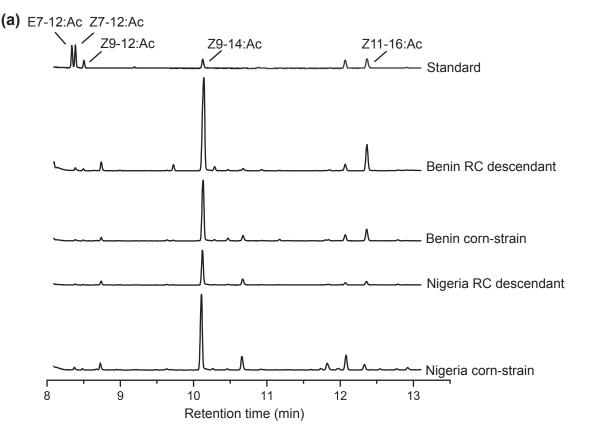
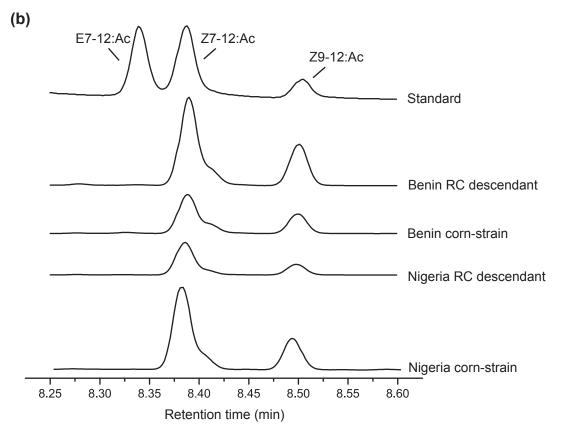
Supplementary Information

Sexual communication of *Spodoptera frugiperda* from West Africa: Adaptation of an invasive species and implications for pest management


Sabine Haenniger¹, Georg Goergen², Mobolade Dele Akinbuluma³, Maritta Kunert⁴, David G. Heckel¹, Melanie Unbehend^{1*}


¹Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany

²International Institute of Tropical Agriculture, 08 BP 0932 Tri Postal, Cotonou, Benin ³Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria

⁴Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany

^{*}Corresponding author. Tel.: +49 (0) 3641 57 1565, munbehend@ice.mpg.de

Supplementary Figure S1: Gas-chromatographic analysis of FAW pheromone glands from Benin and Nigeria. (a) Pheromone profiles of African FAW females compared with an standard containing five different compounds (E7-12:Ac, Z7-12:Ac, Z9-12:Ac, Z9-14:Ac, Z11-16:Ac). Each chromatogram represents a pooled sample of ten female pheromone glands. (b) Chromatogram of the selected ion monitoring run to confirm the absence of E7-12:Ac in African populations.

Supplementary Table S1. Total pheromone amount of FAW females from Florida, Benin, and Nigeria.

Region	Strain (genetic marker)	Extraction	Total amount in ng ²	Sample size
Florida ¹	Corn-strain (C _{COI} -C _{TPI})	gland	11.5 <u>+</u> 1.8 ^c	n=29
	Rice-strain (R _{COI} -R _{TPI})	gland	13.8 <u>+</u> 1.7 ^c	n=27
Benin	Corn-strain (C _{COI} -C _{TPI})	gland	20.0 <u>+</u> 8.3 ^{bc}	n=10
	RC descendant (R _{COI} -C _{TPI})	gland	8.5 <u>+</u> 1.3 ^c	n=26
Nigeria	Corn-strain (C _{COI} -C _{TPI})	gland	35.3 <u>+</u> 9.6 ^{ab}	n=26
	RC descendant (R _{COI} -C _{TPI})	gland	25.7 <u>+</u> 5.2 ^{ab}	n=26
Nigeria	Corn-strain (C _{COI} -C _{TPI})	PDMS	10.6 <u>+</u> 3.9 ^c	n=22
		gland after PDMS	46.6 <u>+</u> 11.5 ^a	n=22

¹Data from field populations from Florida have been previously published ¹⁶ and were included for comparison.

²Shown are mean values <u>+</u> standard errors. Different superscript letters indicate significant differences (GLM analysis; P<0.05).