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We introduce a novel type of self-bound droplet which carries an emergent color charge. We
consider a system of particles hopping on a lattice and interacting via a commensurately sign-
changing potential which is attractive at a short range. The droplet formation is heralded by
spontaneous crystallization into topologically distinct domains. This endows each droplet with an
emergent color charge governing their mutual interactions: attractive for equal colors and repulsive
otherwise. The number of allowed colors is fixed only by the discrete spatial symmetries of the sign-
changing part of the interaction potential. With increasing interaction range, the droplets become
progressively more mobile, with their color charge still being energetically protected, allowing for
nontrivial viscous dynamics of the interacting droplet plasmas formed during cooling. Sign-changing
potentials with a short-range attraction appear quite naturally for light-mediated interactions and
we concretely propose a realization in state-of-the-art experiments with cold atoms in a multimode
optical cavity.

Introduction. Classical and quantum many-body sys-
tems often feature competitions between attractive and
repulsive forces, including kinetic terms such as ther-
modynamic or quantum pressure. Attractive forces fa-
vor the formation of clusters of matter, while repulsive
and kinetic terms prevent the collapse of the system.
Through competition between attraction and repulsion
various self-bound objects may emerge: from atomic
nuclei1, van der Waals nanoclusters2, droplets in conven-
tional liquids3 and in liquid helium4, to stars, galaxies5,
and black holes6. (Ultra)cold-atomic systems represent
a convenient playground for studying such self-bound
objects. Quantum droplets were recently observed in
bosonic dipolar gases7,8 and in bosonic mixtures9,10.

Here, we introduce another type of droplet with the
distinguishing property of carrying an emergent color
charge of topological origin. We show that such droplets
can form and be stably self-bound if the interparticle in-
teractions are (i) sign changing in space commensurately
with the lattice, (ii) attractive on the same lattice site,
and (iii) finite-ranged. Features (ii) and (iii) allow for
the formation of droplets which are self-bound below a
certain critical temperature. Crucially, it is feature (i)
which endows the droplets with the charge, as they can
then only be stable if their constituent particles occupy
a specific sublattice, i.e., take a specific “color”. The
latter indeed determines the sign of the interaction be-
tween droplets: attractive for the same color and repul-
sive otherwise. The integer number of allowed colors thus
depends solely on the discrete spatial symmetries of the
lattice and the interaction potential. We find that the
color charge of a droplet is conserved due to an energetic
protection, as it would take an extensive number of local
single-particle processes to remove it. Moreover, each of
those processes is hindered by an energy barrier which
also scales extensively in the thermodynamic limit.

The emergence of a droplet color charge is intimately
connected with the phenomenon of the spontaneous

breaking of discrete spatial translational invariance by
choosing a specific sublattice. Indeed, we observe that
droplet formation is necessarily heralded by crystalliza-
tion: upon cooling down the system, crystalline domains
are formed, and each one then subsequently condenses
into one or several droplets with the same color charge.
The following cooling dynamics is one of a viscous plasma
of droplets with different color charges governing their
mutual interactions, whose range is set by the micro-
scopic interaction range. For sufficiently long interaction
ranges, we also observe stable, translationally invariant
crystalline phases at intermediate temperatures.

While the microscopic features (i) and (ii) might
seem exotic in the context of condensed-matter physics,
they are quite generically found in systems of parti-
cles with light-mediated interactions, provided that spe-
cific electromagnetic modes are selected via laser driving
and/or light confinement. This is, for instance, the case
for experiments involving laser driven-atoms in optical
resonators11–19 or photonic crystals20. In particular, the
formation of noncharged droplets due to light-mediated
interactions in a noncommensurate case has been pre-
dicted recently21.
Model. We consider particles under the influence of

the following potential, H =
∑

k V (xk)+
∑

k<l U(xk,xl).
For a deep external potential |V | � |U | we can consider
a simplified lattice version of the model. Provided that
the interaction potential U satisfies the properties (i)-(iii)
listed in the Introduction, the phenomenology we are go-
ing to describe further depends solely on the spatial sym-
metry of the interaction potential relative to the external
lattice. Being in a commensurate case, the above sym-
metry would be the one being spontaneously broken by
entering a crystalline, specifically a density-wave (DW),
phase. This discrete symmetry will also determine the set
of possible colors of the droplet charge, as we shall see
below. For concreteness, we will restrict ourselves to a Z2

symmetry emerging in the two-dimensional configuration
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FIG. 1. (a) Contours encircling the local minima of the
interaction potential (orange color) and of the external lattice
(blue color). (b) Two- and three-dimensional plots of the
interaction potential U . (c) Qualitative equilibrium phase
diagram in coordinate temperature T/U0 vs interaction range
ξ/L, obtained from eqs. (1) and (2). The black line denotes
the droplet-formation phase transition while the orange line
the DW phase transition. The letters a and b indicate cuts
through the phase diagram with and without an intermediate
DW phase, corresponding to Fig. 2a, b.

illustrated in Fig. 1. We parametrize the interaction po-
tential between two particles, one of which is situated at
the origin and another at site ri,j = ia1 + ja2, as Ui,j ≡
U(0, ri,j) = (−1)i+jf(ri,j) (where a1,a2 are the basis
vectors of the lattice). The envelope function f(r) < 0
is monotonously increasing up to zero with some char-
acteristic range ξ. In the following, we consider a ther-
mal regime where the dynamics is classical (the regime of
applicability is discussed in22). We performed Metropo-
lis Monte Carlo (MC) simulations of the discrete two-
dimensional model with a particular choice of the inter-
action potential Ui,j = −U0(−1)i+j exp(−(i2 + j2)/ξ2),
which possesses the generic properties described above
(we use the lattice constant a as the unit of length). It
is crucial to note that it is the sign-changing part of the
interaction potential (−1)i+j that possesses the afore-
mentioned Z2 symmetry defining the two possible types
of color charges.

Thermodynamics. The qualitative form of the equi-
librium phase diagram of our model, shown in Fig. 1,
can be simply understood by considering the free en-
ergy, which also provides analytical estimates for the
transition temperatures. At high temperatures we ex-
pect all the particles to be uniformly spread over all sites
of the lattice. By decreasing the temperature, the sign-
alternating nature of the interaction potential favors a
checkerboard DW state, while the ξ-range attraction fa-
vors a droplet state with all the particles concentrated

within one cell of size set by the range ξ× ξ of the inter-
action potential (note that while at T → 0 we expect a
droplet to be localized to just one site, but for nonzero
temperatures, the droplet can be smeared up to size ξ
by the entropic force). Let us compare the free ener-
gies of these three states: uniform, DW, and droplet.
For generality we consider a D-dimensional case, when
the particles sit in a box with volume LD. In the uni-
form state, all the sites are populated by an approxi-
mately equal number of particles n ≡ N/LD. Each par-
ticle gives a contribution 1

2 (−UA + UB)n to the energy,
where −UA = −∑i+j=even |Ui,j | is the negative (attrac-

tive) part coming from the interaction with all particles
sharing the same sublattice, while UB =

∑
i+j=odd Ui,j

is the positive (repulsive) part from the other sublattice.
The entropy of the state is Sunif ≈ N lnLD, resulting
in a free energy of the uniform state given by Funif =
− 1

2 (UA−UB)n2LD−TN lnLD. In the checkerboard DW
state, all the particles occupy one sublattice with 2n par-
ticles per site on average. The free energy of the DW

state is thus FDW = − 1
2UA(2n)2 LD

2 − TN ln(LD/2) . In
the droplet state, all particles occupy a given sublattice
within a box of size ξD and each of them interacts with
all the others with a corresponding energy of the order
of −U0 ≡ U(0), so that the free energy can be estimated
as Fdr ≈ − 1

2U0N
2−TN ln ξD. In the particular case of a

short-range potential, ξ . 1, all the atoms would collapse
to one lattice site.

The droplet state is the lowest energy one and thus the
most favorable at low T . Hence there are two scenarios
for phase transitions with lowering the temperature: (a)
transition from the high-temperature uniform state to
the DW state (and then to the droplet state at some
lower temperature); (b) transition from the uniform state
directly to the droplet state. For case (a), from Funif =
FDW we get the critical temperature

TDW =
N(UA + UB)

LD · 2 ln 2
∼ NU0ξ

D

LD
(1)

where we have used the identity CDξ
DU0 ≡ UA + UB =∑

i,j |Ui,j |, with CD being the dimensionless factor for
the volume of a D-dimensional sphere with radius r:
V = CDr

D. Using mean-field theory it is possible to
quantitatively determine TDW [22]. For case (b), from
Funif = Fdr we get

Tdr =
NU0

2 ln(L/ξ)D
(2)

Comparing expressions (1) and (2) we see that if ξ =
const in the thermodynamic limit N,L → ∞ (while
n = N/LD = const.) we always have Tdr > TDW, so that
the droplet phase is always more favorable than the DW
phase. However, if the range of the potential also scales
with the size of the system as ξ ∼ L, then both tran-
sition temperatures scale identically as L → ∞, which
allows for the existence of the DW phase at intermedi-
ate temperatures even in the thermodynamic limit. In22
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FIG. 2. Temperature dependence of the order parameters
for ξ = 6 (left column) and ξ = 3 (right column). (a),(b)
Sublattice imbalance order parameter. (c),(d) Droplet order
parameter. The results shown here and below were obtained
using a lattice of size L×L = 30× 30 filled with N = 9× 103

particles, a number of MC steps Nsteps = 4.5×107, and of MC
sweeps Nsweeps = Nsteps/N = 5× 104 at a given temperature.

we present an exactly solvable toy model for the droplet-
formation phase transition. In general, the qualitative
dependence of the critical temperatures on the interac-
tion range is shown by the black and orange lines in the
phase diagram of Fig. 1.

Our MC simulations for the case Tdr < TDW confirm
the existence of a stable DW phase. In order to trace
the DW transition we use the even-odd sublattice im-
balance order parameter m = (Neven − Nodd)/N ; for
the droplet-formation phase transition we use the order
parameter related to breaking of translational symme-

try of the system Odr =
√

L2

L2−1
∑

i

(
ni

N − 1
L2

)2
, so that

Odr = 0 corresponds to the uniform phase and Odr = 1
to the single-site droplet. For ξ = 6 (corresponding to
the dashed arrow labeled by a in Fig. 1), we indeed ob-
serve both phase transitions with lowering the temper-
ature: a continuous transition from the uniform to the
DW phase at T ≈ 1130U0 and a first-order phase transi-
tion to the droplet phase at lower T ≈ 790U0 on cooling
and T ≈ 1010U0 on heating (Fig. 2). Figure 3 directly
visualizes the sequence of the phase transitions showing
the snapshots of the system at different temperatures.
The initial droplet of size ξ × ξ (Fig. 3c) with lower-
ing the temperature undergoes a crossover to the state
where it becomes localized on one site (Fig. 3d). Note
that even such a localized droplet has a “memory” about
the sublattice of the intermediate DW state it originates
from.

The situation is more complex in the case Tdr > TDW,
where the free-energy arguments above however do not
provide the full picture. There we have assumed one
crucial feature of the droplet, namely that it occupies
a single sublattice, as confirmed already by the numer-
ical simulations shown in Fig. 3. This is due to the
fact that only such a droplet is energetically favorable

da b c
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FIG. 3. Snapshots of the size 13 × 13 of the system 30 × 30,
ξ = 6, at different temperatures. (a) Uniform state: T =
1200U0 > TDW. (b) Density-wave state: Tdr < T = 800U0 <
TDW. (c) Droplet state: T = 700U0 < Tdr. (d) Droplet
collapsed to a single site: T = 50U0 � Tdr, this state is con-
nected to the extended droplet state by a crossover. Particles
are colored in red and blue according to the checkerboard sub-
lattice they occupy. All positions of particles inside a given
cell are equivalent – small random noise in the position was
added only for a better visual representation.

against the uniform phase because of the sign-changing
nature of the interactions. Droplets in our system have
to choose a sublattice, which demonstrates a deep inter-
connection between the formation of a DW and droplets.
This has important implications both for thermodynam-
ics and dynamics. Deferring the discussion of the cool-
ing dynamics to the next section, we report here the re-
sult of our MC simulations for the critical temperature
of droplet formation out of the homogeneous phase for
the case Tdr > TDW. We observe that on cooling the
critical temperature is not given by our estimated Tdr,
but rather by the DW-critical temperature TDW. In the
temperature region TDW < T < Tdr the uniform phase is
still metastable and we observe hysteresis (see Fig. 2c,d
and dashed orange line in Fig. 1). This is because dur-
ing cooling the long-wavelength density fluctuations do
not gain energy (while losing the entropy) due to the
sign-changing nature of the interaction potential. On the
contrary, below TDW one sublattice is spontaneously cho-
sen so that long-wavelength density fluctuations gain en-
ergy and allow for the formation of the droplets. During
cooling the second-order DW-transition thus triggers the
first-order droplet transition. This picture will be con-
firmed by our simulations of the cooling dynamics that
we discuss next.

Cooling dynamics. The fact that droplet formation
is heralded by crystallization into a DW where parti-
cles spontaneously choose a sublattice effectively endows
droplets with an emergent charge (set by the choice of
sublattice) governing their mutual interaction. The latter
has a range ξ and, as a consequence of the commensurate
sign-changing nature, is attractive between the similar-
color charges and repulsive otherwise (see22). The dis-
crete number of possible charge colors is determined by
the number of distinct sublattices, i.e., by the discrete
spatial symmetry which is spontaneously broken by the
DW. Despite our specific example involving a Z2 symme-
try, i.e., two charge types, other numbers of such “color”
charges can be implemented using appropriate geome-
tries (see22 for the discussion of the four-color case). The



4

a b c

x x x

y

FIG. 4. Monte Carlo evolution of the 100 × 100 system with
ξ = 5, instantaneously quenched from the infinite temper-
ature to T = U0. Red and blue dots represent atoms at
even and odd sublattices, respectively. (a) DW state with
several domains (after three MC sweeps). (b) Domains be-
come sharply separated by regions without particles (after ten
MC sweeps). (c) Droplet phase with even- and odd-sublattice
types of droplets (after 50 MC sweeps).

set of droplet colors has a topological nature in the same
sense domain-wall defects in a DW state do. For the
latter, however, only the domain wall separating two in-
finite domains is topologically protected as it cannot be
removed by local perturbations. For finite domains the
protection is reduced to a weaker energetic one – there
is an extensive energetic barrier for shifting a domain to
a different sublattice. In the same fashion, our color-
charged droplets are local objects that can not be topo-
logically protected but are rather energetically protected
by an extensive energetic barrier, as we discuss below.

We consider the case TDW < Tdr (for ξ = 5, L = 100)
and use a rapid quench from a random configuration to
a low temperature T � TDW, tracing then the MC evo-
lution of the state at this fixed temperature (Fig. 4).
Within several MC sweeps particles form domains cor-
responding to even and odd sublattices (Fig. 4a). Be-
cause of the repulsion between particles occupying dif-
ferent sublattices, the domains separate from each other
with the formation of intermediate low-density regions
of width ∼ ξ (Fig. 4b). After the formation of domains,
the attractive interaction between particles within a do-
main becomes efficient and induces self-collapse. Each
domain, depending on its size, decomposes into one or
several droplets, preserving the Z2-color charge of the
initial domain (Fig. 4c).

The droplets can however perform a diffusive motion,
with the diffusion constant being determined by T and
the interaction range ξ. For droplets collapsed to a sin-
gle site (i.e., at T � Tdr), the particle-by-particle flow
of the droplet becomes suppressed by an energy barrier
∼ (U1,1 − U0)N2

0 (where N0 is the number of atoms in
the droplet). However, for droplets localized in a ξ × ξ
region (i.e., at T . Tdr) the barrier is estimated to be not
higher than ∼ (U1,1 − U0)(N0/ξ

2)2 ∼ U0N
2
0 /ξ

6, so that
with increasing ξ the movement of the droplets becomes
possible, while the barrier ∼ U0N

2
0 still protects the total

color charge of the droplets of each species. This protec-
tion is a required feature for an emergent charge: it needs
indeed to be conserved during the dynamics. As antici-

pated, the protection in our case is of an energetic nature
since, as long as N0 is extensive, there are required N0 lo-
cal single-particle steps, each of which is suppressed by an
energy barrier scaling itself with N0. By tuning ξ we can
find a temperature interval where the droplets are mobile
(i.e., can perform a diffusive motion), but with the total
color charge still being conserved. Figure 1 qualitatively
shows the mobility of the droplets in the region of their
stability in the phase diagram.

During the cooling and after droplet formation we thus
deal with an interesting emergent physics: an overall neu-
tral (apart from statistical fluctuations) plasma of color-
charged droplets performing viscous movement and inter-
acting over a range ξ. Despite the fact that the true ther-
modynamically stable state is the single droplet discussed
in the previous section, the droplet plasma eventually
reaches a metastable state with an extensive lifetime. As
droplets with equal color charges merge with one another
the plasma will be eventually composed of two droplets
(one for each color). Since the remaining droplets re-
pel each other, an extensive energy barrier prevents the
system from reaching the single-droplet state.

Implementation with light-mediated interactions. In
the regime of strong coupling where the back-action
between light and matter cannot be neglected, pho-
tons effectively mediate interactions between particles.
Sign-changing interaction potentials appear naturally if
specific electromagnetic modes are selected via driving
and/or confinement. For example, consider an ensem-
ble of neutral atoms inside an optical cavity11. Let us
assume the atomic motion being confined to the x − y
plane transverse to the cavity axis and driving a given
atomic transition by two off-resonant laser beams form-
ing standing waves, so that the laser field can be writ-
ten as Ω(x) = Ω0(cos(2πx̃/λ) + cos(2πỹ/λ)), where

x̃ = (x+y)/
√

2, ỹ = (x−y)/
√

2, and λ is the pump wave-

length which settles the lattice constant to be a = λ/
√

2.
For red detuning from the atomic transition this cre-
ates a two-dimensional optical square lattice potential
V (x) = −V0Ω2(x) (Fig. 1; see also22 for the details of
the microscopic model). In addition, two-photon transi-
tions involving one laser- and one cavity-photon generate
an interaction potential between the atoms which takes
the form U(x,x′) = Ω(x)Ω(x′)f(|x−x′|) [11], where the
envelope function f(r) is determined by the geometry of
the cavity. For a near-planar cavity with only one mode
close to resonance, we have f(r) = const, i.e., a global
interaction with ξ = ∞, while for an infinite number
of resonant modes (for example, a concentric or confocal
cavity) we have f(r) = −δ(r) (completely localized inter-
action). For a realistic case of large but finite number of
nearly degenerate modes realized recently in Stanford15,
f(r) < 0 is typically a monotonously increasing up to
zero function with some characteristic range ξ, exactly
as we have considered in the present work. A modifi-
cation of the described scheme using pump lasers with
orthogonal polarizations also allows us to realize a more
complex case of four color-charge species (see22 for the
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details).
DW phases of atoms in optical cavities so far have been

experimentally studied in the regime where the interac-
tion range ξ is larger than the cloud’s size12–14,16,17,23,24.
Only recent experimental developments using multimode
cavities15,18,19 have demonstrated the tunability of the
range down to scales below typical cloud’s sizes, at least
for the thermal case. Here, we have shown that sign-
changing interactions behave drastically different as soon
as the finiteness of the interaction range is appreciable,
offering generic scenarios for the phenomenon of crys-
tallization which have not been considered so far. The
proposed scheme should be feasible within the current ex-
perimental capabilities: in particular, the magnitude and
the color charge of the droplets can be nondestructively
monitored by imaging the amplitude and the phase of the
scattered light18,19. Since the droplets exist in the clas-
sical (thermal) regime, it is possible to work in a much
larger temperature range and with much bigger atomic
clouds, so that the interaction range is smaller than the
clouds size. For a typical interaction scale U0 of the order
of kHz, the relevant gas temperatures can be estimated
as T ' 103kHz ≈ 50µK. No fine tuning is needed to
observe the droplet plasma phase.

Finally, we emphasize the limits of applicability of the
studied model. The approximation of the lattice gas is
applicable when T � V0, in this case the atoms’ posi-
tions in optical lattice cells are bound by a sphere with
characteristic radius rT ' a

√
T/V0 � a. The quantum

effects can be neglected if nλ3T � r3T , where n is the num-

ber of atoms in one cell and λT = (2π~2/mT )3/2 is the
thermal de Broglie wavelength (for simplicity we take the

frequency of the potential, confining atoms to the z = 0
plane to be the same as for the in-plane optical lattice).

If n > nBEC ∼ T
√
ma2/~2V0 then the nucleation of a

droplet is accompanied by its Bose-Einstein condensa-
tion. Contact repulsion of atoms qualitatively preserves
the described picture. When the droplet formation be-
gins, every optical lattice site occupied of the forming
droplet is being filled up to some maximum density of
particles until the contact hard-core repulsion makes un-
favorable the further increase of the number of atoms
at the site. If ahard is the hard-core radius of the atoms
this happens when the number of atoms in optical lattice
site exceeds nhard ∼ (rT /ahard)3 = (a/ahard)3(T/V0)3/2.
Such a contact interaction thus will stabilize the extended
droplets with respect to the single-site ones.
Summary and outlook. We introduced a novel type

of droplet with the distinguishing property of an emer-
gent color charge. The latter appears in lattice systems
with sign-changing interactions (e.g., in current exper-
iments with atoms in multimode cavities), where the
phenomenon of crystallization becomes deeply connected
with the droplet formation. Future explorations shall in-
volve the study of the quantum regime and in particular
the interplay of zero-point energy, particle statistics, as
well as possible short-range repulsive potentials with the
sign-changing interactions considered here.
Acknowledgments. We are grateful to Julian Leonard,

Roderich Moessner, Farokh Mivehvar, Helmut Ritsch,
and Georgi Dvali for helpful discussions. PK acknowl-
edges the support of the Alexander von Humboldt Foun-
dation and the Ministry of Science and Higher Education
of the Russian Federation.

∗ karpov@pks.mpg.de
1 M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod.

Phys. 75, 121 (2003).
2 G. Chalasinski and M.M. Szczesniak, Chem. Rev. 94, 1723

(1994).
3 A. Frohn, N. Roth, Dynamics of Droplets (Springer-Verlag,

Berlin, 2000).
4 M. Barranco, R. Guardiola, S. Hernandez, R. Mayol, J.

Navarro, and M. Pi, J. Low Temp. Phys., 142, 1 (2006).
5 T. Padmanabhan, Structure formation in the universe

(Cambridge University Press, Cambridge, 1993).
6 G. Dvali, C. Gomez, Eur. Phys. J. C, 74, 2752 (2014).
7 M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and

T. Pfau, Nature 539, 259 (2016).
8 L. Chomaz, S. Baier, D. Petter, M.J. Mark, F. Wächtler,
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I. DENSITY-WAVE PHASE TRANSITION: MEAN-FIELD THEORY

In this Supplementary Section we construct a mean-field theory for density-wave phase transition and find the
temperature dependence of the order parameter. This can be done if the number of atoms inside a D-dimensional
sphere with radius ξ is much greater than one: nξD � 1.

Let nA and nB be the average concentrations of particles per cite at the two checkerboard sublattices A and B.
We define the sublattice imbalance order parameter as

m(T ) =
nA − nB

2n
(S1)

Recall that n = N/LD is average number of particles per site in the uniform phase. We start from the density-wave
phase nA ≈ 2n, nB ≈ 0, so m ≈ 1 and want to describe a transition to the uniform state nA ≈ nB ≈ n, m ≈ 0.

Consider a particle in the effective mean field potential created by other particles. The particle can be treated as
an effective two-level system, where two states correspond to sublattices A and B. The ground-state energy of the
chosen particle is reached when it sits at the sublattice A:

E0 = −nAUA + nBUB (S2)

The particle is in the excited state, when it sits at the sublattice B, then its energy is

E1 = −nBUA + nAUB (S3)

The excitation energy of the particle is

E1 − E0 = (nA − nB)[UA + UB ] = 2nm(T )[UA + UB ] (S4)

Let n0 be the occupation number for the considered particle of sublattice A and n1 for sublattice B, so only one of
n0, n1 is non-zero and n0 + n1 = 1. Now we are dealing with a simple statistical-mechanics problem of a classical
two-level system with Hamiltonian H = n0E0 + n1E1, but with additional self-consistency conditions

〈n0〉 = nA/2n

〈n1〉 = nB/2n (S5)

where average is defined as 〈O〉 = (O0 · e−E0/T + O1 · e−E1/T )/Z, and Z is the single-particle partition function
Z = e−E0/T + e−E1/T . Subtracting these two equations we get the self-consistency condition in a compact form

m(T ) = 2〈n0〉 − 1 (S6)

Substituting 〈n0〉 = e−E0/T /Z to (S6) we get

m =
2

1 + e−2n[UA+UB ]m/T
− 1 (S7)

Figure S1 shows the dependence m(T ), implicitly defined by eq. (S7) (this equation is used in order to construct Fig.
2a of the main text). Expanding its RHS to the first order in m we find

TDW =
N [UA + UB ]

LD
(S8)
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The third-order expansion gives also the mean-field critical exponent m(T ) ∼ |T − Tc|1/2).
Comparing the mean-field value of TDW (S9) with the estimate obtained from the free energy arguments (??) we

see that they indeed differ only by a numerical factor 2 ln 2 ≈ 1.4, with mean-field result giving higher value of the
critical temperature.

We also note that the expression in the square brackets in (S9) is the integrated “staggered” strength of the
interaction potential: Ustag = −∑(−1)ix+iyUix,iy = UA + UB . Therefore the mean-field expression for the DW-
transition critical temperature can be expressed as

TDW =
NUstag
LD

(S9)

FIG. S1. Analytical mean-field temperature dependence of the sublattice imbalance order parameter; m(T ) is implicitly defined
by eq. (S7).

We can estimate the limits of applicability of the mean-field theory using the Ginzburg criterion tG = |TG −
TDW|/TDW ∼ a2/(nξ2), where the Ginzburg temperature TG is the temperature above which fluctuation effects
become important, ξ is the range of the potential. The mean-field theory works better and better with the growing
number of particles in ξ × ξ region, n(ξ/a)2, ultimately becoming exact when the latter quantity goes to infinity.
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II. DROPLET-FORMATION PHASE TRANSITION: EXACTLY-SOLVABLE TOY MODEL AND
NUMERICAL TESTS

In this Supplementary Section we, first, consider a toy model for the droplet-formation phase transition and.
Consider N particles occupying L lattice sites in 1D. If two particles sit on the same lattice site they interact with

energy −U0 < 0 (on-site attraction) and particles at different sites don’t interact with each other. Let ni be the
occupation number of site i. The Hamiltonian of the system is

H = −U0

2

L∑

i=1

ni(ni − 1) ≈ −U0

2

L∑

i=1

n2
i (S10)

Such model is equivalent to the fully-connected (mean-field) Potts model with L states, which possesses a phase
transition from disorder (uniform occupation of all sites) to order (all particles occupy the single site): for L = 2 it is
of the second order and for L > 2 it is of the first orderS1. The exact solutionS1 gives the critical temperature:

Tdr =
L− 2

L− 1

NU0

2 ln(L− 1)
(S11)

In case L� 1 this gives us

Tdr ≈
NU0

2 lnL
(S12)

The simplest model described here works for the case when on-site interaction is much greater then the interaction
at nearest-neighboring sites, which corresponds to the case of infinitely many degenerate modes in the optical cavity.
Alternatively it can be viewed as a coarse-grained model for interaction with range ξ, where one site corresponds a
coarse-grained cell of the size ξ, so we should substitute L → L/ξ. Additional substitution L/ξ → (L/ξ)D trivially
generalizes eq. (S12) to the D-dimensional case, thus we arrive to the formula (2) of the main text.

In order to test eq. (2) of the main text we perform Monte Carlo (MC) simulations of the 1D system with the same
Gaussian potential with the range ξ as we use in the main text. Since eq. (2) works only qualitatively, we check the
linear dependence of Tdr on the number of particles N (Fig. S2a) and the dependence of the form Tdr = A/ ln(B/ξ)
(Fig. S2b).

(a) (b)

FIG. S2. Dependence of the droplet-transition temperature on Tdr on a) the number of particles N ; b) the interaction range
ξ. a) Blue dots are the data points obtained by MC simulations, orange line is the linear fit. Simulations were performed for
1D system with L = 100, ξ = 5. b) Orange curve shows fit according to eq. Tdr = A/ ln(B/ξ), black line shows for comparison
the best linear fit Tdr = mξ + b. While it is hard to distinguish log vs linear fits, the concave character of the function can
be clearly seen. MC simulations were performed for 1D system of size L = 300, number of particles N = 3000. Here Tdr is
measured in units of U0; ξ and L are measured in the units of a. Standard deviations of the measurements are smaller than
the size of the symbols.
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III. SIMULATION OF INTERACTION OF COLOR-CHARGED DROPLETS

(a) initial configuration (b) after 500 MC sweeps (c) after 600 MC sweeps (d) after 1000 MC sweeps

(e) initial configuration (f) after 100 MC sweeps (g) after 1000 MC sweeps

FIG. S3. Interaction of droplets: attraction of equally charged droplets (upper panel) and repulsion of oppositely charged ones
(lower panel). For each case MC evolution at a constant temperature is shown. Parameters of the simulation: L = 100, ξ = 10.

IV. DERIVATION OF THE LIGHT-MEDIATED INTERACTION OF ATOMS AND MAPPING TO THE
CLASSICAL LATTICE GAS PROBLEM

FIG. S4. Geometry of the system. Cavity axis is parallel to z; both lasers and the atomic gas are in the xy plane.
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In this Supplementary Section we describe the setting we propose for the experimental realization of the interaction
we use in the main text. We consider an ensemble of atoms in a multimode cavity pumped transverse to the
cavity axis by a pair of lasers with a frequency ωL and mode functions Ω(r) = ezΩ(r) ≡ ez(Ω1(x̃) + Ω2(ỹ)) ≡
ez(cos(2πx̃/λ) + cos(2πỹ/λ)) (here x̃ = (x − y)/

√
2, ỹ = (x + y)/

√
2, Fig. S4). The cavity possesses (nearly)

degenerate modes with frequencies ωcα (where α is the mode index). The atoms are treated as two-level systems with
the level splitting ωA and the transition dipole moment connecting the ground and excited state being parallel to
ex+ez (spatial isotropy can be broken by external magnetic field), which allows to couple the atomic dipole transitions
to both pump and cavity modes. For more realistic experimental settings with many-level atoms such coupling can
be achieved by employing vector polarizability of the atomsS2.

For low density of atoms we can neglect their contact interaction and describe the light-mediated interaction in a
multimode cavity by the following effective actionS3:

S = Sat + Sint + Sem (S13)

Sat =

∫
drdτ

[
Ψ∗g(r, τ)

(
∂τ −

~∇2

2M
− µ

~

)
Ψg(r, τ) + Ψ∗e(r, τ)

(
∂τ −

~∇2

2M
− µ

~
+ ∆a

)
Ψe(r, τ)

]
(S14)

Sint =

∫
drdτ

[∑

α

igα(r)Ψ∗e(r, τ)Ψg(r, τ)aα(τ) + iΩ(r)Ψ∗e(r, τ)Ψg(r, τ) + h.c.

]
(S15)

Sem =

∫
dτ
∑

α

a∗α(τ)(∂τ + ∆cα)aα(τ) (S16)

Here Ψg and Ψe are the bosonic second-quantized fields corresponding to the ground and excited states of the atoms
with mass M . We work in the reference frame rotating at the laser frequency ωL and denote ∆a = ωA − ωL,
∆cα = ωcα − ωL. gα(r) = g0Ξα(r) where g0 is the atom-cavity coupling strength and Ξα(r) is the normalized mode
function of the cavity mode α. Integrating out excited state Ψe and cavity modes aα we get the following effective
action

Seff[Ψg,Ψ
∗
g] =

∫
drdτΨ∗g(r, τ)

(
∂τ −

∇2

2M
+ (V (r)− µ)

)
Ψg(r, τ)−

+

∫
dτdrdr′|Ψg(r, τ)|2U(r, r′)|Ψg(r

′, τ)|2 (S17)

The external optical potential V (r) and the cavity-mediated interaction U(r, r′) are given by

V (r) = − 1

∆a
|Ω(r)|2 (S18)

U(r, r′) = − g2
0

∆2
a

Ω∗(r)Ω(r′)
∑

α

Ξ∗α(r)Ξα(r′)
∆cα

(S19)

We consider the case of red-detuned laser frequency with respect to both atom splitting and to cavity nearly degenerate
modes ∆a,∆cα > 0. In this case the atoms are attracted to maxima of |Ω(r)|2; the interaction is attractive at small
distances r′ → r i.e. U(r, r) < 0, which creates a possibility for a peculiar droplet-formation phase transition.

Mapping to a classical lattice-gas problem. We consider the classical limit of the action (S17), which bounds of
applicability we find below. For a large number of particles N � 1 we can use the canonical ensemble (N = const)
instead of the grand canonical one (µ = const), and describe the system of atoms by a classical Hamiltonian H =∑
i V (ri) +

∑
i,j U(ri, rj).

We study the case when the external optical potential V confines all the particles to the plane z = 0. For the
pump mode function chosen as Ω(x) = Ω0(cos(2πx̃/λ) + cos(2πỹ/λ)), the external optical potential (S23) becomes
V (x) = −V0(cos(2πx̃/λ)+cos(2πỹ/λ))2, with V0 = Ω2

0/∆
2
a. The interaction potential (S24) takes the form U(x,x′) ∼

−(cos 2πx̃
λ + cos 2πỹ

λ )(cos 2πx̃′

λ + cos 2πỹ′

λ ), see Fig. 1. The interaction potential U(x,x′) is sign-alternating and
attractive at short distances, as considered in the main text. For V0 � |U | it is convenient to define the lattice
version of the interaction potential Ui,j = U(0, ia1 + j a2) where a1,a2 are the basis vectors of the optical lattice,

with |a1| = |a2| = a = λ/
√

2 (Fig. 1a).
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V. EXPERIMENTAL REALIZATION AND RESULTS FOR THE 4-COLOR CASE.

In this Supplementary Section we show how to modify the experimental scheme in order to have 4 types of color-
charges and present the results of the simulations in this case.

We consider a pair of transverse to the cavity axis lasers with orthogonally-polarized pump modes Ω(r) = (eyΩ1(x)+
exΩ2(y)) ≡ (ey cos(2πx/λ)+ex cos(2πy/λ)), with each polarization being coupled to one of the two degenerate excited
states Ψe,1, Ψe,2, which scatter the light into two families of orthogonally-polarized cavity modes aα,1, aα,2 degenerate
with respect to polarization. Analogously to the previous section we have

Sat =

∫
drdτ


Ψ∗g(r, τ)

(
∂τ −

~∇2

2M
− µ

~

)
Ψg(r, τ) +

∑

i=1,2

Ψ∗e,i(r, τ)

(
∂τ −

~∇2

2M
− µ

~
+ ∆a

)
Ψe,i(r, τ)


 (S20)

Sint =

∫
drdτ


i
∑

α,i

gα(r)Ψ∗e,i(r, τ)Ψg(r, τ)aα,i(τ) + i
∑

i=1,2

Ωi(r)Ψ∗e,i(r, τ)Ψg(r, τ) + h.c.


 (S21)

Sem =

∫
dτ
∑

α,i

a∗α,i(τ)(∂τ + ∆cα)aα,i(τ) (S22)

After integrating out excited state Ψe and cavity modes aα we get the effective action (S17) with the external and
interaction potentials

V (r) = − 1

∆a

(
|Ω1(r)|2 + |Ω2(r)|2

)
(S23)

U(r, r′) = − g2
0

∆2
a

(Ω∗1(r)Ω1(r′) + Ω∗2(r)Ω2(r′))
∑

α

Ξ∗α(r)Ξα(r′)
∆cα

(S24)

Periodicity of the external potential V and the sign-changing nature of the interaction U is shown in Fig. S5. DW-state
here breaks the translational Z2 × Z2 symmetry.

FIG. S5. Contour plot of the external potential V (x, y) (blue contours) and signs of the interaction potential U(0, 0, x, y)
(+,−, 0) for the 4-color case. The contours encircle the local minima of the potential V . The interaction potential U favors
the formation of density-wave corresponding to one of the four sublattices A, B, C, D (marked by red, green, black, and blue
colors) and endows the droplets with Z2 × Z2 color-charge.

Figures S6-S8 show the results of the numerical simulations for the Z2 × Z2 case analogous to Figures 3-5 for Z2

case presented in the main text.

∗ karpov@pks.mpg.de
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(a) (b)

(c) (d)

FIG. S6. Temperature dependence of the order parameters for the 4-color case for ξ = 8.5 (left panel) and ξ = 5 (right panel);

L = 30. (a,b) Z2×Z2-sublattice imbalance order parameter:
√

4
3

∑
α(Nα

N
− 1

4
)2, where Nα is the number of particles occupying

sublattice α = A,B,C, or D. (c,d) Droplet order parameter.

(a) uniform (b) DW (c) droplet

FIG. S7. a) Uniform, b) DW, and c) droplet states for Z2 × Z2 case for system 30 × 30 with ξ = 7.5. Sublattice coloring is the
same as in Fig. S5.
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(a) (b) (c)

FIG. S8. Monte Carlo evolution of the 100×100 system with ξ = 5, instantaneously quenched from the infinite temperature to
T = U0. Red, blue, green, and blacks dots represent particles at four sublattices. a) DW state with several domains (after 10
MC sweeps); b) Domains become sharply separated by regions without particles (after 50 MC sweeps); c) Droplet phase with
all the droplets collapsed to one site (after 300 MC sweeps), this state is then preserved for an indefinite time.


