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Appendix 1 

Study sites 

Annual precipitation and temperature in Manaus (Brazil), less than 90 km distant from 

our study sites, was 2,231 ± 118 mm year-1 (mean ± 95% confidence intervals) and 26.9 ± 0.17°C, 

respectively (period of 1970-2016) (INMET, 2016) (Figure S10). The region has a distinct 

dry season between July and September with monthly precipitation <100 mm. Windthrows 

are more frequent between September and February and commonly caused by storm cells 

embedded in larger and deeper convective systems (Negrón-Juárez et al., 2017). 

The terrain at the study sites is undulating. Soils are usually well drained, have low pH 

and low effective cation exchange (Telles et al., 2003). Plateaus and the upper portions of 

slopes have high clay content (Oxisols), whereas soils on slope bottoms and valleys have high 

sand content (Spodosols) (Chauvel, Lucas, & Boulet, 1987). In our Site 1, soils from 

windthrow-affected areas were reported to have higher carbon stocks than those from nearby 

undisturbed areas, with carbon stocks being positively related to clay content and windthrow 

tree-mortality (dos Santos et al., 2016). 

Fabaceae, Lecythidaceae, Sapotaceae, Chrysobalanaceae and Burseraceae are amongst 

the botanic families with the highest tree density per hectare in our study region (Chambers et 

al., 2009; da Silva et al., 2002; Magnabosco Marra et al., 2016; Marra et al., 2014). Tree 

dominant-height, defined as the average height of 10% of the largest trees, is 30.2 ± 2.9 m 

(Higuchi, 2015). Nevertheless, some emergent species such as Dinizia excelsa Ducke 

(Fabaceae), Cariniana decandra Ducke (Lecythidaceae) and Caryocar pallidum A.C. Sm. 

(Caryocaraceae) can grow to heights of more than 40 m (Ribeiro et al., 1999). Trees larger 

than 100 cm DBH (diameter at breast height) occur in densities <1 tree ha-1 (Vieira et al., 

2004) and those with DBH ≤40 cm account for more than 90% of the total density of tress 

≥10 cm DBH (da Silva, Martins, Ribeiro, Santos, & Azevedo, 2016). 
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The Site 1, also described in previous studies (dos Santos et al., 2016; Marra et al., 

2014; Negrón-Juárez et al., 2018), is located in a large terra-firme forest patch accessible 

from the Ramal-ZF2 road. A large portion of this area is owned and administered by the 

Superintendência da Zona Franca de Manaus (SUFRAMA). Site 2 is located ca. 35 km north 

from the Site 1 in a terra-firme forest accessible from the Ramal-ZF5 road, also owned and 

administered by the SUFRAMA (Magnabosco Marra, 2016). Site 3 is located at the Reserva 

de Desenvolvimento Sustentável (RDS) do Rio Negro, a 102,978.83 ha reserve mainly covered 

by terra-firme forests and created in 2008. This area is regulated and protected by the Centro 

Estadual de Unidades de Conservação and the Secretaria de Estado do Meio Ambiente e 

Desenvolvimento Sustentável do Amazonas (CEUC/SDS), and the Instituto de Proteção 

Ambiental do Amazonas (IPAAM) (Magnabosco Marra, 2016). Site 4 is covered with old-

growth terra-firme forest and is located at the Estação Experimental de Silvicultura Tropical 

(EEST), a 21,000 ha reserve (contiguous to Site 1) of the Instituto Nacional de Pesquisas da 

Amazônia (INPA). For the Site 4, we used data from permanent plots (two transects of 20 m x 

2,500 m) installed in 1996 as part of the Jacaranda Project (Higuchi et al., 1998). These 

forest inventory plots are re-measured every one to three years since 1998 by the Laboratório 

de Manejo Florestal (LMF/INPA). 
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Appendix 2 

Detection of windthrows and tree-mortality estimations 

Before performing Spectral Mixture Analysis (SMA) (Adams et al., 1995) to account 

for the windthrow tree-mortality on a per-pixel basis, we first corrected the images for 

atmospheric ‘interferences’ and converted it to reflectance using the Atmospheric CORrection 

Now (ACORN) software (ImSpec LLC, Boulder, CO) (Chambers et al., 2013; Negrón-Juárez 

et al., 2010). For the required scenes, we applied the Carlotto technique (Carlotto, 1999), 

which corrects for haze and smoke contamination.  

We then calibrated scenes collected prior to the selected windthrows by regressing 

each band individually against the encoded radiance from the images containing windthrows 

using temporally invariant targets (Furby & Campbell, 2001). In windthrows, the large 

amount of non-photosynthetic vegetation (NPV) (i.e. dead vegetation, wood and litter) has 

high reflectance in Landsat band five (centered at 1.65 µm). This signal is detectable for 

approximately up to one year, before new leaves obscure litter and dead wood (Chambers et 

al., 2007; Negrón-Juárez et al., 2010; Nelson et al., 1994). 

Further details on the applied methods and routine can be found in previous related 

studies (Chambers et al., 2007, 2013, Negrón-Juárez et al., 2010, 2011). Satellite imagery 

processing and SMAs were carried out using the Environment for Visualizing Images 

software, ENVI (ITT, 2012). 
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Appendix 3 

Botanical surveys and biomass estimation 

In our surveys, trees with irregular trunks (e.g. Protium spp. and Eschweilera spp.), 

buttresses (e.g. Sloanea spp. and Swartzia spp.), aerial roots (e.g. Cecropia spp. and Xylopia 

spp.), and damaged or wounded trunks were measured above-mentioned irregularities (Clark, 

2002). To avoid error in repeated measurements, we marked the height at which diameter 

measures were taken with paint. 

Botanical samples from the wind-disturbed sites were added to the EAFM Herbarium 

of the Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Campus Manaus-

Zona Leste (IFAM-CMZL) (SAWI Project, no. of accession 14,384-15,967) (Magnabosco 

Marra, 2016). Most samples collected in the Site 4 containing flowers and/or fruits were 

added to the INPA Herbarium, while sterile ones were added to the EEST collection 

(Carneiro et al., 2005; da Silva et al., 2002; Teixeira et al., 2007). 

We assessed changes in biomass partitioning among three functional groups of trees: 

pioneer, mid- and late-successional. This information was compiled from previous studies 

developed in the Amazon (Amaral et al., 2009; Kammesheidt, 2000; Laurance et al., 2004; 

Magnabosco Marra et al., 2016) or carried by ourselves taking into account species- or 

genera-specific traits/attributes and reported demographic patterns (Camargo, Ferraz, 

Mesquita, Santos, & Brum, 2008; Chazdon, 2014; Clark & Clark, 1992; Laurance et al., 2006; 

Laurance et al., 2004; Magnabosco Marra et al., 2016; Massoca, Jakovac, Bento, Williamson, 

& Mesquita, 2012; Saldarriaga, West, Tharp, & Uhl, 1998; Swaine & Whitmore, 1988). 

Our biomass estimation models, which have DBH and the species’ functional group, 

DBH and wood density or DBH as a sole predictor (Magnabosco Marra et al., 2016), are 

adequate to capture the large variations in tree-size distribution and species composition 

observed in different successional stages, such as in the windthrow chronosequences we 
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monitored in this study. We employed a complementary allometric model, also adjusted with 

locally harvested trees (Chambers, Santos, Ribeiro, & Higuchi, 2001), to account for biomass 

losses from damaged trees, including those having total (i.e. snapped) or partial crown loss. 

This model has DBH, tree total height (estimated from a DBH:height relationship) and height 

of failure/breaking as predictors. For these trees, we subtracted the lost biomass from the total 

estimated biomass. 



 
	

7	

Appendix 4 

Binning approach 

Using relatively small subplots (i.e. hundreds of square meters, Table S1) along 

transects allowed us to more fully account for the gradient of disturbance typical of 

windthrows and to integrate field and satellite data for estimating the associated tree-mortality 

at the pixel resolution (30 m x 30 m). This is crucial, since even nearby areas (i.e. side-by-side 

pixels) can experience different windthrow tree-mortality (Araujo, Nelson, Celes, & 

Chambers, 2017; Marra et al., 2014; Negrón-Juárez et al., 2011), especially at the periphery of 

disturbed forest patches. 

Meanwhile, reliable biomass estimations in tropical forests require plot sizes that 

capture environmental and vegetation heterogeneity (Clark & Kellner, 2012; Clark & Clark, 

2000; Keller, Palace, & Hurtt, 2001). The increased spatial variations (i.e. within-subplots) on 

forest structure and floristic composition, typical of windthrown areas (Marra et al., 2014; 

Rifai et al., 2016), can substantially affect stand-level estimations of biomass (Magnabosco 

Marra et al., 2016). By binning subplots we aimed at analyzing data over larger areas to 

obtain more robust and realistic estimates of biomass and community mean wood density. For 

old-growth forests in our study region, reliable levels of uncertainty on estimates of basal 

area, which is highly correlated to biomass, can be achieved with plots varying from 800 m2 

to 1200 m2 (de Oliveira, Higuchi, Celes, & Higuchi, 2014). This is the plot-size range we 

achieved with our binning approach. 

Since we modeled biomass recovery for binned groups, the high biomass stocks that 

we observed in some disturbed areas (Figs. 2 and S3) may reflect: (i) pre-disturbance 

differences in forest structure that we could not account for (e.g. reflecting the influence of 

single large trees in a relatively small subplot, Site 1 and Site 3), (ii) uncertainties associated 

with our Landsat-derived estimates of tree-mortality and, (iii) particularly in Site 3 (late 
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recovery, 24-27 years since-disturbance), disturbed patches where biomass recovered rapidly 

exceeding that of undisturbed patches. The higher variation in our response variables and 

consequent lower r2-values obtained from our subplot-level analysis (i.e. non-binned data) 

reflect the greater forest heterogeneity at smaller spatial scales. 
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Appendix 5 

Calculations of community mean wood density and predictions of tree annual-growth 

Community mean wood density was calculated as the abundance weighted-mean 

wood density of trees recorded in a given subplot. For species where more than one wood 

density value was found, we used the mean value. For species where no published data was 

available or where the identification was carried out to the genus level (~45% of the total 

recorded species), we used the mean wood density for all species from the same genus 

reported as occurring in Central Amazon. For trees identified only to the family level (~12%), 

we used the mean value of genera belonging to that family and reported as occurring in 

Central Amazon. For 11 unidentified trees we did not assign functional group nor wood 

density values and used the model with DBH as the sole predictor for the estimation of 

biomass. 

To fit random forest models for predicting the DBH of recruits backwards, we 

selected trees from Sites 1-3, for which we had two or three consecutive DBH measures and 

could calculate annual growth rates (n=8984). From these, we randomly selected a data set 

(n=4,000) to train prediction models and another data set (n=999) to evaluate their predictive 

performance. We fit models with varying sets of predictors using ntree=2,000 and mtry=3 

(Breiman, 2001). For the final two models we selected the fewest number of predictors (i.e. 

DBH, wood density, species’ successional group, elevation, windthrow tree-mortality, time 

since disturbance) yielding the highest coefficient of determination (r2
adj) and the lowest 

adjusted root mean squared error (RMSE) for calibration and validation fits. The final two 

models we applied (with and without wood density as predictor) had calibration and 

validation r2
adj from 0.37-0.47 and RMSE from 1.1-2.2 cm year-1 (Figure S2 and Table S2). 
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Appendix 6 

Data analysis 

To examine patterns of biomass and its components we fitted generalized additive 

models (GAMs) (Hastie & Tibshirani, 1987, 1990). GAMs are a non-parametric extension of 

generalized linear models, with a penalized polynomial structure defined by unspecified 

functions (linear and non-linear) that are estimated iteratively ( Hastie & Tibshirani, 1990; 

Wood, 2006). We fit a series of models with a varying number of knots (k) for explanatory 

variables following a standard routine to evaluate significance of smooth terms, effective 

degrees of freedom and models’ deviance (Wood, 2006). We finally fixed k=3 since this 

value yielded models that minimized residual deviance and maximized parsimony. Apart 

from checking the 95% confidence intervals using standard errors from predictions, we 

checked the influence of data skewness by employing a bootstrap procedure. We sampled 

plots randomly from our entire data set (1,000 replicates) and quantified non-parametric 95% 

confidence intervals from the Bayesian posterior covariance-matrix of parameters. This 

procedure produced very similar results (not presented) supporting that the main variations in 

our data set were captured by GAMs. The model describing relative biomass stocks produced 

skewed residual distributions due to the effect of windthrow-affected areas showing greater 

biomass stocks than the areas assumed as undisturbed (Figures 2 and S3). As discussed in the 

main text and in the Appendix 4, we attribute these to intrinsic landscape variation in forest 

biomass, such as the occurrence of rare large-trees (da Silva et al., 2016; Vieira et al., 2004) in 

specific subplots or possible misclassification of our remote-sensing approach. 

The processing statistical analyses on the vegetation were carried out in the R 3.4.2 

software platform (R Team, 2015). GAMs and random forest regression models were fit 

following standard routine available in the packages mgcv (Wood, 2006) and RandomForest 
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(Liaw & Wiener, 2002), respectively. R codes were self-written and figures produced by 

using standard functions and the ggplot2 package (Wickham, 2009). 
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TABLES 

Table S1 Study sites comprising an old growth and wind-disturbed terra-firme forests in Central Amazon, Brazil 
Site Coordinates Yd Fi Nt Ns Dim Area Elev Ws M 
1  2°33'43'' S 

60°16'00'' W 
2005 2009, 2012 

and 2015 
2 (100), 2 (600) 
and 2 (1000) 

72 10 x 25 1.8 (57, 78, 117) Undisturbed/control ≤4 (0, 0.7, 3.9) 

     28 10 x 25 0.7 (61, 89, 117) Low 4-20 (4.7, 12.3, 19.7) 

     30 10 x 25 0.75 (49, 85, 117) Moderate 20-40 (20.1, 27.5, 39.7) 

     14 10 x 25 0.35 (60, 81, 112) High >40 (40.9, 53.7, 69.7) 

2 2°15'09'' S 
60°10'24'' W 

1996 2010, 2013 
and 2016 

1 (3000) 21 10 x 30 0.63 (86, 100, 111) Undisturbed/control ≤4 (0, 0.5, 3.9) 

     37 10 x 30 1.11 (86, 101, 117) Low 4-20 (4.7, 11, 19) 

     19 10 x 30 0.57 (92, 105, 116) Moderate 20-40 (21.4, 31.8, 39.9) 

     23 10 x 30 0.69 (94, 100, 119) High >40 (40.3, 48, 57) 

3 3°00'00'' S 
60°45'11'' W 

1987 2011 and 
2014 

2 (1500) 49 10 x 30 1.47 (40, 66, 78) Undisturbed/control ≤4 (0, 0.2, 2.6) 

     13 10 x 30 0.39 (54, 70, 75) Low 4-20 (6.2, 12.2, 19.2) 

     28 10 x 30 0.84 (50, 68, 75) Moderate 20-40 (20.5, 30.1, 39.1) 

     10 10 x 30 0.3 (60, 69, 74) High >40 (40.2, 47.1, 56.2) 

4 2°36'40'' S 
60°12'10'' W 

- 2002 and 
2004 

2 (2500) 250 20 x 20 10 (61, 94, 123) Undisturbed/control  

Note. Yd- year of windthrow; Fi- years in which forest-inventories were carried; Nt- number and length (m; in parenthesis) of transects; Ns- 
number of monitored subplots; Dim- subplots' dimensions (m); Area- total sampled area (ha); Elev- subplot elevation (m) (minimum, mean and 
maximum, respectively) extracted from a digital elevation model with a 30 m x 30 m spatial-resolution (Shuttle Radar Topographic Mission 
SRTM); Ws- windthrow severity; and M- windthrow tree-mortality (%) (minimum, mean and maximum, respectively) 
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Table S2 Goodness of fit of random forest algorithms used to predict annual growth in DBH for individual trees in Central Amazon forests. The 
data set used to calibrate and validate the models includes old growth and wind-disturbed forests (Figure 1 and Table S1) 
  Calibration (n=4000) Validation (n=999) 
Model Predictors r2

adj RMSE Predicted annual 
growth 

r2
adj RSME Predicted annual 

growth 
1 DBH, wood density, species’ 

successional group, elevation, 
windthrow tree-mortality, time since 
disturbance  

0.448 1.065 (-0.126, 0.247, 2.048) 0.469 2.074 (-0.333, 0.272, 2.867) 

2 DBH, species’ successional group, 
elevation, windthrow tree-mortality, 
time since disturbance 

0.370 1.141 (-0.115, 0.246, 1.744) 0.383 2.231 (-0.034, 0.262, 1.857) 

Note. Minimum, mean and maximum annual growth of trees from the calibration data set was -0.733 cm, 0.248 cm and 4.5 cm, respectively. 
DBH- diameter at breast height (1.3 m); r2

adj- adjusted coefficient of determination; RMSE- root mean squared error; and Predicted annual 
growth (minimum, mean and maximum, respectively)
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Table S3 Summary of fitting measures of generalized additive models explaining changes in relative biomass stock (Rel bio), biomass increment 
(Bio incr) and loss (Bio loss), net biomass change (Net bio) and relative wood density (Rel WD) in Central Amazon forests, Brazil. The data set 
used to fit the models includes an old growth and three other forests that experienced a wide gradient of windthrow tree-mortality and that span 
4-27 years of recovery (Figure 1 and Table S1). Rel bio and Rel WD were calculated as relative to the undisturbed chronosequence in the same time 
period. Here, we analyzed data at subplot level to test for possible effects of terrain elevation on our response variables. We also checked for 
possible spatial autocorrelation due to subplots nested in transects (Appendix 1), which could bias the results from models fit with binned data 
      Smooth terms      

     Parametric 
coefficient 

T M M:T Subplots/ 
transects 

M:Elev Elev:Site 

 Df r2
adj Dev GCV Intercept (error) Edf (F) Edf (F) Edf (F) Edf (F) Edf (F) Edf (F) 

Rel bio 929 0.083 8.6 91.7 0.189 (0.009)*** 0.774 (507.9)*** 1 (38.2)*** 1.997 (915.4)***    
 928 0.094 9.8 90.7 0.228 (0.014) 1.293 (133.9)*** 1 (24.2)*** 1.997 (354.4)*** 0.961 (7.2)***   

 926 0.135 14.3 87.1 -0.184 (0.062)** 0.774 (11.3)** 1.837 (2.3) 2.611 (4.9)** 0.462 (0.8) 2 (20.9)*** 2 (13.4)*** 
Bio incr 585 0.055 6 1271.8 0.889 (0.043)*** 0.783 (524.3)*** 1 (23.1)*** 2.494 (632.4)***    

 584 0.055 6 1271.8 0.889 (0.043)*** 0.783 (524.3)*** 1 (23.1)*** 2.494 (632.4)*** <0.001 (0)   
 582 0.111 12.6 1209.3 -0.696 (0.303)* 0.945 (4.5)* 1 (8.5)** 2.839 (2.6)* 0.847 (4.2)* 2.898 (11.8)*** 2 (14.6)*** 

Bio loss 585 0.002 0.8 15477 -0.768 (0.150)*** 0.782 (32.5)*** 1.717 (1.5) 1.997 (22.7)***    
 584 0.002 0.8 15477 -0.768 (0.150) 0.782 (32.5)*** 1.717 (1.5) 1.997 (22.7)*** <0.001 (0)   

 582 0.022 3.7 15299 1.273 (1.043) 1.64 (3.2)* 1 (0.1) 1.997 (0.1) 0.529 (1) 2.565 (2.1) 2 (2.4)¥ 
Net bio 585 0.002 0.8 16554 0.123 (0.155) 0.783 (0.7) 1.6 (0.8) 1.996 (10.2)***    

 584 0.002 0.8 16554 0.123 (0.155) 0.783 (0.7) 1.6 (0.8) 1.996 (10.2)*** <0.001 (0)   
 582 0.009 2.5 16604 0.523 (0.994) 1.556 (1.8) 1.426 (1.5) 1.996 (0.2) <0.001 (0) 3 (1) 2 (0.8) 

Rel WD 929 0.325 32.9 1.469 0.224 (0.001)*** 1.724 (12618)*** 1.92 (12)*** 2.991 (43198)***    
 928 0.331 33.6 1.457 0.228 (0.002)*** 1.633 (6871.3)*** 1.946 (9.8)*** 2.98 (14281.2)*** 0.86 (5.7)**   

 926 0.358 36.6 1.406 0.202 (0.009)*** 1.71 (276.8)*** 2 (6.2)** 2.9 (119.6)*** 0.864 (6.9)** 2.549 (4.1)** 2.716 (1.3) 

Note. Df- degrees of freedom; r2
adj- adjusted coefficient of determination; Dev- models' deviance/quality-of-fit (%); GCV- generalized cross 

validation; Edf- estimated degrees of freedom; T- time since disturbance (years); M- windthrow tree-mortality. Significance based on Wald tests: ¥p 
<0.1; *p <0.05; **p <0.01; ***p <0.001 
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Table S4 Summary of fitting measures of generalized additive models explaining changes in relative biomass stock (Rel bio), biomass increment 
(Bio incr) and loss (Bio loss), net biomass change (Net bio) and relative wood density (Rel WD) in Central Amazon forests, Brazil. The data set 
used to fit the models includes an old growth and three other forests that experienced a wide gradient of windthrow tree-mortality and that span 
4-27 years of recovery (Figure 1 and Table S1). Rel bio and Rel WD were calculated as relative to the undisturbed chronosequence in the same time 
period. Results from equivalent models fit with plot-biomass data estimated with allometric models relying on different predictors (i.e. DHB + 
wood density and DBH solely) indicated that the patterns we detected are consistent when using other allometries 
      Smooth terms     

     
Parametric 
coefficient T M M:T M:Elev Elev:Site 

 Df r2
adj Dev GCV Intercept (error) Edf (F) Edf (F) Edf (F) Edf (F) Edf (F) 

Tree biomass estimated with DBH + species' functional group 
Rel bio 171 0.387 41.8 0.045 0.121 (0.007)*** 0.826 (317.8)*** 1 (52.8)*** 1.997 (847.8)***   
 169 0.401 44.2 0.045 0.049 (0.033) 1.483 (2.8)* 1 (4.2)* 1.997 (11.3)*** 2 (3)¥ 0.713 (2.2)¥ 
Bio incr 107 0.214 25.9 0.877 0.759 (0.039)*** 0.836 (436.4)*** 1 (23.1)*** 2.354 (629.1)***   
 106 0.256 31.8 0.854 0.373 (0.182)* 0.836 (4.7)¥ 1 (0.7) 2.504 (19.8)*** 2 (2.9)¥ 0.874 (6.9)** 
Bio loss 107 0.01 4.5 11.296 -0.645 (0.142)*** 0.836 (23.9)*** 1.712 (1.51) 1.996 (24.7)***   
 106 0.027 8.9 11.438 0.558 (0.794) 1.308 (0.3) 1.618 (0.8) 1.996 (0) 2 (1.4) 0.716 (2.5)¥ 
Net bio 107 0.017 5 11.1 0.119 (0.141) 0.836 (0.8) 1.658 (1.1) 1.996 (8.7)***   
 106 0.005 5.9 11.5 0.267 (0.531) 0.931 (0.2) 1.679 (1) 1.996 (0.4) 2 (0.1) 0.164 (0.2) 
Rel WD 171 0.641 68 0.001 0.171 (0.001)*** 1.734 (7330.6)*** 1.877 (8.1)*** 2.957 (25250.4)***   
 169 0.646 68.8 0.001 0.164 (0.006)*** 1.737 (673.3)*** 1.794 (2) 2.997 ((380.4)*** 2 (2) <0.001 (0) 
Tree biomass estimated with DBH + wood density 
Rel bio 171 0.423 45.5 0.033 0.118 (0.006)*** 0.826 (413)*** 1 (67.9)*** 1.997 (1197.7)***   
 169 0.441 48.5 0.033 0.048 (0.03) 1.654 (5.9)** 1.394 (4.4)* 1.997 (17.3)*** 2 (3.5)* 0.791 (3.3)* 
Bio incr 107 0.378 42.3 0.918 0.716 (0.04)*** 0.836 (370.8)*** 1 (27.1)*** 1.996 (823.9)***   
 106 0.41 46.7 0.895 0.26 (0.183) 0.836 (2.2) 1 (<0.1) 1.996 (17.1)*** 2 (3.8)* 0.825 (4.7)* 
Bio loss 107 0.022 6 8.7 -0.588 (0.125)*** 1.109 (18.4)*** 1.764 (1.77) 1.996 (27.6)***   
 106 0.033 9.6 8.8 0.485 (0.722) 1.438 (0.5) 1.642 (0.9) 1.996 (<0.1) 2 (1.3) 0.655 (1.9)¥ 
Net bio 107 0.07 10.7 8.8 0.134 (0.126) 1.214 (0.4) 1.754 (2) 1.996 (14.9)***   
 106 0.06 11.2 9.1 0.235 (0.542) 1.236 (0.2) 1.693 (1.1) 1.996 (0.4) 2 (<0.1) <0.001 (0) 
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Tree biomass estimated with DBH solely 
Rel bio 171 0.38 40.6 0.032 0.118 (0.006)*** 0.826 (415.7)*** 1 (71.8)*** 1.997 (1405.6)***   
 169 0.392 42.8 0.032 0.056 (0.028)¥ 1.46 (3.5)* 1 (9)** 1.997 (27.5)*** 2 (2.7)¥ 0.74 (2.5)¥ 
Bio incr 107 0.524 56.7 0.822 0.666 (0.038)*** 0.836 (356.2)*** 1 (39.7)*** 2.318 (635.3)***   
 106 0.556 61.2 0.8 0.281 (0.175) 0.836 (2.7) 1.759 (1.5) 2.996 (14.3)*** 2 (3.8)* 0.798 (3.5)* 
Bio loss 107 0.014 5.1 5.5 -0. 447 (0.098)*** 0.913 (20.2)*** 1.721 (1.4) 1.996 (36.3)***   
 106 0.034 9.7 5.5 0.478 (0.568) 1.383 (0.4) 1.612 (0.8) 1.996 (0.1) 2 (1.6) 0.721 (2.6)¥ 
Net bio 107 0.094 13.3 5.7 0.225 (0.1)* 1.071 (3.1)¥ 1.662 (2.6)¥ 1.996 (23.7)***   
 106 0.087 14.4 5.8 0.57 (0.477) 1.349 (1.1) 1.516 (0.5) 1.996 (1.3) 2 (0.2) 0.093 (0.1) 

Note. Df- degrees of freedom; r2
adj- adjusted coefficient of determination; Dev- models' deviance/quality-of-fit (%); GCV- generalized cross 

validation; Edf- effective degrees of freedom; T- time since disturbance (years); M- windthrow tree-mortality (%). Significance based on Wald 
tests: ¥p <0.1; *p <0.05; **p <0.01; ***p <0.001. Elevation and Sites were not included in our final models for predictions of biomass and 
community mean wood-density patterns (Figures 2-4 and 6) 
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Table S5 Time to recover at least 90% of reference biomass stocks following different 
windthrow tree-mortality in Central Amazon forests, Brazil. Predictions were made with 
different generalized additive models (GAMs) fit with plot-biomass data estimated with 
allometric models relying on different predictors 

Biomass predictors 
Windthrow tree-
mortality (%) 

Relative 
biomass stock 

Time since 
disturbance (years) 

DBH + species’ functional group  20 0.9 ± 0.06 27 
 40 0.91 ± 0.16 37 
 65 0.92 ± 0.32 40 
DBH + wood density  0.9 ± 0.4 23 
  0.9 ± 0.11 31 
  0.9 ± 0.22 34 
DBH  0.91 ± 0.3 17 
  0.91 ± 0.06 23 
  0.9 ± 0.13 25 
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FIGURES 

 
Figure S1 Windthrow affected-area in Central Amazon, including our study region: (a) 
hectare-scale return-frequency of windthrows and predicted affected-area, and (b) windthrow 
affected-area in Central Amazon over a 12year-interval. Data on the size-frequency distribution 
of windthrows, number of dead trees and total affected-area were compiled from a regional 
assessment that integrates field plot-data, remote sensing disturbance probability distribution 
functions and individual-based simulation modeling (TRECOS) (Chambers et al., 2013, 
Figure 4). Annual estimates of the windthrow affected-area were carried out on a 
chronosequence (1999-2010) of Landsat images (p231, r062) covering the region of Manaus 
(~18,609 km2) (INPE, 2016) and account for windthrows >5 ha (Negrón-Juárez et al., 2017) 
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Figure S2 Random forest models used to predict annual growth in DBH for trees in Central 
Amazon forests. Relationship between predicted and observed growth rates for the (a and c) 
calibration (n=4000) and (b and d) validation (n=999) of two different models, with (a and b) 
and without (c and d) wood density as predictors. The data set used to fit the models includes 
trees growing in old growth and windthrown forests spanning a wide gradient of windthrow 
tree-mortality and 4-27 years of recovery 
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Figure S3 Biomass recovery in wind-disturbed forests in Central Amazon, Brazil: (a) 
observed relative biomass stocks (i.e. compared to the mean biomass stocks of undisturbed 
forest patches in the same time period, dark-blue points) and (b) predicted biomass recovery 
over time since disturbance for different windthrow severities. Predictions were made with 
generalized additive models (GAMs) fit on subplot-level data on time since disturbance and 
windthrow tree-mortality (and their interaction) as predictors (Table S3). In panel a, we 
jittered data points to reduce overlap. Dark-blue points are mean values of relative biomass in 
undisturbed chronosequences. Shaded areas indicate the 95% confidence intervals of 
predictions 



 
	

26	

 
Figure S4 Generalized additive models (GAMs) with time since disturbance and windthrow 
tree-mortality (and their interaction) as predictors of biomass recovery and its components in 
Central Amazon forests, Brazil: (a) relative biomass stock, (b) biomass increment and (c) 
loss, (d) net biomass change and (e) relative wood density. Relative biomass stock and wood 
density were calculated as relative to the undisturbed chronosequence in the same time period 



 
	

27	

 
Figure S5 Biomass stock (mean±95% confidence intervals) in Central Amazon forests, 
Brazil. The shown data set includes old growth and wind-disturbed terra-firme forests that 
span a wide gradient of windthrow tree-mortality and 4-27 years of recovery. Different letters 
on top of bars denote significant differences between windthrow severities at p <0.05 (for 
most) or p <0.1 (Tukey’s HSD test) 
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Figure S6 Biomass increment and loss (mean+95% confidence internals) in Central Amazon 
forests, Brazil. The shown data set includes old growth and wind-disturbed terra-firme forests 
that span a wide gradient of windthrow tree-mortality and 4-27 years of recovery. To obtain 
biomass increment and loss, two or three consecutive forest inventories were carried in each 
site. Different letters on top of bars denote significant differences between windthrow 
severities at p <0.05 (for most) or p <0.1 (Tukey’s HSD test) 
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Figure S7 Size distribution of trees in Central Amazon forests, Brazil. The shown data set 
includes old growth and wind-disturbed terra-firme forests that span a wide gradient of 
windthrow tree-mortality and 4-27 years of recovery. Here we analyzed individual-tree data 
over bins of subplots with similar windthrow tree-mortality (see main text) and averaged 
windthrow severities over sites. The curves for windthrow severities were fit with a kernel 
Gaussian smoothing method resulting a symmetric and positive function that integrates to one 
and can be expressed as !!"# ! = !

!  !!
!!!

!!!!
! , where K is the kernel and h is the 

bandwidth (Scott, 2015) 
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Figure S8 Wood density (mean±95% confidence internals) in Central Amazon forests, Brazil. 
The shown data set includes old growth and wind-disturbed terra-firme forests that span a 
wide gradient of windthrow tree-mortality and 4-27 years of recovery. Different letters on top of 
bars denote significant differences between windthrow severities at p <0.05 (for most) or p 
<0.1 (Tukey’s HSD test) 
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Figure S9 Biomass partitioning among functional groups in Central Amazon forests, Brazil. 
The shown data set includes old growth and wind-disturbed terra-firme forests that span a 
wide gradient of windthrow tree-mortality and 4-27 years of recovery. Windthrow severity: 
Undisturbed- windthrow tree-mortality ≤4%; Low- 4-20%; Moderate- 20-40%; High- >40% 
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Figure S10 Climatology (based period 1970-2016) of rainfall and temperature (mean±95% 
confidence intervals) in Manaus, Brazil (less than 90 km distant from our study sites). Data 
obtained from the Instituto Nacional de Meteorologia (INMET; http://www.inmet.gov.br) 
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