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RAMP PROFILE

Here we give the equation describing the time dependent profile of ¢g(t) used in the main text

vt t € (0, gena /]
g(t) = Jend te (gend/vv gend/v + twait] . (1)
dend - U(t - twait) te (gend/v + twait, 29end/v + twait)

This ‘double ramp’ is also depicted in the inset to Fig. 1 of the main text.

DMRG

At time ¢t = 0, we prepare one of the ferromagnetic ground states of the model, which for g(¢ = 0) = 0 can be
done analytically. We then employ a real time evolution algorithm (see Sect. 7 of Ref. [I) to determine |¥(¢*)) via a
propagation from ¢t = 0 to ¢ = t* with the time-dependent Hamiltonian H(t); subsequently, i(H (") = Eo)t’ | (t%)) is
calculated as a function of ¢’ using a time-independent H (¢*). We employ a fourth-order Suzuki-Trotter decomposition
with JAt = 0.02 chosen small enough to give converged results [2]. The numerical cost of this method scales in
an exponential fashion with the entanglement in the system. The control parameter encoding the entanglement
growth (and with it numerical cost) is the so-called bond-dimension. In our simulations the bond dimension is
dynamically increased during the real time evolution such that we obtain numerically exact result. For slow ramps
the entanglement growth is slow allowing us to perform simulations up to very large times, before the bond-dimension
becomes excessively large.

Additionally, we can obtain a trivial factor of two in the achievable time scale [3] for tenq by calculating the norm
of the state [¥’) = e/ =Eo)t"/2 | (1*)) instead of the overlap of e/H=Eo)t" | @ (*)) with |¥ (¢*)).

FINITE TEMPERATURE GENERALIZATION

It is straightforward to extend the presented ideas to nonzero temperature. Let us assume we have a canonical
ensemble

p=e )7 (2)

The generalization of the wavefunction spectrum

1 , . ,
L(t') = > Tr [e—l(H—Eo)tp:| _ Ze—ﬁEn—’L(ET,,—Eo)t (3)
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FIG. 1. (a) and (b) Wavefunction spectrum L(w) around frequencies corresponding to A and 2A for gena/J = 1.4, Jtwait — 00
and different speeds v.
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FIG. 2. (a) Dynamics of S*(t) for different gena and v = 0.01¢end, twait — 00 and N — co. The dynamics at large times fit
well to a damped harmonic oscillation C exp(—yt) sin(wt + §). (b) and (c) show the fitted parameters v and w in dependence
of genda. In (c) the dashed black line is the function f(x) = 2|gena — J|.

now yields the Fourier transform

L(w) = % S e (w = (B, — Bo)) TE e p(w). (4)

The 8 — 0 limit thus allows to access the state density p(w) directly. This is an important quantity and it can, e.g.,
be used to identify gaps in the many-body spectrum or tell us about the distribution of eigenenergies (as is often used
to classify many-body localized systems). The 8 > 0 case allows to analyze where in the spectrum of H the energy
is distributed and allows to analyze how thermal a state looks after, e.g., a quench or ramp by a rigorous comparison
of the entire spectrum.



FIG. 3. Wavefunction spectrum L(w) during the second (backward) part of the ramp at times parametrized by g(¢) = g taking
the second time g(t) reaches g. vtwait = 0.0 and the other parameters are as in Fig. 5 of the main text. The gap excitation
energy w = 2|g — J|m is given as colored dashed lines. The slice for gstop = gc = 1 is highlighted in red.

OBSERVABLES FROM WAVEFUNCTION SPECTROSCOPY

Here we analyze the wave function spectrum in more detail and connect to results obtained by the Kibble-Zurek
intuition. We observe that the nonequilibrium probe g(t) (being spatially uniform) can only create states of total
momentum k£ = 0. In the one spin-flip sector, the only such state is the minimum energy magnon. In the multi-
spin-flip sectors, there is a continuum of states with zero total momentum. However, while present in principle, the
‘multi-magnon continuum’ in practice makes a remarkably small contribution. To see this we present in panels (a)
and (b) of Fig. |l an expanded view of the Loschmidt peaks in the one- and two-spin flip sectors for different ramp
speeds. The one-magnon peak is symmetric, with width given solely by the frequency resolution. In the two spin
flip sector the fastest ramp shows a weak asymmetry, with slightly more weight on the high energy side; This means
that for not too slow ramps a small density of "k plus —k” two-magnon excitations are created, whose density can be
controlled by the speed of the ramp.

In order to interpret the magnetization oscillations in terms of these findings, we express S*(t) in the eigenstates
{kj,m;}) of H(t > tena):

. N i(Egg.m—Erp t
CHOE DS a{kjmj}a{kzml}e( thym) =Bty
{kj m;,mui .k}

(s} 3 o ). )

If a continuum of states were important, then the different terms in the sum would dephase, leading to an exponential



decay of S*(t). However, the Loschmidt analysis shows that the only states that contribute are a small number of
zero-momentum states precisely at the bottoms of the few-magnon bands. Therefore, the dominant contribution is
the single state that is at the bottom of each m-magnon band. Including only this contribution we can replace the
sum over all m-magnon states {m} in Eq. by a sum only on the lowest-lying states (k = 0), obtaining

S*(t) = § U om0 ot g€ Erm k=0 = Emt o)t

m,m’

(m,k = 0| Zaf |m’k' = 0) (6)

We can view the bottom of the magnon band states as quantum defects in the wave function, induced by the ramp.
The energy spacings between these are integer multiples of 2|genq — J| (compare Fig. 2 (b) of the main text). Noting
that in the given basis, o7 is the product of sums of raising and lowering operators on adjacent sites and thus connects
eigenfunction whose total magnon numbers M differ by one, this directly explains the oscillations with frequency
2|g — J| depicted in Fig. 1 of the main text. The density of these quantum defects in the ground-state wave function
(coherent superposition of higher-excited states) can be read off by determining their density ~ |a,,|?, which are the
height of the peaks in the wave function spectrum L(w).

ESTIMATION OF BEAT FREQUENCY FROM FINITE SIZE

From the frequency difference found in the wave function spectrum at finite IV, we can estimate the first knot in
the signal due to the beating in the signal. Taking N = 50 and concentrating only on the three lowest magnon-
bands, which captures most of the weight of the wave function after performing a ramp as considered in Fig. 3 of the
main text, a knot should appear around times At = to + 7/(|AEL  enon — AEDagnonl); Where to has to be estimated
somewhere between the time where the ramp crosses the QCP and the time it is completed. In more generic situation

where magnons interact a similar estimate should be possible.

ADDITIONAL DATA FOR S5*(t)

The oscillatory dynamics in S*(t) are superimposed by a dephasing mechanism which stems from the finite width
of the wavefunction spectrum. To disentangle the beating phenomena identified at finite N in the main text from
the dephasing we next concentrate on the dynamics as N — co. The wavefunction spectrum would suggest that at
N — oo the differences in energy of the lower m-magnon bands align perfectly giving rise to a dominant frequency of
Q = 2|g — J| in the dynamics of S*. The damping of these dynamics at least at g not too close to 1 via dephasing is
given by the width in energy of the m-magnon peaks themselves, which reduces as the ramp speed is lowered. Indeed
all of these prediction from the wavefunction spectrum are confirmed in the dynamics as depicted in Fig. The
dephasing is found to scale linearly in v such that quantum coherence in the wavefunction can be observed on ever
larger time scales as the ramp is made slower (compare Fig. 2| (b)).

WAVEFUNCTION SPECTRUM DURING THE DOUBLE RAMP

Fig. |3| shows the wavefunction spectrum during the time ¢ of the backward ramp parametrized by ¢(t) = g for the
second part of the ramp for the same parameters as in Fig. 5 of the main text.
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