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ABSTRACT

According to Jacob Bernoulli, even the `stupidest man' knows that the larger
one's sample of observations, the more con®dence one can have in being close to
the truth about the phenomenon observed. Two-and-a-half centuries later,
psychologists empirically tested people's intuitions about sample size. One group
of such studies found participants attentive to sample size; another found partici-
pants ignoring it. We suggest an explanation for a substantial part of these
inconsistent ®ndings. We propose the hypothesis that human intuition conforms
to the `empirical law of large numbers' and distinguish between two kinds of
tasks Ð one that can be solved by this intuition (frequency distributions) and one
for which it is not su�cient (sampling distributions). A review of the literature
reveals that this distinction can explain a substantial part of the apparently
inconsistent results. *c 1997 by John Wiley & Sons, Ltd.

KEY WORDS sample size; law of large numbers; sampling distribution; frequency
distribution

Jacob Bernoulli, who formulated the ®rst version of the law of large numbers, asserted in a letter to
Leibniz that `even the stupidest man knows by some instinct of nature per se and by no previous
instruction' that the greater the number of con®rming observations, the surer the conjecture
(Gigerenzer et al., 1989, p. 29). Two-and-a-half centuries later, psychologists began to study whether
people actually take into account information about sample size in judgements of various kinds. The
results turned out to be contradictory: One group of studies seemed to con®rm, a second to discon®rm
the `instinct of nature' assumed by Bernoulli.

In this paper, we propose an explanation that accounts for a substantial part of the contradictory
results reported in the literature.

INCONSISTENT RESULTS

From one group of studies, it has been argued that people are good `intuitive statisticians' who
properly take sample size into account; from another group of studies the opposite claim has been
made.
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Sample size is taken into account
Piaget and Inhelder (1975) reported that from age 11 or 12 children show an understanding of the role
of sample size in tasks involving simple chance devices. For instance, children had to judge whether, in
a simpli®ed Galton board with only two slots (a box divided in two equal parts with a funnel in the top
middle), a large sample of balls would be more likely than a small sample to generate a uniform
distribution across the slots (i.e. a proportion of p � 0:5). Children understood that the large sample
was more likely to produce a uniform distribution. Piaget and Inhelder attribute children's attention to
sample size to an intuitive understanding of the `law of large numbers'. Indeed, for Piaget and Inhelder
the grasp of the mathematical law of large numbers is the `touchstone' for understanding the notions
of `chance' and `probability' (p. 234). In their theoretical framework, this ability is contingent on
combinatorial operations (e.g. combination and permutation), which the child acquires at the stage of
formal operations.

Peterson and Beach's (1967) review of research on adults' statistical thinking, including the use of
sample size, agrees with Piaget and Inhelder's results: `Experiments that have compared human
inferences with those of statistical man show that the normative model provides a good ®rst approxi-
mation for a psychological theory of inference' (p. 42). In the same vein, Evans and Pollard (1985,
pp.68±69) conclude: `Overall subjects did quite well as intuitive statisticians in that their judgements
tended, over the experiments as a whole, to move in the direction required by statistical theory as the
levels of Mean Di�erence, Sample size and Variability were varied'. According to Nisbett (1993,
pp. 8±9), people have a `highly generalized, domain-independent, but not purely syntactic' rule system
for the `law of large numbers'. All these authors, and many more (see section `Beyond Choice
Tasks') conclude from their experiments that humans take sample size into account in a broad variety
of tasks.

These conclusions con®rm what Jacob Bernoulli asserted two-and-a-half centuries ago. However,
there is another group of studies that supports a di�erent view.

Sample size is not taken into account
In an in¯uential paper, Kahneman and Tversky (1972) came to the conclusion that untutored people
generally disregard sample size in situations where it should play a role. For instance, one
problem stated that for a period of one year, two hospitals, the larger one having about 45 births per
day and the smaller about 15 births per day, recorded the days on which more than 60% of the
babies born were boys (given a gender ratio of 50:50). Participants were asked which hospital
recorded more such days. The majority of participants did not understand that the smaller hospital
was more likely to record more such days. According to Kahneman and Tversky (1972), people
ignore sample size because they use a representativeness heuristic. The notion of representativeness,
however, has been only loosely de®ned in this context as the `similarity of [the proportion or mean] to
the corresponding parameter of the population' (p. 437). Kahneman and Tversky's view has
been accepted by many (e.g. Bar-Hillel, 1979; Fischho�, Slovic, and Lichtenstein, 1979; Well,
Pollatsek, and Boyce, 1990). As Reagan (1989) summarized it: `The lesson from ``sample size
research'' is that people are poorly disposed to appreciate the e�ect of sample size on sample statistics'
(p. 57).

Little is known about why participants sometimes attend to sample size and sometimes not.
Kahneman and Tversky (1982), for example, suggested that participants might attend to sample size if
particular conditions such as `transparent formulation' and `more extreme sample outcomes' are
ful®lled, but possibly for the wrong reasons (p. 131). Although several factors that might in¯uence
participants' solutions have been discussed, it seems fair to say that so far no good and precise
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explanation has been found for why people sometimes take sample size into account and sometimes
do not.

Why do people sometimes attend to sample size and sometimes not?
In this paper, we propose an explanation for a substantial part of the contradictory results. We shall
argue (1) that common intuitions about sample size conform to the empirical law of large numbers
(a `prehistoric' version of the mathematical law of large numbers, see below), and (2) that this law
works only for one group of sample-size problems (which concern frequency distributions) but not for
a second type (which concern sampling distributions). If this conjecture is valid, one should ®nd that
frequency distribution problems have been typically used by those who reported that people attend to
sample size, and sampling distribution problems by those who concluded that people largely ignore
sample size.

The empirical law of large numbers is not to be confused with the (mathematical) law of large
numbers. The mathematical law of large numbers is about a situation in which the sample size
approaches in®nity, whereas none of the studies reviewed here deals with this situation, but with ®nite
sample sizes. Nevertheless, several researchers have described people's reasoning as following the `law
of large numbers' (if they attend to ®nite sample sizes) or as violating it (if they do not). Because this
misconception is widespread, we clarify in the Appendix what the law of large numbers is, why it does
not apply to this research on sample size, and which mathematical results do apply.

THE EMPIRICAL LAW OF LARGE NUMBERS

What is the `empirical law of large numbers'? Before the ®rst law of large numbers was formulated by
Jacob Bernoulli, there existed a `prehistoric' version of the law. As Daston (1988, p. 234) observed,
`Gerolamo Cardano, Edmund Halley, and the author of the last chapters of the Port Royal Logique,
had appealed to the principle that there was an approximate ®t between observed frequencies and
`true' probabilities which improved as the number of observations increased'. This intuition Ð that
larger samples generally lead to more accurate estimates of population means Ð is commonly referred
to as the `empirical law of large numbers' (e.g. Freudenthal, 1972) or the `law of averages'
(e.g. Freedman et al., 1991). The empirical law of large numbers is a common-sensical intuition and
not a mathematical theorem like the (mathematical) law of large numbers. When Bernoulli spoke of an
`instinct of nature', he was referring to the empirical law of large numbers as a general human
intuition. Note that the empirical law of large numbers says nothing more than that a large sample is
better than a small sample for estimating a population parameter.

The hypothesis that common intuitions about sample size can be expressed by the empirical law of
large numbers has an important implication. The empirical law of large numbers pertains to the
accuracy of estimates derived from frequency distributions (as in Piaget and Inhelder's tasks), but by
itself is not su�cient to capture the relation between variability and size of samples in sampling
distributions (as in Kahneman and Tversky's tasks, see below). The empirical law of large numbers
therefore leads us to distinguish between two kinds of tasks: (1) frequency distribution tasks, in which
participants judge how well a sample mean (a mean of � frequency distribution) estimates a population
mean and (2) sampling distribution tasks, in which participants judge the variance of sampling
distributions. These two kinds of tasks have rarely been distinguished in research on intuitions about
sample size, leading us to derive the prediction that studies reporting attention to sample size used
frequency distribution tasks, while those reporting disregard of sample size used sampling distribution
tasks.
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FREQUENCY DISTRIBUTIONS AND SAMPLING DISTRIBUTIONS

A frequency distribution is a distribution of values from one sample. The overall range of values is
divided into categories and the number of cases in each category is recorded. An example including a
quantitative variable is the frequency distribution of heights in a sample of Italian men, where the
categories might be 160 cm, 161 cm, 162 cm, and so on; an example with a qualitative (binary)
variable is the distribution of male and female births during one day at a certain hospital.

We will use the term `sampling distribution' for a distribution of means from independent samples of
®xed size, drawn from the same population. A sampling distribution is not about the frequency of
observations in di�erent categories but about the frequency (or probability) of sample means falling
into di�erent categories.1 The height distribution of 100 randomly sampled Italian men is a frequency
distribution; the distribution of height means in repeated random samples of 100 Italian men is a
sampling distribution.

The di�erence between the variance of frequency and sampling distributions is particularly evident
in the limiting case in which the sample includes the whole population. In such a case, a frequency
distribution will be identical to the population distribution. A sampling distribution, however, will
ultimately converge into a distribution concentrated at a single value: all sample means will be identical
to the population mean, and the variance of the sampling distribution will be zero.

We will now examine whether the distinction between frequency and sampling distributions can
account for a substantial part of the inconsistent results.

A PROPOSAL TO RESOLVE INCONSISTENT RESULTS

Two kinds of sampling distribution tasks have been used in the literature, one in which participants
have to make a choice regarding speci®c parts of a sampling distribution and one in which participants
have to construct a sampling distribution. We begin by analyzing the `choice tasks'.

Choice tasks
We ®rst consider all the studies of which we are aware that involve sampling distribution tasks and
compare the results with participants' performance on analogous frequency distribution tasks.
Because directly comparable frequency distribution tasks are rare in the literature, we will later analyze
frequency distribution tasks that have no sampling distribution analogues.

An example of a problem that has been formulated both as what we call a sampling distribution task
and a frequency distribution task is the `maternity ward' problem (Kahneman and Tversky, 1972,
p. 443; the wording of the two following versions is that of Evans and Dusoir, 1977, pp. 133±134):

Maternity ward problem
A certain town is served by two hospitals. In the larger hospital about 45 babies are born each day,
and in the smaller hospital about 15 babies are born each day. As you know, about 50% of all
babies are boys. The exact percentage of baby boys, however, varies from day to day. Sometimes it
may be higher than 50%, sometimes lower.
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Sampling distribution version
For a period of 1 year, each hospital recorded the days on which more than 60% of the babies born
were boys. Which hospital do you think recorded more such days?

Frequency distribution version
Which hospital do you think is more likely to ®nd on one day that more than 60% of babies born
were boys?

In the sampling distribution version, repeated samples of average sizes n � 15 and n � 45, respect-
ively are drawn for 365 days (one year). Participants can solve the task if they realize that the variance
of the sampling distribution for the smaller hospital is greater than that for the larger hospital. Evans
and Dusoir (1977) constructed the frequency distribution version (this is our term, not theirs) in order
to `simplify' the task with respect to ` ``on one day'' as opposed to ``most days included in the year'' '
(p. 134). This reduces the number of samples from 365 to one and the task is now to judge `the
probability of the outcome of a single speci®ed trial which constitutes our simpli®ed version' (p. 135).
Evans and Dusoir consider the di�erence as merely one of `complexity' (p. 135). We argue instead that
the second version has all the features of a frequency distribution task and therefore can be solved by
the empirical law of large numbers, which again states that a proportion from a larger sample is a more
accurate estimator of the population proportion than one from a smaller sample. Because the
proportion from the larger sample is more likely to be close to the true proportion (50%), a deviation
from the true proportion by 10% or more (`more than 60%') would be more likely to be found in
the smaller sample. The empirical law of large numbers, however, cannot be applied to the sampling
distribution version, because it is not explicit about how the variance of the distribution of the
proportions depends on sample size.

A second example of a problem that has been formulated both as a frequency and a sampling
distribution task is the `post o�ce problem' (Well, Pollatsek, and Boyce, 1990, p. 297, `tail version' and
`accuracy version'):

Post o�ce problem
When they turn 18, American males must register for the draft at a local post o�ce. In addition to
other information, the height of each male is obtained. The national average height of 18-year-old
males is 5 feet, 9 inches.

Sampling distribution version
Every day for one year, 25 men registered at post o�ce A and 100 men registered at post o�ce B. At
the end of each day, a clerk at each post o�ce computed and recorded the average height of the men
who had registered there that day.
Which would you expect to be true? (circle one)

1. The number of days on which the average height was 6 feet or more was greater for post o�ce A
than post o�ce B.

2. The number of days on which the average height was 6 feet or more was greater for post o�ce B
than for post o�ce A.

3. There is no reason to expect that the number of days on which the average height was 6 feet or
more was greater for one post o�ce than for the other.

Frequency distribution version
Yesterday, 25 men registered at post o�ce A and 100 men registered at post o�ce B. At the end of
the day, a clerk at each post o�ce computed and recorded the average height of the men who
registered there that day.
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Which would you expect to be true? (circle one)

1. The average height at post o�ce A was closer to the national average than was the average height
at post o�ce B.

2. The average height at post o�ce B was closer to the national average than was the average height
at post o�ce A.

3. There is no reason to think that the average height was closer to the national average at one post
o�ce than at the other.

In the sampling distribution version, repeated samples of sizes n � 25 and n � 100, respectively, are
drawn for 365 days (one year). Participants can solve the task if they realize that the variance of the
sampling distribution for post o�ce A is greater than that for post o�ce B. In the frequency distri-
bution version, only one sample per post o�ce is taken. Well, Pollatsek, and Boyce (1990) draw the
same distinction between frequency and sampling distributions as we do (which they call distribution
of scores and distributions of averages, respectively) but conclude that the distinction does not explain
their results. They used, as did Evans and Dusoir, several other versions of the problem, which we have
included in our analysis in Exhibit 1. We will now analyze the entire body of evidence available on
participants' performance in choice tasks.

Evidence
The vast majority of studies employing sampling distribution tasks have two characteristic features:
(1) a choice task (as opposed to an estimation or con®dence task) with (2) three choices involving two
sample sizes. In most cases these three response alternatives were explicitly stated as `larger sample',
`smaller sample', and `no di�erence'; in others they were embedded as in the post o�ce problem. We
will consider two-alternative forced-choice tasks and studies using other dependent variables later
because these cannot be directly compared to the three-alternative tasks described above. We have
found 35 studies (in eight articles) that satisfy these two criteria. Most of the studies investigated
whether some factor would facilitate the use of sample-size information, such as the ratio of sample
sizes (e.g. `1,000 versus 5' births instead of `45 versus 15' births). We determined the unit of a `study' as
follows: If, within an article, one problem (such as the maternity ward problem) was given to two
(or more) independent groups of participants, the results of each group were coded as a separate
`study'. If one group of participants worked on more than one frequency distribution task (or sampling
distribution task), then we counted these problems as one study, and the result reported in Exhibit 1 is
the weighed average across these problems. If participants had to work on both frequency and
sampling distribution tasks, then the results were coded as two separate studies. Exhibit 1 divides the
studio into sampling distribution tasks and frequency distribution tasks.

The results are shown in the form of a stem-and-leaf display. The display shows the percentage of
participants who made the correct choices for frequency distribution tasks (left side) and sampling
distribution tasks (right side). The `stem' (the central, vertical part of Exhibit 1) represents the ten's
place and the `leaves' represent the one's place of the percentage of correct choices. For sampling
distribution tasks, the percentage of correct choices ranges between 7% and 59% while for frequency
distribution tasks, the range is from 56% to 87%. The medians are 33% and 76%, respectively, and
there is almost no overlap between the two distributions of percentages. Note that the median of
correct answers for the sampling distribution tasks is exactly what one would expect by chance, that is,
if participants had randomly picked one of the three alternatives. Exhibit 1 shows that there is an
explanation for the apparently contradictory result that people sometimes do take sample size into
account and sometimes do not. The distinction between sampling distribution tasks and frequency
distribution tasks account for most of the di�erences within this group of studies.
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Note that none of the studies reported in Exhibit 1 was designed for the analysis we have made
except the study by Sedlmeier (1994). Interestingly, the results of the latter study (32% and 75%
correct choices for the sampling and the frequency distribution tasks, respectively) match the medians
for all studies (33% and 76%). A few studies were not included in Exhibit 1 because they di�ered from
the others in two respects. First, in one article (Jones and Harris, 1982, Experiments I and II), three
sample sizes had to be compared. There were two choice problems, one a frequency distribution task
(`Question 1') and the other a sampling distribution task (`Question 2'). No di�erence in performance
was found between the two tasks, which is inconsistent with our hypothesis. However, in a second
frequency distribution task (a simple Galton board, see Exhibit 2), 94% of the participants took
sample size into account. The main result was that if participants had `hands-on' experience with the
Galton board prior to working on the two other tasks, then the proportion of correct answers in these
tasks approximately doubled.

Second, a few other studies used only two response categories. As Reagan (1989) demonstrated, if
the `same' response category is eliminated and participants are forced to choose either the `smaller
sample' or `larger sample' response, then the proportion of correct choices increases considerably
(by over 30 percentage points). For this reason, results from studies without the `same' category cannot
be directly compared to those in Exhibit 1. But frequency and sampling distribution tasks that both use
only two response categories each can be directly compared. Evans and Dusoir (1977) report 55% and
70% correct answers for their sampling distribution tasks (as mentioned previously, this is our term,
not theirs) and 85% and 85% for their frequency distribution tasks. This di�erence between frequency
and sampling distribution tasks is smaller than the median di�erence in Exhibit 1, but points in the
same direction (� � 0:26; p � 0:02, combined).
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Exhibit 1. Stem-and-leaf display of percentages of participants taking sample size into account in multiple-choice
studies. Results are shown separately for frequency distribution tasks (left leaves, N � 6 studies) and sampling
distribution tasks (right leaves, N � 29 studies). The stem represents the ten's place, and the leaves represent the
one's place. For instance, the top row of the diagram `| 0 | 7, 8' represents two studies (sampling distribution
tasks) where 7% and 8% of participants took sample size into account. Studies are taken from the following
sources: Bar-Hillel (1979, 1982); Kahneman and Tversky (1972); Murray, Iding, Farris, and Revlin (1987);
Reagan (1989); Sedlmeier (1994); Swieringa, Gibbins, Larsson, and Sweeney (1976); and Well et al., (1990).
See text for further explanation



To summarize, the studies we have analyzed were heterogeneous in the sense that they employed a
broad range of variables that did or did not in¯uence the use of sample size. Despite this heterogeneity,
the distinction between frequency and sampling distribution tasks was shown to be a strong predictor
of participants' use of sample-size information.

Beyond choice tasks
Exhibit 1 contains only a few frequency distribution tasks because these tasks often involved depen-
dent variables other than choice, such as con®dence judgements about the accuracy of means of
di�erently sized samples, quantitative estimates of population means given two samples of di�erent
size, and open-ended answers, to name a few. We have analyzed all studies known to us that use
frequency distribution tasks in which (1) sample size was the only independent variable or, if there
were several independent variables, they were systematically varied with sample size,2 and (2) the
assumptions underlying three well-known mathematical results that justify the superiority of larger
samples (variance of means, Chebychev's inequality, and central limit theorem Ð see Appendix) were
satis®ed. The key assumption is that random variables Ð such as `height' or `gender' Ð are
independently and identically distributed.3 Exhibit 2 shows 17 articles representing 35 studies
(not counting Piaget and Inhelder's single-case studies), where a `study' is de®ned as in Exhibit 1.
Exhibit 2 summarizes the kind of task, the measure, and the results in each study.
Do the results concerning the use of sample-size information in frequency distribution tasks

reported in Exhibit 1 hold up in Exhibit 2? The 17 articles report a broad variety of dependent
measures and experimental conditions. We do not see any way to compare these studies directly as in
Exhibit 1, but it is useful to look at the general magnitude of the e�ect on performance due to the
experimental variation of sample size. We calculated the e�ect sizes r, q, and � when the necessary
information was given (Exhibit 2). The measure r expresses e�ect size as a Pearson correlation
coe�cient, the measure � can be treated as r for practical purposes, and q is the di�erence between
Fisher z transformed correlations (Cohen, 1988; Rosenthal and Rosnow, 1991). Cohen's conventions
for what constitutes a small, medium, or large e�ect size are identical for the three measures. The
median e�ect size obtained in these studies (one per study) by varying sample size is 0.43, a medium to
large e�ect by Cohen's standards. In only 4 out of 35 studies was sample size largely neglected
(Evans and Dusoir, 1977, Experiment 1; Jones and Harris, 1982, Question 4 in Experiment 1; Jepson,
Krantz and Nisbett, 1983, Study 1; Evans and Pollard, 1985, Experiment 2).

With few exceptions, the studies in Exhibit 2 show that participants generally take sample size into
account in frequency distribution tasks. There is no simple, quantitative way to compare the amount
of use of sample-size information in Exhibit 2 and Exhibit 1. In Exhibit 2 the e�ect size found in a
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2 Studies that varied sample size unsystematically with other independent variables, such as proportion and population size, and
thus did not allow us to disentangle the e�ect of sample size from that of other variables, were not included. For instance, Evans
and Dusoir (1977, Experiment 1) used two conditions in which sample size and proportion were simultaneously but not
systematically varied, making it impossible to disentangle the e�ect of sample size from the e�ect of proportion. These two
conditions are not included in Exhibit 2, but the condition in which proportion was kept constant and sample size varied is
included. By the same token, studies in which participants were taught to use sample-size information are not included.
3 Studies included in Exhibit 2 ful®ll, at least approximately, the following criteria: (1) Samples (of di�erent sizes) were drawn
randomly from the same population. (2) The sources of information for samples to be compared were the same (e.g. problems
where the small sample stemmed from `personal experience' and the large sample came from `statistical information' were not
included in Exhibit 2). (3) The dependent measure did not di�er for di�erent samples (e.g. problems in which several letters of
recommendations were compared to one job interview were not included in Exhibit 2). (4) The expected value of the random
variables does not change over time. If it could not be clearly determined whether or not a particular criterion had been met,
that criterion was treated as if ful®lled. If participants worked on more than one problem, then only the results from problems
meeting the criteria were reported. All studies reported in Exhibit 1 ful®ll these criteria.



P
.
S
ed
lm

eier
a
n
d
G
.
G
ig
eren

zer
In
tu
itio

n
s
A
b
o
u
t
S
a
m
p
le

S
ize

4
1

Exhibit 2. The use of sample size in frequency distribution tasks (studies not included in Exhibit 1). Numbers in brackets represent the number of
`studies' per article.

Authors [numbers of studies] Kind of task Measure General results (e�ect sizes)a

Piaget and Inhelder (1975) Various chance Open-ended answers Sample size generally taken into account from age 11
[several single-case studies] devices

Irwin, Smith and Chance device Con®dence in estimation Always (18 comparisons in Experiment 1 and 6
May®eld (1956) [3] (cards) comparisons in Experiments 2) higher con®dence

for judgment using larger sample

DuCharme and Peterson Chance device Con®dence in estimation Con®dence (`credible intervals') increases monotonically
(1969) [1] (poker chips) with increasing sample size

Levin (1974a, Experiment 2) [2] Mean IQs Estimates of population IQ Means from larger samples had more in¯uence on
population estimates (� � 0:51 and � � 0:53 for ®rst
study, � � 0:55 and � � 0:38 for second study)

Levin (1974b) [2] Price information Preference rating of stores Larger samples (of price information) had more in¯uence
from grocery on preference. E�ect sizes cannot be calculated for ®rst
stores study; r � 0:28 and r � 0:66 for second study

Beach et al. (1974, Study 2) [1] Chance device Con®dence in estimation Larger con®dence for proportion from larger sample
(cards) (r � 0:22)

Levin (1975, Experiment 3) [1] Price information Preference rating of stores Larger sample (of price information) had more in¯uence
from grocery stores on preference. E�ect size cannot be calculated.

Evans and Dusoir Chance device (text Decision about which 15 out of 48 subjects took sample size into account in
(1977, Experiment 1) [1] problem about coin experiment provides better more than 20 out of 24 problems, 22 subjects ignored

tossing) evidence that coin is biased sample size for more than 20 out of 24 problems, and
11 subjects were inconsistent

Evans and Pollard Chance device (coin Decision about which If proportion was constant (condition PCSV), sample
(1982, PAIRS task) [3] tosses simulated on experiment provides better size was taken into account (66%, 81% and 65% correct

computer screen) evidence that coin is biased solutions)

Jones and Harris (1982)b [2] Chance devices Open-ended answer and 94% of subjects (in two experiments) stated that in the
(Galton board and preference judgment Galton board the larger the sample the closer the
counters) proportion to the expected value. Only 22% of subjects

showed sensitivity to sample size in the counters problem
(one experiment)

(Table continues on next page)
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Exhibit 2. Continued.

Authors [numbers of studies] Kind of task Measure General results (e�ect sizes)a

Jepson, Krantz and Nisbett Various text Open-ended answers In Study 1, only problems 4 and 5 met criteria (32% of
(1983) [2] problems subjects took sample size into account in these two

problems, on average). In Study 2, sample size was taken
into account in 82% of solutions for `probabilistic'
problems (four out of ®ve problems met criteria) and in
57% of solutions for `objective' problems (one out of ®ve
met criteria; none of the `subjective' problems met
criteria)

Nisbett et al. (1983, Various text Estimated proportion of a Sample size had largest e�ects with `heterogeneous'
Study 1) [1] problems property in population properties (r � 0:23 for `shreeble color' and r � 0:52

based on samples (three for `Barratos obesity') and least with `homogeneous'
di�erent sizes) properties (ceiling e�ect)

Study 4 [1] Various text Choice of ®ve explanations 56% and 59% of experienced subjects chose `sample size'
problems (only one referred to explanation, compared to 35% and 29% of inexperienced

sample size) subjects (expected by chance: 20%)

Evans and Pollard Mean IQ (inform- Judgment of odds that mean Sample size in¯uenced odds judgments (r � 0:52)
(1985, Experiment 1) [1] ation displayed as of sample IQ is above or

blocks of numbers) below 100

Experiment 2 [1] Mean IQ Judgment of odds that mean Sample size did not in¯uence odds judgments
(information of sample IQ is above or
displayed as bar below 100
graphs)

Experiment 3b [1] Mean IQ Judgment of odds that mean Sample sizes in¯uenced odds judgments (overall r � 0:5)
(information of sample IQ is above or
displayed as blocks below 100
of numbers and
bar graphs)

Kunda and Nisbett Text problems Prediction of which of two Larger sample leads to higher con®dence
(1986a, Study 1) [1] (course evaluations) courses will get better (probability estimate) in prediction (average q � 0:95)c

evaluation

Study 2 [1] Text problems Prediction of which of two Larger sample leads to slightly higher con®dence
(attributes of people) people will get higher ranking (probability estimate) in prediction (average q � 0:08)

on various attributes

(Table continues on next page)
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Exhibit 2. Continued.

Study 4 [2] Text problems Prediction of which of two Larger sample leads to higher con®dence (probability
(abilities, traits) people will get higher ranking estimate) in prediction (laypeople: q � 0:42 and q � 0:31;

on various abilities or traits psychologists: q � 0:55 and q � 0:19 for abilities
and traits, respectively)

Study 6 [1] Text problems Prediction of which of two Larger sample leads to higher con®dence (probability
(abilities, traits) people will get higher ranking estimate) in prediction (q � 0:69 and q � 0:81 for abilities

on various abilities or traits and traits, respectively)
(within-subjects design)

Kunda and Nisbett Text problems Prediction of which of two Presence of larger sample mostly leads to higher con®dence
(1986b, Study 1) [1] (abilities, traits) people will get higher ranking (probability estimate) in prediction (within-subjects

on various abilities or traits condition: q � 0:59 and q � 0:26; q � 0:74 and q � 0:14;
(both between- and within- q � ÿ0:07 and q � ÿ0:1; between-subjects condition:
subjects conditions) q � 0:42 and q � 0:23; q � 0:61 and q � 0:12; q � ÿ0:08

and q � ÿ0:13)d

Study 2 [1] Text problems Prediction of which of two Presence of larger sample mostly leads to higher
(abilities, traits) people will get higher con®dence (probability estimate) in prediction (q � 0:46

ranking on various abilities and q � 0:68; q � 0:74 and q � 0:41; q � ÿ0:24 and
or traits (within-subjects q � ÿ0:02�
design)

Koslowski et al. (1989) [3] Text problems Rating of likelihood of causal College students took sample size into account both
(stories) relationship between an when a `target factor' covaried with an `e�ect' and

`e�ect' and a `target factor' when it did not; 6th and 9th graders did so only in the
latter case

Sanitioso and Kunda Text problems Prediction of which of two Larger sample leads to higher con®dence (probability
(1991) [2] (sports) people will get higher scores estimate) in prediction (r � 0:46 in Study 1 and

in athletic competition r � 0:4 in Study 2)

Note. The criteria for the selection of studies are explained in the text and footnote 3.
aWe calculated the e�ect sizes r, � and q (Cohen, 1988; Rosenthal and Rosnow, 1991) when su�cient information was available.
bThe choice tasks in this article have already been discussed.
cKunda and Nisbett (1986a,b) transformed subjects' probability estimates into correlations. The q's reported here express the di�erences between the Fisher z
transformed correlations (taken from Kunda and Nisbett's 1986a,b ®gures) of the large (total-to-total) and the small (item-to-item) samples.
dThe `item-to-item' condition was compared with the `total-to-total', `total-to-item', and `item-to-total' conditions for abilities and traits in each case.



typical study relates to the di�erence in con®dence estimates for small and large samples, whereas in
Exhibit 1 it relates to the percentage of participants choosing one out of three possible answers. Thus,
in Exhibit 1, 33% is the expected result by chance (e.g. if participants choose randomly among the
three alternatives), which would correspond to an e�ect size of zero. As mentioned earlier, the median
percentage in the studies using a sampling distribution task was exactly 33% (Exhibit 1). Therefore the
medium- to large-sized e�ects in Exhibit 2 are consistent with the pattern for frequency distribution
tasks (as opposed to the sampling distribution tasks) shown in Exhibit 1. People seem to apply the
empirical law of large numbers not only to frequency distribution tasks that are directly comparable to
sampling distribution tasks but also to frequency distribution tasks with a wide range of dependent
variables.

Constructing distributions
We will now use the distinction between frequency and sampling distributions to suggest what
participants do when they are asked to construct sampling distributions. The empirical law of large
numbers by itself is not su�cient to explain how sample size a�ects the variance of sampling distri-
bution. Therefore, intuitions about sample size as expressed by the empirical law of large numbers
cannot help in constructing sampling distributions.

Two major results have been obtained in construction tasks to date (Fischho�, Slovic, and
Lichtenstein, 1979; Kahneman and Tversky, 1972; Olson, 1976; Teigen, 1974a): (1) sampling
distributions did not vary with sample size, and (2) they were ¯atter than what would be expected for
even the smallest sample size.4 We propose a tentative explanation for these two results: participants
construct frequency distributions when asked to construct sampling distributions. This proposal can
account for both results.

Does the variance of a frequency distribution change systematically with sample size? The sample
variance s2 is an unbiased estimator of the population variance. That is, its expected value is equal to
the value of the population variance, irrespective of sample size (e.g. Huntsberger and Billingsley,
1973, p. 138). With a sample of any size, the best estimate of the population variance s2 is s2. Thus if
participants construct frequency distributions, the distributions should not vary with sample size Ð
the ®rst result. A frequency distribution, in addition, can always be expected to be ¯atter than a
corresponding sampling distribution for n > 1. Therefore, if participants construct frequency
distributions, these distributions should be ¯atter than sampling distributions even for small sample
sizes Ð the second result.

This tentative explanation is supported by three pieces of further evidence. First, participants can
construct realistic frequency distributions. Teigen (1974b) reported that the distributions participants
constructed for the heights of male and female students were close to the actual (population) distri-
butions (after probabilities and frequencies were normalized to add up to 100%). Second, participants
tend to recall sampling distribution tasks as frequency distribution tasks. Well, Pollatsek, and Boyce
(1990, Experiment 4) had their participants recall the contents of a sampling distribution task and
found that 11 of 21 participants who failed on the sampling distribution task recalled the task as a
frequency distribution task and only 3 participants recalled it as a sampling distribution task. Third,
participants tend to construct identical distributions when asked to construct frequency or sampling

4 We could only ®nd one study in which participants showed sensitivity to sample size in constructing subjective distributions.
Peterson, DuCharme, and Edwards (1968) studied conservatism in probability revision. In Experiment 1, participants had to
construct subjective binomial sampling distributions for various levels of p and sample size (n � 3; 5; and 8). In contrast to
other construction studies, which provide information in the form of texts, the authors used poker chips to represent the
binomial probabilities.
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distributions. The present account implies (as has been demonstrated in previous research) that
participants' sampling distributions do not vary with sample size and, more interestingly, that their
sampling distributions should be indistinguishable from their frequency distributions. Sedlmeier (1994,
Study 2) extended Kahneman and Tversky's (1972) study on sampling distributions of the heights of
Israeli soldiers. In Sedlmeier's study, participants were asked to construct both sampling and
frequency distributions of di�erent-size samples. One group of participants (N � 55) constructed
sampling distributions of the height of Israeli soldiers for sample sizes of 20 and 200 (similar to
previous research). A second group of participants (N � 56) constructed frequency distributions of
these heights for sample sizes of 20 and 200. If participants construct frequency distributions when
asked to construct sampling distributions, then the distributions they constructed should be the same
in all four conditions. Comparison of the distributions constructed for sample sizes of 20 and 200
showed that for each height category, the median di�erence between the two sample-size conditions
(n � 20 and n � 200) was zero, similar to what has been found in earlier studies. The new result was
that this held both for sampling distributions (where it should not) and for frequency distributions
(where it should). The median distributions in the four conditions were virtually identical. This result is
consistent with our argument that participants construct frequency distributions when asked to
construct sampling distributions: (1) participants' sampling distributions are indistinguishable from
their frequency distributions and (2) their sampling distributions show the frequency-distribution
characteristic of being independent of sample size.

DISCUSSION

Why did one group of studies report that people take sample size into account when they should, while
another group reported that people ignored sample size? We proposed the hypothesis that human
intuition conforms to the empirical law of large numbers and distinguished between two kinds of
tasks Ð one for which this intuition is su�cient (frequency distributions) and one for which it is not
(sampling distributions).5 A review of the literature showed that this distinction can explain a
substantial part of the apparently inconsistent results. Speci®cally, the evidence showed that
(1) frequency distribution problems that are directly comparable to sampling distribution problems
elicit substantially higher percentages of participants who take sample size into account, with almost
no overlap between the distributions of percentages; and (2) frequency distribution problems not
directly comparable to sampling distribution problems result in participants' generally taking sample
size into account. We also proposed, tentatively, what participants do if they have to construct
sampling distributions: they construct frequency distributions.

We do not mean to imply that there are no factors aside from the distinction between frequency and
sampling distribution tasks that in¯uence the use of sample size. For choice tasks, for instance, several
such factors have been reported, including `hands-on' experience with a simple Galton board (Jones
and Harris, 1982), di�erent ratios of sample size (Murray et al., 1987), extreme `cut-o�' percentages
(Bar-Hillel, 1979, 1982; Evans and Dusoir, 1977), and the part of the distribution to which the question
refers (e.g. Kahneman and Tversky, 1972; Reagan, 1989). Comparatively high attention to sample size
has been reported when the question posed to the participants referred to the center (as opposed to the
tails) of the distribution (Well, Pollatsek, and Boyce, 1990), but this variant seems to have been studied
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5 One might think that people try to solve a sampling distribution task by splitting it up into many frequency distribution
problems (such as 365 frequency distribution problems Ð one for each day of the year Ð in the post o�ce problem), but this is
not what people commonly do. After all, the intuition behind the empirical law of large numbers applies to a single mean or
proportion, and not to a distribution of means or proportions.



only for sampling distribution tasks. There is some indication that population size can in¯uence
judgements about sample size (Evans and Bradshaw, 1986). For instance, Bar-Hillel (1979) proposed
that it is not (absolute) sample size but relative sample size (relative to the population size) that people
attend to, but her data only partially support this hypothesis (e.g. the results of her Problems 6 and 7
seem to be inconsistent).6

All in all, the distinction between frequency and sampling distributions Ð a distinction which has
received little attention so far Ð seems to be a powerful one in di�erentiating between tasks in which
people do or do not take account of sample size. For the studies reviewed in Exhibit 1, we do not know
of any other factor that can produce a similar clear separation.

The empirical law of large numbers re¯ects an intuition that people seem to apply to a variety of
situations. Where does the intuitive quality of the empirical law of large numbers come from? Research
on animal foraging might provide some hints. Bumble-bees, for example, have been noted to be highly
sensitive to frequency distributions. Their behavior covaries with changing means and variances in
distributions of nectar (Real, 1991). Birds also show sensitivity to means and variances of variables
relevant to their survival (Real and Caraco, 1986). When choosing between several foraging
alternatives (e.g. ¯owers of a certain type), it is evolutionarily adaptive to have computational rules
(or `intuitions') about how to estimate the `gain' (mean) and the `risk' (variance) associated with a
speci®c alternative. Although the literature on foraging documents that animals adapt to changes in
frequency distributions, we know of no studies that focus on animals' use of sample size in sampling
distributions.

Foraging is one important adaptive task in which intuitions about frequency distributions play a
central role. But estimates of means and proportions are of more general importance in everyday life.
For instance, many cultures value the knowledge of older men and women, presumably because they
can draw on a larger sample of observations than younger people in making predictions about the
behavior of nature and humans. So the intuition that estimates and predictions based on larger
samples tend to be more accurate might just be the cumulative result of millennia of experience.

Why is the role of sample size in sampling distributions so hard to grasp? One consideration is that
frequency distributions are involved in everyday problems of estimation and prediction, whereas the
rule that the variability of a sampling distribution decreases with increasing sample size seems to have
only few applications in ordinary life. In general, taking repeated samples and looking at the distri-
bution of their means is rare in the everyday and only recent in scienti®c practice. For instance, the
pioneers of systematic experimentation in the nineteenth century, such as the British agriculturist
James F. W. Johnston and German physicist and mathematician Gustav Radicke, seemed to have no
intuitions about the concept of a sampling distribution in making inferences about means (Gigerenzer
et al., 1989, pp. 72, 130±132). In the twentieth century, sampling distributions have played a key role
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6 One reviewer suggested that sampling distribution tasks are less often solved than frequency distribution tasks because they
are more di�cult to understand. One of us (Sedlmeier, unpublished data) tested this conjecture by making participants' task as
clear as possible, using a visual demonstration of the task on a computer screen. Participants who had to solve frequency
distribution tasks saw on a computer screen how samples of a particular size (e.g. the number of births on one day in a hospital)
were drawn and how the proportion/mean for a sample was calculated (e.g. the birth rate for boys in hospital for one speci®c
day). Participants who had to solve sampling distribution tasks watched the same demonstrations and, in addition, were shown
how several proportions/means were placed as points in a corresponding sampling distribution. Only one sample size was used
for the demonstrations. After the demonstrations, participants were prompted to ask when they found it di�cult to understand
the tasks; none indicated such a di�culty. One group of participants saw demonstrations for three sampling distribution tasks
from Kahneman and Tversky (1972; `maternity-ward', `word-length', and `height' tasks) and afterwards performed these tasks;
and another group saw demonstrations for three corresponding frequency distribution tasks and afterwards performed those.
The result was that 39% of the sampling distribution tasks and 73% of the frequency distribution tasks were solved (n � 11 in
each group). This di�erence is consistent with those reported in this paper, despite an e�ort to eliminate potential misunder-
standings of `what the task is' in sampling distribution tasks. Thus, there was no evidence that mere lack of understanding can
explain the di�erence between sampling and frequency problems.



in theories of hypothesis testing, but the role of sample size in sampling distributions still seems to be
poorly understood by many contemporary researchers. For example, the power of signi®cance tests
(which depends on sample size) is widely ignored and (possibly, as a result) low in many experiments
(Oakes, 1986; Sedlmeier and Gigerenzer, 1989; Tversky and Kahneman, 1971). Even in statistics
proper, where the theoretical concept of repeated sampling from the same population (proposed by
Jerzy Neyman and Egon S. Pearson, among others) is widely used, doubt has been expressed about its
relevance to actual scienti®c practice. Ronald A. Fisher (1956), for instance, did not believe in the
reality of repeated sampling in science and ridiculed this conception as having stemmed from `the
fantasy of circles [i.e., mathematicians] rather remote from scienti®c research' (p. 100).

Thus with the exception of statisticians and their kin, humans may have experienced little selective
pressure to develop intuitions about the impact of sample size on the variance of sampling distribu-
tions. The empirical law of large numbers, in contrast, seems to be an intuition su�cient for under-
standing the role of sample size in everyday life. We may conclude that Jacob Bernoulli was correct in
asserting that humans possess an `instinct of nature' that attends to sample-size information. The
psychological literature reviewed here suggests that this instinct is akin to the empirical law of large
numbers.

APPENDIX

This appendix clari®es what the law of large numbers is, why it does not apply to the psychological
research on sample size, and which mathematical results do apply.

What is the law of large numbers?

Simeon Denis Poisson (1837) was the ®rst to introduce the term `law of large numbers' for Bernoulli's
theorem, which had been published posthumously in Ars Conjectandi (1713). In modern notation,
Bernoulli's version of the theorem can be stated as follows (Stigler, 1986, p. 66). Suppose an experi-
ment with two possible outcomes is to be repeated many times. If p is the probability of success in any
single experiment, and if non-negative numbers e and c are speci®ed, then the number of trials n can be
determined such that the number of observed successes m in n trials satis®es

P jm
n
ÿ p j4 "

� �
> cP jm

n
ÿ p j > "

� �
: �A1�

The setup described above is known today as a `Bernoulli process'. Bernoulli himself used an urn
model with r `fertile' and s `sterile' equally likely cases so that p � r=�r� s�. He set " equal to 1=�r� s�
and proposed making c large enough to ensure `moral certainty'. Bernoulli calculated the number of
trials required for the case in which r � 30 and s � 20 and, because he had high standards of moral
certainty, for c � 1000; 10,000, and 100,000 (Bernoulli, 1713, p. 238). For c � 1000 Ð where the
probability P of m/n falling within the interval [29/50, 31/50] is at least 1000 times larger than the
probability of m/n falling outside of that interval Ð he calculated that he would need at least
n � 25,550 observations. This discouragingly large number might have been one reason for the abrupt
conclusion of his Ars Conjectandi (Stigler, 1986, p. 77).

A ®rst confusion abut the theorem stems from Bernoulli himself. The theorem assumes that p is
known. However, Bernoulli also seems to have wanted to apply his theorem (illegitimately) to
calculate the probability that the observed ratio m/n equalled an unknown p (Daston, 1988, p. 232;
Pearson, 1925, p. 205).
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The modern reformulation of Bernoulli's theorem (e.g. Maistrov, 1974, p. 201) considers only the
limiting case. In a more general form (which applies to means as well as proportions) going beyond
Bernoulli processes, the law of large numbers can be stated as follows: Assume that the Xi�i � 1; 2; : : :�
are independently and identically distributed random variables, each having a ®nite mean E�Xi� � �.
Then, as n becomes arbitrarily large, the probability that the deviation of the mean of the random
variables Xi from their expected value � exceeds " approaches 0. In formal terms (for a proof see
Schea�er, 1990, p. 282),

lim
n!1

P j 1
n

Xn
i�1

Xi ÿ � j5 "

 !
� 0: �A2�

Equation (A2) is a version of what is known as the `weak law of large numbers'. The most general
form of the weak law of large numbers was proven by the Russian mathematician Khintchine (Feller,
1957, p. 229). The strong law of large numbers is often taken as the theoretical basis for deriving
probabilities from relative frequencies (Feller, 1957, pp. 189±190). For Bernoulli trials, where xi is a
0±1 indicator variable, it can be written as

P lim
n!1

1=n
Xn
i

xi � p

 !
� 1 �A3�

(Fine, 1973, p. 95). There are several versions of both the weak and strong law of large numbers
(ReÂ veÂ sz, 1968). When we refer to the `law of large numbers' hereafter, we refer to equation (A2).

Why does the law of large numbers not apply to psychological research on sample size?
The asymptotic feature (i.e. n!1) of the law of large numbers makes it an inappropriate model for
determining how participants should solve tasks in which sample sizes are ®nite. As far as we know, all
empirical studies on the `law of large numbers' have used ®nite sample sizes. However, as we can see
from the previous section, the (mathematical) law of large numbers cannot justify these claims nor can
Bernoulli's formulation of the theorem, which although it can be used for ®nite samples, is designed for
a di�erent purpose. Bernoulli's theorem allows for the determination of a ®nite n, given c, but the
calculation of n rests on the knowledge of p. This is not the question addressed in research on the `law
of large numbers', where n is always given, p is sometimes given, and the question typically relates to c.

If not the law of large numbers, what else could serve as a normative basis for determining when and
why to consider sample sizes in judgements?

What mathematical results justify the impact of sample size?
There are three di�erent mathematical results that provide partial justi®cations. The simplest result
pertains to the variance of the sample mean. For a sequence of independently and identically distributed
random variables Xi with ®nite variance �2, the variance of the mean �X (in a sample of size n) is �2=n.
Thus the variance of the mean decreases with increasing n (hereafter, the term `mean' is assumed to
include `proportion' as well). This consideration provides a ®rst partial justi®cation for the superiority
of larger samples. However, it does not allow for speci®cation of the distribution of the mean and,
consequently, is mute as to how probable it is for �X to lie within a speci®ed interval. The second result,
Chebychev's inequality, provides information about the upper bound of the probability that the
di�erence between mean and expectation is greater than or equal to an arbitrarily small number ".

48 Journal of Behavioral Decision Making Vol. 10, Iss. No. 1



P. Sedlmeier and G. Gigerenzer Intuitions About Sample Size 49

Chebychev's inequality states that the probability of a deviation (e or larger) of random variable X
from its expectation � is less than or equal to the variance s2 of X divided by the square of that
deviation (e.g. Feller, 1957, p. 219). When Chebychev's inequality is applied to the mean �X , it yields

p�j �X ÿ �j5 "�4 �2

n"2
; �A4�

because the variance of �X is s2/n. Because the right-hand side of the inequality approaches 0 as n
increases, the upper bound of the probability that the sample mean deviates from the population mean
by at least " decreases as n increases.

However, because Chebychev's inequality speci®es only the upper bound, it is just a partial justi®-
cation for the superiority of larger samples. Indeed, as Stigler (1980) discusses, under certain distribu-
tional assumptions, exceptions in which smaller samples give better estimates can be constructed.

Is there a stronger justi®cation for why means of larger samples vary less around the true value? A
third result that can be invoked is the central limit theorem, which states that for large n, the term
� �X ÿ ��=��= ���

n
p � has approximately a standard normal distribution (e.g. Huntsberger & Billingsley,

1973, p. 131). Therefore, for large n, �X has (approximately) the normal distribution with mean � and
variance �2/n. From the central limit theorem one can infer that the probability that �X is very close to
the population parameter increases monotonically with n. Thus we have a third partial justi®cation for
the superiority of larger samples. If n is very large or the population distribution is normal, then the
central limit theorem provides the strongest justi®cation because it deals with probability estimates
rather than crude upper bounds on these probabilities.

However, if n is small and the population distribution deviates markedly from a normal distribution,
then the estimate provided by the central limit theorem may be poor, and the two previous results can
provide a better justi®cation.

These three results provide (partial) mathematical justi®cation for the impact of sample-size
information, whereas the law of large numbers does not.
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