
Generalized triple-component fermions: Lattice model, Fermi arcs and anomalous
transport

Snehasish Nandy,1, 2 Sourav Manna,1 Dumitru Călugăru,1, 3, 4 and Bitan Roy1, 5
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We generalize the construction of time-reversal symmetry-breaking triple-component semimet-
als, transforming under the pseudospin-1 representation, to arbitrary (anti-)monopole charge 2n,
with n = 1, 2, 3 in the crystalline environment. The quasiparticle spectra of such systems are
composed of two dispersing bands with pseudospin projections ms = ±1 and energy dispersions
Ek = ±

√
α2
nk

2n
⊥ + v2zk2z , where k⊥ =

√
k2x + k2y, and one completely flat band at zero energy with

ms = 0. We construct simple tight-binding models for such spin-1 excitations on a cubic lattice and
address the symmetries of the generalized triple-component Hamiltonian. In accordance to the bulk-
boundary correspondence, triple-component semimetals support 2n branches of topological Fermi
arc surface states and also accommodate a large anomalous Hall conductivity (in the xy plane),
given by σ3D

xy ∝ 2n× the separation of the triple-component nodes (in units of e2/h). Furthermore,
we compute the longitudinal magnetoconductivity, planar Hall conductivity, and magneto thermal
conductivity in these systems, which increase as B2 for sufficiently weak magnetic fields (B) due
to the nontrivial Berry curvature in the medium. A generalization of our construction to arbitrary
integer spin systems is also highlighted.

I. INTRODUCTION

Energy branches available for electrons to occupy in
solid state compounds (also known as bands) can often
touch each other at few isolated and specific points in
the Brillouin zone [1–7]. In the close proximity to the
band-touching points, the system can be described in
terms of emergent pseudospin degrees of freedom, with
the distinct eigenvalues of the pseudo-spin projection rep-
resenting different bands. Some well known examples
of such gapless systems are Dirac and Weyl semimet-
als [7]. Respectively in these two systems, Kramers
degenerate and non-degenerate valence and conduction
bands, transforming under half-integer pseudospin rep-
resentations, touch each other. Such special points act
as defects or singularities in the reciprocal space. For ex-
ample, pseudospin-1/2 Weyl nodes in three dimensions
assume the texture of a hedgehog or anti-hedgehog and
stand as sources or sinks of Abelian Berry curvature, re-
spectively. Nonetheless, it is also conceivable to realize
band touching points around which the system can be de-
scribed in terms of arbitrary pseudospin-s representation,
where s can be any half-integer or integer. In the sim-
plest incarnation of such higher pseudospin system, the
energy spectra are described in terms of (s+1/2) effective
Fermi velocities, when s is a half-integer; a phenomena
known as multifringence [8–21]. By contrast, for integer
s, energy spectra display s effective Fermi velocities and
a completely flat band (described by the trivial eigen-
value of the pseudospin projections) [4, 13–17, 23–32].
The present work is devoted to unveil some quintessential
topological features of time-reversal symmetry-breaking

semimetals, transforming under the pseudospin-1 repre-
sentation, also known as triple-component semimetals,
within the framework of both effective low-energy as well
as representative tight-binding models on a cubic lattice.
In quantum materials, emergent pseudospin degrees of
freedom can arise from specific admixtures of orbital and
spin projections [4, 14, 15], which should be distinguished
from the real spin of Weyl fermions, appearing in the con-
text of high-energy physics [33].

Irrespective of these details, the entire family of
pseudospin-s Dirac or Weyl fermions can be described
by the following effective low-energy Hamiltonian

Hs(k) = d(k) · S, (1)

where momenta k are measured from the band-touching
points, and S are three spin-s matrices 1. In the sim-
plest realization of a pseudospin-s system d(k) = v k,
where v bears the dimension of the Fermi velocity. The
energy spectra are then given by ±Es(k), where Es(k) =
vs|k|, with vs = (1/2, 3/2, · · · , s) v (for half-integer s) or
vs = (0, 1, · · · , s) v (for integer s). We here concentrate
on integer pseudospin-s systems. 2 Even though the fol-
lowing discussion can be generalized to any integer value

1 In this work we focus only on three-dimensional systems. For
the lattice realization of time-reversal symmetry breaking spin-
1 system in two dimensions, see D. Green, L. Santos, and C.
Chamon, Phys. Rev. B 82, 075104 (2010), for example.

2 We here neglect the particle-hole asymmetry of the form S0(a+
b k2), where S0 is a (2s+1) dimensional idenity matrix, which is
always present in any real materials, since it does not affect the
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of s, for the sake of concreteness we restrict ourselves to
pseudospin-1 systems. The electronic excitations in such
a setup are also known as triple-component fermions (due
to three energy bands), and we here consider such pecu-
liar band touching in time-reversal symmetry-breaking
systems. In what follows, such band-touching points are
referred to as triple-component points or nodes. In time-
reversal symmetric systems, triple component fermions
arise in materials with space group symmetry 199 and
214, with Pd3Bi2S2 and Ag2Se2Au, in particular, ac-
commodating such unconventional gapless fermionic ex-
citations [4]. However, time-reversal symmetry break-
ing triple-component fermions still lack material realiza-
tions. Nonetheless, spin-1/2 Weyl fermions have recently
been found in magnetic materials, such as Mn3Sn [34]
and Ti2MnAl [35]. Hence, time-reversal symmetry break-
ing triple-component semimetals can be found (at least
in principle) in magnetically ordered systems. In the
present manuscript, we unearth rich topological proper-
ties of spin-1 systems by focusing on both continuum and
lattice based “toy” models. We hope that the present
discussion will motivate the search for spin-1 triple-
component fermions in time-reversal symmetry breaking
systems. But, finding possible candidate materials by
performing a complete space group and magnetic point
group analyses goes beyond the scope of the present dis-
cussion. Nonetheless, various topological responses of the
generalized triple-component fermions can be tested nu-
merically from the proposed lattice models in Sec. III.
We now present a brief synopsis of our main results.

A. Summary of results

We show that the triple component points act as
sources and sinks of the Abelian Berry curvature with
charges ±2 s n (with n = 1, when d(k) = v k),
respectively. In this work we generalize the construc-
tion of triple component fermions for arbitrary monopole
charges |2n| (assuming s = 1), with n = 1, 2, 3 in the
crystalline environment (see Sec. II). Therefore, even
though crystalline systems impose a stringent restriction
on n, namely n ≤ 3, one can still explore the territory of
large monopole charge and its ramifications on topolog-
ical responses by focusing on systems, where the bands
transform under large spin s representation. For an arbi-
trary integer value of n, the spectra always accommodate
one topologically trivial flat band, while the energies of
two dispersive bands scales as Ek ∼ kz and Ek ∼ kn⊥ (as-
suming that the triple-component points are separated

along the kz direction), where k⊥ =
√
k2x + k2y. The

integer topological invariant of the system is given by
N = 2 n. We also present simple lattice realizations

topology of the bands. However, for b 6= 0 the completely flat,
topologically trivial band becomes dispersive.

of the generalized triple-component fermions on a cubic
lattice and show that the generalized triple component
nodes possess discrete fourfold rotational or C4 symme-
try (see Sec. III).

The integer topological invariant of triple-component
semimetals (N ) manifests through 2n copies of topolog-
ically protected Fermi arc surface states connecting two
triple-component points (see Figs. 1 and 2). This obser-
vation is in accordance with the bulk-boundary correspon-
dence, discussed in Sec. IV. The time-reversal symmetry-
breaking topological triple-component systems also sup-
port a large anomalous Hall conductivity in a plane per-
pendicular to the separation of the two triple-component
points (see Sec. V). The anomalous Hall conductivity ac-
quires its largest value, given by (in units of e2/h)

σ3D
xy,max =

2n

2π
×
(
separation of triple-component

points in the momentum space
)

(2)

when the chemical potential is pinned at the band touch-
ing points. Such a large anomalous Hall conductivity
solely arises from the underlying Berry curvature of the
medium 3. The Berry curvature can also leave its signa-
ture on other transport quantities, when, for example,
the system is placed in a weak magnetic field B (hence
no Landau quantization in the system). Specifically,
we here compute the (a) longitudinal magnetoconduc-
tivity, (b) planar Hall conductivity and (c) longitudinal
magneto-thermal conductivity, within the framework of
the semiclassical Boltzmann theory and show that these
quantities increase as B2, in the weak magnetic field
regime, see Sec. VI and Fig. 5. The enhancement of
various components of the magneto-conductivity tensor
possibly captures the imprint of the chiral anomaly in
triple-component semimetals, discussed in the quantum
limit in Ref. [36].

B. Outline

The rest of the paper is organized as follows. In
the next section, we introduce the effective low-energy
models for generalized triple-component fermions and
compute their topological invariant. Section III is de-
voted to the construction of generalized triple-component
fermions from simple tight-binding models on a cubic
lattice. The topologically protected Fermi arc surface
states and anomalous Hall conductivity are respectively
discussed in Sec. IV and Sec. V. Signatures of the Berry

3 The flat band at zero-energy is topologically trivial and possesses
net zero Berry curvature. Hence, it does not affect any topologi-
cal response of this system. Addition of particle-hole asymmetry
in Eq. (1) makes such a completely flat band dispersive, but it
still remains topologically trivial.
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curvature on magneto transport are discussed in Sec. VI.
Concluding remarks and discussions on related issues
are presented in Sec. VII. Additional technical details
are relegated to the Appendices.

II. GENERALIZED TRIPLE COMPONENT
FERMIONS: LOW-ENERGY MODEL

We begin the discussion with the low-energy “toy”
models for general triple-component fermions (TCFs).
The Hamiltonian operator describing such a system can
be written compactly as

HTCF
n,τ (k) = dn1 (k) Sx + dn2 (k) Sy + τ d3(k) Sz, (3)

where Sx, Sy and Sz are the spin-1 matrices, given by

Sx =
1√
2

 0 1 0
1 0 1
0 1 0

 =
1√
2

(λ1 + λ6) ,

Sy =
1√
2

 0 −i 0
i 0 −i
0 i 0

 =
1√
2

(λ2 + λ7) , (4)

Sz =

 1 0 0
0 0 0
0 0 −1

 =
1

2

(
λ3 +

√
3 λ8

)
,

and λjs are the standard Gell-Mann matrices [37]. Here,
τ = ± represent the two valleys or triple-component
points. Note that topological semimetals manifesting
bulk-boundary correspondence (through Fermi arc sur-
face states, see Figs. 1 and 2) must possess an even num-
ber of band touching points, giving rise to the notion
of valley degrees of freedom, according to the Nielsen-
Ninomiya theorem [38]. Different bands with energy dis-
persions Ems

k are characterized by distinct pseudospin
projection ms = −1, 0, 1. Energy spectra for TCFs in
the vicinity of each valley are given by

Ems

k = ms

√
[dn1 (k)]

2
+ [dn2 (k)]

2
+ d23(k). (5)

The bands with ms = ±1, respectively describe the con-
duction and valence bands, and the flat band corresponds
to ms = 0. Hence, TCFs accommodate two dispersive
bands (E±k ) and one completely flat band (E0

k). We
note that one can further generalize the above low-energy
Hamiltonian from Eq. (3) by taking

d3(k)Sz → d3(k) [Sz + βijNij ] , (6)

where the parameter βij controls the coupling between
the spin-tensor (Nij) and momentum [39], with

Nij =
1

2
(SiSj + SjSi)−

1

3
δijS

2. (7)

Such spin-tensor to momentum coupling does not affect
the topology of the system as long as βij � 1. Thus, for
the sake of simplicity we set βij = 0 throughout and work
with the minimal model for spin-1 fermions introduced in
Eq. (3) and its lattice regularized version (see Sec. III).

Next we discuss the nature of the dispersive bands for
various choices of integer n. For any value of n, d3(k) =
vzkz, whereas for n = 1

d11(k) = α1kx, d
1
2(k) = α1ky, (8)

where α1 bears the dimension of the Fermi velocity. We
name the system linear triple-component semimetal. For
linear TCFs energy dispersions scale linearly with all the
three components of momentum. By contrast, for n = 2

d21(k) = α2

(
k2x − k2y

)
, d22(k) = α2 (2kxky) , (9)

and α2 bears the dimension of inverse mass. We name
the system quadratic triple-component semimetal. For
quadratic TCFs, the dispersion scales linearly only with
kz, but quadratically with the in-plane components of
momenta kx and ky. Finally, for n = 3

d31(k) = α3

(
k3x − 3kxk

2
y

)
, d22(k) = α3

(
k3y − 3kyk

2
x

)
,

(10)
and we name this system cubic triple-component
semimetal. In this system the energy dispersion relation
scales as E±k ∼ k3⊥. This construction can be envisioned
as a generalization of the multi-Weyl systems composed
of pseudospin-1/2 excitations [40–45] to the spin-1 sys-
tems. In Sec. III we promote simple tight-binding models
leading to the lattice realizations of such unconventional
quasiparticles.

The topological charge of the triple-component points
can be computed from the underlying Berry curvature
of the bands. For simplicity, we now consider only one
valley (say τ = +). The Berry curvature of the mth band
for a Bloch Hamiltonian [see Eq. (3)] is given by [46]

Ωmθφ = 2i
∑
m6=m′

〈m|∂H∂θ |m
′〉〈m′|∂H∂φ |m〉

(εm − εm′)2
, (11)

where θ and φ are the polar and azimuthal angles in the
momentum space, respectively and m, m′ are the band
indices. For convenience, we use the spherical coordi-
nates. The wavefunctions for three bands read as

〈E−k | =

(
e−2inφ sin2 θ

2
, −e−inφ sin θ√

2
, cos2

θ

2

)
,

〈E+
k | =

(
e−2inφ cos2

θ

2
, e−inφ

sin θ√
2
, sin2 θ

2

)
, (12)

〈E0
k| =

(
−e−2inφ sin θ√

2
, e−inφ cos θ,

sin θ√
2

)
.

The flat band possesses exactly zero Berry curva-
ture, while it is finite for the two dispersive bands.
The monopole charge (N ) of the corresponding triple-
component point can now be computed by integrating



4

(a) (b) (c)

Figure 1: One-dimensional Fermi arc surface states in the (ky, kz) plane for triple-component semimetals with (a) n = 1, (b)
n = 2 and (c) n = 3. We show the square of the amplitude ρ(ky, kz) (normalized by its maximum value ρmax to restrict within
the interval [0, 1]) of the low-energy wavefunctions that are localized on the (top) surface and reside within an energy window
∆E = 0.02t for (a), 0.04t for (b) and 0.20t for (c), around zero energy. Different branches of the Fermi arcs are shown in
different colors. We impose periodic boundaries in the y and z directions (hence, ky and kz are good quantum numbers), but
an open boundary in the x direction, along which the linear dimension of the system is L = 280. The triple component nodes
are located at (ky, kz) = (0,±π

2
) of the surface Brillouin zone. Note that a triple-component semimetal with monopole charge

2n hosts 2n branches of the Fermi arcs (see Sec. IV for detailed discussion). Out of these, (2n − 1) branches directly connect
the triple component points. One remaining branch is constituted by the surface localized state near |ky| = π and 0. These
seemingly disconnected pieces get connected once we increase the energy threshold ∆E, see Appendix B and Fig. 8.

the Berry curvature over a unit sphere (A) in the mo-
mentum space enclosing this point, yielding

N =
1

2π

∫
A

dA ·Ω =
n

2π

∫ π

0

sin θ dθ

∫ 2π

0

dφ = 2n. (13)

The “toy” models for spin-1 systems can be general-
ized for arbitrary integer (s) spin systems, for which the
monopole charge is N = 2sn. The monopole charge N
also determines the integer topological invariant of such
gapless phases of matter.

III. LATTICE MODELS AND SYMMETRY

We now propose simple tight-binding models that al-
low us to realize various members of the generalized TCF
family on a cubic lattice. Such a simple lattice construc-
tion will also allow us to demonstrate the symmetries of
triple-component points in the Brillouin zone, and topo-
logical features, such as (a) Fermi arc surface states (see
Sec. IV) and (b) the anomalous Hall effect (see Sec. V).
For an arbitrary integer value of n, the corresponding
tight-binding model takes a compact form

H =
∑
k

Ψ†k [N(k) · S] Ψk, (14)

where Ψ>k = [ck,+1, ck,0, ck,−1] is a three-component
spinor, ck,s is the fermion annihilation operator with mo-
menta k and pseudo-spin projection ms = +1, 0,−1, and

S = (Sx, Sy, Sz) [see Eq. (4)]. The momentum dependent
form factors N(k), appearing in Eq. (14) for various val-
ues of n arise from (setting the lattice constant a = 1) [47]

Nx(k) = t


sin(kx) for n = 1,

cos(kx)− cos(ky) for n = 2,

sin(kx) [3 cos(ky)− cos(kx)− 2] for n = 3,

Ny(k) = t


sin(ky) for n = 1,

sin(kx) sin(ky) for n = 2,

sin(ky) [3 cos(kx)− cos(ky)− 2] for n = 3,

N1
z (k) = tz cos(kz), N

2
z (k) = m [cos(kx) + cos(ky)− 2] ,

(15)
with Nz(k) = N1

z (k) + N2
z (k). In this construction

Nx(k) and Ny(k) give rise to the desired form factors for
dnx(k) and dny (k), respectively, when they are expanded
around (kx, ky) = (0, 0) for n = 1, 2, 3, when tz = m.
By contrast, N1

z produces two triple-component points
at kz = ±π2 , whereas N2

z (k) plays the role of a Wilson
mass that only vanishes at (kx, ky) = (0, 0) for tz = m.
Therefore, with this construction, we end up with a min-
imal model for a time-reversal symmetry breaking gen-
eral TCFs, for which the triple-component points are lo-
cated at k =

(
0, 0,±π2

)
, see also Ref. [48]. The contin-

uum “toy” models discussed in Sec. II are realized from
the above simple tight-binding models at low energies.
We now highlight the symmetries of generalized triple-
component nodes.
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The generalized triple-component nodes possess dis-
crete rotational symmetries. A rotation by an angle
θPS in the pseudo-spin space about its quantization axis
(namely Sz) is captured by the unitary operator

RPS (θPS) = exp [i θPS Sz] . (16)

On the other hand, a rotation of the momentum axis
about the kz axis by an angle θk is captured by

Rk (θk) =

 cos θk − sin θk 0
sin θk cos θk 0

0 0 1

 . (17)

Under a rotation by θPS = n π
2 in the pseudospin space

RPS

(nπ
2

)
S⊥R†PS

(nπ
2

)
=


(−Sy, Sx) for n = 1,

− (Sx, Sy) for n = 2,

(Sy,−Sx) for n = 3,

(18)

where S⊥ = (Sx, Sy). On the other hand, under the C4

rotation by θk = π
2

R†k
(π

2

)
(kx, ky, kz)Rk

(π
2

)
= (−ky, kx, kz) . (19)

Therefore, under a C4 rotation in the momentum space,
combined with a rotation by an angle θPS = nπ2 in

the pseudospin space, the low-energy Hamiltonian HTCF
n,τ

from Eq. (3) and its lattice regularized version, intro-
duced in this section, remain invariant for n = 1 and 2.
A similar argument in favor of the symmetry invariance of
n = 2 triple-component nodes has been recently reported
in Ref. [50]. Notice for n = 3, both the terms propor-
tional to Sx and Sy acquire an overall “minus” sign. As a
result, the topology of each node remains invariant under
C4 rotation. Alternatively, (a) one can define the rota-
tion in the pseudospin space as θPS = 2π−nπ2 , for n = 3,
which leaves the Hamiltonian for cubic triple-component
fermions completely invariant, or (b) take d31 ↔ d32 in
the continuum model or Nx(k) ↔ Ny(k) in the lattice
model, such that they respectively read as

HTCF
3,τ (k) = d32(k)Sx + d31(k)Sy + τd3(k)Sz, (20)

HTCF,lat
3,τ (k) = Ny(k)Sx +Nx(k)Sy +Nz(k)Sz.(21)

Both HTCF
3,τ (k) and HTCF,lat

3,τ (k) remain completely in-
variant under the above mentioned combined rotations
in the momentum and pseudospin spaces. Therefore, the
generalized triple-component nodes are invariant under
C4 rotations 4. Note that the above discussion on the

4 For any even n, the combined C4 rotation in the momentum
space and rotation by an angle θPS = nπ/2 permit a unique
power of k⊥ in the low-energy Hamiltonian, namely kn⊥. There-
fore, in a system with higher order band touching (n > 1), a spe-
cific type of k⊥-linear term, namely (S⊥ ·k⊥), is forbidden by the

symmetry does not rely on any specific value of s, and it
is equally applicable to arbitrary integer and half-integer
values of s. Next we demonstrate the bulk-boundary cor-
respondence and construct the topological Fermi arc sur-
face states by numerically diagonalizing the above tight-
binding models in a cubic lattice for different n.

IV. FERMI ARC SURFACE STATES

The hallmark of a topologically nontrivial phase of
matter is the existence of surface or edge states, en-
coding the bulk-boundary correspondence. The struc-
ture of such boundary modes, however, crucially de-
pends on the actual nature of the bulk topological phase.
For example, a three-dimensional strong topological in-
sulator supports two-dimensional massless helical Dirac
fermions on all six surfaces of a cubic system [51, 52].
The surface modes of a topological semimetal are some-
what different from the ones of a topological insula-
tor. Note that a time-reversal symmetry-breaking triple-
component semimetal can be constructed by stacking
two-dimensional layers of quantum anomalous Hall in-
sulators of spin-1 fermions in the momentum space along
the kz direction between two triple-component points, lo-
cated at k =

(
0, 0,±π2

)
5. Each copy of two-dimensional

anomalous Hall insulator supports one-dimensional chiral
edge modes, accommodating one state precisely at zero
energy. The collection of such zero-energy states between
the two triple-component points constitute the topological
Fermi arcs, shown in Figs. 1 and 2 for n = 1, 2, 3. Such
a seemingly hypothetical construction of time-reversal
symmetry-breaking topological semimetals, nonetheless,
leaves its signature in the anomalous Hall response of

C4 symmetry [40–42]. Nonetheless, lattice distortion or external
strain can reduce such symmetry and induce a k⊥-linear term,
which dominates when k⊥ < k∗⊥, while the kn⊥ term dominates

for k⊥ > k∗⊥, where k∗⊥ = (α1/αn)1/(n−1). As long as k∗⊥ � K0,
where K0 is the separation between the two Weyl nodes, the ul-
timate topological invariant of the system is given by 2sn. A
somewhat similar situation occurs in two-dimensional monolayer
and bilayer graphene, for example. Respectively in these two
systems the coefficient of k⊥ (namely, α1) and k2⊥ (namely, α2)
dominates over the other one. In other words, α1 � α2 in mono-
layer, while α1 � α2 in bilayer graphene. Consequently, the
topological invariants or the vorticities of these two gapless sys-
tems are 1 and 2, respectively [49], despite the fact that the
k-linear term splits an n = 2 vortex in bilayer graphene into
three vortices with n = 1 and one antivortex with n = −1, such
that the net vorticity around a given K point in the Brillouin
zone remains as 2. By contrast, for odd n the topology of the
higher-order band touching (∼ kn⊥) remains unchanged as long
as αn � α1, even though the C4 symmetry permits (S⊥ · k⊥)
term.

5 Since the flat band is topologically trivial, we characterize each
two-dimensional slice of the system as an “insulator” even though
there exists a dispersionless flat band at the middle of the band
gap between the dispersive valence and conduction bands.
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(a) (b) (c)

Figure 2: Fermi arc surface states in three-dimensional mixed Bloch (along ky and kz)-Wannier (along x) representation for
triple-component semimetals with (a) n = 1, (b) n = 2 and (c) n = 3. We display the same set of states shown in Fig. 1 and
implement the same boundary conditions. Notice that all branches of the Fermi arc surface states leak into the bulk through
the triple-component nodes, located at (ky, kz) =

(
0,±π

2

)
. Consequently, the top and bottom surfaces get connected through

these two points (representing singularities in the momentum space), where the Fermi arcs are completely delocalized.

these systems, discussed in Sec. V.
In order to construct the Fermi arc surface states, we

impose periodic boundaries in the y and z directions
(hence leaving momenta ky and kz as good quantum
numbers) and implement open boundary in the x direc-
tion, along which the linear dimension of the system is set
to be L = 280. For numerical diagonalization of the lat-
tice models, we set t = tz = m = 1. In this construction,
we can observe localized Fermi arcs states (in the mixed
Wannier-Bloch representation) on the top and bottom
surfaces [53]. The resulting Fermi arcs for n = 1, 2, and
3 are shown in Figs. 1(a), 1(b) and 1(c), respectively, and

the number of Fermi arcs = 2 n =

monopole charge of triple-component points. (22)

However, the counting of the Fermi arc states is a subtle
issue. So it is worth pausing to illustrate it explicitly.
Note that (2n− 1) copies of the Fermi arcs connect two
triple component points located at kz = ±π2 and are lo-
calized near the center of the surface Brillouin zone. The
remaining copy of the Fermi arc surface states is con-
stituted by the seemingly disconnected pieces, localized
near ky = 0,±π, but spans the entire surface Brillouin
zone along kz, i.e. −π ≤ kz ≤ π, see Figs. 1 and 2. These
two pieces appear to be disconnected in Figs. 1 and 2,
since we display the spectral weight of the surface lo-
calized states within specific energy windows. However,
with increasing energy window these two pieces get grad-
ually connected, see Appendix B and Fig. 8. The fact
that this segment of the Fermi arc state extends beyond
(despite being connected to) the bulk triple component
points, is possibly specific for the simple lattice models
we introduced in Sec. III and the choice of the surface

cut, namely the (100) plane. Nonetheless, Fermi arcs
extending beyond the triple component points has also
been noticed in Ref. [39], but only for n = 1 and on the
(110) plane. However, only the segments localized within
−π2 ≤ kz ≤ π

2 contribute to the anomalous Hall con-
ductivity, and it is precisely zero for an underlying two-
dimensional insulator in the (kx, ky) plane when kz >

π
2

and kz < −π2 (see Sec. V). Hence the bulk-boundary cor-
respondence remains operative for spin-1 semimetals, as
there exist two, four and six branches of the Fermi arc
surface states, respectively for n = 1, 2, and 3. Next we
discuss some additional salient features of the arc states.

Note that the surface localization of the aforemen-
tioned 2n copies of the Fermi arc states is maximal
at its center (kz = 0). As we approach the two
triple-component nodes the surface localization decreases
monotonically. At the two triple-component points the
arc states become completely delocalized, and the top and
bottom surfaces get connected through the bulk triple-
component points, as shown in Fig. 2. This observation
does not depend on the choice of the integer value of
n and can be appreciated in the following way. Note
that the localization length of the Fermi arc state for
each value of kz is inversely proportional to the size of
the spectral gap of the corresponding two-dimensional
layer of the quantum anomalous Hall insulator. From
Eq. (15), one can appreciate that the bulk gap for the un-
derlying two dimensional Hall insulating phase is largest
when kz = 0 (center of the arc). Otherwise, such a
gap decreases monotonically as we approach the singu-
lar points, located at kz = ±π2 , from the center of the
Fermi arcs, and vanishes at kz = ±π2 . Consequently, the
arc state at these two points become completely delo-
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calized and two opposite surfaces get connected through
the bulk triple-component points, which can be seen from
Fig. 2. By contrast, the segments of the Fermi arc, local-
ized near |ky| = π, do not show any variation of surface
localization along its length, since it is not connected
to the triple-component points. Nonetheless, the part
of the same Fermi arc, localized near ky = 0 displays
variation of surface localization and leaks through the
bulk triple component points, similarly to the remain-
ing (2n − 1) copies of the Fermi arc. Hence, our nu-
merical analyses of the Fermi arc surface states provide
strong evidence in favor of the bulk-boundary correspon-
dence in triple-component semimetals, with an arbitrary
monopole charge 2n.

V. ANOMALOUS HALL EFFECT

Yet another hallmark of a time-reversal symmetry-
breaking topological semimetals is the nontrivial anoma-
lous Hall effect in a plane perpendicular to the sep-
aration of two band touching points. We discussed
in the previous section that both Weyl and triple-
component semimetals can be constructed by stacking
two-dimensional quantum anomalous Hall insulators in
the momentum space along a specific (in our construction
kz) direction. Since each layer produces quantized (thus
large) anomalous Hall conductivity (AHC), the resulting
time-reversal symmetry-breaking semimetallic phase also
supports finite (typically large, but nonquantized) AHC.

For any value of n the system describes an anomalous
Hall insulator in the xy plane that supports quantized
AHC, given by

σ2D
xy (µ = 0, kz = 0) =

e2

h
× (2n). (23)

The AHC can be directly computed from the underlying
Berry curvature (Ωz)

σ2D
xy (µ, kz = 0) =

e2

h

∫
d2k⊥
(2π)2

Ωzf
0
ms

(µ), (24)

where f0ms
(µ) is the equilibrium Fermi-Dirac distribution

at finite chemical doping µ (measured from zero energy,
see Fig. 3), given by

f0ms
(µ) =

[
1 + exp

(
Ems

k − µ
kBT

)]−1
, (25)

where ms = 1, 0,−1. Here the Boltzmann constant kB
is set to be unity. A direct correspondence between
the AHC and the first Chern number of the underly-
ing anomalous Hall insulator, obtained from the contin-
uum models of these systems is presented in Appendix A.
First, we compute the AHC for two-dimensional time-
reversal symmetry breaking insulator for n = 1, 2, 3 from
the lattice model, shown in Sec. III, upon setting kz = 0.

The results are displayed in Fig. 3(a) for n = 1, Fig. 3(b)
for n = 2 and Fig. 3(c) for n = 3, as a function of varying
chemical doping (µ). We tune µ over the entire energy
band, i.e. from the bottom of the valence band to the
top of the conduction band.

For completely empty bands the Berry curvature from
the conduction and valence bands cancel each other, and
the system supports precisely zero AHC. As one increases
µ from the bottom of the valence band, AHC starts to
increase monotonically and reaches its quantized value
when µ meets the top of the valence band. Note that
when the chemical potential is pinned within the bulk
insulating gap the σ2D

xy remains constant and quantized,
given by Eq. (23). On further increasing µ, the AHC
starts to decrease, as the Berry curvature from the fully
filled valence band gets partially canceled by that from
the partially filled conduction band. Ultimately, when
the conduction band becomes fully occupied, the Berry
curvatures from these two bands completely cancel each
other and the AHC once again drops back to zero. Oth-
erwise, this feature is common for n = 1, 2, 3. Note that
the topologically trivial flat band residing at zero energy
does not influence the AHC in two dimensions. We ar-
rive at the same results (qualitatively) for any kz residing
within the range −π2 ≤ kz ≤

π
2 . However, for kz >

π
2 and

kz < −π2 , the AHC is always identically zero for any value
of chemical doping µ. This observation ensures that the
surface localized states for kz >

π
2 and kz < −π2 shown in

Figs. 1 and 2 do not contribute to AHC, and Fermi arcs
extending beyond the triple component points is purely
an artifact of the simple lattice models and (possibly) the
choice of the surface.

The AHC for a three-dimensional time-reversal
symmetry-breaking triple-component semimetal (σ3D

xy )
can be obtained by accumulating the contributions from
each constituting two-dimensional layer of anomalous
Hall insulator and is given by [54]

σ3D
xy (µ) =

∫ K0
2

−K0
2

dkz
2π

σ2D
xy (µ, kz), (26)

where K0 is the separation of two triple-component
points. Since for µ = 0 each copy of underlying
two-dimensional anomalous Hall insulator yields the
largest and quantized AHC, the three-dimensional triple-
component semimetal also yields largest AHC, given by

σ3D
xy,max = σ3D

xy (0) =
e2

h
× (2n) × K0

2π
→ n

a

e2

h
, (27)

when µ = 0, as shown in Fig. 3(a) for n = 1, Fig. 3(b) for
n = 2 and Fig. 3(c) for n = 3, since in our lattice realiza-
tion of triple-component semimetals K0 = π/a, where a
is the lattice spacing (see Sec. III). Respectively σ2D

xy and

σ3D
xy have dimension Ω−1 and Ω−1 m−1. With increas-

ing or decreasing chemical doping, the AHC decreases
monotonically, as the contributions of the Berry curva-
ture from the conduction and valence bands cancel each
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Figure 3: Upper row: Scaling of the anomalous Hall conductivity (AHC), measured in units of e2/h, given by Eq. (24), of an
underlying constituting two dimensional layer of the time-reversal symmetry-breaking anomalous Hall insulator, obtained by
setting kz = 0 in the tight-binding models for the triple-component semimetals, introduced in Eq. (14) for (a) n = 1, (b) n = 2
and (c) n = 3. The size of the insulating gap for anomalous Hall insulator of spin-1 fermions is 2t. For chemical doping |µ| < t,
the AHC remains quantized. For |µ| > t the AHC decreases monotonically, and becomes zero when the system is either fully
filled or completely empty. We arrive at qualitatively similar results for −π

2
< kz <

π
2

. But, the AHC identically vanishes
(for any µ) when kz >

π
2

and kz < −π2 . Lower row: Corresponding AHC for three-dimensional triple-component topological

semimetal with (d) n = 1, (e) n = 2 and (f) n = 3, see Eq. (26) [in units of e2/(ha), where a is lattice spacing, set to be unity
for convenience]. Note that the AHC for the triple-component semimetals is largest when µ = 0, see Eq. (27). With increasing
or decreasing chemical doping away from the triple component band-touching points, the AHC decreases monotonically, and it
vanishes when µ meets the band edges.

other. Scaling of the AHC as a function of chemical dop-
ing µ for three-dimensional triple-component semimetals
is displayed in Fig. 3 (lower panel). Finally note that
the AHC in three-dimensions is insensitive to the pres-
ence of the trivial flat band. It should also be noted
that in a gapless system (such as three-dimensional Weyl
or triple-component semimetals) the AHC can be large,
but generically not quantized, in contrast to the situa-
tion in an insulator, compare the upper and lower pan-
els of Fig. 3. Also note that the AHC in such gapless
topological systems is proportional to the separation of
two triple-component points (K0), see Eq. (27), which is
generically nonzero. Next we investigate the influence of
the nontrivial Berry curvature in the medium on magne-
totransport, such as longitudinal magnetoconductivity.

VI. SEMICLASSICAL BOLTZMANN
TRANSPORT

In this section, we investigate the imprint of the non-
trivial Berry curvature of a triple-component semimetal
on various transport quantities within the framework of
the semiclassical kinetic theory. Specifically, we compute
(a) longitudinal magnetoconductivity [see Sec. VI A], (b)
planar Hall conductivity [see Sec. VI B], and (c) longitu-
dinal magneto-thermal conductivity [see Sec. VI C]. We
also note that the nontrivial Berry curvature of integer
pseudospin fermionic system can also leave its signature
on chiral vortical effect [55, 56]. In what follows we com-
pute these quantities in the weak magnetic field (B) limit,
such that ωcτ � 1, where ωc is the cyclotron frequency
and τ is the average time between two successive col-
lisions (it should not be confused with the valley index
τ = ±, introduced in Sec. II). In this limit one can neglect
the Landau quantization, and treat τ to be independent
of the strength of the external magnetic field. This ap-
proximation is justified since the radius of the cyclotron
orbit in the weak field limit is sufficiently large, allowing
us to treat the path between two successive collisions as
a straight line (approximately). Furthermore, we also as-
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sume that there exists a single scattering life-time in the
medium, determined by the elastic scattering of triple-
component fermions from the impurities. On the other
hand, for a sufficiently strong magnetic field (ωcτ � 1)
the Landau levels are sharply formed and one needs to
account for the quantum corrections to τ due to the B-
field, as the path between two successive collisions can no
longer be treated as a straight line, and hence τ ≡ τ(B).

In the presence of an external electric field (E) and a
temperature gradient (∇T), the charge current (J) and
thermal current (Q) are related to each other via the
linear response equations, compactly written as(

J
Q

)
=

(
σ̂ α̂
ˆ̄α ˆ̀

)(
E
−∇T

)
(28)

where σ̂ is the conductivity tensor, α̂ is the Seebeck co-

efficient tensor, and ˆ̀ is the thermal conductivity tensor.
Also note that ˆ̄α and α̂ are related to each other by On-
sager’s relation ˆ̄α = T α̂. Within the framework of linear
response theory the electrical and thermal currents can
respectively be written as

Ja = σab Eb + αab (−∇bT ) , (29)

Qa = T αab Eb + lab (−∇bT ) , (30)

where a and b are the spatial indices. We now set up
the general formalism for the Boltzmann transport equa-
tions to compute these quantities in the presence of an
underlying Berry curvature in the medium.

The Boltzmann transport equation reads as [57](
∂t + ṙm · ∇rm + k̇m · ∇km

)
fm,k,r,t = C{fm,k,r,t},

(31)
where m is the band index and C{fm,k,r,t} is the collision
integral, which in principle incorporates electron corre-
lations (inelastic scattering) as well as elastic scattering
from impurities, and fm,k,r,t is the electronic distribution
function. For the sake of simplicity, we here focus only on
the impurity scattering, which is the dominant source of
relaxation process in weakly correlated and dirty systems.
Within the relaxation time approximation, the collision
integral takes the form

C{fm,k,r,t} =
f0m − fm,k
τm(k)

, (32)

where τm(k) is the relaxation time and f0 is the equi-
librium Fermi-Dirac distribution function in the absence
of any external field. To proceed further with the analy-
sis, we ignore the momentum and band dependence of τ
and assume it to be a constant with τm(k) = τ (a phe-
nomenological parameter) in the semiclassical limit, the
single scattering-time approximation.

Upon incorporating the effects of the Berry curvature,
the semiclassical equations of motion take the following
form [58, 59]

ṙm =
1

~
∇εkm

−
(
k̇m ×Ωm,k

)
, (33)

Figure 4: A schematic setup for the measurement of the pla-
nar Hall conductivity. The electric field (E) is applied along
the x−axis and the magnetic field (B) is confined within in
the xy plane. The angle γ between E and B is measured with
respect to the x-axis. See Sec. VI B for the discussion on the
planar Hall effect.

k̇m = − e
~

E− e

~
(ṙm ×B) , (34)

where the second term of the Eq. (33) represents the
anomalous velocity originating from the nontrivial Berry
curvature. The solutions of the coupled equations for ṙm
and k̇m are respectively given by [60, 61]

ṙm =
1

Dm
[vm,k +

e

~
(E×Ωm,k) +

e

~
(vm,k ·Ωm,k)B],

(35)

k̇m =
1

~Dm
[eE +

e

~
(vm,k ×B) +

e2

~
(E ·B)Ωm,k]. (36)

For brevity we use Dm ≡ Dm(B,Ωm,k) in the above two
equations, where

Dm(B,Ωm,k) =
[
1 +

e

~
(B ·Ωm,k)

]
modifies the invariant phase space volume according to
dkdx → Dm(B,Ωm,k)dkdx and gives rise to a noncom-
mutative mechanical model, since the Poisson bracket
of two coordinates is now nonzero [61]. We are now
equipped to proceed to the computation of various con-
ductivity tensors introduced in Eqs. (28)-(30). The rest
of the analysis is presented only for linear-triple compo-
nent semimetals (with n = 1). The following discussion
can be generalized to address similar effects in quadratic
and cubic-triple component semimetals, and establish the
scaling of various components of the conductivity tensor
with the monopole charge 2n. We leave this exercise for
a future investigation.
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Figure 5: (a) The amplitude of the planar Hall conductivity (normalized by its maximal value for B = Bmax) as a function of the
magnetic-field strength B (normalized by Bmax) in a linear triple-component semimetal for γ = π

4
, see Eq. (42). The amplitude

of the planar Hall conductivity scales as B2, see Sec. VI B. (b) The angular dependence of the planar Hall conductivity
(normalized by its amplitude for γ = π

4
), showing a sin(2γ) scaling. (c) The scaling of the longitudinal magnetothermal

conductivity ∆`zz(B) = `zz(B) − `zz(0) (normalized by its maximal value at B = Bmax) as a function of B (normalized by
Bmax). Note that B and ∇T is along the z direction, and ∆`zz(B) ∼ B2, see Sec. VI C for details. Numerical calculations of
σPHC
yx (γ) and ∆`zz(B) are performed from the low-energy model for the linear triple-component semimetal [see Sec. II]. The red

dots represent numerically computed values of planar Hall [panels (a) and (b)] and magnetothermal [panel (c)] conductivitities,
whereas the black curves show a fitting with B2 [panels (a) and (c)] and sin(2γ) [panel (b)].

A. Longitudinal magnetoconductivity

For the computation of the longitudinal magnetocon-
ductivity (LMC), we assume that E and B are always
parallel to each other, otherwise applied along an arbi-
trary direction û. After solving the Boltzmann equation
using Eqs. (35) and (36), we find [62–65]

σuu(B) = −e2τ
∑
m

∫
d3k

(2π)3

[
1 +

e

~
(B ·Ωm,k)

]−1
×
[
vm,u +

eB

~
(vm,k ·Ωm,k)

]2 (
∂εf

0
m

)
. (37)

For concreteness, we compute the LMC in the z direction

(σzz) from the linearized model, introduced in Sec. II.
Note that only the two dispersive bands contribute to
the LMC, as the carriers in flat band are localized. As
temperature T → 0, the above expression for the LMC
simplifies to (after setting ~ = 1)

σzz(B) = e2τ

∫
d3k

(2π)3
[vz + eB (vk ·Ωk)]

2

1 + eBΩz
δ(µ− εk),

(38)

where we have used the fact that limT→0 ∂εf
0 = −δ(µ−

εk). For rest of the analysis, we set µ > 0, so
that only the upper band contributes to the LMC.
Upon introducing the polar coordinates in which k =
k (cosφ sin θ, sinφ sin θ, cos θ), Eq. (38) can be written as

σzz(B) =
e2τ

(2π)2

∫ π

0

dθ sin θ

∫ ∞
0

dkk2
(cos θ + eB

k2 )2

1 + eB cos θ
k2

δ(µ− k) =
e2τµ2

(2π)2

[∫ π

0

dθ sin θ cos2 θ

(
1 +

eB cos θ

µ2

)−1
+ 2

eB

µ2

∫ π

0

dθ sin θ cos θ

(
1 +

eB cos θ

µ2

)−1
+
e2B2

µ4

∫ π

0

dθ sin θ

(
1 +

eB cos θ

µ2

)−1 ]

=
e2τµ2

(2π)2

[
− 2µ4

e2B2
+

2µ6

e3B3
tanh−1

(
eB

µ2

)
+

2eB

µ2

{
2µ2

eB
+

(
1− 2µ4

e2B2

)
tanh−1

(
eB

µ2

)}]
. (39)

While arriving at the last expression we set vz = 1. Note
that semiclassical theory is applicable in the parame-
ter regime where quantum corrections can be neglected.
Such condition at T = 0 is achieved only if

√
eB � µ,

so that the chemical potential provides the infrared cut-
off in the system. Therefore, we can expand tanh−1(x)
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appearing in the above expression for x� 1, yielding

tanh−1(x) = x− x3

3
+O

(
x5
)
, (40)

where x = eB/µ2. Finally, accounting for the contribu-
tions from two triple-component nodes, we find

σzz(B) = 2×
(
e2τµ2

4π2

) [2

3
+

16

15

e2B2

µ4

]
. (41)

The first term in the above expression is the standard
metallic conductivity arising from the Drude contribu-
tion, while the second term shows a B2 enhancement
of the LMC. However, in the single scattering time ap-
proximation we cannot attribute such an enhancement
solely to the chiral anomaly, as both the regular and ax-
ial charges are relaxed by the same scattering mechanism
(characterized by τ) [66]. Nonetheless, the system still
displays a positive LMC and σzz ∼ B2. In order to iso-
late the contribution from the chiral anomaly we need
to introduce two scattering times in the collision integral
[see Eq. (32)], τinter and τintra, respectively denoting the
inter- and intravalley scattering lifetimes. In particular,
when τinter � τintra only the contribution from the chiral

anomaly survives [67]. Explicit demonstration for this
lengthy analysis is left for a future investigation.

B. Planar Hall Conductivity

The planar Hall effect corresponds to the appearance
of an in-plane transverse voltage (Vxy) in the presence
of external, but coplanar electric and magnetic fields;
specifically when they are not perfectly aligned to each
other. The experimental setup for the measurement of
planar Hall conductivity (PHC) is schematically shown
in Fig. 4. Notice that in this configuration the conven-
tional Hall effect vanishes. To evaluate the PHC, we
conveniently align the electric field (E) along the x−axis,
while the magnetic field (B) is directed at a finite angle
γ from the x-axis (but in the xy plane), thus

E = E x̂, and B = B (cos γ x̂+ sin γ ŷ) , (42)

where γ is the angle between E and B (see Fig. 4). The
PHC is then given by [68–70]

σPHC
yx (γ) = −e2τ

∑
m

∫
d3k

(2π)3
vm,y + eB sin γ

~ (vm,k ·Ωm,k)

1 + e
~ (B ·Ωm,k)

[
vm,x +

eB cos γ

~
(vm,k ·Ωm,k)

](
∂f0

∂ε

)
. (43)

As T → 0 in terms of the polar coordinates, introduced earlier, the PHC reads as (after setting ~ = 1)

σyx(γ) =
e2τµ2

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ

[
1 +

eB sin θ cos(φ− γ)

µ2

]−1 [
sin3 θ

sin 2φ

2
+
eB

µ2
sin2 θ sin(φ+ γ) +

eB

2µ4
sin θ sin 2γ

]
.

(44)

We numerically compute the PHC from the low-energy
model for a linear triple-component semimetal. The am-
plitude of the PHC shows a B2 dependence, as shown
in Fig. 5(a), for any value of γ except when γ = 0
and γ = π

2 , where PHC vanishes. Also note that the
PHC scales as sin(2γ), see Fig. 5(b). We find that the
PHC for TCF does not satisfy the antisymmetry prop-
erty (σxy = −σyx) of the regular Hall conductivity since
it does not originate from the conventional Lorentz force.

C. Longitudinal Magneto-thermal Conductivity

Next we compute the longitudinal magneto-thermal
conductivity (LMTC) for the linear triple-component
semimetal from its low-energy model. To compute the
LMTC, we align the external magnetic field B and the

temperature gradient ∇T along an arbitrary direction
û, such that B ‖ ∇T. After solving the Boltzmann
equation using Eqs. (35) and (36), and comparing with
Eq. (30), we arrive at the following expression for the
LMTC [64, 65, 71]

`uu = τ
∑
m

∫
d3k

(2π)3

[
1 +

e

~
(B ·Ωm,k)

]−1
(45)

×
[
vm,u +

eB

~
(vm,k ·Ωm,k)

]2
(εm − µ)

2

T

(
−∂εf0m

)
.

Since the flat band is topologically trivial (possessing
zero Chern number), and the chemical potential is placed
above the triple-component points, only upper band con-
tributes to the LMTC. We compute LMTC separately for
each triple-component node and finally add their contri-
butions. For concreteness, we compute the LMTC along
the z direction. In terms of the polar coordinates and af-
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ter setting vz = 1, ~ = 1, we arrive at the final expression
for the LMTC at finite-T , given by

`zz =
e2τ

(2π)2

∫ π

0

sin θdθ

∫ ∞
0

dk
(k − µ)2

T 2
k2

×
(cos θ + eB

k2 )2

1 + eB cos θ
k2

f0(1− f0), (46)

where we have used the fact that −∂εf0 =
f0
(
1− f0

)
/T . The scaling of the LMTC, specifically

∆`zz(B) = `zz(B)−`zz(0), as a function of the magnetic-
field strength (B) is displayed in Fig. 5(c). We find that
LMTC also scales as B2, i.e. ∆`zz(B) ∼ B2 for linear
triple-component semimetals.

VII. CONCLUSIONS AND DISCUSSIONS

To summarize, we generalize the notion of time-
reversal symmetry-breaking pseudospin-1 or triple com-
ponent semimetals to arbitrary integer (anti-)monopole
charge 2n [see Secs. II and III] and address its topolog-
ical properties, such as the Fermi arc surface states [see
Secs. IV]. In addition, we also compute the influence of
the nontrivial Berry curvature in this system on various
transport quantities, such as the anomalous Hall con-
ductivity [see Sec. V] within the framework of the Kubo
formalism, as well as the longitudinal magnetotransport
and the planar Hall conductivity using the semiclassical
Boltzmann theory in the single scattering time approxi-
mation [see Sec. VI].

In particular, we show that on a simple cubic lattice
one can realize triple component nodes with monopole
charge 2n, where n = 1, 2, 3 in a crystalline environment
[see Sec. III]. At the triple-component points three bands
with pseudospin quantum numbers ms = 1, 0,−1 touch
each other. While two bands with pseudospin projections
|ms| = 1 are dispersive away from the triple-component
points, the one with ms = 0 is completely flat and topo-
logically trivial. In our lattice realization of the spin-
1 fermions, the triple-component points are separated
along the z-direction. For any n, the energy dispersion
(for |ms| = 1 bands) always scales linearly with kz, but

Ek⊥ ∼ kn⊥, where k⊥ =
[
k2x + k2y

]1/2
. We also show that

such unusual band touchings are invariant under discrete
four-fold or C4 rotations and can be realized from simple
tight-binding models in cubic lattice [see Sec. III].

The topological invariant for triple-component points
manifests through the Fermi arc surface states, follow-
ing the bulk-boundary correspondence. We argue that
a system with a pair of triple-component points with
(anti-)monopole charge 2n accommodates 2|n| branches
of Fermi arc states on the surface, see Sec IV. To
establish the bulk-boundary correspondence for spin-1
triple-component fermions, we numerically diagonalize
the tight-binding models for these systems [introduced

in Sec. III] with periodic boundary in the y and z di-
rections (hence momenta along these two directions are
good quantum numbers) and a open boundary in the x-
direction. Figure 1 depicts the Fermi arcs in the (ky, kz)
plane (the top surface), and we find that there exists ex-
actly 2|n| branches of the Fermi arc surface states on the
top surface connecting two triple-component points. Ad-
ditional salient features of the arc states can be appreci-
ated from their localization in the x-direction, as shown
in Fig. 2. We find that while the Fermi arc states are
well localized on the top or bottom surfaces away from
the triple-component points, at these two points (repre-
senting singularities in the momentum space) they are
completely delocalized. Specifically, the arcs states from
the top surface leak through the bulk triple-component
points, and get connected to the ones on the bottom sur-
face. This feature is insensitive to the precise value of n
and also occurs for spin-1/2 Weyl fermions.

The two dispersive bands in triple-component
semimetals possess nontrivial Berry curvature, whereas
the flat band is topologically trivial. The signa-
ture of nontrivial Berry curvature can, for example,
be observed in the anomalous Hall conductivity [see
Sec. V]. Note that time-reversal symmetry-breaking
triple-component semimetals can be envisioned as stack-
ing of two-dimensional anomalous Hall or Chern insula-
tors of spin-1 fermions in the momentum space along kz
direction between two triple-component nodes. As a re-
sult for kz = 0 we obtain a quantized anomalous Hall
conductivity, given by σ2D

xy = 2ne2/h, for n = 1, 2, 3, see
Figs. 3(a)-(c), when the chemical potential lies within
the bulk band gap. The anomalous Hall conductivity of
a triple-component semimetal can then be obtained by
accumulating the quantized contribution from each two-
dimensional constituting layers in between two nodes,
and the results are summarized in Figs. 3(d)-(f). There-
fore, the generalization of spin-1 topological semimetals
opens up a new route to achieve large anomalous Hall
conductivity. A large (but not quantized) anomalous
Hall conductivity can also be accommodated by spin-1/2
Weyl fermions, which can be germane for Pr2Ir2O7 inside
a metallic spin-ice ordered phase [72, 73]. In particular,
in Pr2Ir2O7 the biquadratic touching of the Kramers de-
generate valence and conduction bands, describing the
normal state of 227 pyrochlore iridates [74, 75], can be
destabilized by the onset of a spin-ice or three-in one-
out magnetic ordering for itinerant fermions, which gives
birth to only two Weyl nodes and concomitantly sup-
ports anomalous Hall conductivity ∼ 103 Ω−1m−1 [76].
Therefore, possible material realizations of spin-1 Weyl
fermions in strongly correlated systems should be an in-
teresting future avenue of research.

The signature of the Berry curvature can also be found
in various other transport quantities, such as longitudi-
nal magneto- and magnetothermal conductivities, planar
Hall conductivity [see Sec. VI]. We here compute these
quantities using the semiclassical Boltzmann transport
theory and for sufficiently weak magnetic field, when the
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Figure 6: Numerically computed Chern number (C) of the
upper band of a two-dimensional anomalous Hall insulator,
occupying the kz = 0 plane of a linear triple-component
semimetal, as a function of the ultraviolet momentum cut-
off Λ [see Eq. (A2)] for different values of α [see Eq. (A4)].

Landau levels are not sharply formed. At least when
the strength of the external magnetic field (B) is suffi-
ciently weak, all of them increase as B2. Even though
it is commonly believed that such a seemingly counter
intuitive enhancement of the longitudinal magnetocon-
ductivity, for example, arising from the nontrivial Berry
curvature captures the signature of the chiral anomaly,
there exists no concrete proof demonstrating this con-
nection. Therefore, it will be interesting to investigate
these quantities in the strong magnetic field limit when
the inter-particle scattering time (τ) explicitly depends
on the magnetic field, and establish the relevance of chiral
anomaly in spin-1 system [36, 77, 78].

Our discussion is, however, not limited to spin-1 or
triple-component fermions. For example, our lattice con-
struction for spin-1 fermions from Sec. III can immedi-
ately be generalized to any integer spin-s fermions by
replacing the spin-1 matrices by spin-s matrices. In
that construction, there always exists a topological triv-
ial flat band, and 2s dispersive bands (s number of va-
lence and conduction bands), characterized by s dis-
tinct Fermi velocities. Therefore, our theoretical analysis
should stand as a good starting point to begin the voyage
into the world of integer spin topological phases of mat-
ter. Besides the topological features of integer-spin Weyl
systems, its (in)stability against electronic correlations,
which can give birth to exotic superconducting [79] and
excitonic phases, is yet another interesting avenue, which
we will explore in future.
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Appendix A: Ultraviolet regularization and Chern
number

The AHC of two-dimensional constituting layers of the
anomalous Hall insulators (AHI) is intimately tied with
the first Chern number of the system in the following way

σ2D
xy (µ = 0, kz = 0) =

e2

h
× Chern number of the AHI.

(A1)
We established this connection by explicitly computing
the AHC from tight-binding models of the generalized
triple-component semimetals, introduced in Sec. III, after
setting kz = 0 (thus yielding an AHI), see also Figs. 3(a)-
3(c). This Appendix is devoted to illustrate how the cor-
rect Chern number can be extracted from the continuum
models of these systems.

We begin the discussion with the linear triple-
component semimetal. For kz = 0, the effective low-
energy model of this system is given by

H = kxSx + kySy +
[
1− α

2

(
k2x + k2y

)]
Sz. (A2)

Even though in the specific tight binding model α = m =
1 [see Eq. (15)], we treat α as a free-parameter in this Ap-
pendix. Note that higher-gradient terms proportional to
α are irrelevant in comparison to the dominant k-linear
terms at small momentum. However, as we show here
such higher gradient terms play paramount important
role in properly capturing the topological invariant or
the Chern number of the system. At least for α = 1, the
Berry curvature of three bands can be computed analyt-
ically, yielding

Ω±k = ∓
4(2 + k2x + k2y)

2π[4 + (k2x + k2y)2]
3
2

, Ω0
k = 0, (A3)

from which one can find the Chern number of each band

Cτ =

∫ ′ d2k
(2π)2

Ωτk. (A4)

In the continuum model the momentum integral is re-
stricted up to an ultraviolet cut-off Λ (denoted by the
prime symbol in the integral), and we obtain C± = ∓2
and C0 = 0. These numbers do not depend on Λ. We also
numerically compute the Chern number for several other
values of the parameter α, and find that this number does
not depend on α, see Fig. 6. Note that in the low-energy
Hamiltonian from Eq. (A2), the k-linear terms dominate
at small momentum, whereas the higher gradient terms
are more important for large momentum. The term pro-
portional to Sz then plays the role of a “band-inverted”
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Figure 7: Numerically computed Chern number (C) of the upper band of the two-dimensional anomalous Hall insulator (AHI),
occupying the kz = 0 plane of the quadratic [panels (a) and (b)] and cubic [panels (c) and (d)] triple-component semimetals, as
a function of the ultraviolet momentum cut-off Λ [see Eq. (A2)] for different values of α [see Eq. (A5)]. For panels (a) and (c),
we take f (k⊥) = k2x + k2y [obtained from the leading-order expansion of N2

z (k) introduced in Eq. (15)] and the Chern numbers
do not reveal the correct topological invariant of the AHI. By contrast, in panels (b) and (d) we compute the Chern number
with f (k⊥) = k4x + k4y [obtained from the leading-order expansion of N2

z (k) introduced in Eq. (A6)] and we recover the correct
topological invariant of the AHI for sufficient large Λ. See Appendix A for detailed discussion on this issue.

Wilson mass that ensures the topological nature of the
insulating phase. In brief, in the entire construction of
topological phases of matter the Wilson mass plays a
crucial role, which we further investigate below for triple-
component semimetals with n = 2 and 3.

The effective low-energy models for quadratic and cu-
bic triple-component semimetals for kz = 0 (representing
AHIs) can compactly be written as

Hn = dn1 (k)Sx + dn2Sy(k) +
[
1− α

2
f (k⊥)

]
Sz, (A5)

respectively with n = 2 and 3. The functional form of
f (k⊥) depends on the choice of the Wilson mass and the
order up to which we expand it in momentum. For exam-
ple, if we expand N2

z (k) [see Eq. (15)] to quadratic order
then f (k⊥) = k2⊥ [see Eq. (A2)]. The Chern number of

one of the topological bands then becomes a function of
the parameter α, and the correct Chern numbers ±4 (for
n = 2) are never recovered, see Fig. 7(a). Such peculiar
outcome roots in the fact that there is no momentum
scale separation between d2j (k) (for j = 1, 2) and f (k⊥),
and the band-inverted Wilson mass is not capable of cap-
turing the topological invariant of the system.

Let us now consider a different Wilson mass [80]

N2
z (k) = m

6−
∑
j=x,y

{
4 cos(kj)− cos(2kj)

} . (A6)

The leading-order expansion of N2
z (k) around (kx, ky) =

(0, 0) yields f (k⊥) = k4x + k4y. Irrespective of the co-
efficient of f (k⊥), namely α, we always find the Chern



15

(a) (b) (c)

Figure 8: The amplitude of the surface localized states residing on the top surface and within the energy window ∆E = 0.04t
for (a), 0.06t for (b) and 0.08t for (c) around the zero energy, for a linear triple component semimetal with n = 1. Same set
of states, but living within the energy window ∆E = 0.02t is shown Fig. 1(a). Note that the seemingly disconnected pieces of
the Fermi arc surface states, localized around ky = 0,±π, start to get connected as we increase ∆E. Therefore, these segments
belong to the same and one branch of the Fermi arc. This Fermi arc also gets connected with the one on the bottom surface
through the bulk triple component points, located at kz = ±π

2
, see Fig. 2(a). The other Fermi arc directly connects two triple

component points. Therefore, n = 1 triple component semimetal accommodates two copies of the Fermi arcs, equal to the
monopole charge of the triple component points. Similar outcomes also hold for quadratic (n = 2) and cubic (n = 3) triple
component fermions. Respectively, three and five Fermi arcs directly connect the corresponding triple component points. The
remaining one Fermi arc fragments into two pieces for small ∆E, but ultimately they get connected with increasing ∆E.

number of one of the dispersive bands of the underlying
two-dimensional AHI to be +4, as shown in Fig. 7(b).

We find similar outcomes also for the cubic triple-
component semimetals. When f (k⊥) = k2⊥ the Chern
number does not reveal the correct topological invariant
of the system, as shown in Fig. 7(c). On the other hand,
with f (k⊥) = k4x + k4y [from the leading order expansion
in Eq. (A6)] we obtain the correct Chern number of the
bands, namely C = +6 for one of the bands, as shown in
Fig. 7(d).

Therefore, a continuum model that captures the cor-
rect topological invariant must satisfy the following two
criteria: (1) The Wilson mass must carry the largest
power of momentum (so that it dominates in the ultra-
violet regime), and (2) the Wilson mass must change its
sign at some momentum (ensuring the band-inversion) 6.
The above discussion along with the results displayed in
Fig. 7 justify the former criterion. In order to appreciate
the second one we now present another set of results.

If we expand N2
z (k) from Eq. (15) to the fourth and

sixth order in momentum we respectively obtain C = 0
and +4 (for n = 2) or +6 (for n = 3). Expanding N2

z (k)
from Eq. (15) up to the sixth order in momentum we find

f (k⊥) =
k2x + k2y

2
−
k4x + k4y

24
+
k6x + k6y

720
+O

(
k8x, k

8
y

)
.

(A7)

6 We assumed that the phase is topological, not trivial.

If we keep terms only up to the fourth order in momen-
tum k⊥, then it dominates over the quadratic term, but
the Wilson mass (proportional to Sz in Eq. (A5)] does
not show band-inversion, and we obtain C = 0. On the
other hand, if we keep terms up to the sixth order in
momentum in the above expression, then it dominates
in the ultraviolet regime, and also captures the band-
inversion. Consequently, we find C = +4 (for n = 2)
and +6 (for n = 3). Hence, a low-energy model can only
capture all the topological features correctly only when
it meets the above mentioned two conditions. On the
other hand, in a tight-binding model all higher-gradient
terms are present and we always find the correct topolog-
ical invariant of the system with the Wilson mass N2

z (k)
introduced in Eq. (15). Irrespective of the choice of the
Wilson mass and f (k⊥) the flat band always possesses
exactly zero Chern number.

Appendix B: Connectivity of Fermi arcs

This Appendix is devoted to establish that the surface
localized states near ky = ±π and 0, see Figs. 1 and
2, are the segments of one Fermi arc. Recall that in
Figs. 1 and 2, we show the amplitude of the surface
localized states residing within the energy window ∆E
around zero energy. In these two figures they appear
as disjoint pieces, due to our choice of the energy
window ∆E. However, such seemingly disconnected
pieces get connected as we systematically increase the
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energy window ∆E, as shown in Fig. 8. For the sake of
concreteness, we here show the results only for n = 1.
However, the same conclusion holds for n = 2 and 3. To
summarize, a triple component semimetal, characterized
by triple-component points with monopole charge 2n,

accommodates 2n copies of the Fermi arc surface states,
thus anchoring the bulk-boundary correspondence for
spin-1 (or in general any integer spin) topological
semimetals.
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