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We introduce the Loschmidt amplitude as a powerful tool to perform spectroscopy of generic many-body wave
functions and use it to interrogate the wave function obtained after ramping the transverse field quantum Ising
model through its quantum critical point. Previous results are confirmed and a more complete understanding of
the population of defects and of the effects of magnon-magnon interaction or finite-size corrections is obtained.
The influence of quantum coherence is clarified.
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Controlling quantum systems by application of tailored
light pulses or other nonequilibrium protocols is established
in quantum optics [1] and is rapidly growing in importance in
condensed matter physics [2–4]. The goal is to design proto-
cols that change the behavior of a system in some desired way,
thereby accessing new regimes of behavior not accessible in
equilibrium. Early applications were to few-body systems, but
an important current issue is to extend the control to the many-
body regime. A crucial issue, more severe in many-body sys-
tems than in few-body ones, is that when a system is exposed
to an external perturbation, it will in general be excited out of
its ground state, so that the distribution function as well as the
Hamiltonian changes. Typically, distribution function changes
lead after relatively short times to quasithermal states, which
are often undesirable.

A tailored light field may be thought of as producing a
time-dependent Hamiltonian H (t ). As the time over which
H varies becomes longer and longer with respect to the
basic energy scales of the system (such as a gap in the
excitation spectrum), one expects that with increasing prob-
ability the system remains in the instantaneous ground state
of the Hamiltonian at time t . Many-body Hamiltonians often
exhibit a dense spectrum of levels, making the applicability of
these adiabatic-theorem ideas less obvious. One particularly
interesting case is the “Kibble-Zurek” situation of a system
tuned across a quantum critical point [5–10]. The gap-closing
at criticality means that the adiabatic theorem is necessarily
violated, leading to the creation of excitations.

These simple considerations highlight the need for theo-
retical methods of assessing the number and nature of the
excitations created by a nonequilibrium drive. One way of
characterizing a system is wave function spectroscopy: Given
a wave function |�〉 at a specific time t�, one selects an
eigenbasis |n〉 [e.g., the eigenstates of H (t = t�)] and then
constructs the corresponding density matrix ρ̂ with elements

ρnm = 〈n|�〉〈�|m〉. For quantum many-body systems, how-
ever, ρnm cannot be computed straightforwardly due to the
prohibitively large size of the Hilbert space.

In this Rapid Communication, we present a powerful
method for analyzing nonequilibrium wave functions which
allows one to efficiently determine the spectral content of a
given state without explicitly constructing eigenfunctions or
finding eigenvalues. Our approach is based on the “Loschmidt
amplitude” (its absolute value square is the Loschmidt echo
[11]), which is familiar from quantum optics [12,13] and
which has been employed in the pioneering work of Silva
[14] to characterize the work done by the application of a
nonequilibrium perturbation [15] and by Pandey et al. to
analyze many-body localization [16]. We apply the method
to the one-dimensional transverse field Ising model tuned
through the order-disorder transition, uncovering new results
that point to the importance of quantum coherence in Kibble-
Zurek physics.

Methods. Consider a closed system with a wave function
|�(t )〉 obtained by the forward time evolution of some initial
state |�0〉 with respect to a Hamiltonian H (t ). Now choose a
time t� and form

L(t�, ω) =
∫ ∞

−∞
dt ′〈�(t�)|ei(H (t� )−E0−ω)t ′ |�(t�)〉. (1)

Writing the integrand in terms of the eigenvalues En

and eigenstates |n〉 of H (t�) gives the desired projection:
L(t�, ω) ∼ ∑

n |an|2δ[ω − (En − E0)], where an = 〈n|�(t�)〉.
If the time integral in Eq. (1) is taken over a finite but large
tend, then the δ peaks are broadened (and one finds the usual
Gibbs ringing) and contributions from energetically nearby
eigenstates |n〉 with En ≈ E contribute to the same peak. In
this sense, tend restricts the frequency resolution of the wave
function spectroscopy. If the spectrum is dense on the scale
of this frequency resolution, then L ∼ |a(ω)|2ρ(ω), and we
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effectively sample the appropriate “state density” ρ(ω) and
corresponding “occupation statistic” |a(ω)|2.

The key advantage of the Loschmidt amplitude is that
the object ei[H (t�]−E0−ω)t ′ |�(t�)〉 can be calculated efficiently
by several methods. Here, we employ the density matrix
renormalization group, which is an accurate numerical tool to
study the equilibrium and nonequilibrium many-body physics
of interacting one-dimensional systems. We use a real-time
algorithm to directly evaluate Eq. (1) (see Refs. [17–20] as
well as [21]). For the model defined below in Eq. (2), we use
Jtend = 120 everywhere, which corresponds to a frequency
resolution of �ω/J ≈ 2π/240 ≈ 0.026.

Transverse field Ising model. As an application, we con-
sider the transverse field Ising model

H (J, g) =
N−1∑
i=1

−Jσ z
i σ z

i+1 +
N∑

i=1

gσ x
i , (2)

where σ
x,y,z
i denote Pauli matrices on site i. At g = 0, the

ground state of the model spontaneously breaks Z2 spin
symmetry, yielding long-ranged ferromagnetic order with mo-
ments aligned to the ±z direction and a gap to spin excitations.
For 0 � g � J , the model remains ordered, but the spins begin
to cant into the x direction and the z component of the magne-
tization and the excitation gap concomitantly decrease. gc = J
is a quantum critical point with gapless excitations, and for
g > J the system is again gapped, with the average spin point-
ing in the negative x direction, and the Z2 symmetry unbroken.

We chose this model as it can be solved exactly [22–24];
the states are conveniently described [23] in a fermion rep-
resentation, with the fermion creation operator related to the
spin raising operator by a Jordan-Wigner string. At g > J
the states are classified into sectors labeled by number of
fermions, M. The lowest energy state in a given sector has
energy 2M(g − J ), momentum k = 0 and is the M particle
filled Fermi sea (note that for a finite system with N sites and
periodic boundary conditions the Jordan-Wigner factor shifts
momenta so the allowed fermion momenta are odd integers
times π/N for even number of particles and even integers
times π/N for odd number of particles). Roughly, this ground
state corresponds to exciting M k = 0 spin waves. The higher
energy states in the M particle sector are a continuum of
particle-hole excitations above the M particle Fermi sea and
correspond roughly to exciting k �= 0 spin waves

Here, we prepare the system in one of the two g = 0 fer-
romagnetic ground states at time t = 0 and for t > 0 increase
g linearly with a “velocity” v up to value gend greater than
unity, then hold g at this value for a waiting time twait, and
then decrease it to zero. This “double ramp” is shown in the
inset to Fig. 1, and the equation for g(t ) is given in [21]. We
also consider a “single ramp” in which g is increased to a final
value and then held indefinitely (by twait → ∞).

Single ramp through QCP. Figure 1 presents the average
spin expectation values Sx,z = 〈σ x,z

N/2〉/2 for a slow, single
ramp through the quantum critical point (QCP) and N →
∞. As g is gradually increased away from g = 0, at first
Sx,z remain indistinguishable from the ground-state value
calculated using the instantaneous Hamiltonian at time t , as
expected from the adiabatic theorem [25,26]. However, when

FIG. 1. Sz and Sx for a slow linear ramp through the QCP
of the quantum Ising chain (v/J = 0.02, twaitJ → ∞, gend/J = 2,
N → ∞). The dashed green vertical line indicates the time when
g(t ) = gc = 1. The black dashed curves show the corresponding
ground-state expectation values with respect to the instantaneous
Hamiltonian. Inset: Example of a temporal profile of g(t ) which
governs the quench (gend = 2J , v/J = 0.01, twait = 3/v). The QCP at
g = gc = 1 (dashed black horizontal line) separates the equilibrium
ordered phase [red part of g(t )] from the disordered phase [orange
part of g(t )].

g approaches the critical value g = 1 (shown as a vertical
dashed line), the adiabatic assumption breaks down; both Sx

and Sz begin to deviate from their instantaneous values and for
g > 1 retain a “footprint” of the QCP crossing. Sx saturates to
a constant value slightly smaller than the ground-state one; the
difference reflects the density of defects created as the system
is tuned through the QCP and goes to zero as the ramp speed
decreases [27–29]. More intriguingly, Sz exhibits coherent
oscillations around the equilibrium value Sz = 0 which only
decay to zero at very long times. Coherent oscillations of the
magnetization were not previously anticipated, and we now
turn to the Loschmidt methods to gain a better understanding.

Panel (a) of Fig. 2 presents the Loschmidt amplitude
L(t, ω) at different points during the evolution of g from g = 0
to g = 2J , against ω for different t [parametrized here by
the corresponding value of g(t )]. For times corresponding to
g(t ) < J , the evolution is adiabatic, and the probability for
being in any state except the ground state associated with
g(t ) is negligible. In the immediate vicinity of the critical
point (slice in red), the spectrum is more complex, with a
large number of low-energy states excited. We note at the
QCP g/J = 1, the decay of L(ω) follows roughly a strongly
decaying power law ∼ω−8 if the ramp speed is slow [see
Fig. 2(c)]. For larger g > 1, the situation simplifies again, and
only a very small number of energies have a non-negligible
contribution to the wave function. These states are at energies
corresponding closely to integer multiples of the lowest, zero-
momentum excitation energy � = 2|g − J| (dashed colored
lines) [22–24] (for an analysis of the width of the peaks, which
scales with v, see [21]).
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(a)

(b) (c)

FIG. 2. Wave functions spectrum L(ω) for a single forward ramp
with twaitJ → ∞ and N = 100. (a) L(ω) for fixed v = 0.02J and dif-
ferent gend. The evolution is adiabatic for gend < gc = 1; the spectrum
shows a single peak corresponding to the ground-state energy ω = 0
(dashed red line). After crossing the QCP, the wave function contains
a superposition of eigenstates which are strongly localized in energy
around integer multiples of the gap � = 2|gend − J| (colored dashed
lines). The slice for gend = gc = J is highlighted in red. (b) L(ω)
for fixed v = 0.02J and gend/J = 1.4. Dashed vertical lines indicate
ω = 2|gend − J|M; yellow and green horizontal bars show the width
of the first and second magnon band, respectively. (c) L(ω) for a
ramp that stops at the QCP gend/J = 1.0 at different v. The dashed
line shows a ∼t−8 power law.

Panel (b) of Fig. 2 examines in detail the Loschmidt
signal at a time corresponding to g = 1.4J . Only five states
are present with any noticeable weight (the broadening is
mainly due to the finite frequency resolution �ω; see [21]).
The widths of the first and second magnon bands are shown
as yellow and green bars, respectively; it is clear that the
states appearing in the Loschmidt signal sit at or very near to
the lowest, zero-momentum energies of these bands; loosely,
states with M k = 0 magnons. The interpretation of the mag-
netization in terms of the wave function spectrum is deferred
to [21].

We find that for gend not too close to 1, the wave function
spectrum collapses L(ω) ≈ L( ω

2|g(tend−J| ) if the frequency is
plotted in units of 2|gend − J| (not shown). It is then useful
to define the excitation probability in the bottom ωM of the
Mth magnon band by P(M ) = 1

2π

∫ ωM+2�ω

ωM−2�ω
L(ω)dω. Panel

(a) of Fig. 3 shows P(M ) for different speeds and demon-
strates that the distribution can be fitted perfectly by a bi-
nomial form P(M ) = Y !/(Y − M )!/M!pM (1 − p)Y −M with,
crucially, a noninteger Y . The defect creation probability p
is found to be almost independent of ramp speed v and
system size N . Y , which gives the mean number of defects
created, scales as the square root of the ramp speed and is

(a) (b)

FIG. 3. (a) The distribution P(M ) of the number of states at ex-
citation energy 2M(g − J ) fitted to the pseudobinomial distribution
P(M ) = Y !/(Y − M )!/M!pM (1 − p)Y −M (gend/J = 2, Jtwait → ∞,
different speeds v). (b) Fitted values of p and Y as functions of ramp
speed v for different gend. Filled symbols are for N = 100 and open
ones for N = 50 (p for the latter not shown, which are on top of
the N = 100 data). The data approximately collapses on single lines.
Dashed lines show a power law Y ∼ v1/2 (with a relative factor of 2
in the prefactor) as well as p ∼ C.

linearly proportional to system size, consistent with a constant
defect creation density [see Fig. 3(b)]. The Y ∼ √

v relation
is consistent with Kibble-Zurek scaling [5–9] pY ∼ vdν/(1+νz)

if the known values d = z = ν = 1 are used. From the exact
solution in Ref. [30], albeit for a different initial state, the
average number of defects created during the ramp can be
compared. We find that also the prefactor of pY agrees within
the 1% regime with the analytic prediction of 1/2π [30]. The
ramp creates quantum defects, each with independent proba-
bility p per unit time and per unit length, with the dependence
on the ramp velocity only via the expected value of the number
of defects pY . Thus we see that with the Loschmidt-amplitude
spectroscopy we can extract the distribution of defects. We
emphasize that the method is not restricted to models that
are exactly solvable, and indeed the method may be used

(a)

(b)

(c)

FIG. 4. Finite-size dependence of the wave function spectrum:
Zoom-in of (a) the one-magnon as well as (b) the two- magnon en-
ergy regime. Solid vertical lines show the exact position of the lowest
one- or two-magnon states. Dashed vertical lines in (b) indicate twice
the one-magnon line of (a). (c) Time evolution of the spin expectation
value Sz. Wave function spectroscopy allows for an analytic estimate
for the beat frequency (see [21]) and for N = 50 from (b) predicts
that the first knot of the quantum beat should lie in the yellow shaded
region (in agreement with the numerical data). The other parameters
are as in Fig. 2(b).
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(a)

(b)

(c)

FIG. 5. Results for the double ramp. (a) Dynamics of Sz(t ) for
a finite vtwait = 0.4 (and v = 0.02J , gend = 2J , N → ∞). After the
second ramp is complete, Sz(t ) reaches a steady-state value. (b) The
asymptotic value of Sz(t → ∞) for different waiting times twait .
The other parameters are as in (a). (c) Wave function spectrum L(ω)
after the second ramp for two vtwait = 0.0 (red) and vtwait = 0.4
(yellow). The other parameters are the same as in (a), but choosing
N = 100. Shaded regions show fits to binomial distributions as in
Fig. 3. The inset shows the fitted Y p in dependency of the waiting
time (including more twait than shown in the main panel), which is
the average number of defects.

to project a given wave function onto the eigenstates of any
Hermitian operator with spectrum bounded below (as chosen
in this work for benchmarking purposes).

It is important that Fig. 1 was obtained in the thermody-
namic limit N → ∞, while the wave function spectroscopy
can only be performed on finite (yet large) systems. The result
that the lowest-energy state of each sector is 2M|g − J| holds
only in the infinite system size limit. In finite systems, these
excitations are not at perfect integer multiples of each other
[23]. In Figs. 4(a) and 4(b), we show a zoom-in of the first
two peaks of the wave function spectrum for two different
system sizes as well as the exact excitation energies (vertical
solid lines) [22–24]. For comparison, dashed lines in (b) show
twice the value of the solid lines in (a). Observables such
as Sz, which connect eigenfunctions whose magnon numbers
M differ by one, thus display a superposition of oscillations
at frequencies which are determined by the difference of the
energies of the lower edges of two consecutive magnon bands
after the ramp. These frequencies are very close, so one finds
a beating signal in Sz. The beat frequency can be estimated
analytically (see [21]); the approximated time interval (yel-
low shaded area in Fig. 4) agrees well with the numerical
data. Note that in more generic models, frequency shifts
and quantum beats can also be induced by magnon-magnon
interactions (in this sense we take finite N as a proxy to
more general magnon-magnon interactions). This highlights
the importance of coherence on the dynamics of observables
after a sweep through a QCP at finite system size and/or finite
magnon-magnon interaction [31]. These results are of direct

experimental relevance as current experiments on quantum
simulations are performed at sizes of N ∼ 20–60 [32].

Ramp through QCP and back. Finally, we consider the
case of two slow ramps, one forward through the QCP as
described above and then one backwards, with a finite waiting
time twait in between [see Fig. 5(a)]. The magnetization Sz(t )
shows long-lived oscillations after the first ramp but becomes
time independent for t > tend [see Fig. 5(a)], which one can
easily understand from the fact that σ z

i commutes with H
for g = 0. In Fig. 5(b), we demonstrate how the value of
the magnetization for t > tend can be tuned by adjusting the
waiting time. The asymptotic value mimics the oscillations
and decay of Sz obtained during the waiting time, and the
residual magnetization can hence be frozen in by the second
ramp. Even after the second ramp is complete, the defects
frozen into the final state approximately follow a binomial
distribution [Fig. 5(c)]. The fit parameters p and Y —and
thus the defect distribution—can be controlled by tuning the
waiting time. This implies that the phase differences in the
pure wave function after the first ramp play an important role
for the dynamics of crossing the QCP a second time. The
fast dependence of Y p on twait [inset to Fig. 5(c)] agrees with
the main oscillation 2|gend − J| found during the time when
g > 1.

Summary and outlook. We showed that quantum coher-
ence can have prominent consequences for the dynamics
encountered after a ramp through a QCP. Most notably, these
consequences can manifest in a beating signature of the post-
ramp dynamics of a given observable, which can be analyzed
by virtue of the wave function spectroscopy we introduced.
This tool allows one to interrogate the many-body spectrum of
large interacting systems and thus, e.g., characterize magnon-
magnon interactions. We also illustrated how coherence in the
quantum dynamics affects observables after a second ramp
through the same QCP.

The established wave function spectroscopy could yield
valuable insights into many other physical situations as well.
For example, the extension to infinite temperature calcula-
tions (see [21]) seems promising to obtain a more complete
understanding of the quantum many-body spectrum. Another
avenue of future research could include a study of many-body
localized systems after a quantum quench [16], where energy
statics are routinely used to classify the mobility edge. At the
same time one could apply this tool to obtain a more complete
characterization of quantum defects in the fields of quantum
computing and counterdiabatic driving.
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