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SUMMARY

Stem-cell-derived tissues could transform disease
research and therapy, yet most methods generate
functionally immature products. We investigate how
human pluripotent stem cells (hPSCs) differentiate
into pancreatic islets in vitro by profiling DNAmethyl-
ation, chromatin accessibility, and histone modifica-
tion changes.We find that enhancer potential is reset
upon lineage commitment and show how pervasive
epigenetic priming steers endocrine cell fates.
Modeling islet differentiation and maturation regula-
tory circuits reveals genes critical for generating
endocrine cells and identifies circadian control as
limiting for in vitro islet function. Entrainment to circa-
dian feeding/fasting cycles triggers islet metabolic
maturation by inducing cyclic synthesis of energy
metabolism and insulin secretion effectors, including
antiphasic insulin and glucagon pulses. Following
entrainment, hPSC-derived islets gain persistent
chromatin changes and rhythmic insulin responses
with a raised glucose threshold, a hallmark of func-
tional maturity, and functionwithin days of transplan-
tation. Thus, hPSC-derived tissues are amenable to
functional improvement by circadian modulation.

INTRODUCTION

Generating functional stem-cell-derived tissues is amajor goal of

regenerative medicine, yet current strategies yield products that

often fail to recapitulate endogenous cellular function (Sances

et al., 2016; Sneddon et al., 2018; Yang et al., 2014). Our group

and others advancedmethods to differentiate human pluripotent

stem cells (hPSCs) into pancreatic islet cells (Pagliuca et al.,

2014; Rezania et al., 2014; Russ et al., 2015). These comprise

SC-b (hPSC-derived b) cells, among other cell types (Pagliuca

et al., 2014; Sharon et al., 2019; Veres et al., 2019), including

insulin+ glucagon+ polyhormonal cells (PH). Better control over

deriving all islet cell types is limited by incomplete understanding

of the mechanisms driving endocrine lineage specification.

hPSC-derived islets (SC-islets) show glucose-responsive in-

sulin release and cure diabetic rodents, yet they lack the full

magnitude of responsiveness shown by mature islets in vivo.

Mature responsiveness develops postnatally as insulin secretion

capacity and the glucose threshold for secretion increase

(Aguayo-Mazzucato et al., 2006; Blum et al., 2012; Stolovich-

Rain et al., 2015). While factors promoting islet maturation

have been described (e.g., MAFA and NEUROD1), the underly-

ing mechanisms remain unclear (Liu and Hebrok, 2017).

Here, we use epigenome analyses to better understandmech-

anisms driving human islet differentiation and maturation.

We define regulatory landscapes, the putative pioneer factors

that establish them, and their state dynamics throughout islet

development. We find that enhancer turnover occurs mainly

upon lineage commitment, which is foreshadowed by wide-

spread yet dynamic enhancer priming. Accordingly, we show

that priming of a-cell-specific enhancers steers PH toward an

a-cell fate. Modeling core regulatory circuits (CRCs) across islet

differentiation and maturation stages captures both known and

unexpected regulators such as LMX1B, which we validate as

critical for generating endocrine cells. Finally, contrasting regula-

tory landscapes in SC-b and mature b cells reveals a role for

circadian rhythms in fostering mature glucose responsiveness.

Entrainment to daily feeding/fasting cycles activates islet clocks

and elicits rhythmic transcription of energy metabolism and in-

sulin synthesis/transport/release genes, triggering metabolic

rhythms and cyclic insulin responses with a higher glucose

threshold, thus recapitulating an aspect of postnatal maturation.

Clock-entrained SC-islets gain stable epigenetic changes at

genes enabling mature insulin responses and sustain function

from as early as 3 days after in vivo transplantation. These

data, available via an online resource (http://meltonlab.rc.fas.

harvard.edu/data/pancreatic_enhancers/), reveal mechanisms

controlling human islet development and illustrate how clock

modulation can be harnessed to further functional maturation

of a stem-cell-derived product.

RESULTS

Epigenome Dynamics during Islet Lineage Progression
We exploited the stepwise differentiation of islets from �108

hPSCs (Millman et al., 2016; Pagliuca et al., 2014) to purify line-

age intermediates in numbers not available through human

biopsy samples (Figure 1A). These included early and late

pancreatic progenitors (PP1 and PP2) and endocrine progenitors

(ENs), isolated based on known markers, and we found that

DPP4/CD26 labels glucagon+ cells, allowing sorting live SC-b
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Figure 1. Epigenome Dynamics during Human Islet Differentiation

(A) Stages of directed differentiation from human pluripotent stem cells (hPSCs) to hormone-producing islet cell types.

(B) Stepwise developmental trajectory of hPSC-derived islet cells reconstructed by principal component (PC) analysis of ATAC, H3K4me1, H3K27ac, RNA, and

WGBS landscapes. Stage labels as in (A). The fraction of sample variance explained is indicated for each component.

(legend continued on next page)
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from PH. hPSC-derived and primary a/b cells were then sub-

jected to whole-genome bisulfite sequencing (WGBS), assay

for transposase-accessible chromatin by sequencing (ATAC-

seq), chromatin immunoprecipitation sequencing for two histone

marks (H3K27ac and H3K4me1), and directional total RNA

sequencing (RNA-seq). In total, we generated �200 datasets

with �12 billion reads aligned to the human genome (Table

S1). Replicate epigenome and transcriptome measurements

showed high consistency and independently recapitulate the

stepwise development of the islet lineage from hPSCs

(Figure 1B).

Epigenome and total RNA maps reveal major switches upon

endocrine commitment. Profiling enhancer/promoter histone

marks H3K27ac and H3K4me1 (Creyghton et al., 2010; Heintz-

man et al., 2009; Rada-Iglesias et al., 2011) locates >360,000

enriched sites (Figure S1A). Despite consistent genome

coverage and marking levels across differentiation stages,

>75% of H3K27ac/H3K4me1 sites are detected in at most 3

stages (Figures S1B–S1E). These dynamic chromatin sites are

mostly distal to promoters and are overrepresented in EN

and a/b cells, suggesting widespread remodeling of enhancers.

Moreover, total RNA maps detect, among �2,000 genes with

differential isoform usage (Table S2), an endocrine switch to-

ward DNMT3A and TET1 isoforms generated from alternative

promoters (Figure 1C) that confer distinct subnuclear localiza-

tion/biochemical activities (Chen et al., 2002; Gu et al., 2018;

Zhang et al., 2016).

DNA methylation dynamics further reveal substantial endo-

crine remodeling. We detect >125,000 differentially methylated

regions across stage transitions, comprising distal intergenic

sites with focal H3K27ac/H3K4me1 (Figures 1D and S1G; Table

S3). Hypermethylation is highest upon pluripotency exit and

reflects stable chromatin silencing (Figures 1D and 1E, top). Hy-

pomethylation, by contrast, reflects stage-specific chromatin

activation and is most prevalent upon pancreatic/endocrine

specification (Figures 1D and 1E, bottom). Indeed, hypomethy-

lation co-occurs with focal H3K27ac/H3K4me1 and ATAC

gain (Figure 1F), shows greater stage specificity than hyperme-

thylation (Figure S1H), and occurs at sites enriched for binding

of factors that regulate the respective stage (Figure S1E). Criti-

cally, hyper-/hypomethylation concurs with silencing/activation

of the nearest gene (Figures 1I and S1I). These data chart epige-

nome dynamics throughout islet lineage progression, linking

them to the control of stage-specific gene expression.

Widespread Enhancer Resetting upon Lineage
Commitment
We used H3K27ac enrichment outside promoters to define

>34,000 putative enhancer domains active during islet differen-

tiation (Figures 1G and S1J; Table S4). These are broad

H3K27ac regions that often overlap the gene with which they

were associated (Figures S1K–S1M) and show striking stage

specificity. For example, the SOX17 domain is specific to endo-

derm, theNGN3 domain is specific to EN, and theMAFA domain

is specific to mature b cells (Figure 1G). In all, 85% of enhancer

domains change activity across stage transitions, eliciting

changes in DNA openness, H3K4me1 marking, and RNA

production (Figure 2A). Notably, differential enhancer activity

concurs with differential expression of the overlapping/nearest

gene (Figure 2B).

Enhancer establishment, marked byH3K4me1 deposition, co-

occurs with focal DNA opening and methylation loss (Figures

S2A and S2B), consistent with targeting by sequence-specific

transcription factors (TFs) (Felsenfeld et al., 1996; Stadler et al.,

2011). A stepwise acquisition of these marks can be seen at

key lineage-specifying TF loci. For instance, NGN3 distal en-

hancers gain ATAC and H3K4me1 marking in PP1, prior to

H3K27ac gain and NGN3 expression in EN (Figure 1H). Similar

conclusions can be drawn for master regulators of other differ-

entiation stages (SOX17, PDX1, and NKX6.1). Thus, stepwise

epigenetic changes can forecast gene programs that drive

developmental transitions (see below).

Clustering enhancers by epigenome/RNA dynamics (Figures

2C–2E) reveals 10 groups: I–II share enhancers formed before

pancreatic specification, II–IV cluster enhancers formed in

committed pancreatic progenitors, and V–VIII comprise en-

hancers formed upon endocrine specification and activated in

progenitor/terminally differentiated endocrine cells. We also

found sets of enhancers (group IX) that are lost from hPSCs

and re-form upon islet cell maturation, including loci specifically

active in b cells (e.g., MAFA, UCN3, and SIX3) (Figure S2C).

Dissecting enhancer turnover shows that only 10% of islet

lineage enhancers are preset in hPSCs. We investigated at

which stage enhancers are gained/lost between hPSC and

differentiated progeny (Figures 2F and S2D). Strikingly, most

(�60%) enhancers gained in PP1 or EN form in the first lineage

progenitor, with reduced formation upon subsequent differen-

tiation. Similarly, enhancer loss and activation/deactivation

are highest at the pancreatic/endocrine lineage branching

(C) Dynamic expression and isoform usage patterns of key epigenome regulators. Tracks display normalized RNA. Gene models are shown in black below.

Alternative DNMT3A and TET1 promoters are highlighted.

(D) DNAmethylation dynamics during directed differentiation. Regions showing DNAmethylation (DNAme) gain or loss are highest upon endoderm or pancreatic/

endocrine specification, respectively.

(E) Stable epigenetic silencing upon DNAme gain (top) versus activation upon DNAme loss (bottom). Boxplots show distribution of DNAme levels at all stages for

regions differentially methylated during PP1 (left) and SC-b (right) specification. Heatmaps below display their median WGBS, H3K4me1, H3K27ac, and ATAC

levels at each stage, with correlations between WGBS and H3K4me1/H3K27ac/ATAC patterns and their significance quantified to the right.

(F) DNAme gain/loss coincides with focal ATAC loss/gain. Shown is the ATAC signal change around differentially methylated regions from definitive endoderm

(DE) to PP1 (left) and from EN to SC-b (right).

(G) Stage-specific H3K27ac and RNA dynamics across islet development. Tracks show normalized H3K27ac signal over a region 1.5 times greater than the

superenhancer domain at the stage marked by genes highlighted in (A), with relative gene expression quantified to the right.

(H) Coordinated NGN3 ATAC, H3K4me1, H3K27ac, RNA, and WGBS dynamics. Tracks as in (G); heatmaps to the right display relative signal over the domain

shown below.

(I) Concerted chromatin closing and DNAme gain within NGN3-flanking DMRs. Heatmaps show WGBS/ATAC levels at individual CpGs.

See also Figure S1 and Tables S1–S3.
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points (Figure S2E). These data define enhancer dynamics from

pluripotent to postmitotic islet cells, revealing that enhancer po-

tential is largely reset upon lineage commitment.

Epigenetic Priming Predicts Lineage Potential
The competence to execute specific cell fates following induc-

tive cues can be linked to a gain of H3K4me1 before H3K27ac
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Figure 2. Enhancer Transitions during Islet Lineage Progression

(A and B) Synchronous changes in chromatin accessibility, modification, and transcription during directed differentiation. Correlations between H3K27ac and

ATAC/H3K4me1/RNA changes across all enhancer domains for each pair of differentiation stages shown in (A). Concordance between enhancer H3K27ac loss/

gain and differential expression of the overlapping/nearest gene across subsequent developmental transitions shown in (B); *p < 10�24 (Wilcoxon test).

(C–E) Transitioning enhancer states throughout the islet lineage. Clustering of enhancer domains based on their ATAC, H3K4me1, H3K27ac, RNA, and WGBS

profiles (C). Profiles for domains associated with the genes highlighted to the right shown in (D). Profiles for select enhancer clusters representing hPSC (I),

pancreatic progenitors (IV), and hormone-producing islet cells (VIII) are summarized in (E) by their median values (ATAC and H3K4me1), boxplots (H3K27ac), and

heatmaps (RNA and WGBS).

(F) Widespread enhancer turnover at lineage branching points. For enhancers gained/lost between hPSCs and each stage, the fraction specifically gained/lost at

that stage is shown.

See also Figure S2 and Table S4.
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Figure 3. Extensive Epigenetic Priming Predicts Lineage Potential

(A) Substantial turnover of enhancer H3K4me1 pre-marking. Left: for enhancers activated at each stage transition that were previously H3K4me1-marked, the

fraction whose maximal H3K4me1 deposition occurred at each previous stage is shown. Right: epigenome/RNA dynamics for 2,097 enhancers activated in EN

that were H3K4me1 marked in previous stages.

(B) H3K4me1-premarked enhancers gain higher H3K27ac levels than de novo enhancers across stage transitions; *p < 10�8 (Wilcoxon test).

(C) Selective priming of a-specific enhancers in PHs. Enrichment analysis of enhancers inactive but H3K4me1-marked in PHs by their H3K27ac level in a versus b

cells. NES, normalized enrichment score.

(D) PHs resemble a over b cells. Correlations among ATAC (top), H3K27ac (middle), and RNA (bottom) levels across all enhancer domains between SC-b/PH and

primary a/b cells.

(E) PHs resolve toward a cells in vivo. Left: fasted immunocompromisedmice transplanted with purified SC-b, PH, or unsorted re-aggregated cells were assayed

for serum human insulin before/30 min after a glucose injection 4–6 weeks post-transplantation. Data are mean ± SEM of 3 replicate measurements. Right:

hormonal resolution evidenced by staining retrieved grafts for insulin (green)/glucagon (red). Scale bar, 100mm.

See also Figure S3.
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deposition at lineage-specific enhancers (Creyghton et al., 2010;

Wamstad et al., 2012; Zhang et al., 2012).We find that only 10%–

20% of enhancers activated across stage transitions gain

H3K4me1 in the preceding stage, enriching for critical effectors

of the subsequent one (Figures 2D and S3A). However, up to

60% of newly activated enhancers are H3K4me1 marked in

earlier stages and show dynamic H3K4me1 gain/loss prior to

activation (Figures 3A and S3C), revealing H3K4me1-premarking

to be pervasive but substantially plastic. Importantly, H3K27ac

and RNA levels are higher at H3K4me1-premarked versus de

novo enhancers (Figures 3B and S3B), compatible with a tran-

scriptionally primed epigenetic state.

We investigated to which extent enhancer priming reflects

lineage potential. Primed-to-active enhancer transitions be-

tween EN and a/b are comparable, supporting EN multipotency,

whereas SC-b priming is biased toward b-specific enhancers

(Figure S3D). Intriguingly, PHs are biased toward a-specific en-

hancers (Figure 3C), suggesting predisposition to become a

cells, which they resemble more closely than b cells (Veres

et al., 2019) (Figure 3D). To test this, we capitalized on our ability

to purify PH and SC-b and transplanted them alone or in combi-

nation under the kidney capsule of immunocompromised

mice (Figures 3E and S3E). Unlike mice receiving SC-b cells,

those receiving comparable numbers of PH could not sustain

robust glucose-stimulated insulin secretion (GSIS). Kidney

grafts were then retrieved and stained for insulin/glucagon. Un-

like SC-b grafts, which contain mainly insulin+ monohormonal

cells, PH grafts contain mainly insulin� glucagon+ cells (Figures

3E and S3F), demonstrating a-cell resolution. Thus, an epige-

netic program steers PH toward an a-cell fate.

Pioneer Factors during Islet Differentiation and
Maturation
Developmental competence is endowed by chromatin-opening

pioneer factors (Iwafuchi-Doi and Zaret, 2014). We find that

newly opened chromatin sites during islet differentiation enrich

for binding sites of known pioneer TFs (Figures S4A and S4B)

and show focal demethylation (Figures S4C and S4D), in line

with pioneer activity. We identify pioneer FOXA/GATA and

HNF/MEIS factors in PP1 and PP2, RFX/NEUROD in EN, and

MAF factors in islet cells, along with unexpected TFs such as

NHLH1/2 in EN and IRF1, ELF3, and AP-1 components (FOS,

FOSL2, and JUNB) in b cells (Figure 4A; Table S5). Stage-spe-

cific expression patterns (Figure S4E) support roles for these fac-

tors in directing islet lineage progression.

To predict maturation pioneers, we surveyed DNA openness

over a 4-week in vitro time course during which SC-b cells gain

glucose responsiveness (Figures 4B and S4F). Robust function

(GSIS >2 mIU/103 cells and >1.5-fold stimulation) was seen by

week 3, reflecting gains in both insulin content and secretory

capacity. With this transition, we detect newly opened sites

overlapping/near insulin as well as genes regulating its process-

ing and secretion (e.g., CADPS, SYT4, and STX2), in SC-b cells,

but not PHs (Figures 4C and S4G). Surprisingly, these sites

feature the core circadian clock activators (CLOCK and

ARNTL/BMAL1) among the top-enriched TF binding motifs

(Figure 4D; Table S5; see below). Conversely, known controllers

MAFA and NEUROD1 only appear by week 4, suggesting an

incomplete maturation process.

To examine changes upon further maturation in vivo, we

transplanted SC-b into immunocompromised rats, which

enabled recovery of enough cells for ATAC-seq (Figures 4E

and S4H). Engrafted SC-b cells more closely resemble b cells

(Figure 1B), gaining >40,000 open chromatin sites, overrepre-

sented at TF (e.g., ISL1 and PAX6) and secretory genes

(e.g., UCN3 and SLC30A8), which are often shared by both

(Figure S4I; Table S5). These sites enrich for MAFA/NEUROD1

binding motifs, among other unexpected TFs (e.g., IRF1 and

ELF3) (Figure 4D). These data reveal putative pioneer TFs

throughout islet development, highlighting potential regulators

of the onset and refinement of b cell function.

Islet Differentiation and Maturation Regulatory Circuits
Stable cell states are reportedly set by TFs via autoregulatory

loops involving joint formation of extended or superenhancers

(SEs) (Gaulton et al., 2010; Parker et al., 2013; Whyte et al.,

2013). A cell’s CRC can thus be modeled by finding SE-driven

TFs in interconnected autoregulatory loops (Boyer et al., 2005;

Lin et al., 2016; Saint-André et al., 2016). Using this logic, we

generated CRC models that effectively capture master pancre-

atic/endocrine regulators (Figure 5; Table S6). For example,

PP2 CRCs contain PDX1, NKX6.1, SOX9, and ONECUT1/

HNF6, while b CRCs contain MAFA, PAX6, and ISL1. Binding

among CRC factors is supported by immunoprecipitation

studies (not shown), and depleting a given TF triggers selective

depletion of the others in its CRC (Figure S5A), verifying strong

interconnectivity.

How are CRCs remodeled during development? We reasoned

that lineage-inductive cues could trigger activation of new

CRC-forming TF sets that in turn reprogram cell sate. Indeed, line-

age-specifying CRC factors show high stage specificity

(Figure 5C). For example, endoderm-specifying (GSC, EOMES,

and SOX17) and pancreatic-specifying (PDX1, SOX9, and

ONECUT1) TFs are highly endoderm and PP1 specific, respec-

tively, verifying earlier studies (Oliver-Krasinski and Stoffers,

2008). This analysis also points to unanticipated TFs such as

LMX1B (specific to EN) and the circadian factors BHLHE40/

SHARP2, BHLHE41/SHARP1 (specific to b cells), and HLF

(specific toacells).Theseshowhigh interconnectivity (FigureS5C),

including with key TFs that partake in CRCs at multiple stages

(PDX1,NKX6.1, andPAX6) (Figure5D), suggesting that stage-spe-

cific TFs rewire otherwise stable CRCs during development.

We tested whether LMX1B regulates the EN state. Depleting

LMX1B during in vitro endocrine induction limited the pool

of EN progenitors and hampered endocrine gene activation

(Figures S5D and S5E). We thus disrupted LMX1B using an

inducible CRISPR/Cas9 system (González et al., 2014) in

independent hPSC lines (Figures 5E and S5F). LMX1B�/� lines

differentiated normally up to EN progenitor formation, yet subse-

quent SC-b and PH generation was drastically impaired, with

median <1% SC-b cells formed (Figures 5E and S5G). RNA

profiling consistently reveals hampered induction of EN CRC

TFs (PAX4, INSM1, and MAFB), pan-endocrine TFs (NEUROD1

andPAX6), secretory proteins (CHGA andSCG5), and hormones

(insulin, glucagon, and somatostatin) (Figures 5F and S5H).

Conversely, TFs (ONECUT/HES) and signaling pathways

(Wnt, Notch, and Bmp) selective for pancreatic progenitors

(Sharon et al., 2019) remain active in LMX1B�/� cells, indicating
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a differentiation block. Thus, LMX1B is critical for in vitro endo-

crine cell differentiation.

Circadian Rhythms Trigger an Islet Maturation Step
Circadian clocks are vital for attuning insulin secretion to daily

feeding/fasting cycles (Bass and Takahashi, 2010; Gamble

et al., 2014). Clock controllers are linked to islet maturation by

their chromatin and expression patterns (Figures S4E and S5B),

footprint at regulatory sites gained as SC-b cells raise insulin pro-

duction/secretion (Figure 4D), and interconnections with matu-

rity-linked factors in the b cell CRC (Figure 5D). We thus asked

if clock entrainment can foster in vitro islet maturation. First, we

verified that insulin responses of cadaveric and SC-islets can

be entrained by a single metabolic shock (Figure S6A), as seen

in rodents (Perelis et al., 2015). After recovery from shock, cul-

tures grown in constantmedium show time-of-day variation in in-

sulin content and stimulated secretion, with peak production/

secretion 12 h post-recovery. Fold-stimulation is modestly

increased relative to parallel mock-treated cultures at this time

(Figure S6B). Entrainment to daily feeding/fasting rhythms using

various stimuli (glucose, arginine, forskolin, and insulin), however,

can boost insulin stimulation capacity by as much as 6-fold (Fig-

ures 6A, S6C, and S6D). Surprisingly, this reflects lower re-

sponses to basal (2.8mM) glucose (Figure 6B) without significant

change in overall responses to stimulatory (20 mM glucose/

30 mM KCL) conditions or overall insulin content (Figure S6E).

Enhanced responsiveness reflects newcellular states, as individ-

ual circadian-entrained islet cells flux significantly more calcium

than most (�75%) mock-treated counterparts (Figure 6C).

We then tested our optimized entrainment method in SC-is-

lets. The results in Figures 6D and S6F show cyclic insulin

production/secretion, sustaining rhythmic GSIS for 72 h post-

entrainment. As with natural islets, we detect lower basal

insulin secretion and enhanced glucose responsiveness, which
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Figure 4. Pioneer Factors during Islet Differentiation and Maturation

(A) Recognition motifs within newly opened chromatin regions (left diagram) enrich for known and unexpected pioneer TFs during islet development (right).

Heatmap shows relative motif enrichment for all expressed TFs across developmental transitions.

(B) Refinement of glucose-stimulated insulin secretion (GSIS) function during extended culture of terminal-stage SC-b preparations. Data are mean ± SEM of N =

3 preparations with n = 3 replicate measurements each.

(C) Concomitant opening of DNA sites around the insulin locus as SC-b cells gain robust GSIS. Tracks display normalized ATAC signal from SC-b cells.

(D) Putative pioneer factors during b cell maturation. Left: TF motif enrichments as in (B) across subsequent in vitro/in vivo SC-b maturation stages, as well as

between SC-b and primary b cells. Right: select TF motifs among the most enriched during key maturation stage transitions.

(E) Sustained insulin openness in SC-b transplanted into immunocompromised rats. Tracks as in (E) display ATAC signal from engrafted SC-b/primary b cells.

See also Figure S4 and Table S5.
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can reach 8-fold enhancement at peak secretion compared

to mock-treated counterparts (Figures 6D, 6E, and S6G).

Interestingly, O2/CO2 levels in the medium of unstimulated en-

trained cultures are also rhythmic (Figures 6A and 6D), linking

GSIS oscillations to metabolic rhythms. Of note, cadaveric/SC-

islets lacking GSIS function do not respond to entrainment (not

shown), in line with roles in tuning, but not eliciting, glucose re-

sponses. Thus, circadian entrainment can improve in vitro islet

function by raising the glucose threshold for insulin secretion, a

hallmark of functional maturity (Blum et al., 2012).
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Figure 5. CRCs Identify LMX1B as Critical for Endocrine Cell Generation

(A and B) Modeling core transcriptional regulatory circuits (CRCs) in the human islet lineage. 1. Superenhancer (SE)-driven TFs are identified. 2. TFs predicted to

bind their own SE are detected. 3. CRCs are defined as sets of autoregulated TFs predicted to bind each other’s SE, forming fully interconnected autoregulatory

loops (A). The union set of TFs from all possible models for PP1, EN, and b are listed in (B), ranked by their interconnectivity.

(C) Lineage-specifying CRC TFs are distinguished by their stage-specific expression. Newly implicated TFs are underlined to the right.

(D) Rewiring of CRCs by stage-specific TFs. Nodes represent stage-specific CRC TFs from (C) that partake (pink) or not (gray) in PP2, EN, SC-b, or bCRCs. Edges

represent predicted transcriptional regulatory relationships between TFs within the same CRC. TFs unique to each stage are highlighted in red.

(E) LMX1B regulates in vitro endocrine cell generation. CRISPR/Cas9 guide RNA (gRNA)-mediated LMX1B disruption in hPSC followed by directed differentiation

(left) significantly (*p < 0.05, t test) impairs SC-b (middle) and PH (right) generation relative to parental andmock-targeted control lines. Results were normalized to

the parental control from the same experiment and combined for statistical analysis. Data from N = 4–5 differentiation experiments with n = 1–2 biological

replicates each.

(F) LMX1B disruption blocks endocrine gene induction. Left: differentially expressed (p < 0.05, DESeq) genes in independent LMX1B�/� versus parental lines

profiled from day 1 to day 3 of in vitro endocrine differentiation. EN CRC TFs are highlighted in blue, among other TFs, secretory proteins, and hormones. Right:

pathways enriched among differentially regulated genes.

See also Figure S5 and Table S6.
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Genomic Changes and In Vivo Function of Clock-
Entrained SC-Islets
How do circadian rhythms promote in vitro islet maturation?

RNA sequencing identifies energy metabolism enzymes

among >10,000 genes (31% of all protein- and non-coding

genes detected) that oscillate specifically upon clock entrain-

ment (Figures 7A and S7A–S7C; Table S7). These include

glucose import/metabolism (GCK and PDHA1/B/X) and tricar-

boxylic acid (TCA) cycle enzymes, as well as electron transport

chain and ATP synthase components. Consistent with their

cycling, the mTOR/phosphatidylinositol 3-kinase (PI3K)/AKT

and MAPK signaling factors are overrepresented among rhyth-

mic RNAs. These data link islet metabolic rhythms to the pulsa-

tile expression of energy metabolism genes.

A B C

D

E

Figure 6. Circadian Rhythms Trigger an Islet Maturation Step

(A) Human islet glucose-stimulated insulin secretion (GSIS) and respiration rhythms induced by circadian entrainment with various stimuli. Schematic: timeline for

shock/recovery cycles conducted 4 times over 4 days, followed by functional assays over 24 h. Panels: GSIS stimulation indexes (top), partial O2 pressure in the

medium of unstimulated cultures (middle), and partial CO2 pressure (bottom), with patterns for mock-treated versus entrained cultures shown to the right. Data

are mean ± SEM of n = 3 replicate measurements.

(B) Diminished insulin response to basal glucose levels in clock-entrained islet cultures. Boxplots summarize insulin secretion across 24 h for the indicated

conditions; *p < 0.01 relative to mock-treated (t test).

(C) Circadian entrainment enhances islet glucose responsiveness. Calcium influx in mock-treated versus entrained islets during the indicated incubations,

detected using Fluo4-AM staining. Shown are population- and single cell-level cytosolic Ca2+ traces, summarized to the right. Traces show n = 725 cells from N =

14 islets sampled from both cultures at the 12-h circadian time point, each normalized to the mean of the first incubation.

(D) GSIS and respiration rhythms in clock-entrained cadaveric/SC-islet cultures sampled across 72 h. Top: GSIS stimulation indexes for mock-treated versus

entrained SC-islets (left) and cadaveric islets (right), summarized to the right of each. Data are mean ± SEM of n = 3 replicate measurements. Bottom: partial O2

pressure in the medium of unstimulated entrained SC-islets (left) and cadaveric islets (right).

(E) Circadian entrainment enhances SC-islet glucose responsiveness. Insulin secretion from mock-treated versus entrained SC-islets during the indicated in-

cubations, with relative stimulation indexes quantified to the right. Data are mean ± SEM of N = 3 cultures sampled at the 12-h circadian time point with n = 2

replicate measurements each, normalized to mean of the first incubation.

See also Figure S6.
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We also detect antiphasic insulin and glucagon expression

(Figure 7A), reminiscent of priming of insulin/glucagon secretion

according to diurnal/nocturnal physiological need (Bass and Ta-

kahashi, 2010; Gamble et al., 2014). Indeed, we observe wide-

spread cycling of factors mediating insulin metabolism (PCSK1

and IDE), signaling, and transport/secretion (Figure S7D).

Surprisingly, the circadian transcriptome includes PDX1,

NKX6.1, and maturity-linked factors (NEUROD1 and IAPP),

all of which show high-amplitude oscillations (Figure S7E).

These data provide a molecular basis for circadian variation in

insulin responses via the rhythmic control of its synthesis, trans-

port, and release.

Clock-controlled oscillations may already exist without

entrainment but remain hidden from bulk measurements due

to lack of synchronicity. However, single-cell RNA-seq from

unentrained SC-b cultures (Veres et al., 2019) (Figure S7F) shows

that unlike TFs (e.g., PDX1 and NKX6.1) detected consistently

(>60% of cells) and robustly (mean counts per million mapped

reads (CPM) >2), core clock controllers (ARNTL, PER1/2, and

CRY1/2) are expressed rarely (<15% of cells) and lowly (mean

CPM �1). By contrast, their expression is induced upon entrain-

ment (Figure 7B), indicating that feeding/fasting cycles not only

synchronize but also activate islet clocks.

Circadian entrainment also induces maturity-linked factors

(PAX6, IAPP, and SIX3) along with machinery involved in energy

metabolism (pyruvate/TCA cycle enzymes) and insulin secretion

(synaptotagmins, syntaxins, and secretogranins) (Figure 7B).

Higher/rhythmic expression of these effectors is consistent

with greater/pulsatile GSIS responses that persist 72 h post-

entrainment (Figure 6D). To study the basis for such persistence,

A C

B D

Figure 7. Clock-Entrained SC Islets Gain Durable Rhythmicity and Function 3 Days after Transplant

(A) Rhythmic RNA expression in SC-islet cultures sampled for 72 h following circadian entrainment. Top: antiphasic insulin and glucose expression; data aremean

of N = 3 cultures. Bottom left: RNA expression of cycling genes (p < 0.05, harmonic regression test for rhythmicity); data pooled from N = 3 cultures. Bottom right:

pathways enriched in the cycling gene set.

(B) Upregulation of core clock TFs, maturity-linked factors, and machinery involved in energy metabolism and insulin secretion in SC-islet cultures following

circadian entrainment. Volcano plot summarizes magnitude and statistical significance of expression changes. Data as in (A).

(C) Newly opened DNA sites around IAPP persist in SC-islets after circadian entrainment. Tracks display normalized ATAC signal at the indicated stages.

(D) Clock-entrained SC-islets function within 3 days of transplant. Fasted immunocompromisedmice transplanted with SC-islets following circadian entrainment

were assayed for serum human insulin before/30 min after a glucose injection 3- and 24-days post-transplantation. Glucose-stimulated insulin secretion (GSIS)

stimulation indexes are summarized to the right. Data from N = 10 mice with n = 2 replicate measurements each.

See also Figure S7 and Table S7.
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we used ATAC-seq to detect �20,000 newly opened chromatin

sites 12 h following entrainment, with �18,500 remaining after

72 h (Figures 7C and S7G). These sites are indeed overrepre-

sented at TF genes regulating the mature b cell phenotype

(MAFA, NEUROD1, and PAX6) and at direct GSIS effectors

(G6PC2/3, SLC30A8, and RAB11FIP2), suggesting that circa-

dian control of genes enabling mature GSIS function persists

as a result of stable chromatin changes.

To test whether maturation in vitro leads to better function

in vivo, we transplanted clock-entrained SC-islets under the

kidney capsule of immunocompromised mice (Figure 7D).

Remarkably, entrained SC-islets show GSIS >2 mIU/ml and

>1.5-fold stimulation as early as 3 days post-transplantation

and maintain this function 24 days after. Circadian entrainment

can thus trigger stable changes reminiscent of postnatal matura-

tion to foster robust GSIS, revealing a mechanistic aspect of the

mature islet phenotype.

DISCUSSION

The promise of in-vitro-derived tissues for regenerative medicine

benefits from a better understanding of mechanisms governing

their development and function. Prior SC-islet studies described

epigenetic processes influencing pancreatic specification (Ce-

bola et al., 2015; Lee et al., 2019; Wang et al., 2015; Xie et al.,

2013; Xu et al., 2014). Extending these to specification of endo-

crine cell types has been hampered by their inefficient/incom-

plete derivation, which yields highly heterogenous preparations

(Pagliuca et al., 2014; Rezania et al., 2014; Russ et al., 2015).

Here, we circumvent these challenges using cell purification

strategies that enable deep epigenome profiling throughout

the specification, terminal differentiation, and functional matura-

tion of a- and b-like cells. Our data chart an epigenomic roadmap

of in vitro islet differentiation, revealing a chromatin-level deter-

mination of endocrine cell fates and function.

How epigenome changes coordinate genetic circuits to steer

cell fate is little understood. We find that lineage decisions

involve pervasive enhancer remodeling and identify widespread

chromatin transitions that foreshadow fate choices. The results

show that enhancer repertoires are reset during differentiation

rather than preset (Choukrallah et al., 2015; Lara-Astiaso

et al., 2014; Luyten et al., 2014). Two major waves of enhancer

gain/loss mark the pancreatic/ endocrine commitment points,

entailing concurrent turnover of DNA accessibility, methylation,

and histone marking. These changes gate access of stage-spe-

cific TFs to their target sites, linking chromatin transitions to the

rewiring of transcriptional circuits that control cell fates.

We also detect extensive H3K4me1 premarking between

progenitor and differentiated cell states and suggest it fosters

transcriptionally permissive enhancer states. Such epigenetic

priming may promote robust, concerted activation of lineage-

specifying factors. Indeed, we find that insulin+ glucagon+ cells

primed for activating a- versus b-selective enhancers resolve

toward an a-cell fate. Preparations containing such polyhormo-

nal cells reportedly yieldmainly insulin� a-like cells upon engraft-

ment/extended culture (Rezania et al., 2011; Veres et al., 2019),

but these could in principle derive from other precursors in

the preparations. Our transplant studies resolve this controversy

by directly tracking the fate of purified PHs.

Cell fate programming has been linked to CRCs formed by su-

per-enhancer-driven TFs (Lin et al., 2016; Saint-André et al.,

2016). How these circuits are rewired to program sequential

cell fates during development is unclear. We find that islet

lineage CRCs are dynamically reconfigured by stage-specific

gain/loss of SE-driven TFs (Adam et al., 2015; Goode et al.,

2016). One such factor, LMX1B, is indeed critical for in vitro

islet cell derivation. Interestingly, LMX1B controls development

of dopaminergic/serotonergic neurons downstream of NKX2.2

(Cheng et al., 2003; Smidt et al., 2000) and can transactivate

insulin ectopically (German et al., 1992), suggesting a related

pathway shapes SC-islet development.

Finally, we show that the key function of SC-islets, glucose

responsiveness, can be improved by circadian modulation.

Mature responsiveness develops between birth and weaning

(Aguayo-Mazzucato et al., 2006; Blum et al., 2012; Stolovich-

Rain et al., 2015), along with the onset of circadian behavioral

(sleep and feeding) cycles that induce islet clocks (Rakshit

et al., 2018). Interestingly, embryonic or adult b cell-specific

Arntl/Bmal1 deletion in rodents yields islets with diminished

insulin secretory capacity, reminiscent of neonatal/immature

islets (Marcheva et al., 2010; Perelis et al., 2015; Rakshit et al.,

2018). Our gain-of-function studies further dissect how clocks

modulate islet function in a controlled, human setting. We

show that re-creating fasting/feeding cycles activates islet

clocks, inducing rhythmic transcription of genes controlling

energy metabolism and GSIS function. Accordingly, clock-

entrainment drives antiphasic waves of insulin and glucagon

expression, suggesting that the capacity to anticipate diurnal

changes in insulin demand can be recreated in vitro via organ-

autonomous rhythms. These changes coordinate metabolic

and insulin cycles, fostering an increased GSIS threshold in

SC-islets that otherwise expand basal insulin secretion as they

expand their production/secretory capacity. The same mecha-

nism operates in primary islets, recapitulating an important

aspect of in vivo maturation. Importantly, this functional step

persists 72 h after entrainment has ceased, likely due to stable

epigenetic changes at gene loci enabling mature GSIS, and

renders SC-islets functional within days of transplant.

Overall, this study provides insights that underpin human

islet development and function. These insights may be valu-

able in improving b cell programing strategies and under-

standing how disrupted genetic circuits contribute to meta-

bolic diseases, including diabetes. An intriguing possibility

is that circadian entrainment may be harnessed to further

functional maturation of other stem-cell-derived products

(Sances et al., 2016; Sneddon et al., 2018; Yang et al.,

2014), consistent with the ability of clock controllers to bind

distinct targets in distinct tissues (Koike et al., 2012; Perelis

et al., 2015). Thus, our general approach may inform attempts

to control the fate and function of any human cell type.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat anti SOX17 R&D Cat# AF1924, RRID:AB_355060

Goat anti PDX1 R&D Cat# AF2419, RRID:AB_355257

Mouse anti NKX6.1 DSHB Cat# F55A12, RRID:AB_532379

Sheep anti NGN3 R&D systems Cat# AF3444, RRID:AB_2149527

Rat anti C-PEPTIDE DSHB Cat# GN-ID4, RRID:AB_2255626

Goat anti GLP2 Santa Cruz Biotechnology Cat# sc-7781, RRID:AB_2107346

Mouse anti GP2 MBL International Cat# D277-5, RRID:AB_11160953

Mouse anti SUSD2 Milentyi Biotec Cat# 130-106-401, RRID:AB_2653618

Mouse anti DPP4 Miltenyi Biotec Cat# 130-093-441, RRID:AB_1103210

Mouse anti HPI2 Novus Biologicals NBP1-18946AF488, RRID:AB_2818946

Mouse anti TM4SF4 Novus Biologicals Cat# FAB7998R, RRID:AB_2818948

Rabbit anti H3K27Ac Active Motif Cat# 39133, RRID:AB_2561016

Mouse anti H3K4me1 Millipore Cat# 17-614, RRID:AB_11212770

Biological Samples

Human islets Prodo Laboratories N/A

Chemicals, Peptides, and Recombinant Proteins

TSQ Thermo Fisher Scientific Cat# M688

Forskolin Stemgent Cat# 04-0025

Insulin Sigma Cat# I9278

Fluo4-AM Life Technologies Cat# F-14217

Critical Commercial Assays

NEBNext Ultra II DNA Library Prep Kit New England Biolabs Cat# E7103

Agencourt AMPure Beckman Coulter Cat# A63881

EZ DNA Methylation-Gold kit Zymo Research Cat# D5005

Accel-NGS Methyl-Seq DNA library kit Swift Biosciences Cat# 30024

Stranded RNA-seq Library Preparation kit KAPA Biosystems Cat# KR0934

SuperScript III first-strand synthesis kit Life Technologies Cat# 18080051

MEGAshortscript T7 Transcription kit Thermo Fisher Scientific Cat# AM1354

MEGAclear Transcription Clean-Up kit Thermo Fisher Scientific Cat# AM1908

Deposited Data

Raw and analyzed sequencing data This paper GEO: GSE139817

Experimental Models: Cell Lines

Human: HUES 8 hESC line HSCI NIHhESC-09-0021

Human: HUES 8 iCas9 hESC line González et al., 2014 Derived from the parental

line (NIHhESC-09-0021)

Human: H1 iCas9 hESC line Shi et al., 2017 Derived from the parental

line (NIHhESC-10-0043)

Experimental Models: Organisms/Strains

Mouse: CB17.Cg-PrkdcscidLystbg-J/Crl Charles River Strain Code 250

Rat: Crl:NIH-Foxn1rnu Charles River Strain Code 316

Oligonucleotides

LMX1B sgRNA TGTGAACGGCAGCTACGCAA This paper N/A

LMX1B sgRNA flanking PCR primer F

CCATGGAAGAGTCTGGAGCA

This paper N/A
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to the Lead Contact, Douglas A. Melton (dmelton@

harvard.edu). All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials

Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cell lines
The HUES8 (NIH hESC registry #09-0021; male) line was used for directed differentiation, and lines derived from HUES8 and H1 (NIH

hESC registry #10-0043; male) were used for CRISPR/Cas9 genome editing followed by directed differentiation. Undifferentiated

cells were maintained as aggregates in supplemented mTeSR1 medium (StemCell Technologies) using spinner flasks (Corning)

set at a 70rpm rotation rate in a 37�C 5% CO2 incubator.

Primary human samples
Primary human adult islets were obtained from Prodo laboratories. The cadaveric donors had no history of diabetes and spanned a

range of ages and health parameters:

Donor 1: 32-year-old male, 6’1,’’ 190 lbs., with a BMI of 25.1 and HbA1c 4.8%

Donor 2: 43-year-old female, 500,’’ 115 lbs., with a BMI of 22.4 and HbA1c 5.2%

Donor 3: 22-year-old male, 6’1,’’ 247 lbs., with a BMI of 32.7 and HbA1c 5.9%

Donor 4: 24-year-old male, 6’, 250 lbs., with a BMI of 34.6

Donor 5: 38-year-old female, 509,’’ 233 lbs, with a BMI of 34 and HbA1c 5.0%

Continued
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LMX1B sgRNA flanking PCR primer R

GCACACAAGCACAATCCACA

This paper N/A

LMX1B qPCR primer F

GGTCCAGGTCTGGTTTCAGAAC

This paper N/A

LMX1B qPCR primer R

GTGTAGGAAGCCATCATGCCCT

This paper N/A

Recombinant DNA

GIPZ LMX1B lentiviral shRNA1 Dharmacon RHS4430-200298213

GIPZ LMX1B lentiviral shRNA2 Dharmacon RHS4430-200296395

GIPZ LMX1B lentiviral shRNA3 Dharmacon RHS4430-200296748

GIPZ LMX1B lentiviral shRNA4 Dharmacon RHS4430-200294187

GIPZ Lentiviral Empty Vector shRNA Control Dharmacon RHS4349

GIPZ Non-silencing Lentiviral shRNA Control Dharmacon RHS4346

GIPZ GAPDH Lentiviral shRNA Positive Control Dharmacon RHS4371

GIPZ EG5 Lentiviral shRNA Positive Control Dharmacon RHS4480

Software and Algorithms

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

MACS2 Zhang et al., 2008 https://github.com/taoliu/MACS

BEDTools Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

BSMap Xi and Li, 2009 https://sites.google.com/a/brown.edu/

bioinformatics-in-biomed/bsmap-for-methylation

TopHat2 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/index.shtml

R v.3.3.2 R Core Team, 2016 http://www.Rproject.org/

nSolver 3.0 NanoString Technologies https://www.nanostring.com/products/analysis-

software/nsolver

Other

Online resource This paper http://meltonlab.rc.fas.harvard.edu/data/

pancreatic_enhancers/
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Donor 6: 59-year-old male, 506,’’ 161 lbs, with a BMI of 25.9 and HbA1c 5.6%

Donor 7: 64-year-old male, 5010,’’150 lbs, with a BMI of 21.4 and HbA1c 5.1%

Donor 8: 23-year-old male, 5010,’’ 175 lbs, with a BMI of 25.1 and HbA1c 5.6%

Donor 9: 62-year-old female, 508,’’ 106 lbs, with a BMI of 16.1 and HbA1c 5.3%

Donor 10: 55-year-old male, 77,’’ 230 lbs, with a BMI of 27.1 and HbA1c 5.8%

Donor 11: 49-year-old male, with a BMI of 26.0 and HbA1c 5.6%

Donor 12: 49-year-old female, 5010,’’ 161 lbs, with a BMI of 23 and HbA1c 5.7%

Donor 13: 27-year-old female, 501,’’ 147 lbs, with a BMI of 27.7 and HbA1c 5.0%

Donor 14: 33-year-old male, 70,’’ 215 lbs, with a BMI of 30.8 and HbA1c 5.7%

Donor 15: 27-year-old female, 501,’’ 147 lbs, with a BMI of 27.7 and HbA1c 5.0%

Donor 16: 46-year-old female, 505,’’ 121 lbs, with a BMI of 20.2 and HbA1c 5.0%

Donor 17: 53-year-old female, 162 cm, 69.4 kgs, with a BMI of 26.3 and HbA1c 5.4%

Donor 18: 46-year-old female, 67,’’ 123 lbs, with a BMI of 19.0 and HbA1c 5.8%

Donor 19: 61-year-old male, 66,’’ 179 lbs, with a BMI of 28.8 and HbA1c 5.1%

Donor 20: 56-year-old male, 67,’’ 88 lbs, with a BMI of 13.7 and HbA1c 5.0%

Donor anonymity was preserved, and donors 1-10 were pooled for ChIP-seq experiments; donors 11 and 12 were used for ATAC-

seq and WGBS experiments, and 13-20 for circadian entrainment and RNA-seq experiments. Islets were cultured in supplemented

CRML-1066 medium +10% FBS in low-attachment plates (Corning) in a 37�C 5% CO2 incubator.

All methods involving human cells were approved by the Harvard University IRB and ESCRO committees.

Rodent strains
Male immunodeficient SCID-Beige mice and Rowett Nude rats, aged 8-10 weeks, were obtained from Charles River Laboratories

and were used for transplantation studies in accordance with the NIH Guide for the Care and Use of Laboratory Animals recommen-

dations. All animals were handled according to the Harvard University Institutional Animal Care and Use Committee, approved by

the Committee on the Use of Animals in Research and Teaching of Harvard University Faculty of Arts & Sciences, which is AAALAC

International accredited, has a PHS Assurance on file with the NIH Office of Laboratory Animal Welfare (A3593-01), and is registered

with the USDA (14-R-0128). Animals were maintained on regular chow (Prolab Isopro RMH 3000, LabDiet) and housed in groups

before transplant and individually after transplant, with a 12hr light/dark cycle with continuous access to food and water.

METHOD DETAILS

Cell culture adaptation
CRISPR/Cas9-edited lines were adapted to grow in suspension culture using mTeSR 3D medium (StemCell Technologies) as in-

structed by the manufacturer with minor modifications. Briefly, cells were expanded in plates, incubated in Gentle Cell Dissociation

Reagent (GCDR; StemCell Technologies) for 4min, gently scraped, and resuspended in mTeSR 3D+10mMROCK Inhibitor Y27632 at

1x106 cells/ml. Suspended cells were fed with mTeSR 3D Feed medium 24h and 48h later, then half of their medium was replaced

with fresh mTeSR 3D 72h and 96h later, followed bymedium replacement with mTeSR1 120h later. Cell clusters were fed every other

day thereafter and monitored for size, and upon reaching 200-300mm in diameter, were passed through a 300 mm cell strainer and

passaged as clumps by incubating in GCDR at 37�C for 6min, straining through a 37 mmstrainer, and resuspending at 1x106 cells/mL

in mTeSR 3D+10mM Y27632. This procedure was repeated for another passage, and for the third passage clumps were directly

passaged into mTeSR1 +10mM Y27632, with half their medium replaced with fresh mTeSR1 24h later. Clusters were fed every other

day thereafter and further passaged at 0.6-0.8 x106 cells/ml into mTeSR1 whenever reaching 200-300mm. Suspension cultures

doubling in cell numbers within 3-4 days were then considered adapted and ready for differentiation.

Cell differentiation
Directed hPSC differentiation into islet cells was conducted as described previously (Pagliuca et al., 2014) with the modifications

described in (Millman et al., 2016). Briefly, 150million cells were seeded in 300ml mTeSR1 +10mM ROCK Inhibitor Y27632, fed

with mTeSR1 48h later, and 72h later stepwise differentiation stages were induced by the following treatments:

Stage 1: 24h in S1 medium +100ng/ml ActivinA +14mg/ml CHIR99021, followed by 48h in the same medium without CHIR99021.

Stage 2: 72h in S2 medium +50ng/ml KGF.

Stage 3: 24h in S3 medium +50ng/ml KGF +0.25mM Sant1 +2mM Retinoic acid (RA) +500nM PDBU +10mM Y27632 +200nM

LDN193189, followed by 24h in the same medium without LDN193189.

Stage 4: 6 days in S3 medium +50ng/ml KGF +0.25uM Sant1 +0.1mM RA +10mM Y27632 +5ng/ml ActivinA.

Stage 5: 4 days in BE5 medium +0.25mM Sant1 +0.1mM RA +1mM XXI +10mM Alk5i II +1mM T3 +20ng/ml Betacellulin +10mM

Y27632, followed by 3 days in BE5 +25nM RA +1mM XXI +10mM Alk5i II +1mM T3 +20ng/ml Betacellulin +10mM Y27632.

Stage 6: 7-30 days in supplemented CRML-1066 medium +10% defined fetal bovine serum (FBS, Hyclone) +10mM Alk5i

II +1mM T3.
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Factors and media are as described in (Pagliuca et al., 2014).

Cell purification
Cell clusters sampled upon completion of each differentiation stage or primary islets were washed with PBS, incubated in PBS +50%

Accutase (StemCell Technologies) for 7min, and dissociated mechanically by petting up and down in PBS +10mMY27632. For fixed-

cell purification, cells were cross-linked in PBS +1% paraformaldehyde for 10min, quenched with 125mM glycine for 5min, and

washed with PBS. Next, cells were blocked in PBS +5% donkey serum (Jackson Immunoresearch) +0.1% saponin (Sigma) for

20min and subsequently stained with primary antibodies in blocking buffer for 1hr and fluorophore-conjugated secondary antibodies

in blocking buffer for 30min. Stained cells were washed with and resuspended in PBS +5% donkey serum. For live-cell purification,

single-cell suspensions were stained in PBS + primary fluorophore-conjugated antibodies for 30min on ice, washed with and resus-

pended in PBS. Stained fixed/live cells were filtered through a 40mm nylon mash into flow cytometry tubes (BD Falcon) and sorted

using MoFlo flow cytometers (Beckman Coulter) into PBS +1% BSA (Sigma) on ice. The cell populations as defined by antibody

combinations were:

DE: SOX17+ (R&D Systems; AF1924)

PP1: PDX1+ (R&D Systems; AF2419)

PP2: PDX1+ NKX6+ (DSHB; F55A12) for fixed cells, andGP2+ (MBL International; D277-5) (Ameri et al., 2017; Cogger et al., 2017)

for live cells.

EN: NGN3+ (R&D Systems; AF3444) for fixed cells, and SUSD2+ (Milentyi Biotec; 130-106-401) (Liu et al., 2014) for live cells.

SC-b: C-peptide+ (DSHB; GN-ID4) Glucagon-like peptide-2 (GLP2)- (Santa Cruz; sc-7781) for fixed cells, and TSQ+ (Thermo

Fisher Scientific; M688) DPP4- (Miltenyi Biotec; 130-093-441) for live cells.

PH: C-peptide+ GLP2+ for fixed cells, and TSQ+ DPP4+ for live cells.

Primary b: C-peptide+ GLP2- for fixed cells, and TSQ+ HPi2+ (Novus Biologicals; NBP1-18946AF488) TM4SF4- (Novus Biolog-

icals; FAB7998R) (Muraro et al., 2016) for live cells.

Primary a: C-peptide+ GLP2+ for fixed cells, and TSQ+ HPi2+ (Novus Biologicals; NBP1-18946AF488) TM4SF4+ (Novus Biolog-

icals; FAB7998R) (Muraro et al., 2016) for live cells.

Live cells were defined as Propidium Iodide (PI)-negative cells. Sorting strategies for each subpopulation are summarized in

Figure S1.

To sort live SC-b from PH, we devised a strategy that combines endocrine cell enrichment by the TSQ zinc dye (Jindal et al., 1992)

with detection of DPP4/CD26, which inactivates glucagon-like peptide-1 (GLP1) (Mentlein et al., 1993) and specifically labels

glucagon-expressing islet cells (Blodgett et al., 2015). SC-b and PH were enriched in the TSQ+ DPP4- and TSQ+ DPP4+ populations

with > 90% and > 85% purity, respectively, as assayed by intracellular staining.

ChIP-seq
FACS-purified fixed cells (typically�1million) were pelleted and flash-frozen. ChIP-seq was conducted as described in (Gifford et al.,

2013) with minor modifications. Briefly, cell pellets were thawed on ice for 30min, incubated in lysis buffer (0.5% NP-40 +85mM

KCl +20mM Tris-HCl pH8.0 +protease inhibitor) for 10min on ice, and nuclei were pelleted and incubated in lysis buffer (1% NP-

40 +0.5% sodium deoxycholate +0.1% SDS +10mM Tris-HCl pH7.5 +protease inhibitor) for 10min on ice. Chromatin was then

sheared with a Branson Sonifier (model S-450D) at 4�C and incubated with 1mg/million cells H3K27Ac (Active Motif; 39133) or

H3K4me1 (Millipore, 17-614) antibody overnight at 4�C. Next, antibody-protein complexes were isolated by incubation with Protein

A/G beads (Life Technologies; 100-02D/100-07D) for 2h at 4�C. Samples were then sequentially washed twice with low-salt buffer

(0.1%SDS +1% Triton X-100 +2mMEDTA +20mMTris-HCl pH8.1 +150mMNaCl), twice with high-salt buffer (0.1%SDS +1% Triton

X-100 +2mM EDTA +20mM Tris), twice with LiCl buffer (0.25M LiCl +1% NP-40 +1% deoxycholate +1mM EDTA +10mM Tris-HCl

pH8.1), twice with TE (10mM Tris-HCl pH8.0 +1mM EDTA), and finally eluted in freshly-prepared elution buffer (1% SDS +0.1M

NaHCO3) at 65
�C for 30min. Eluates were then treated with reverse crosslinking salt mixture (250mM Tris-HCl pH6.5 +62.5mM

EDTA pH8.0 +1.25M NaCl +5mg/ml Proteinase K + 62.5ng/ml RNase A) overnight at 65�C. DNA was then purified using AMPure

XP magnetic beads (Beckman Coulter), and sequencing libraries were generated using the NEBNext Ultra II DNA Library Prep Kit

(New England Biolabs; E7103), pooled, and sequenced on a HiSeq 2500 instrument (Illumina).

ATAC-seq
FACS-purified live cells (typically�50,000) were pelleted and tagmentation was performed at 37�C for 30min as described in (Buen-

rostro et al., 2013). Briefly, cell pellets were resuspended in buffer containing Tn5 Transposase (Nextera DNA Sample Preparation kit;

Illumina), incubated at 37�C for 30min, and DNAwas isolated using the MinElute PCR purification kit (QIAGEN), PCR-amplified for 10

cycles, and purified using AMPure XPmagnetic beads (Beckman Coulter). Double-sided AMPure cleanup to remove high-molecular-

weight fragments was conducted by incubation of double-concentrated AMPure beads added at 0.55x volume to the PCR reactions,

followed by cleanup with a 1x AMPure volume. Sequencing libraries were pooled and sequenced on a HiSeq 2500 instrument.
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WGBS
FACS-purified live cells (typically�500,000) were pelleted andWGBSwas performed as described in (Donaghey et al., 2018). Briefly,

DNA was fragmented with a Covaris S2 sonicator for 6min, purified using the DNA Clean and Concentrator kit (Zymo Research), and

bisulfite conversion was performed using the EZ DNA Methylation-Gold kit (Zymo Research). Sequencing libraries were generated

using the Accel-NGS Methyl-Seq DNA library kit (Swift Biosciences), pooled, and sequenced on a HiSeq 4000 instrument.

RNA-seq
FACS-purified live cells (typically�500,000) or whole islet/SC-islet preparations (typically�1million cells) were pelleted and RNA-seq

was performed from total RNA depleted for rRNA as described in (Alvarez-Dominguez et al., 2017a). Directional cDNA libraries were

prepared using a stranded RNA-seq library preparation kit (KAPA Biosystems), pooled, and sequenced on a HiSeq 2500 instrument.

Processed single-cell RNA sequencing counts and cell-type metadata from (Veres et al., 2019) (GEO accession number GSE114412)

were used to study relative and fractional expression of select TFs during extended culture of terminal-stage SC-b (Figure S7F)

ChIP-seq mapping
Sequencing reads weremapped to the human hg19 reference genome assembly using bowtie2 (Langmead and Salzberg, 2012) with

default parameters. Peak callingwas performed usingMACS2 (Zhang et al., 2008) with default parameters and ‘‘–broad–qvalue 0.01’’

to composite broad regions of read enrichment over backgroundwith aminimum FDR q-value cutoff of 0.01, using whole-cell extract

from each stage as the background control. H3K4me1 and H3K27ac peaks across all cell types were concatenated and merged

whenever overlapping by BEDTools (Quinlan and Hall, 2010) to obtain a unified catalog of H3K27ac/H3K4me1 regions (Figure S1) .

ATAC-seq mapping
Sequencing reads weremapped to the human hg19 reference genome assembly using bowtie2 (Langmead and Salzberg, 2012) with

default parameters. Peak calling was performed using MACS2 (Zhang et al., 2008) with default parameters, ‘‘–nomodel–shift 37–ext-

size 73’’ to bypass building a ChIP-based shifting model and instead shift read 50 ends and extend in the 50- > 30 direction by a half-

nucleosome size (73bp), and ‘‘–broad–qvalue 0.01’’ to composite broad regions of read enrichment with a minimum FDR q-value

cutoff of 0.01.

WGBS mapping
Sequencing reads weremapped to the human hg19 reference genome assembly using BSMap (Xi and Li, 2009) in bisulfitemodewith

default parameters. CpGmethylation was called as described in (Ziller et al., 2013), excluding low-quality, duplicate, and > 10%-mis-

matched reads. Only CpGswith > 5X coverage, which totaled 23-27million per cell stage, were considered for downstream analyses.

Differentially methylated regions (DMRs) were determined using the DSSR package (Feng et al., 2014) with difference > 0.2, p < 0.05,

minimum CpGs = 4, and merge regions if closer than 500bp. DMRmethylation specificity was quantified as described in (Ziller et al.,

2013), based on the Jensen-Shannon divergence from the extreme case in which a region is completely methylated in only one sam-

ple and unmethylated in all others or vice versa.

RNA-seq mapping
Sequencing reads were mapped to the human hg19 reference genome assembly using TopHat2 (Kim et al., 2013) with default and

‘‘–min-anchor 5’’ parameters. Differential mRNA/lncRNA expression based on GENCODE v19 annotations (Harrow et al., 2012) was

determined using HTSeq (Anders et al., 2015) and DESeq (Anders and Huber, 2010) as described (Alvarez-Dominguez et al., 2017a).

Expression counts were normalized as counts per million mapped reads (CPM) and only genes with CPM > 1 were considered

expressed.

Differential splicing/promoter/CDS usage was determined using Cuffdiff2 (Trapnell et al., 2013) with default parameters. For each

mRNA/lncRNA differentially expressed across developmental stages, we identified the closest non-overlapping mRNA lying within

1MB using BEDTools, and calculated the correlation between their expression provided the mRNA neighbor was expressed in at

least one stage. Randomly-shuffled expression of the same mRNA neighbor was used to control for fortuitous correlation.

Coverage quantification
ChIP-seq/ATAC-seq/RNA-seq coverage across a region of interest (e.g., DMRs, enhancers) was summarized as the cumulative read

pileup across the region, counted using HTSeq (Anders et al., 2015) in ‘‘-m union’’ mode, and normalized as counts per million map-

ped reads (CPM). WGBS coverage across a region of interest was summarized as the mean CpGmethylation across the region; this

yielded intermediate methylation levels within active chromatin regions, since hypomethylated CpGs within active chromatin regions

are sparse (Ziller et al., 2013) .

Enhancer and super-enhancer identification
Enhancers were defined as H3K27ac-enriched regions identified byMACS2 that do not overlap gene promoter-proximal (TSS ± 2kb)

regions. RefSeq annotations obtained from the UCSC genome browser were used to extract TSS ± 2kb regions, which were then

intersected with H3K27ac broad regions using BEDTools.
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Enhancer domains were defined as described in (Whyte et al., 2013), by linking enhancer sites within 12.5kb of each other and

ranking the resulting domains by increasing H3K27ac enrichment. The point for which a line with slope of 1 is tangent to the curve

of region H3K27ac enrichment versus region ranking was then used to distinguish super-enhancer versus typical enhancer domains.

H3K27ac enrichment was calculated based on the normalized, background-subtracted H3K27ac coveragewithin stitched-enhancer

domains. Domains were assigned to the overlapping/nearest expressed (RNA-seq CPM > 1) gene, determined using BEDTools.

A unified enhancer catalog was compiled by merging enhancer domains from all cell stages using BEDTools. ATAC, H3K4me1,

H3K27ac, RNA, and WGBS coverage were quantified at each stage for each enhancer in the catalog, and only enhancers with a

cumulative coverage across all stages > 0 for each of the datasets were used for downstream analyses.

Enhancer state dynamics
Enhancer state was defined based on H3K4me1 enrichment. For each cell type, enhancer domains where statistically significant

H3K4me1 enrichment over background was identified by MACS2 were considered H3K4me1-marked in that cell type. Enhancer

activity was analogously defined based on H3K27ac enrichment.

Enhancer gain/loss was determined based on gain/loss of H3K4me1 enrichment supported by significant gain/loss of H3K4me1

coverage as determined by DESeq. Enhancer activation/deactivation was analogously determined based on differential H3K27ac

marking.

To investigate enhancer turnover along the differentiation path, we determined, for enhancers gained/lost and activated/deacti-

vated at each differentiation stage, the stage with the maximal change in H3K4me1 and H3K27ac levels, respectively, as shown

in Figures S7D and S7E.

Enhancers activated between two differentiation stages that were H3K4me1-marked in the first stage were deemed to undergo a

primed-to-active transition. To investigate turnover of enhancer priming along the differentiation path, we determined, for enhancers

activated at each stage that were H3K4me1-marked in some previous stage, the stage with the maximal change in H3K4me1 levels,

as shown in Figure 2A.

Alternative approaches for defining H3K4me1- and H3K27ac-marking (e.g., by using arbitrary read coverage cutoffs) altered the

ratio of enhancers gained versus lost, active versus inactive, and H3K4me1-premarked versus previously unmarked within each

differentiation stage, but did not change the relative trends across stages and thus did not change our conclusions.

Clustering analyses
Correlation studies (e.g., pairwise enhancer catalog H3K4me1 correlations between all cell types and replicates) were generated in R

v.3.3.2 (http://www.Rproject.org/;cor function) with default parameters and ‘‘method=’’spearman’’’’ to use the Spearman’s rank-or-

der implementation.

Principal component analysis was implemented in R (prcomp function) with default parameters and ‘‘scale=T’’ to scale the data to

have unit variance.

K-means clustering analyses (e.g., enhancer coverage, pioneer TF enrichment) were conducted in R (kmeans function) with default

parameters and ‘‘algorithm=’’Lloyd,’’ nstart = 100, iter.max = 100000’’ to use the Lloyd–Forgy implementation (LLoyd, 1982) with 100

random starts and maximum 100000 iterations. Data was standardized prior to clustering by using z-scores to compute the number

of standard deviations from the mean across conditions for each data point. To determine the appropriate number of clusters (K), we

plotted the cumulative within-cluster sum of squared error (WSSE) for a sequence of cluster solutions (K = 1 to K = 30), and defined

the point at which the reduction in WSSE slows dramatically as the optimal solution.

Transplantation studies
Transplantations into immunodeficient SCID-Beige mice (Jackson Laboratory) or Rowett Nude rats (Charles River) were conducted

as described in (Pagliuca et al., 2014) with minor modifications: sorted and unsorted cells were re-aggregated in CRML-1066

medium +10% FBS over 2-4 days with feeding every second day. The re-aggregated cell clusters were then resuspended in

RPMI-1640 medium (Life Technologies; 11875-093) and kept on ice until loading into a catheter for cell delivery under the mouse

kidney capsule.

Kidneys containing the grafts were dissected from freshly euthanized transplantedmice, fixed in PBS+4%paraformaldehyde over-

night, embedded in paraffin, and sectioned at 100um for histological analysis.

For ATAC-seq, grafts were washed in saline and dissociated mechanically by trituration with scissors in PBS +50% Accutase for

7min followed by petting up and downwith a 16.5gauge needle. Single-cell suspensions were washed with and resuspended in PBS,

stained with TSQ at 37�C for 10min, filtered through a 40mm nylon mash into flow cytometry tubes (BD Falcon), and PI- TSQ+ cells

were sorted using MoFlo flow cytometers (Beckman Coulter) into PBS +1% BSA (Sigma) on ice.

Glucose-stimulated insulin secretion assays
Cell clusters sampled from cadaveric or hPSC-derived islet preparations were divided into four parts for triplicate GSIS assays and

insulin content determination. Clusters were washed twice with Krebs buffer containing 2.8mM glucose and loaded into 24-well

plate inserts (Millicell Cell Culture Insert; PIXP01250), followed by pre-incubation in Krebs buffer containing 2.8mM glucose for 1h

to remove residual insulin. Subsequently, clusters were washed with Krebs buffer containing 2.8mM glucose and sequentially

challenged with Krebs buffer containing 2.8mM, 20mM, 2.8mM, and 20mM glucose, with a 1h incubation for each concentration
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and an additional wash between 20mM and 2.8mM to remove residual glucose, followed by incubation with 2.8mM glucose + 30mM

KCl for 1h. Clusters were then dissociated using TrypLE Express (Life Technologies) and cells were counted by an automated Vi-Cell

(Beckman Coulter). All incubations were carried at 37�C, with supernatant samples collected at the end of each incubation.

Detection of serum human insulin following a glucose challenge in immunocompromised transplanted animals was conducted

as described in (Pagliuca et al., 2014): animals were fasted for 16h overnight, and the glucose challenge was performed by intraper-

itoneal injection of 2g D-(+)-glucose/1 kg bodyweight. Serumwas collected both before and 30min after injection throughmandibular

bleeding using a lancet (Feather; 2017-01). Serum was separated out using Microvettes (Sarstedt; 16.443.100) and stored at �80�C
until ELISA analysis.

GSIS dynamics of handpicked cadaveric/SC-islets were assayed in triplicate as described in (Blum et al., 2012) on an automated

Perifusion System (BioRep): chambers were first perifused with Krebs buffer containing 2.8mM glucose for 1h at a flow rate of 100ul/

min and sequentially perifused with 2.8mM, 20mM, and 2.8mM glucose for 15min, 30min, and 15min, respectively, followed by peri-

fusion with 2.8mM glucose + 30mM KCL for 15min.

Insulin levels in supernatant/serum samples containing secreted insulin were processed using a Human Ultrasensitive Insulin

ELISA kit (ALPCO Diagnostics; 80-INSHUU-E10) according to the manufacturer’s instructions.

Immunohistochemistry
Immunohistochemistry of kidney graft sections was performed as described in (Pagliuca et al., 2014): sections were subjected to

deparrafinization using Histoclear (Thermo Fisher Scientific; C78-2-G) and rehydrated, them emerged in 0.1M EDTA (Ambion;

AM9261) for antigen retrieval, and placed in a pressure cooker (Proteogenix; 2100 Retriever) for 2h. Slides were blocked in

PBS +0.1% Triton X-100 (VWR; EM-9400) +5% donkey serum (Jackson Immunoresearch; 017-000-121) for 1h, followed by incuba-

tion in blocking solution with primary antibodies overnight at 4�C. The next day, cells were washed twice in PBS, followed by sec-

ondary antibody incubation for 2h protected from light. For imaging, secondary antibodies were washed twice with PBS, and slides

were mounted in Vectashield mounting medium with DAPI (Vector Laboratories; H-1200), covered with coverslips and sealed with

nail polish. Images were taken using a Zeiss LSM 510 microscope (Carl Zeiss).

Putative pioneer factor identification
To study pioneer factors across developmental transitions, sites of newly-gained ATAC signal were identified by running MACS2 as

detailed above but using a given stage as the treatment and the known/inferred previous stage as the background control:

Treatment = DE, control = hPSC

Treatment = PP1, control = DE

Treatment = PP2, control = PP1

Treatment = EN, control = PP2

Treatment = SC-b, control = EN

Treatment = PH, control = EN

Treatment = a-cell, control = PH

Treatment = b-cell, control = SC-b

To assess the pioneer ability of TFs highlighted by motif enrichment analysis as detailed below, we downloaded pioneer index and

chromatin log odds scores from (Sherwood et al., 2014), as well as chromatin accessibility regulator ranks from (Lamparter et al.,

2017). Given motif redundancy between TFs of the same evolutionarily related subfamily (Jolma et al., 2010), we assigned the

same motif score to no more than one TF subfamily member (e.g., the RFX subfamily score was only assigned to RFX1).

To examine DNAme dynamics at the binding sites of known pioneer TFs highlighted by our analysis, we downloaded binding peaks

determined by ChIP-seq for FOXA1/FOXA2/GATA4/GATA6 in DE cells (Tsankov et al., 2015) and quantified the relative change in

mean methylation between the hPSC and DE ± 2.5kb from the center of each TF peak using a fixed number of equal-sized bins.

Core regulatory circuits
Core regulatory circuits (CRCs), defined as groups of transcription factors (TFs) encoded by genes associated with super-enhancers

that bind the SE associated with their own and each other’s SE to form fully interconnected autoregulatory loops, were identified us-

ing CRCmapper.py as described in (Saint-André et al., 2016) with minor modifications. Briefly, the set of expressed genes that

encode TFs overlapping/proximal to SEs was first identified, then the set of SE-assigned TF genes whose set of SE constituents

contains at least 3 DNA sequence motif instances for their own protein products, as predicted by FIMO (Grant et al., 2011) based

on a database of TF recognition motifs (Saint-André et al., 2016), was determined, and lastly groups of such autoregulated SE-driven

TFs that are similarly predicted to bind each other’s SE were identified recursively.

We verified that motif-based binding predictions are effectively captured by ChIP-seq for OCT4/SOX2/NANOG/MYC in hPSC and

SOX17/FOXA2/OTX2/EOMES in DE (Tsankov et al., 2015), as well as for PDX1/ONECUT1/FOXA1/FOXA2 in PP2 (Cebola et al., 2015)

(Wang et al., 2015) and FOXA2/NKX2-2/NKX6-1/PDX1 in cadaveric islets (Pasquali et al., 2014). Many possible CRCs are identified

for each differentiation stage (Table S5), and the union set of TFs from all possible CRCs at each stage are displayed in Figure 5B. Of

note, TFs without a known recognition motif (e.g., NGN3) are accordingly missing in CRC models.
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Testing different parameters for CRC identification (e.g., restrictingmotif analysis to ATAC-seq peakswithin SEs instead of SE con-

stituents, using a different TF motif database (Weirauch et al., 2014), changing the criteria for identifying expressed genes, and

changing SE-gene association rules) led to highly similar lists that capture knownmaster regulators of each pancreatic differentiation

stage and thus did not change our conclusions.

The expression specificity of CRC TFs was scored by the fraction of the TF’s cumulative expression across all stages represented

in that stage (i.e., its fractional expression level). Median specificity scores ranged from 0.06 to 0.10 across differentiation stages. We

selected an empirical specificity cutoff of 0.30 that optimally distinguished between known stage-specific factors and known uni-

formly expressed ones.

To quantify regulatory connectivity, for each SE-driven TF we defined the inward binding of other TFs to its SE as its regulatory IN

degree, and the outward binding of the TF to other TFs’ SEs as its regulatory OUT degree. Binding was predicted as before via TF

recognition motif scanning within SE domain enhancer constituents using FIMO ad detailed below, and total connectivity was calcu-

lated as the sum of the regulatory IN and OUT degrees.

shRNA studies
Lentiviral vectors carrying independent LMX1B-targeting or control shRNAs (GE Healthcare Dharmacon, Inc.) were transfected into

mitotic LentiX-293T (Takara Bio; 632180) cells maintained in DMEM medium (Life Technologies) using TransIT transfection reagent

(Mirus). Viruses were concentrated 48h and 72h post-transfection by precipitation with PEG-it virus precipitation solution (System

Biosciences) overnight at 4�C followed by centrifugation at 3000 g for 30min at 4�C, and stored at �80�C until infection.

For lentiviral infection, cell clusters sampled from suspension cultures the day of EN stage induction were dissociated by incuba-

tion in PBS +50% Accutase (StemCell Technologies) for 7min, followed by mechanical dissociation by petting up and down in

PBS +10mMY27632. Cells were resuspended at a density of 5-10million cells/mL in EN-stage day 1 medium (BE5 medium +0.25mM

Sant1 +0.1mM Retinoic acid (RA) +1mM XXI +10mM Alk5i II +1mM T3 +20ng/ml Betacellulin +10mM Y27632), and Polybrene infection

reagent (Santa Cruz) was added at 8mg/mL. Cells were then plated into 6-well plates pre-coated with BD Matrigel Matrix High Con-

centration (BD Biosciences) and viruses were added dropwise to each well. Cells were incubated at 37�C and fed daily.

For infected cell collection, the day of change to EN-stage day 5medium cells were dissociated by incubation with TrypLE Express

(GIBCO) for 7min at 37�C and quenched in BE5 medium +10mM Y27632. For RNA studies, single-cell suspensions were filtered

through a 40mm nylon mash into flow cytometry tubes (BD Falcon), and live infected (PI- GFP+) cells were sorted using MoFlo

flow cytometers (Beckman Coulter) into PBS +1% BSA (Sigma) on ice. For FACS immunostaining studies, single-cell suspensions

were fixed in PBS +4% paraformaldehyde for 10min, washed with PBS, and blocked in PBS +5% donkey serum (Jackson

Immunoresearch) +0.1% saponin (Sigma) for 20min. Cells were then stained in blocking buffer +NGN3 primary antibody for 1hr

and in blocking buffer +fluorophore-conjugated secondary antibody for 30min, then washed with and resuspended in PBS +5%

donkey serum. Stained cells were filtered through a 40mm nylon mash into flow cytometry tubes (BD Falcon), and infected (GFP+)

cells were analyzed for NGN3 levels using MoFlo flow cytometers (Beckman Coulter).

NanoString and qPCR studies
Total RNA from sorted cells was isolated using a miRNeasy Mini Kit (QIAGEN), and RNA was stored at �80�C until downstream

studies. For Nanostring profiling, 100-300ng RNA was hybridized to a custom nCounter XT probe set, processed and imaged using

the Nanostring prep station and nCounter (NanoString Technologies), and analyzed using the Nanostring nSolver software with

default parameters and with the geometric mean expression of five housekeeping genes (RPL15, RPL19, UBE2D3, ITCH, and

TCEB1) as an internal normalization control. Only samples with enough readout complexity (normal distribution of expression esti-

mates) were quantified.

For real-time quantitative PCR, cDNA was synthesized with a SuperScriptIII first-strand synthesis kit (Life Technologies) using

random hexamers (Thermo Fisher Scientific). PowerUp SYBR Green-based real-time PCR (Life Technologies) was performed in a

7900HT Fast Real-time PCR System (Applied Biosystems) with 18S rRNA as an internal normalization control.

CRISPR/Cas9-mediated genome editing
To disrupt the LMX1B locus we used inducible CRISPR/Cas9 hPSC platforms (González et al., 2014; Shi et al., 2017), wherein doxy-

cycline-inducible Cas9 expression from the AAVS1/PPP1R12C locus has been engineered. Single chimeric guide RNAs (gRNAs)

were designed using the GPP sgRNA Designer (Doench et al., 2016) and generated by in vitro transcription using a MEGAshortscript

T7 Transcription kit (Thermo Fisher Scientific) from a PCR-amplified 120nt template comprising a 20nt T7 promoter sequence, the

variable 20nt sgRNA recognition sequence, and the invariable chimeric 80nt sgRNA sequence (Soh and Huangfu, 2017). The result-

ing gRNAs were purified using a MEGAclear Transcription Clean-Up kit (Thermo Fisher Scientific), diluted to 200-800 ng/ml, and

stored at �80�C until further use.

gRNA transfection was performed as described in (Soh and Huangfu, 2017). Briefly, cells were pre-treated with 2 mg/ml +10mM

ROCK Inhibitor Y27632 for 24h, re-plated onto 24-well plates, and transfected with 300ng sgRNA using Lipofectamine RNAiMAX

(Life Technologies). 3-4 days following transfection, 1-2x106 cells were re-plated onto 10cm plates to allow single-cell colonies

to grow, and genomic DNA was extracted from the rest using a Quick-DNA miniprep Kit (Zymo Research Corp.), PCR-amplified

with primers flanking the gRNA target sites, and used for T7 Endonuclease I assays (Mashal et al., 1995) to verify and quantify

insertion/deletion (indel) efficiency (IE). Then, either 48 (for IE > 20%) or 96 (for 5% < IE < 20%) �2mm single-cell colonies were
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picked, grown in 48/96-well plates, and assessed for DNA edits by Sanger sequencing, and those with verified homozygous indels

were expanded in culture for further use.

In vitro circadian entrainment
Cadaveric islets (typically 5x103 IEQ per condition) and SC-islets (typically 5x106 cells per condition) cultured in ABLE 30ml dispos-

able bioreactors (Reprocell; ABBVS03A) underwent the following treatments (individually or in combination) for 1-4 days: 10uM

Forskolin (Stemgent; 04-0025) for 1h followed by 23h recovery; 20mM of Glucose (Sigma; G7528) for 12h followed by 12h recovery;

37.5mg/L Insulin (Sigma; I9278) for 12h followed by 12h recovery; 210mg/L Arginine (Sigma; A6969) for 12h followed by 12h recovery.

Stringent washes were implemented before change to media without factors to remove residual factors. The same wash/incubation

times were used for mock-treated cultures. At the end of shock/ recovery cycles, cultures were kept in constant media and samples

were taken every 4h for RNA profiling and insulin secretion/calcium influx assays. Supernatant samples were also taken and profiled

for dissolved gases using a Stat Profile Prime instrument (Nova Biomedical).

Calcium influx assays
Calcium influx dynamics of cadaveric or hPSC-derived islet preparations in response to a glucose challenge were assayed as

described in (Kenty and Melton, 2015; Pagliuca et al., 2014): cell cluster samples embedded in hESC-qualified Matrigel (VWR;

47743-722) were stained with Fluo4-AM (Life Technologies; F-14217) for 45min, incubated for 15min without the dye, and imaged

on an AxioZoom V16 microscope (Carl Zeiss) during sequential static incubations with Krebs buffer containing 2.8mM, 20mM,

and 2.8mM glucose for 5min, 10min, and 5min, respectively, followed by incubation with 2.8mM glucose + 30mM KCL for 5min.

Images were acquired every 17 s throughout incubations, and the mean fluorescence intensity of each cluster across the time series

was quantified using ImageJ (Schneider et al., 2012) .

RNA rhythmicity and differential expression
RNA-seq data from circadian-entrained cadaveric/SC-islet cultures were normalized across libraries using the DESeq2 scaling

function to estimate library size factors. Only genes with CPM > 1 were across all samples were retained for downstream analyses.

Rhythmicity was evaluated using harmonic regression by fitting a truncated Fourier series to z-score standardized gene expression

time courses with the HarmonicRegression R library (L€uck et al., 2014), which uses aGaussian error assumption to calculate a p value

for each gene.

An empirical alternative for establishing statistical significance, implemented by comparing rhythmicity F-statistics under the

Gaussian error assumption for the original versus 100 randomly-shuffled expression profiles for each gene, led to comparable/

greater number of cycling genes enriched for the same ontology terms and thus did not change our conclusions.

We compared gene expression distributions (regardless of rhythmicity) between mock- and circadian-entrained samples using a

two-sided t test to determine confidence on the measured difference in their means, and considered genes with p < 0.05 in at least

one sample comparison to be differentially expressed.

Region-based annotations
Genomic regions of interest (e.g., DMRs) were analyzed for associated gene ontology (Ashburner et al., 2000), and pathway anno-

tations from the Molecular signatures database (Liberzon et al., 2011) with GREAT (McLean et al., 2010) using default settings. Only

annotationsmeeting a > 2 region-based fold enrichment and an FDR q-value < 0.05 by both a binomial test over genomic regions and

a hypergeometric test over associated genes were considered significantly enriched.

To study annotations associated with enhancers gained across developmental transitions, we first identified de novo H3K27ac

peaks by running MACS2 as detailed for putative pioneer factor identification above, i.e., using a given stage as the treatment

and the known/inferred previous stage as the background control.

To investigate whether a defined set of regions (e.g., H3K4me1-premarked enhancers) shows statistically significant, concordant

differences between two states of interest (e.g., H3K27ac levels in a versus b cells) we used GSEA (Subramanian et al., 2005) with

default parameters and ‘‘-metric log2_Ratio_of_Classes.’’

To assess the genomic distribution of regions of interest (e.g., H3K4me1/H3K27ac peaks, DMRs), a custom script was used to

overlap their coordinates with a database of genic/intergenic regions (Alvarez-Dominguez et al., 2017a)v

Gene set and pathway enrichment analysis
Gene lists ranked by a feature of interest (e.g., expression change, -log10 p value of rhythmicity) were analyzed for enrichment of

genes grouped by biological process ontology or by curated annotations from the Molecular signatures database with GSEA using

default parameters and ‘‘-metric log2_Ratio_of_Classes.’’ Pathway annotations from the Kyoto Encyclopedia of Genes and Ge-

nomes and the Reactome database were extracted to investigate overrepresentation of pre-defined pathways.

Motif enrichment analysis
Genomic sequences from regions of interest (e.g., DMRs, de novo ATAC peaks) were searched for matches to a database of TF

recognition sites (Saint-André et al., 2016) for TFs expressed in the relevant cell type using FIMO (Grant et al., 2011) as described

in (Alvarez-Dominguez et al., 2017b) with minor modifications: a Markov model of sequence nucleotide composition was used as
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the background model for motif matching (to normalize for biased distribution of individual letters in the examined sequences), and

motifs with an odds ratio > 2 and q-value < 0.05 (Fisher’s exact test) relative to 10 randomly-shuffled controls were considered signif-

icantly enriched.

Additional bioinformatics methods
All sequencing reads were quality-checked with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Genome-

wide read density maps were generated by MACS2 using the ‘‘–bdg’’ option, normalized by RSeQC (Wang et al., 2012a) using

the ‘‘normalize_bigwig.py’’ function, and visualized using BEDTools and the UCSC genome browser. Signal coverage and signal

change surrounding regions of interest (e.g., DMRs, enhancer sites) were visualized using the ngs.plot R package (Shen et al.,

2014). Data heatmaps were generated using the heatmap.2 function of the gplots R package (http://cran.r-project.org/web/

packages/gplots/index.html). Network diagrams were generated using Gephi (Bastian et al., 2009).

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample size or remove outliers. The statistical difference between two sets of

paired count data (e.g., motif matches in test versus randomly-shuffled sequences) was assessed by a Fisher’s exact test using

the fisher.test R implementation with default parameters. For unpaired data, a Shapiro-Wilk normality test was first performed using

the shapiro.test R implementation with default parameters; for normally distributed data (e.g., LMX1B levels in test versus control

treatments) we then used a two-sided t test (t.test R implementation with default parameters) to assess confidence on the measured

difference of their mean values. For unpaired data that don’t follow a normal distribution, we used a non-parametric Wilcoxon rank

sum test to determine if they belong to the same distribution.

DATA AND CODE AVAILABILITY

The ChIP-seq, ATAC-seq, WGBS, and RNA-seq data generated during this study are available at NCBI GEO accession number:

GSE139817.

ADDITIONAL RESOURCES

Enhancer annotations and genome-wide visualizations of sequencing datasets are available at http://meltonlab.rc.fas.harvard.edu/

data/pancreatic_enhancers/
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