
1Scientific RepoRtS |         (2020) 10:2892  | https://doi.org/10.1038/s41598-020-59708-7

www.nature.com/scientificreports

Sexual communication of 
Spodoptera frugiperda from West 
Africa: Adaptation of an invasive 
species and implications for pest 
management
Sabine Haenniger1, Georg Goergen2, Mobolade Dele Akinbuluma3, Maritta Kunert4, 
David G. Heckel1 & Melanie Unbehend1*

the pest species Spodoptera frugiperda, which is native to north and South America, has invaded 
Africa in 2016. The species consists of two strains, the corn-strain and rice-strain, which differ in 
their sexual communication. When we investigated populations from Benin and nigeria, consisting 
of corn-strain and rice-corn-hybrid descendants, we found no strain-specific sexual communication 
differences. Both genotypes exhibited the same pheromone composition, consisting of around 97% 
(Z)-9-tetradecenyl acetate (Z9–14:Ac), 2% (Z)-7-dodecenyl acetate (Z7–12:Ac), and 1% (Z)-9-dodecenyl 
acetate (Z9–12:Ac), they had similar electrophysiological responses, and all mated around three hours 
into scotophase. However, we found geographic variation between African and American populations. 
The sex pheromone of African corn-strain and hybrid descendant females was similar to American rice-
strain females and showed higher percentages of the male-attracting minor component Z7–12:Ac. In 
addition, African males exhibited the highest antennal sensitivity towards Z7–12:Ac, while American 
males showed highest sensitivity towards the major pheromone component Z9–14:Ac. Increasing the 
production of and response to the critical minor component Z7–12:Ac may reduce communication 
interference with other African Spodoptera species that share the same major pheromone component. 
The implications of our results on pheromone-based pest management strategies are discussed.

Since 2016 the African continent has a new pest species: the fall armyworm (FAW) Spodoptera frugiperda 
(Lepidoptera: Noctuidae)1. This noctuid moth species is endemic to North and South America and is known as 
serious pest of maize, sorghum, sugarcane, and various grasses2,3. Although FAW is a generalist feeding on over 
350 different host plants in the Americas4, its major host in Africa is maize5, also endemic to the Americas. The 
rapid spread of FAW to almost all sub-Saharan countries within less than two years5, and the magnitude of agri-
cultural losses (estimated over US$ 13.3 billion6), highlight the need for efficient pest management strategies in 
Africa. As FAW encounters new ecological conditions, ecosystem dynamics, and species interactions in Africa, 
this invasive species may behave differently in its new environment, and pest control methods that work in the 
Americas might not be effective in Africa. Therefore, it is crucial to first understand the biology of FAW in its new 
habitat in order to develop control methods that are effective and affordable for regional farmers.

One commonly used and environmentally friendly method to monitor or control pest insects is the use of 
sex pheromones, which are crucial for the mate finding process in moths7. In most noctuid species like FAW, 
the females emit a species-specific sex pheromone in the scotophase to attract males over large distances, which 
is the start of the mating phase8. In its native environment in North and South America, several sex pheromone 
based pest management strategies have been used to regulate FAW populations, i.e. monitoring with pheromone 
traps to determine timing of pesticide application9,10, mass trapping to reduce population densities11, and mating 
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disruption with high pheromone concentrations to disturb the mate finding process12. In Africa, monitoring with 
pheromone traps (baited with American lures) is currently used to assess infestation levels13,14 and preliminary 
field trials are performed to evaluate the efficiency of mating disruption5. The key component in these control 
methods is the sex pheromone of FAW females. Thus, it is essential to determine the pheromone composition of 
FAW females from Africa, which might be different compared to American populations.

The male attracting pheromone that FAW females from the Americas release consists of at least two compo-
nents: the major component (Z)-9-tetradecenyl acetate (Z9–14:Ac) and the minor component (Z)-7-dodecenyl 
acetate (Z7–12:Ac)15. Two other minor compounds commonly found in the pheromone gland are (Z)-9-dodecenyl 
acetate (Z9–12:Ac) and (Z)-11-hexadecenyl acetate (Z11–16:Ac)16,17, but field tests in Florida did not show that 
they are important for male attraction15,17. The minor component (E)-7-dodecenyl acetate (E7–12:Ac) shows 
geographic variation and has so far only been found in females from Brazil18. With regard to pest management, 
it is important to consider that FAW consist of two strains (the corn-strain and the rice-strain) that exhibit dif-
ferences in their pheromone composition16,17 and timing of reproduction in the night19,20. American corn-strain 
females, which mate early in the scotophase19, are known to produce smaller relative amounts of the critical male 
attracting minor component Z7–12:Ac compared to rice-strain females16,17, which are sexually active at the end 
of the scotophase19. A recent genetic study that determined the strain identity of African FAW populations has 
shown that the rice-strain population is rare or absent on the continent and mainly corn-strain individuals and 
descendants of interstrain hybrids are present21. However, it is so far unclear whether geographic variation exists 
between corn-strain populations from Africa and America, and whether there are corn-rice-strain hybrids in 
Africa which differ in their sexual behavior compared to pure strain individuals.

One factor that could influence the sexual communication system of FAW in Africa is the presence of com-
munication interference with other species. Within Africa, 8 other species of the genus Spodoptera have been 
reported, i.e. S. apertura, S. cilium, S. exempta, S. exigua, S. littoralis, S. mauritia, S. malagasy, and S. triturata22. 
Interestingly, S. cilium, S. exempta, and S. triturata share the same major component Z9–14:Ac with FAW, in S. 
exigua and S. littoralis Z9–14:Ac has been reported as minor component, and the sex pheromone of S. apertura, S. 
mauritia, and S. malagasy is still unknown (http://www.pherobase.com). Thus, there is an overlap in the sex pher-
omone composition of FAW with at least five other Spodoptera species present in Africa. Besides other Spodoptera 
species, traps in Togo baited with FAW lures had high numbers of non-target catches of Leucania loreyi13, which 
also uses Z9–14:Ac as the major pheromone component and Z7–12:Ac as the minor component23. As FAW is 
now a broad generalist that occurs throughout Sub-Saharan Africa, there is a high probability that it encounters 
other species during its adulthood that share the same pheromone compounds, and communication interference 
may have caused a change in the sexual behavior of FAW in Africa compared to American populations. To test 
whether geographic and/or strain-specific variation exists in African FAW populations, we investigated the sex-
ual communication system of FAW populations from West Africa (Benin and Nigeria) by using a combination 
of genetic, electrophysiological, chemical, and behavioral observation methods. The implications of our results 
on the adaptation of the invasive species to its new habitat and the development of regional pest management 
strategies are discussed.

Results
Pure corn-strain and RC hybrid descendants present in West Africa. Genetic strain-identification 
used both the maternally-inherited mitochondrial cytochrome oxidase I (COI) gene and the nuclear-encoded 
triose phosphate isomerase (TPI) gene. Offspring of interstrain hybrids are indicated when the strain-specific 
markers are discordant. For example, among the FAW population from Benin, 36% exhibited the CCOI-CTPI gen-
otype (n = 32) and thus descent from a corn-strain female and a corn-strain male, while 64% had the RCOI-CTPI 
genotype (n = 56), suggesting descent from a rice-strain female and a corn-strain male. In Nigeria, 63% of the 
population consisted of the CCOI-CTPI genotype (n = 60) and 37% of the RCOI-CTPI genotype (n = 36). The TPI 
marker was homozygous CTPI for all individuals from Benin and Nigeria that were sequenced. Thus, in both West 
African countries we only found pure corn-strain individuals (CCOI-CTPI) and descendants of rice-corn interstrain 
hybrids (RCOI-CTPI), but no pure rice-strain specimens (RCOI-RTPI).

Increased antennal sensitivity to the minor component Z7–12:Ac in African populations. In 
the electroantennogram (EAG) experiments we observed geographic and dose-response variation in the male 
response to five different compounds that were tested. At the lowest amounts of 0.001 µg and 0.1 µg pheromone, 
corn- and rice-strain males from Florida responded only to the major pheromone component Z9–14:Ac, while 
males from Benin only responded to the minor component Z7–12:Ac (Table 1). Males from Nigeria showed no 
significant EAG responses when exposed to 0.001 µg pheromone, but at 0.1 µg pheromone, only Z7–12:Ac evoked 
EAG responses that were significantly larger than the control (Table 1). At the highest amounts tested (10 µg), 
both American and African populations responded to four of five tested compounds, i.e. Z9–14:Ac, Z7–12:Ac, 
E7–12:Ac, and Z9–12:Ac evoked responses, but not Z11–16:Ac (Table 1, Fig. 1). The EAG responses to 10 µg 
pheromone revealed that for each of the five tested compounds, males of both genotypes from Benin or Nigeria 
exhibited similar EAG amplitudes, while the Florida corn-strain always showed higher EAG amplitudes than the 
Florida rice-strain (Fig. 1). For the major component Z9–14:Ac, African populations had similar EAG responses 
as the Florida corn-strain, while for all minor compounds the African populations were more similar to the 
Florida rice-strain (Fig. 1).

No strain-specific pheromone variation in different African genotypes. Gas chromatography-mass 
spectrometry (GC-MS) analysis showed that corn-strain and RC hybrid descendant females from Benin and Nigeria 
produced four out of five analyzed pheromone compounds that have been previously found in American popula-
tions, i.e. Z9–14:Ac, Z7–12:Ac, Z9–12:Ac, and Z11–16:Ac are present, but not E7–12:Ac (Supplementary Fig. S1).
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Of the four pheromone compounds that have been identified in the glands of African females (Supplementary 
Fig. S1), EAG experiments revealed that males were not responsive to Z11–16:Ac (Table 1), which is why we focused 
in the individual gland analysis on the three components that are present in the gland and evoked EAG responses: 
the major component Z9–14:Ac, and the two minor compounds Z7–12:Ac and Z9–12:Ac. Analyses of hexane 
extracts of the pheromone glands of African females revealed that corn-strain and RC hybrid descendants from 
Benin and Nigeria had the same pheromone profile (Fig. 2a). On average, African females exhibited 96.4–96.8% 
Z9–14:Ac, 2.0–2.3% Z7–12:Ac, and 1.2–1.3% Z9–12:Ac (Fig. 2a). In comparison with the American populations, 
the African females had similar percentages of Z9–14:Ac and Z7–12:Ac as the Florida rice-strain, while the relative 
amount of Z9–12:Ac was not significantly different between African and American populations (Fig. 2a). The total 
amount of pheromone in single FAW glands ranged between 8.5 up to 46.6 ng (Supplementary Table S1).

Region Strain (genetic marker)

Z9–14:Ac Z7–12:Ac E7–12:Ac Z9–12:Ac Z11–16:Ac

Sample sizePheromone dose 0.001 µga

Florida
Corn-strain (CCOI-CTPI) <0.001 0.247 1.000 1.000 0.984 n = 15

Rice-strain (RCOI-RTPI) <0.001 0.925 1.000 1.000 1.000 n = 15

Benin
Corn-strain (CCOI-CTPI) 0.895 0.034 0.166 0.985 0.462 n = 13

RC descendant (RCOI-CTPI) 1.000 <0.001 0.999 0.752 0.991 n = 15

Nigeria
Corn-strain (CCOI-CTPI) 0.991 1.000 1.000 0.996 1.000 n = 14

RC descendant (RCOI-CTPI) 1.000 0.549 1.000 1.000 1.000 n = 16

Pheromone dose 0.1 µga

Florida
Corn-strain (CCOI-CTPI) <0.001 0.206 1.000 0.402 0.978 n = 15

Rice-strain (RCOI-RTPI) <0.001 0.988 0.998 0.477 1.000 n = 15

Benin
Corn-strain (CCOI-CTPI) 1.000 <0.001 1.000 1.000 0.996 n = 13

RC descendant (RCOI-CTPI) 0.980 <0.001 0.879 1.000 1.000 n = 15

Nigeria
Corn-strain (CCOI-CTPI) 1.000 0.001 1.000 1.000 0.998 n = 14

RC descendant (RCOI-CTPI) 1.000 0.015 0.993 0.999 1.000 n = 16

Pheromone dose 10 µga

Florida
Corn-strain (CCOI-CTPI) <0.001 <0.001 <0.001 <0.001 1.000 n = 15

Rice-strain (RCOI-RTPI) <0.001 <0.001 <0.001 <0.001 1.000 n = 15

Benin
Corn-strain (CCOI-CTPI) <0.001 <0.001 <0.001 <0.001 1.000 n = 13

RC descendant (RCOI-CTPI) <0.001 <0.001 <0.001 <0.001 0.979 n = 15

Nigeria
Corn-strain (CCOI-CTPI) <0.001 <0.001 0.023 <0.001 1.000 n = 14

RC descendant (RCOI-CTPI) <0.001 <0.001 0.040 <0.001 1.000 n = 16

Table 1. Statistical analysis of FAW male EAG responses to three doses (0.001 µg, 0.1 µg and 10 µg) of five 
pheromone compounds (Z9–14:Ac, Z7–12:Ac, E7–12:Ac, Z9–12:Ac, Z11–16:Ac). aShown are P-values 
(ANOVA followed by a Tukey’s HSD post hoc test), where the EAG pheromone response was compared to the 
control (hexane) response. Bold fields highlight the components that were significantly different to the control 
stimuli (P < 0.05).

Figure 1. EAG responses of FAW males from Florida, Benin, and Nigeria to 10 µg of five different pheromone 
compounds. Bars show the mean pheromone response minus the hexane control response, with standard errors. 
Different letters above the bars indicate significant population differences for a given compound (ANOVA 
followed by Tukey’s HSD post hoc test; P < 0.05; n.s. = not significant).
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To prove that the relative pheromone amount in the gland is similar to the pheromone released to the gland 
surface, we compared hexane gland extracts with gland surface extracts using fused silica optical fibers coated 
with polydimethylsiloxane (PDMS)24 and discovered that the percentages of Z9–14:Ac, Z7–12Ac, and Z9–12:Ac 
were not significantly different between both methods (Fig. 2b). However, when using the PDMS technique, the 
relative amount of Z7–12:Ac (~2%) and Z9–12:Ac (~0.9%) was on average smaller compared to the hexane gland 
extraction method without previous PDMS treatment (Z7–12:Ac up to 2.3%, Z9–12:Ac up to 1.3%, Fig. 2b). 
With the PDMS gland surface rubs, we were able to detect around 23% of the total pheromone collected with the 
hexane gland extraction method (~10.6 ng with PDMS rubs vs. ~46.6 ng with gland extracts after PDMS rubs, 
Supplementary Table S1).

Early mating times of African populations. Observation of the mating behavior in the laboratory 
showed that all four African populations mated early, on average around three hours in the scotophase (Fig. 3). 
In the American populations, the Florida corn-strain mated around five hours into scotophase, and the Florida 
rice-strain on average eight hours into scotophase (Fig. 3).

Discussion
When we investigated the sexual communication system of FAW populations from West Africa, consisting of 
corn-strain individuals (CCOI-CTPI) and descendants of interstrain hybrids (RCOI-CTPI), we found no phenotypic 
differences between the two genotypes, i.e. they exhibited the same EAG responses, pheromone profiles, and onset 
time of mating. Of these three measured phenotypes, the best defined strain-specific difference and proposed 
prezygotic mating barrier of FAW populations from America is their onset time of mating, with the corn-strain 
mating approximately 3 hours earlier than the rice-strain19,25. Behavioral observations of F1 hybrid individuals 
from America showed that crosses between a rice-strain female and a corn-strain male (RCOI-CTPI) exhibit sim-
ilar mating times as the pure rice-strain, i.e. they mate at the end of the scotophase19. In our study, the African 
populations with the RCOI-CTPI genotype were sexually active at the beginning of the scotophase, even two hours 
earlier than the corn-strain individuals from Florida (Fig. 3). Along with the fact that the TPI marker was not 
heterozygous, this suggests that individuals with RCOI-CTPI genotype from Africa are not F1 hybrids but must be 
F2 or later generations after the initial hybridization. The early mating time of the African populations indicates 

Figure 2. Pheromone gland composition of FAW females from Florida, Benin, and Nigeria. (a) Mean relative 
percentages of Z9–14:Ac, Z7–12:Ac, and Z9–12:Ac, with standard errors, of hexane gland extracts. Data 
from field populations from Florida have been previously published17 and were included for comparison. (b) 
Pheromone composition of Nigeria corn-strain females using three different pheromone extraction methods 
(gland surface rubs with polydimethylsiloxane (PDMS) fibers, hexane gland extracts after PDMS rubs, and 
hexane gland extracts without previous PDMS rubs). Different letters above the bars indicate significant 
differences for a given compound (GLM analysis; P < 0.05, n.s. = not significant).
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that the genetic basis of allochronic differentiation, suggested to be the circadian clock gene vrille on chromosome 
25 and possibly other clock genes identified by a previous study20, was inherited from the corn-strain in both 
genotypes (CCOI-CTPI and RCOI-CTPI). Interestingly, genetic analyses of the pheromone production of FAW females 
identified the same chromosome 25, on which vrille is located, to be involved the production of the critical minor 
pheromone component Z7–12:Ac26. For both African genotypes (CCOI-CTPI and RCOI-CTPI) we found similar rel-
ative percentages of Z7–12:Ac as reported for American rice-strain females16,27, which suggests that the gene(s) 
on FAW chromosome 25 responsible for Z7–12:Ac production were inherited from the rice-strain in the African 
populations. Now the question arises of whether the African corn-strain is really a pure corn-strain as found 
in America, or if repeated matings between corn-strain individuals with rice-corn-strain hybrid descendants 
substantially changed the African corn-strain genome. Currently, only two genes are routinely used to geneti-
cally analyze FAW populations: the TPI gene on the sex chromosome28 and the COI gene on the mitochondrial 
genome29. Without more reliable strain-specific autosomal markers or whole genome sequence comparisons, 
it is difficult to estimate how much of the genome from the corn-strain and RCOI-CTPI hybrid descendants is 
inherited from the corn- or the rice-strain, and how a mixed genetic basis might influence certain behaviors in 
the field. The genome sequences of both strains were published in 2017, and comparative analyses between the 
strains identified significant variation in a number of detoxification and digestions genes, which might be linked 
to differential host plant use30. These findings could serve as starting point to establish new screening markers for 
FAW genotyping or be the basis for genome comparisons in order to determine the genetic architecture of FAW 
populations in Africa.

A comparison between the sexual communication system of populations from America and Africa revealed 
two (possibly linked) differences. First, we found an increased relative amount of the critical male attracting 
minor component Z7–12:Ac in African corn-strain and RC hybrid descendant females, similar to American 
rice-strain females (Fig. 2). Second, males from African populations revealed the highest pheromone sensitivity 
towards Z7–12:Ac in the EAG experiments, while American males exhibited the highest sensitivity towards the 
major component Z9–14:Ac (Table 1). Increasing the production of and response to the critical minor compo-
nent Z7–12:Ac may reduce communication interference with other African Spodoptera species that share the 
same major pheromone component, but whether this has resulted from sexual selection in FAW in the new 
environment requires future work. The elevated levels of Z7–12:Ac in African FAW females could be the result 
of rice-strain specific pheromone production genes, which may have been inherited to the present CCOI-CTPI 
and RCOI-CTPI genotypes by multiple inter-strain specific crosses within the initial invasive population. Another 
explanation could be that FAW females exhibit phenotypic plasticity in their sexual communication, a phenom-
enon reported for the noctuid moth Heliothis subflexa31. Laboratory H. subflexa females, which were exposed for 
the first days of their adult lives to the sex pheromone of the closely related H. virescens, changed their phero-
mone composition by producing significantly more Z11–16:Ac, a compound inhibiting attraction of H. virescens 
males31. Early-adult experience of heterospecific pheromone blends could also affect the pheromone composition 
of FAW females, for example by influencing transcription, translation, or activity levels of so far uncharacterized 
enzymes involved in Z7–12:Ac production. With regard to the increased antennal sensitivity of African males 
towards Z7–12:Ac, which was not present in American males (Table 1), adaptive phenotypic plasticity may also 
play a role. Heterospecific pheromone blends could alter, for example, the expression levels of Z7–12:Ac receptors 
on the male antennae, or change the abundance of transporting proteins like odorant-binding proteins or chem-
osensory proteins, which are known to deliver semiochemicals to receptor neurons and thereby contributing to 
the sensitivity and selectivity of the insect’s olfactory system32,33. Understanding the reasons for the sexual com-
munication differences between the native and invasive FAW populations will give us a deeper insight into the 
adaptation and evolution of invasive species in new environments. Also, the increased male antennal sensitivity 

Figure 3. Mating times of FAW populations from Florida, Benin, and Nigeria. Boxplots show the onset time of 
first mating of two populations from Florida (corn-strain: n = 194, rice-strain: n = 189) and four populations 
from Africa (Benin corn-strain n = 9, Benin RC hybrid descendant: n = 82, Nigeria corn-strain: n = 64, 
Nigeria RC hybrid descendant: n = 38). Data from laboratory populations from Florida have been previously 
published20 and were included for comparison. Different letters above the bars indicate significant differences 
(ANOVA followed by Tukey’s HSD post hoc test; P < 0.05).
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to Z7–12:Ac in African populations harbors the possibility to enhance the efficiency of mating disruption with 
specific pheromone dispensers in Africa. This should be explored in field studies in the near future.

When we observed the mating times of FAW pairs, all African populations mated on average three hours in 
the scotophase (Fig. 3), which is two hours earlier than previously reported for the corn-strain from America19. 
This time shift could be an additional mechanism to avoid cross attraction with other species. Spodoptera 
exempta, which shares the same major component with FAW34, has been reported to mate between 6–9.5 hours 
into scotophase35. This mating phase overlaps with the mating time of corn- and rice-strain FAW populations 
from Florida19, so that advancing the reproductive phase by two hours could be advantageous for FAW popula-
tions in Africa. However, the time shift between the Florida corn-strain and the African populations could also 
have developed by genetic drift during laboratory rearing, as the previous study used insects that were reared 
for ~6 years in the laboratory20, while we used populations kept in the laboratory for 4 months or less. This will 
be tested in the future by observing fresh field populations from Florida. While 4 months of laboratory rearing 
might not have contributed to genetic changes that could have an influence on the results, it is worthwhile 
mentioning that laboratory conditions are lacking parameters of field conditions, like plant odors, plant diet, 
predators, and parasitoids, which could influence the tested phenotypes. It is also important to mention that we 
observed the mating behavior under a 14:10 L:D cycle, in order to compare it with the previous studies using 
American populations19,20, whereby the natural L:D cycle is 12:12 in Benin and Nigeria. Shortening the night 
cycle of the African populations by two hours could have also contributed to the observed two hours mating 
time shift. Additional observation experiments of field populations from America and other regions in Africa, 
with different natural L:D cycles, will prove whether the mating time of FAW can be influenced by laboratory 
rearing and/or the L:D cycle.

With regard to the development of a pheromone based pest management system for FAW in Benin and Nigeria 
(with CCOI-CTPI and RCOI-CTPI genotypes), genotype-specific differences may not need to be considered when 
targeting the invasive species with pheromones. Our findings that the FAW populations from Benin and Nigeria 
consist of corn-strain individuals and descendants of interstrain hybrids, but not of pure rice-strain individuals, 
are in accordance with previous genetic analyses21. As we sampled only a small proportion of both field popu-
lations (Benin n = 88 individuals and Nigeria n = 96 individuals), we cannot exclude that rice-strain specimens 
might be present in these regions and genotype specific sexual communication differences may exist in Benin, 
Nigeria or other African countries. In general, American lures have been successfully used to catch FAW males in 
Africa, although high numbers of non-target moths, some of which have similar appearance as FAW and might 
not be distinguished by local farmers13, highlight the need for more specific pheromone formulations. Analysis 
of the composition of American lures showed that lures like “L105A” from Scentry Biologicals, Inc. (Billings, 
Montana), the “FAW” lure from Trécé, Inc. (Adair, Oklahoma), and the “Scenturion Fall Armyworm Lure” from 
Suterra LLC (Bend, Oregon) contain Z11–16:Ac36, a compound not detected by the male antennae in EAG exper-
iments with populations from America18,37 and Africa (Table 1). Thus, this compound is most likely not needed 
for male attraction, but its addition to FAW lures might attract other species. Dose response experiments with the 
important minor component Z7–12:Ac, which is produced by females in concentrations of less than 5% (Fig. 2), 
showed a decrease in male attraction when high percentages of 5–10% Z7–12:Ac were added to the lures11,17. The 
fact that some American lures contain extremely high percentages of Z7–12:Ac, i.e. the “FAW” lure from Trécé 
releases almost 30% Z7–12:Ac, the “L105A” and “L976” lures from Scentry Biologicals around 10% Z7–12:Ac, 
and the “Scenturion Fall Armyworm Lure” circa 8% Z7–12:Ac13, could explain the attraction of non-target moths 
like Leucania loreyi to traps baited with FAW lures13. The results of our study showed that Z9–14:Ac, Z7–12:Ac, 
and Z9–12:Ac are the most promising candidates that should be used to formulate FAW lures, as only these three 
compound are present within the female gland and evoked EAG responses larger than the control stimuli (Figs. 1 
and 2). Based on the relative pheromone percentages that we found in the female gland (Fig. 2), lures consisting 
of 2% Z7–12:Ac + 98% Z9–14:Ac should be compared with lures containing 1% Z9–12:Ac + 2% Z7–12:Ac + 97% 
Z9–14:Ac, in order to determine whether Z9–12:Ac is a male attracting component, which is not the case in 
America17. Additionally, the total pheromone amounts should be taken into account, ranging in our experiments 
between 8.5–46.6 ng of pheromone per female gland (Supplementary Table S1). Dose response experiments in 
Brazil showed that when testing 10 mg, 1 mg, 0.1 mg, and two females as the pheromone source, more males were 
caught in traps baited with 1 mg pheromone18. Whether these concentrations will work as effectively in Africa as 
in America depends also in the release rate of the lure itself and still needs to be investigated. In summary, we are 
just beginning to understand the biology of FAW in its new environment and the more insight we will get into its 
adaptation mechanisms, the better we can manage the spread of this agricultural pest species.

Methods
insects. The FAW populations from Nigeria originated from ~270 larvae collected from corn fields in Ijaiye 
Farm Settlements, in Akinyele local government area of Oyo State (7°39′07.6″N; 3°49′51.2″E) in 2018. The field 
larvae from Nigeria were shipped to Germany in October 2018. Populations from Benin originated from mass 
rearing colonies at IITA Cotonou. This population was established from larvae collected in corn fields in 2016 and 
mated every second month to field individuals collected from corn plants. In December 2018, egg masses from 
Benin were shipped to Germany where ~600 larvae emerged. The Florida rice-strain was collected in a grass field 
in Moore Haven (+26° 53′ 3.04′′, −81° 7′ 21.17′′) in May 2010 (~300 larval specimens), and the corn-strain orig-
inated from corn plots at a University of Florida research station in Citra, northern Marion county, in September 
2018 (~200 larval specimens).

All specimens (from Florida, Nigeria and Benin) were shipped to Germany, where they were reared on 
artificial pinto bean diet in climate chambers at 26 °C and 70% RH, with reversed light:dark (L:D) cycle and 
14:10 L:D photoperiod. Adults were fed with 10% honey water and mated randomly in single pairs. All adult 
pairs from the field that produced fertile offspring were genetically analyzed to identify their strain (see below) 
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and genotype-specific colonies were established and continuously reared. All experiments were conducted in 
Germany. Experiments with African populations and the Florida corn-strain were conducted within the first 4 
months of laboratory rearing, while the Florida rice-strain was reared for eight years in the laboratory in Germany 
before experiments were conducted. Unfortunately, we were not able to maintain a stable corn-strain population 
from Benin (CCOI-CTPI) in the laboratory, which is why experiments conducted with this population usually have 
lower sample sizes than the other populations.

Genetic strain identification. Strain identification was assessed by screening adults for one mitochon-
drial marker (COI) and one nuclear marker (TPI), which are known to be diagnostic for both strains in North 
and South America28,29. DNA extractions were performed in a 96-well plate using Chelex 100 Resin (Bio-Rad 
Laboratories, Hercules, CA, USA). One adult leg was put in one well together with two metal beads and 300 µl 
10% Chelex (diluted in ddH2O). The tissue was homogenized in a tissue lyser for 4 min at 30 Hz. The samples were 
heated for 30 min at 95 °C and 300 rpm spinning, after which they were frozen at −20 °C overnight. Then each 
plate was thawed, mixed, and centrifuged at 4000 rpm for 30 min. The supernatant was filtered through a fritted 
deep well filter plate (Thermo Fisher Scientific, Waltham, MA, USA) and used for strain analyses. Identification 
of the mitochondrial marker was performed as described by Unbehend, et al.17, i.e. after amplification of the COI 
gene, two strain-specific digests with MspI and SacI were conducted to analyze the strain-affiliation via gel elec-
trophoresis. The TPI marker was analyzed according to methods used by Nagoshi28, i.e. a part of the TPI gene was 
Sanger-sequenced at the MPI-CE and ten single nucleotide polymorphisms were used for strain identification. 
The sequences were analyzed with Sequencher 5.2.4 (Gene Codes Corporation, Ann Arbor, MI, USA).

Electrophysiology. To identify the male antennal response to Z9–14:Ac, Z7–12:Ac, E7–12:Ac, Z9–12:Ac, 
and Z11–16:Ac, EAG recordings of 0–5 days old virgin males were performed with populations from Benin, 
Nigeria, and Florida. Samples from Florida were included in the analysis as we found no study in the literature 
that analyzed the EAG response of American populations to all five compounds. Male heads were severed, gen-
tly crushed to eliminate movement of the antennae, and placed on a fork-shaped electrode holder (Syntech, 
Buchenbach, Germany) using an electrolyte gel (Spectra 360 Electrode Gel, Parker Laboratories, Fairfield, NJ, 
USA). Three amounts (0.001 µg, 0.1 µg, and 10 µg) of each pheromone compound were presented from the lowest 
to the highest concentration. The lowest pheromone amount (0.001 µg) and 100 times higher amount of 0.1 µg 
pheromone were chosen as they reflect the range of the female pheromone production. The highest amount 
of 10 µg pheromone was used as maximum stimulus to identify responses that might not be detected at lower 
amounts. Ten µl of each pheromone component in each amount were pipetted onto a small piece of filter paper 
(1 cm2) and placed into a glass Pasteur pipette. Control pipettes contained filter paper with 10 µl hexane alone. A 
stimulus controller (CS-55, Syntech) produced a flow of 1 l/min charcoal-filtered air over the antennae. Antennae 
were stimulated with 0.5 s odor puffs, using a randomized sequence for each recording. Before and after test-
ing three different odors, the control stimulus was presented. The inter-stimulus interval was 30 s. Signals were 
recorded with Syntech software (Autospike Version 3.9) and statistically analyzed with a one-way analysis of var-
iance (ANOVA) followed by a Tukey’s HSD post hoc test in R version 3.2.038. To meet assumptions of normality 
and variance homogeneity, the spike amplitude (in mV) was log(x + 1) transformed.

Pheromone analysis. The sex pheromone of 2–4 days old virgin females from Benin and Nigeria was ana-
lyzed in three experiments. Pheromone data of FAW females from Florida have been previously described by 
Unbehend, et al.17 and were included in this manuscript for comparison. In the first experiment, GC-MS anal-
ysis was performed to evaluate whether the five pheromone compounds that have been found in FAW females 
from America (Z9–14:Ac, Z7–12:Ac, E7–12:Ac, Z9–12:Ac, Z11–16:Ac) are also present in populations from 
Africa. Glands were extracted 2–4 h into scotophase. The gland was excised from the female abdomen and sin-
gly placed into a glass vial containing 50 µl hexane (Carl Roth, Karlsruhe, Germany) plus 125 ng pentadecane 
(Sigma-Aldrich Chemie GmbH, Munich, Germany) as internal standard. After 30 min, the gland was removed 
and extracts of 10 females per region and strain were pooled and reduced from 500 µl to 30–50 µl under a gentle 
stream of nitrogen. Three µl of the reduced extract were analyzed with GC-MS (5977 A MSD and 7890B GC 
Systems, Agilent technologies Inc., Santa Clara, CA, USA). The GC was equipped with an INNOWAX column 
(30 m, 0.25 mm id, 25 μm film thickness, Agilent Technologies) and helium was the carrier gas (1 ml/min). The 
inlet temperature was 240 °C. The GC was programmed from 60 °C with a 2 min hold to 180 °C at 30 °C/min, 
then to 230 °C at 5 °C/min, and finally to 260 °C at 20 °C/min with a final 5 min hold. The MS transfer line was 
held at 260 °C, the MS ion source at 230 °C, and mass spectra were taken in EI mode (at 70 eV) in the range from 
29–350 m/z. An internal standard containing 100 ng Z9–14:Ac, Z7–12:Ac, E7–12:Ac, Z9–12:Ac, and Z11–16:Ac 
(Pherobank, Wageningen, The Netherlands) was used as reference to confirm the presence of compounds by 
comparing retention times and mass spectra. To verify the presence of the isomers Z7–12:Ac and E7–12:Ac, 
selected ion monitoring (SIM) was conducted for the masses 67 and 81 with a dwell time of 50 ms.

In the second experiment, we extracted glands of single females from Benin and Nigeria and determined the rel-
ative and total amount of pheromone by GC analysis. Glands were extracted as described above and GC analysis was 
conducted on a HP7890 GC with a splitless inlet attached to a high resolution polar capillary column (DB-WAXetr 
(extended temperature range)) and a flame-ionization detector (FID). Chemical analysis and GC programming was 
performed as described by Unbehend, et al.17. Gland extracts were concentrated from the volume of 50 µl to 4 µl, after 
which the whole extracts were injected into the GC. To confirm retention times, an internal standard containing 100 ng 
Z9–14:Ac, Z7–12:Ac, E7–12:Ac, Z9–12:Ac, and Z11–16:Ac, and pentadecane was injected into the GC. All pheromone 
data were log transformed to stabilize the variance and analyzed using a generalized linear model (GLM) in R38.
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In the third experiment, we assessed whether the pheromone composition in the gland was similar to the 
pheromone release from the gland and sampled pheromones from the gland surface of calling females with fused 
silica optical fibers coated with PDMS.

The PDMS sampling was conducted with one population, the corn-strain from Nigeria, according to methods 
described by Lievers and Groot24. PDMS fibers (100 μm polydimethylsiloxane; Polymicro Technologies Inc., 
Phoenix, AZ, USA) were cut in 15 mm long pieces and rubbed for 2.5 min over the pheromone gland of females 
that called for at least for 15 min, after which the fibers were extracted for 30 min in 50 µl hexane and 125 ng pen-
tadecane. After PDMS sampling, the pheromone glands of the already sampled females were excised from the 
female abdomen and extracted as described above. All extracts were analyzed via GC as described above.

Mating observations. To determine the onset time of mating, single pair matings of African populations 
were observed as described by Schöfl, et al.19. One to four day-old virgin adults were set up in single pairs in clear 
plastic cups (16 oz.) and fed with 10% honey solution. Matings were set up during the photophase and placed in a 
walk-in climate chamber (26 °C, 70% RH, L:D 14:10) at least two hours before scotophase. Couples were observed 
throughout the 10 hours of scotophase, with a 30 min interval. All pairs were observed for one or two consecu-
tive nights starting at the first night after the mating. The onset time of the first mating, regardless of whether it 
occurred in the first or second night, was used for comparing the timing of mating behavior. Mating behavior of 
laboratory populations from Florida were previously described by Haenniger, et al.20 and included for compar-
ison. Data were log transformed and analyzed with an ANOVA followed by a Tukey’s HSD post hoc test in R38.

Data availability
All generated and analyzed data in this study are included in the main text or are available from the Edmond 
repository https://dx.doi.org/10.17617/3.3c.
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