(Equation 21 in Supporting Information Material S2). Regulation

of this enzyme has been previously reported to correlate with

changes in cell proliferation, mainly through its localization inside

or outside of the nucleus (Mamczur, Gamian, Kolodziej, Dziegiel, &

Rakus, 2013).

Taken together, model simulations approximate well the dy-

namics of most of the glycolytic metabolites. Nevertheless, the

unique parameter set used here leads to a better fit of 2.5 L scale

when compared to the 0.5 L scale. It is likely that some of the

kinetics used, that is, for 3PG and PEP, do not account for minor

differences between cultivations performed at both scales. Note

that the limit of quantification for each metabolite is influenced by

the viable cell volume per milliliter if the volume of sample is

constant a higher cell volume per sample decreases the limit of

quantification and vice versa).

3.5 | Intracellular metabolites of TCA

Next, model simulations and experimental data regarding metabo-

lites of the TCA cycle for all four batch cultivations of AGE1.HN.AAT

cells are presented (Figure 5).

For all key metabolites of the TCA cycle, apart from succinate,

the intracellular concentrations were maintained high until

around 130 hr when glucose was depleted (Figure 3a). Citrate

concentration remained high during cell growth (until around

130 hr) while cis‐aconitate concentration was near the limit of

quantification. This suggests an equilibrium of aconitate (ACO) in

favor of citrate production since isocitrate concentration was

around 100‐fold lower. The highest concentration of all TCA

intermediates was found for succinate exceeding even

α‐ketoglutarate by a factor of 10. Although α‐ketoglutarate is

produced from more than one source, contrary to succinate, the

concentration of the metabolites can only be related to

their related Michaelis–Menten constant. It also clear that

α‐ketoglutarate dynamics differed at the beginning of the of cul-

tivations even in the same scale. The fact that fumarate con-

centration remained low and at a level similar to isocitrate

suggests that it was rapidly converted to malate by fumarase

(FMA), one of fastest enzymes in the TCA cycle.

Apart from succinate at the end of cultivations and

α‐ketoglutarate at the start of the cultivations, model simulations

capture well the dynamics of all metabolites of TCA. This implies that

the kinetic mechanisms used were appropriate to describe the me-

tabolic rates involved in production, transport and/or consumption of

these metabolites.

In accordance with studies on animal cells (Kim, Tchernyshyov,

Semenza, & Dang, 2006; Sable, 2009; Schell et al., 2014; Scholz

et al., 2011), analysis of the rates in model simulation showed that

the input from glycolysis into the TCA was relatively low. In cancer

‐derived cell lines, metabolism is typically reprogrammed resulting

in a weaker connectivity between glycolysis and TCA through the

pyruvate dehydrogenase. For AGE1.HN.AAT cells, this was likely

also the case since this enzyme had the lowest maximum activity of

all enzymes of the TCA (Rath, 2017). Indeed, model simulations

pointed in this direction as the highest metabolic rate input from

glycolysis into the TCA in simulations was through pyruvate car-

boxylase (PC) that converts pyruvate to OAA (Figures S1a and

S1b). PC has also been found to significantly contribute to TCA

carbon supply according to 13C labeling experiments using Chinese

hamster ovary (CHO) cells (Dean & Reddy, 2013). The low activity

of PDH and OAA production through PC resulted in a partly re-

versed TCA to account for the supply of metabolites such as

citrate, cis‐aconitate and isocitrate (Figure S1a in Supporting

Information Material S4). This truncation of TCA has also been
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F IGURE 5 Experimental data and model simulations for key metabolites of TCA for suspension AGE1.HN.AAT cell growth a
chemically defined medium. Citrate (A1–4), cis‐aconitate (B1–4), isocitrate (C1–4), α‐ketoglutarate (D1–4), succinate (E1–4), fumarate (F1–4),
and malate (G1–4). Data and error bar represent mean and standard deviation of three technical triplicates for four independent

experiments (0.5 L , and 2.5 L , stirred tank bioreactors); lines: model simulations. Experimental data used for parameter estimation
(A1, B1, C1, D1, F1, G1). The gray lines indicate the limit of quantification for each metabolite and the gray data points are under the limit of
quantification [Color figure can be viewed at wileyonlinelibrary.com]
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reported for other cancer cell lines, as it allows generation of ci-

trate and isocitrate, which are important for lipid production

(Parlo & Coleman, 1984). For example, in melanoma cells, using
13C labeling it was found that the precursors for lipid production

are generated mainly from these reverse reactions in the TCA, and

that the main source of these precursors is glutamine (Filipp, Scott,

Ronai, Osterman, & Smith, 2012). It is known that glutamine is the

main metabolite fueling the TCA since it is converted to

α‐ketoglutarate, a TCA intermediate (Zheng, 2012). In our mod-

eling approach, α‐ketoglutarate production from transamination,

where both OAA and glutamate are consumed, was also con-

sidered. Previous studies with AGE1.HN cells (Priesnitz

et al., 2012) had also elaborated the importance of the transami-

nation reactions. In this model, glutamate is produced from the

degradation of amino acids which results in production of ammo-

nium. Furthermore, glutamate can also be produced from

α‐ketoglutarate through the enzyme glutamate dehydrogenase

(GLDH), which consumes ammonium during this process. This re-

action plays an important role in the ammonium detoxification

(Figure S1b in Supporting Information Material S4). In the model

simulations, glutamate was produced through GLDH and amino

acid degradation and it was then converted to ketoglutarate by

aspartate transaminase with OAA consumption. This is a strong

indication that transamination and part of the TCA are used mainly

for energy production while the other part of TCA provides in-

termediates for biosynthesis through citrate (DeBerardinis, Lum,

Hatzivassiliou, & Thompson, 2008). However, to better support

this theory, the model should be further extended to include

lipid synthesis and degradation of other amino acids. This

could also potentially benefit the analysis of the relevance of these

findings, especially regarding the anaplerotic reaction (PC) ad-

dressed previously.

Despite the current limitations, the overall dynamics of the

metabolites of the TCA was captured well by simulations, except for

succinate at the end of the cultivations and α‐ketoglutarate at the

start of the cultivations.

3.6 | Energy metabolism and product formation

Next, model simulations and experimental data of intracellular ATP

concentration and α1‐antitrypsin accumulation in the supernatant

are presented for the four batch cultivations (Figure 6).

As long as glucose and glutamine were available in the medium

(Figures 3a and 3c), ATP concentrations increased over the cultiva-

tion time. Shortly before the depletion of glucose at about 110 hr

(Figure 3a), a rapid decrease in ATP concentrations was found for all

cultivations. Soon after it increased again (140 hr) and remained high

until the end of cultivation. α1‐Antitrypsin was produced and ex-

ported to the medium while the cells were growing until about 130 hr

and remained constant until the end of cultivations. This clearly

shows that the production of this protein is growth‐related and

therefore a simple growth‐related kinetic was used to describe its

dynamic (Equation 8 in Supporting Information Material S2).

Model simulations capture well the dynamics of ATP and

α‐1‐antrypsin concentration over the time period for all four batch

cultivations. This indicates that a simple product formation rate is

sufficient to describe its dynamic. For ATP, this indicates that a

good balance between consumption (Equation (49) in Supporting

Information S2) and production (Equation (45) in Supporting In-

formation S2) was achieved. ATP is produced in both glycolysis

(Equation (43) in Supporting Information S2) and oxidative phos-

phorylation (Equation (44) in Supporting Information S2). According

to our model simulations, at least 50% of the total ATP was

F IGURE 6 Experimental data and model simulations for ATP and α1‐antitrypsin for suspension AGE1.HN.AAT cell growth a chemically
defined medium. ATP (A1–4) and α1‐antitrypsin (B1–4). Data and error bar represent mean and standard deviation of three technical triplicates

for four independent experiments (0.5 L , and 2.5 L , stirred tank bioreactors); lines: model simulations. Experimental data used for
parameter estimation (A1, B1). The gray lines indicate the limit of quantification for ATP. ATP, adenosine triphosphate [Color figure can be
viewed at wileyonlinelibrary.com]
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produced in glycolysis (Figure S1b in Supporting Information Material

S4) as long as glucose is present in the medium (until about 130 hr).

This agrees well with a previous study which reported a range be-

tween 1 and 64% (Zu & Guppy, 2004). In addition, this finding supports

the theory that glycolysis could sustain growth demand of AGE1.HN

cells as previously suggested in Scholz et al. (2011), that is, that the

glycolytic ATP production rate is higher than the simulated ATP

consumption for growth (Equation (46) in Supporting Information

Material S2 and Figure S1b in Supporting Information Material S4).

The model simulation also suggests that the rapid decrease in ATP

concentration is mainly due to the depletion of glucose and the sub-

sequent decrease in ATP production in glycolysis (Figure S1b in Sup-

porting Information Material S4). Later, the increase in ATP

concentration is due to an increase in oxidation of NADH with lactate

consumption (Figure S1b in Supporting Information Material S4). The

increase in oxidative phosphorylation also leads to higher estimated

theoretical oxygen consumption at the end of the cultivation period

(Equation 52 in Supporting Information Material S2 and Figure S1b in

Supporting Information Material S4). In this phase, when cells do not

grow anymore, ATP is used mainly for maintenance and futile cycles

(Equations (47) and (48), respectively in Supporting Information Ma-

terial S2). Overall, the theoretical oxygen consumption for AGE1.H-

N.AAT was about 22–106 fmol/cell/h (Figure S1b in Supporting

Information Material S4), which is in similar range reported for other

continuous cell lines of 7–97 fmol/cell/h (Herst & Berridge, 2007;

Sheeran, Streeter, & Dayton, 2013). Interestingly, a much lower oxy-

gen consumption rate was found for the early growth phase

(Figure S1b in Supporting Information Material S4) supporting

the theory that while there is no limitation of glucose, cells do not use

the oxidative phosphorylation pathway at its full potential. A lower

oxygen uptake has also been reported previously for murine

hybridoma cells for growth without glucose limitation while a higher

oxygen uptake was observed near glucose limitation (1–1.5mM)

(Barnabé & Butler, 2000). This confirms again that cells switch to a

more efficient metabolism as glucose limitation starts, activating

oxidative pathway and lactate consumption.

Overall, model simulations capture very well the dynamics for

both ATP and product concentration which indicates that valid bio-

logical assumptions were made regarding their kinetics. In particular,

theoretical oxygen production rates are well within the range ob-

served for other continuous cell lines.

3.7 | Identification of the most active reactions

Based on the established dynamic model, it was possible to identify

two distinct cellular physiological states, which are discussed in the

following (Figure 7).

In the first state (Figure 7a), a high glucose consumption rate led

to high glycolytic rates. During this phase, most of the glucose was

converted to pyruvate, and subsequently to lactate. Glucose entering

the cells did not accumulate as its intracellular concentration was

always below the limit of detection, that is, glucose was converted

rapidly to G6P and, almost as fast, G6P converted to pyruvate. It is

well‐known that in cancer‐derived cell lines glucose is usually con-

verted to lactate (1 Glc: 2 Lac, Warburg effect), even under aerobic

conditions (Vander Heiden, Cantley, & Thompson, 2009; Warburg,

Wind, & Negelein, 1927). Here, the experimental data show a ratio of

1–1.9 (maximum glucose and lactate concentration in Figure 3a,b).

Furthermore, it is reported that 0–40% of G6P generated through

HK is channeled to the pentose phosphate pathway by G6PDH

(Bonarius et al., 2001; Goudar et al., 2010; Petch & Butler, 1994). For

the cultivations considered, the simulated ratio was less than 10%

(Figure S1a in Supporting Information Material S4). This ratio

F IGURE 7 The two main cellular
physiological states identified for
AGE1.HN.AAT cell growth. (a) Cellular

physiological state characterized by a high
glycolytic rate and a truncated TCA with
lactate production and pyruvate uptake.
(b) Cellular physiological state

characterized by a low glycolytic rate,
reactions of the TCA cycle running from
α‐ketoglutarate to oxaloacetate, amino

acid catabolism, ammonium production,
and lactate consumption [Color figure can
be viewed at wileyonlinelibrary.com]
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correlates well with findings from metabolic flux analysis performed

by Niklas et al. (2011a), using 13C labeling. Finally, as discussed in the

previous section, during this phase (beginning of cultivation until

about 130 hr) model simulations suggested that at least 50% of the

ATP was produced from glycolysis and a low oxygen consumption

rate was simulated.

The second state (Figure 7b) is characterized by the consumption

of lactate and the degradation of amino acids to fuel a truncated TCA

cycle. This resulted in ammonium secretion even when glutamine was

depleted. Since glycolysis also provided OAA for transamination

(when the glucose concentration was low), both glycolytic and TCA

rates decreased. Accordingly, glutamate consumption in transami-

nation was also lower and glutamate accumulated intracellularly and

extracellularly. At this stage, more OAA was produced from citrate

degradation by the citrate lyase (CL) indicating that a reverse TCA is

required to provide enough OAA to keep transamination active and,

therefore, reactions that provide energy precursors. Since transa-

mination shortens the TCA cycle, a more efficient way of producing

ATP during limitations can be assumed. Transamination is one option

for cells to deal with the weak link of glycolysis to the TCA through

PDH to keep ATP production high when needed, in particular, an

increase in PDH activity would not help in case glucose is depleted.

This hypothesis is supported by the fact that higher PDH activity

could lead to OAA depletion because it would lead to citrate pro-

duction from Acetyl‐CoA and OAA, thus shutting down TCA/trans-

amination. Finally, as discussed earlier, during this phase ATP was

produced mainly from oxidative phosphorylation and a higher theo-

retical oxygen consumption rate is observed compared to the first

metabolic phase, suggesting that this cellular physiological state is

more efficient (Figure S1b in Supporting Information Material S4).

In summary, the main hypothesis derived from these two iden-

tified cellular physiological states is that the transamination is a so-

lution to deal with the weak link of glycolysis with TCA through PDH.

A compelling argument for this is that according to the model si-

mulations using pyruvate as a substrate, PC produced enough OAA,

which was used with glutamate to generate ketoglutarate via

transamination. This led ketoglutarate being used as the precursor

for the second half of the TCA where energy precursors were pro-

duced in substantial amounts.

3.8 | Using the dynamic model for predictions

Finally, the newly established dynamic model was used to perform in

silico simulations to address open question regarding the metabolism

of AGE1.HN.AAT cells and options to improve process performance.

For example, during media optimization (Niklas et al., 2012), it was

found that an increase of the pyruvate concentration in the medium

F IGURE 8 Predicted impact of changes in the maximum activity
of glutamine synthetase (GS) on selected key reactions of animal cell

metabolism. (a) lactate production (rLDH), (b) glycolytic activity (rPFK),
(c) TCA activity (rFMA), (d) ATP production (rCCM), and (e) ammonium
production (rNH4

x
trans

). The black dots represent the mean rate and

standard deviation during the simulation of the four batch
experiments. The gray fill: mean and standard deviation of in silico
simulations. ATP, adenosine triphosphate
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resulted in a negative impact on cell growth and it was then postu-

lated that the increase of pyruvate leads to energy spilling and on the

other hand that it did not increase TCA cycle rates. As the in-

tracellular metabolism is highly complex, the established

mathematical model can be used to assess possible impacts of such a

change in initial conditions on cell intracellular metabolism and

provide more concrete insights. Another question relates to the high

glutamine synthetase (GS) activity experimentally measured in

AGE1.HN cells and whether this could cause ATP dissipation since

glutaminase (GLNase) is also expressed in higher levels in these cells

(Rath et al., 2014). Regarding the ATP dissipation theory, it is worth

mentioning that GS synthetizes glutamine from glutamate, consumes

ATP and ammonium, and thus can “dissipate” ATP. Since the GS ac-

tivity is explicitly considered in the ODEs for glutamine and ATP,

simulations for different GS maximum activity levels can be

investigated.

As a starting point, the model was used to evaluate the changes

in enzymatic reaction rates to analyze their impact on the dynamics

of extracellular substrates and metabolic by‐products as well as the

cellular physiological state of AGE1.HN.AAT cells during the ex-

ponential growth phase. Overall, five key reactions of animal cell

metabolism were selected as markers for the intracellular cellular

physiological state and analyzed: (a) rLDH (lactate production), (b) rPFK

(glycolytic activity), (c) rFMA (TCA activity), (d) rCCM (ATP production),

and (e) rNH4 x
trans

(ammonium production). The results of this study are

presented in Figure 8.

In this scenario, changes in the GS activity have almost no impact

on both lactate production (Figure 8a) and glycolytic rate (Figure 8b).

TCA activity is slightly higher for a lower GS activity (Figure 8c), and

the same trend applies to the ATP production rate (Figure 8d). On

the other hand, higher GS activity does seem to lead to less ATP net

production rate. Finally, the largest impact was on ammonium pro-

duction as expected, that is, the ammonium production rate is in-

versely correlated with the GS maximum activity (Figure 8e). Taken

together, the results of these in silico simulations suggest changes in

GS activity does lead to a minor ATP dissipation. In contrast, the

accumulation of ammonium seems to have a stronger effect.

To investigate the changes on intracellular metabolism caused by

the changes of the initial concentrations of pyruvate in the media

several in silico simulations were performed where the starting

concentration of pyruvate was either increased or decreased com-

pared to the experimental data for the four batch used to validate

the model and the results are presented in Figure 9.

In this scenario, changes of initial pyruvate concentration in the

medium are not expected to have a significant impact on lactate

production rate (Figure 9a). Changes in pyruvate concentration also

had insignificant impacts on the glycolytic rate (Figure 9b) and the

net ATP production rate (Figure 9d). However, changes in the initial

F IGURE 9 Predicted impact of changes in initial extracellular
pyruvate concentration ([PYR(0)]) on selected key reactions of
animal cell metabolism. (a) lactate production (rLDH), (b) glycolytic
activity (rPFK), (c) TCA activity (rFMA), (d) ATP production (rCCM), and

(e) ammonium production (rNH4
x
trans

). The black dots represent the
mean rate and standard deviation during the simulation of the four
batch experiments. The gray fill: mean and standard deviation of in

silico simulations. ATP, adenosine triphosphate
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pyruvate concentration have an impact on both TCA cycle rate and

ammonium production rate (Figures 9c and 9e). In fact, a negative

correlation between the initial concentration of pyruvate and the

production of ammonium is predicted. This in silico prediction might

be biologically relevant as it has been previously reported (Genzel

et al., 2005) that high pyruvate concentration in the media resulted in

lower ammonium production in different cell lines such as MDCK,

CHO‐K1, and BHK21. On the other hand, contrary to what was in-

itially postulated (Niklas et al., 2012) for the AGE1.HN.AAT cells, a

positive correlation between the initial concentration of pyruvate

and TCA cycle rate is predicted. This result is not surprising since this

dynamic modeling approach differs from the constraint‐based
method, which deals with mass balances only. Nevertheless, this

finding might also be biologically significant as it has been shown for

CHO cells that the addition of pyruvate resulted in an increase in

TCA cycle activity (Omasa et al., 2010). Taken together, the results of

our in silico analysis point to different hypotheses compared to what

was until now assumed regarding the intracellular metabolism of

AGE1.HN.AAT cells. They are also supported by findings reported for

other cell lines (Genzel et al., 2005; Omasa et al., 2010). Although

our model contains over 100 parameters, it is still only a simplified

representation of the metabolic network of a human cell line fitted to

describe cultivation conditions for a specific training data set. Addi-

tional investigations are planned that include various other

experimental setups to support further model validation.

4 | CONCLUSIONS

We used a segregated cell growth model coupled to a structured

intracellular model of metabolism to describe growth and metabolism

of suspension AGE1.HN.AAT cells considered for recombinant hu-

man α1‐antitrypsin production. The model covers the exponential

growth and the death phase. Besides glycolysis, TCA, pentose phos-

phate pathway, and transamination were considered, and in-

tracellular rates linked to extracellular accumulation of metabolic by‐
products. The performance of the model was assessed using ex-

perimental data (extracellular and intracellular metabolite con-

centrations, enzyme activities) collected for four batch experiments.

Using specific initial conditions and the same set of parameters, the

model described extracellular dynamics for growth and death phases

well. By taking into account changes in cell volume, dynamics of in-

tracellular concentrations of most metabolites measured and product

accumulation could also be fitted well. Based on simulated dynamic

rates of key enzymes of the metabolic network, we hypothesize that

at least two distinct cellular physiological states exist. The first state

is characterized by a high glycolytic rate and a high lactate produc-

tion rate. This favors high ATP production providing enough energy

to sustain cell growth. The second state is characterized by efficient

ATP production, a low glycolytic rate, and (partly) reverse TCA cycle

reactions. Furthermore, we found that the main link between

glycolysis and TCA is through PC, and we discuss the importance of

transamination on a truncated TCA. Based on the good fit of model

simulation and experimental data, we suggest that control of enzyme

activities occurs mainly through substrate or product concentrations.

The developed model was used to perform in silico studies re-

garding open questions and possible targets for cell line optimization

and changes in medium composition. Changes in GS activity seem to

have only a minor impact on metabolism and the changes in the initial

pyruvate concentration of the medium suggested changes would

occur in the metabolism in accordance with previous studies.

Taken together, we show that, with some simplifications and a few

basic biological assumptions, it is possible to establish a rather complex

dynamic model that not only describes cell growth and product formation

in animal cell culture but also links extracellular metabolite dynamics with

main intracellular pathways. Furthermore, we showed that such a model

could serve as basis to address questions related to cell line engineering,

medium design, and as a tool for rational process design.
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