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Abstract Millennial‐scale reductions in monsoon precipitation, so‐called Weak Monsoon Intervals
(WMIs), have been identified in numerous paleoclimate records across the Afro‐Asian monsoon domain
throughout the last glacial‐interglacial cycle. These are considered the regional response to cooling during
Heinrich events in the North Atlantic realm and several mechanisms have been suggested to explain this
hemisphere‐scale climatic teleconnection. In particular, reductions in Indian Ocean sea surface temperature
(SST) have been proposed as the linking element between Heinrich events and WMIs. However, the
validity of this relationship has only been demonstrated for the last ~20 kyr, leaving unresolved whether it
also holds on longer time scales. Here we present a new paired record of planktonic foraminifera‐based
δ18Osw‐ivc and UK'

37‐based SST from the northern Bay of Bengal, covering the last ~130 kyr. The δ18Osw‐ivc

record clearly reflects orbitally paced changes of Indian Summer Monsoon intensity superimposed by
centennial‐ to millennial‐scale WMIs that occurred synchronously to North Atlantic Heinrich events.
Comparison with the UK'

37‐based SST reconstruction reveals, however, that WMIs in most cases were not
paralleled by ocean surface cooling, questioning whether Indian Ocean SST lowering was the linking
element between Heinrich events and reductions in monsoon precipitation in Asia also during the last
glacial period.

1. Introduction

Understanding teleconnections and feedback mechanisms in the global climate system in the past is of key
importance for better forecasting its behavior under future global warming scenarios and how this may
affect modern societies and economies. This is particularly true for the Asian monsoon system, whose varia-
bility influences the daily life of billions of people and thus also global economy (e.g., Gadgil & Rupa Kumar,
2006). Existing knowledge about the long‐term evolution of the Indian Summer Monsoon (ISM) and the
East Asian Summer Monsoon (EASM) under different to modern climatic boundary conditions is mainly
based on the investigation of speleothems from India (Kathayat et al., 2016) and China (e.g., Cai et al.,
2015; Cheng et al., 2016; Wang et al., 2001) as well as marine sediments from the Arabian Sea (e.g.,
Clemens & Prell, 2003; Deplazes et al., 2014; Rostek et al., 1993; Schulz et al., 1998), South China Sea
(e.g., Huang et al., 2018; Thomas et al., 2014; Wang et al., 1999), and the tropical Indian Ocean (e.g.,
Bolton et al., 2013; Mohtadi et al., 2010). On long time scales, particularly the Chinese speleothem records
indicate a direct influence of Northern Hemisphere summer insolation, that is, changes in the Earth's orbital
parameters, on Asian monsoon variability (e.g., Cheng et al., 2016), but this view is still under debate (Caley
et al., 2011; Caley et al., 2014; Clemens et al., 2010). On shorter, that is, (multi)millennial, time scales there is
in contrast evidence for a strong synchroneity between abrupt climate events in the North Atlantic realm
and the Asian monsoon system (e.g., Deplazes et al., 2013; Wang et al., 2005), pointing toward a close
hemisphere‐scale teleconnection between both regions. In this context, multiple paleoclimate archives
across the Afro‐Asian monsoon domain have provided evidence for centennial‐ to millennial‐scale reduc-
tions in monsoon precipitation, so‐called Weak Monsoon Intervals (WMIs), which occurred synchronously
to cold intervals in the North Atlantic realm, for example, during Heinrich events (e.g., Cheng et al., 2016;
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Colin et al., 1998; Deplazes et al., 2014; Kathayat et al., 2016; Mingram et al., 2018; Stager et al., 2011; Wang
et al., 2001). However, the exact mechanisms behind this teleconnection and thus the drivers that could
control possible future monsoon failures are still debated.

Climate simulations have proposed, for example, (1) a combination of a stationary Rossby wave train tel-
econnection and a circulation anomaly in the westerly jet over northern Africa and western India
(Mohtadi et al., 2014) or (2) perturbations in the position of the Northern Hemisphere subtropical
westerly jet, driven by sea surface temperature (SST) anomalies in the tropical Atlantic Ocean (Marzin
et al., 2013), as the linking element between abrupt cold events in the North Atlantic realm and reduced
monsoon precipitation in Asia. Alternatively, also reduced SSTs in the Indian Ocean in response to a gen-
eral cooling of the Northern Hemisphere, driven by increasing sea ice extent in the North Atlantic, could
represent the link between North Atlantic Heinrich events and WMIs (Pausata et al., 2011). Especially
the latter mechanism is corroborated by proxy data from the Arabian Sea, confirming substantial ocean
surface water cooling and associated monsoon weakening during the two most recent North Atlantic cold
spells, the Younger Dryas and Heinrich event H1 (Tierney et al., 2016). However, other proxy records
from the Arabian Sea as well as from the Bay of Bengal (BoB) indicate no particular cooling but a warm-
ing of the Indian Ocean surface waters at the time of the Younger Dryas and Heinrich events H1 and H2
(Anand et al., 2008; Panmei et al., 2017; Saher et al., 2007; Saraswat et al., 2013), thus questioning the
general validity of the proposed linkage between ISM weakening and Indian Ocean surface water cooling.
So far, most of the available paleoceanographic proxy records from the core zone of the ISM, that is, the
BoB and the adjacent Andaman Sea (e.g., Ahmad et al., 2012; Contreras‐Rosales et al., 2014; Gebregiorgis
et al., 2016; Govil & Naidu, 2011; Kudrass et al., 2001; Marzin et al., 2013; Rashid et al., 2007; Rashid
et al., 2011; Raza et al., 2017; Sijinkumar et al., 2016) cover only the Holocene and latest Pleistocene
(<50 kyr) and/or have a relatively low temporal resolution. This largely limits the proper reconstruction
of short‐term ISM variability in this region under climatic boundary conditions different than today,
particularly during the last glacial and last interglacial periods. Hence, new proxy records that (1) cover
a full glacial‐interglacial cycle and (2) have a sufficient temporal resolution are needed to improve our
understanding of past ISM dynamics and reliably assess the relationship between Indian Ocean SST
and WMIs.

In this study we present new proxy records of monsoon‐driven paleoceanographic changes during the last
~130 kyr from the northern BoB. In particular, we investigate the manifestation of WMIs in this part of
the Indian Ocean during the entire last glacial‐interglacial cycle as recorded by the stable oxygen isotope
composition of planktonic foraminifera, reflecting changes in monsoonal precipitation‐derived freshwater
runoff. By comparing these data with a parallel alkenone‐based SST reconstruction, we investigate whether
WMIs occurred synchronously to sea surface water cooling in the northern BoB and discuss the linkage
between WMIs and North Atlantic Heinrich events.

2. Study Area and Investigated Sediment Material

The BoB constitutes the northeastern part of the Indian Ocean between the Indian subcontinent, Myanmar,
and the Andaman and Nicobar Islands, which is approximately between 6°N and 22°N and 80°E and 92–94°
E. Gravity Core SO 188‐17286‐1 (henceforth denoted 17286‐1) was retrieved from its northernmost part dur-
ing R/V Sonne cruise SO 188 (Bengal Sea Level; Spieß et al., 2006). The coring site is located on the continen-
tal slope off Bangladesh (19°44.58′N, 89°52.76′E, 1428mwater depth; Figure 1), ~220 km south of themouth
of the Ganges‐Brahmaputra‐Meghna (GBM) river system and ~80 km east of the “Swatch of No Ground”, a
deeply incised canyon on the Bengal Shelf (Spieß et al., 2006). Two other sediment cores, which were inves-
tigated by Kudrass et al. (2001; SO 93‐126KL) and Contreras‐Rosales et al. (2014; SO 188‐342KL), are located
~30 km to the northeast. Instead of being transported laterally across the slope, most of the sediment drift
upon the Bengal Shelf is deflected towards and funneled into the “Swatch of No Ground” from where is
transported by turbidity currents to the deeper Bengal Fan (Contreras‐Rosales et al., 2014; Weber et al.,
2003). As a consequence, sedimentation at the study site is predominantly hemipelagic. Gravity Core
17286‐1 is 984 cm long and consists of hemipelagic yellowish brown silty clay with a few mollusk shells
(>1 mm) in the uppermost part while olive gray nannofossil‐rich clay with abundant foraminifera and mol-
lusk shells dominates the lower part (Spieß et al., 2006).
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The present‐day oceanographic and depositional regime in the northern BoB is mainly controlled by the
inflow of the GBM river system, which has a catchment of ~1.7 × 106 km2 and drains large parts of ISM core
zone, that is, the Himalayas and the northern Indian subcontinent. Besides providing large amounts of
allochthonous sediment to the Bengal Shelf, the GBM river system also discharges enormous volumes of
freshwater from monsoon precipitation into the northern BoB (on average ~1120 km3 yr−1; Milliman &
Farnsworth, 2011). This is, in addition to the general excess of precipitation over evaporation across the
BoB, responsible for a relatively low sea surface salinity in the area (Sen Gupta & Naqvi, 1984).
Furthermore, due to the massive riverine input of rainfall‐derived freshwater during the monsoon and post-
monsoon season in summer and autumn, when discharge can reach peak values in the range of 105 m3 s−1

(Milliman & Farnsworth, 2011), sea surface salinity around the coring site (grid 19–20°N, 89–90°E) shows a
distinct seasonality with significantly lower values during summer (~27–31 PSU) than during winter (~31–
32 PSU) (Boyer et al., 2013). Freshwater input also affects the stable oxygen isotope composition of the ocean
surface water (δ18Osw) in the northern BoB. In particular, more negative δ18Osw values can be expected dur-
ing predominantly wet climate conditions (e.g., during and/or shortly after the monsoon season) when the
discharge of 18O‐depleted freshwater by the GBM river system is higher, which is largely confirmed by obser-
vational data (Delaygue et al., 2001; Sengupta et al., 2013; Singh et al., 2010). Recent (1955–2012) SST at the
coring site varies between ~25.5–26.5 °C in winter (January to March) and ~28.8–29.2 °C in summer (July to
September) with an annual mean of ~27.8–28.2 °C (Boyer et al., 2013).

3. Methods
3.1. δ18O Analyses of Benthic and Planktonic Foraminifera

To establish a chronology for Core 17286‐1 (see section 3.2) and to investigate paleoceanographic and paleo-
climatic changes at the coring site, the stable oxygen isotope composition of benthic (δ18Obenthic) and plank-
tonic foraminifera (δ18Oplanktonic) was determined at the Leibniz Laboratory for Radiometric Dating and
Stable Isotope Research at Kiel University. For these analyses, 1 cm thick slices of bulk sediment (sample
increment 4–6 cm) were taken from Core 17286‐1 and subsequently washed and sieved to retrieve the for-
aminifera. Tests of planktonic (Globigerinoides ruber (white); size fraction 250–315 μm) and benthic forami-
nifera (Uvigerina spp.; size fraction 250–400 μm) from each of these subsamples were identified and
handpicked under a microscope. For determining the δ18O of the planktonic foraminifera, at least 30 tests
per sediment subsample were selected and subsequently analyzed with a Finnigan MAT 251 isotope ratio
mass spectrometer (IRMS) coupled to a Kiel I (prototype) carbonate preparation device. The δ18O of the
benthic foraminifera (1–12 specimens per sample; samples withmore than six specimens were homogenized
and split prior to analysis) was determined with a Thermo Fisher Scientific MAT 253 IRMS coupled to a Kiel
IV carbonate preparation device. For all measurements, the calcitic foraminifera tests were reacted with
100% H3PO4 at 75 °C under vacuum and the evolved CO2 was analyzed eight times with the IRMS. The

Figure 1. (a) Map of the Asian monsoon domain with average July precipitation (WorldClim1 30 in. gridded precipitation
data; Hijmans et al., 2005) and the location of Core 17286‐1 (red dot) and other proxy records of past monsoon variability
(white dots) that are partly displayed in Figure 5 and discussed in the text. (b) Detailed bathymetric map of the BoB (water
depth in meters below sea level) with the location of Core 17286‐1 (red dot) and other regional sea surface temperature
(SST) records (red‐white dots) that are displayed in Figure 6 and discussed in the text.
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resulting δ18O values are reported relative to the Vienna Pee Dee
Belemnite (VPDB) scale as defined through the NBS 19 standard. The ana-
lytical precision of repeated measurements of different internal and inter-
national standards (NBS 19, IAEA‐603) was better than ±0.09‰ (1σ) and
duplicate measurements of 21 samples of benthic foraminifera yielded an
analytical precision better than ±0.07‰ (1σ).

3.2. Age Model Development

In order to establish an age model for Core 17286‐1, the radiocarbon (14C)
ages of 13 samples of mixed planktonic foraminifera (G. ruber,
Globigerinoides trilobus, Globigerinoides sacculifer; Table 1) were deter-
mined by accelerator mass spectrometry (AMS) 14C dating at the
Leibniz Laboratory for Radiometric Dating and Stable Isotope Research
at Kiel University. The obtained conventional AMS 14C ages were cali-
brated using OxCal 4.3 (Bronk Ramsey, 2009a) with the Marine13 calibra-
tion curve (Reimer et al., 2013) and a marine reservoir correction of 322
14C yr (R = 400 yr, ΔR = −78 ± 53 yr) for the northern BoB (Southon
et al., 2002). To further constrain the core chronology, particularly in
the part beyond the range of 14C dating (below ~400 cm core depth), we
used the approach conventionally applied to Quaternary deep‐sea sedi-
ments, that is, the correlation with a chronologically well‐constrained
δ18Obenthic reference record. We therefore identified 11 characteristic stra-
tigraphic tie points in the Core 17286‐1 δ18Obenthic record (see sections 3.1

and 4.1) and assigned to them the ages of corresponding points in the LS16 global δ18Obenthic stack (Lisiecki
& Stern, 2016; Table 2 and Figure 2). The final age model of Core 17286‐1 was then established by Bayesian
age modeling using a P_Sequence depositional model with variable parameter k and outlier analysis imple-
mented in OxCal 4.3 (Bronk Ramsey, 2008, 2009a, 2009b; Bronk Ramsey & Lee, 2013). As model input para-
meters we used 12 of the 13 obtained AMS 14C ages (the lowermost sample yielded an infinite 14C age and
was therefore discarded), the ages of the 11 stratigraphic tie points provided through correlation with the
LS16 global δ18Obenthic stack, and the date of the coring campaign (AD 2006) for the sediment surface
(Figure 3). To consider the inherent chronological uncertainty of the LS16 global δ18Obenthic stack, we also
incorporated the published 2σ age uncertainties of the 11 tie points (Lisiecki & Stern, 2016) in the model.

3.3. Reconstruction of Past SST

To reconstruct past SST, we extracted long‐chain alkenones from the Core 17286‐1 sediments. These unsa-
turated methyl and ethyl ketones, which are mainly synthesized by the surface water‐growing haptophyte
algae Emiliana huxleyi and a few other related coccolithophore species (e.g., Marlowe et al., 1984;

Volkman et al., 1980), are highly persistent and, due to the fact that
Emiliana huxleyi is by far the most important primary producer of bio-
genic carbonate in the ocean, ubiquitous in Quaternary marine sediments
(Marlowe et al., 1990). The ratio of the di‐unsaturated and tri‐unsaturated
homologues of the alkenone n‐C37 (n‐C37:2 and n‐C37:3), which is
described as the alkenone n‐C37 unsaturation index UK'

37 (Prahl &
Wakeham, 1987), is thereby largely dependent on the SST at the time of
coccolithophore growth (e.g., Brassell et al., 1986; Marlowe et al., 1984;
Müller et al., 1998; Prahl & Wakeham, 1987; Rosell‐Melé et al., 1995;
Sonzogni et al., 1997), enabling the reconstruction of past SST changes.

Lipid biomarkers were extracted from freeze‐dried and homogenized sedi-
ment subsamples (~2 g sediment, 2 cm sampling interval) at the Institute
of Geosciences at Kiel University by using a Dionex ASE 200 accelerated
solvent extractor, operating in two cycles with a 9:1 (v/v) mixture of
dichloromethane and methanol at 100 °C and 100 bar N2 (g) pressure
(cf. Rohde Krossa et al., 2017). Aliquots of the total lipid extract (1 or 2

Table 1
AMS 14C Dates Obtained From Mixed Planktonic Foraminifera Samples
From Core 17286‐1

Sample/lab
code

Core depth
(cm)

AMS 14C age
(a BP ± σ)

Calibrated age
(cal. a BP, 2σ)

KIA49929 2.5 1430 ± 40 923–1215
KIA49930 38.5 7135 ± 45 7554–7830
KIA49931 62.5 10,585 ± 60 11,688–12,432
KIA50521a 70.5 11,140 ± 60 12,577–12,873
KIA50520 81.5 11,320 ± 55 12,687–13,067
KIA50404 98.5 13,515 ± 65 15,552–16,128
KIA49933 118.5 14,665 ± 85 17,141–17,767
KIA50405 218.5 21,740 ± 180 25,334–26,044
KIA49934 248.5 24,320 ± 230 27,674–28,564
KIA49935 352.5 34,400 ± 800 36,464–40,430
KIA49936 368.5 35,650 ± 950 38,148–41,980
KIA50407 392.5 38,300 ± 1300 40,147–44,895
KIA49937 428.5 >42670 n.d.

Note. Conventional AMS 14C ages were calibrated using OxCal 4.3 (Bronk
Ramsey, 2009a) with the Marine13 calibration data set (Reimer et al.,
2013) and a marine reservoir correction of 322 14C yr (R = 400 yr, ΔR =
−78 ± 53 yr) for the northern BoB (Southon et al., 2002). Italicized sam-
ples have been omitted from Bayesian age modeling with OxCal 4.3.
aSmall sample (<0.5 mg C).

Table 2
Tie Points in the Core 17286‐1 δ18Obenthic Record and Corresponding Ages in
the LS16 Global δ18Obenthic Stack (Lisiecki & Stern, 2016)

Tie point 17286‐1 core depth (cm) LS16 age (ka BP)

LS16 #1 102.5 18.0
LS16 #2 268.5 29.5
LS16 #3 362.5 38.0
LS16 #4 408.5 46.5
LS16 #5 498.5 54.5
LS16 #6 578.5 59.5
LS16 #7 698.5 75.0
LS16 #8 772.5 85.0
LS16 #9 868.5 103.5
LS16 #10 928.5 116.0
LS16 #11 968.5 132.0

Note. For a visualization of the correlation see Figure 2.
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μl, depending on the organic carbon content of the sediment subsamples) were subsequently analyzed for
long‐chain alkenones with a system of two sequentially coupled Agilent 6890 N gas chromatographs
(double column multidimensional gas chromatography), allowing the separation and quantification of n‐
C37:2 and n‐C37:3 (Etourneau et al., 2010). Quantification of the two compounds was achieved through
addition of an internal standard (cholestane (C37H48) and hexatriacontane (C36H74)) and the alkenone
unsaturation index UK'

37 for each sample was finally calculated from the ratio between the concentrations
of n‐C37:2 and n‐C37:3 according to the equation of Prahl and Wakeham (1987). The resulting UK'

37 values
where then converted into SST values using the equation SST (°C) = (UK'

37 − 0.316) /0.023, which has
been derived by Sonzogni et al. (1997) from a core top calibration study in the tropical and subtropical
Indian Ocean (about 20°N to 45°S). This calibration equation was primarily developed for SSTs between
24 and 29 °C and considers seasonal variations in coccolithophore flux/productivity (Sonzogni et al.,
1997). The analytical error of the measurements, based on replicate analyses of internal laboratory
sediment standards, is <0.01 UK'

37 units/<0.1 °C (1σ), and the error of the calibration data set is ±1.1 °C
(Sonzogni et al., 1997).

3.4. Calculation of δ18Osw‐ivc From δ18Oplanktonic

In general, δ18Oplanktonic is influenced by superimposed changes in δ18O of the ambient ocean surface water
(δ18Osw) and SST, with the former being mutually affected by changes in global ice volume and freshwater
supply, either by river runoff or precipitation. To derive δ18Osw from measured δ18Oplanktonic and calculated
SST, we used the relationship δ18Osw [‰] = ((SST − 14.9)/4.8) + δ18Oplanktonic (Bemis et al., 1998) and
furthermore added 0.27‰ to convert the resulting δ18Osw values to the Vienna Standard Mean Ocean
Water (VSMOW) scale. Finally, to obtain an ice volume‐corrected record of the ocean surface water stable
oxygen isotope composition (δ18Osw‐ivc), we subtracted the inherent effect of past global ice volume changes
(Δδ18Oicevol; Figure 4) as published by Waelbroeck et al. (2002) (tuned to the chronology of the LS16 global
δ18Obenthic stack) from the calculated δ18Osw values.

Figure 2. The Core 17286‐1 δ18Obenthic record (triangles beneath the depth scale indicate AMS 14C dates) and its correlation with the LS16 global δ18Obenthic stack
(Lisiecki & Stern, 2016). Dashed lines indicate the position of the 11 tie points (with depths in Core 17286‐1 and corresponding ages in the LS16 global δ18Obenthic
stack), which have been used to establish the age model for Core 17286‐1 (see section 3.2 and Table 2).
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4. Results
4.1. The δ18Obenthic Record and Correlation With the LS16
global δ18Obenthic Stack

Overall, the δ18Obenthic record of Core 17286‐1 reveals a pattern that
is largely similar to the LS16 global δ18Obenthic stack during the last
~130 kyr (Figure 2). This enables a proper correlation between both
records (see section 3.2) and hence a fairly robust chronological con-
trol for the lower part of Core 17286‐1 beyond the range of 14C dating.
Slight temporal offsets of <2 kyr between the Core 17286‐1
δ18Obenthic record and the LS16 global δ18Obenthic stack during a
few intervals are related to the Bayesian age modeling approach.
Nevertheless, this is still within the 2σ uncertainty ranges of the
Core 17286‐1 age model (Figure 3) and the chronology of the LS16
global δ18Obenthic stack. As deduced from the final age model of
Core 17286‐1, the average sedimentation rate is ~5 cm kyr−1 during
Marine Isotope Stage (MIS) 1, ~11.5 cm kyr−1 during MIS 2, ~9.5
cm kyr−1 throughout MIS 3 and 4, ~5–6 cm kyr−1 throughout MIS
5a to 5d, and ~4 cm kyr−1 during MIS 5e. This yields a data resolution
of ~300–1100 and ~100–550 yr for the δ18O and SST
record, respectively.

Throughout the record, δ18Obenthic varies between ~2.6‰ and ~4.6‰
(Figures 4 and 5). Lowest values (~2.6–3.5‰) are observed between
~129 and ~117 ka BP, that is, during MIS 5e, followed by an interval
of slightly higher values (~3.5–3.9‰) between ~117 and ~88 ka BP. A
short‐term episode of lower values (~3.2–3.4‰) is observed between
~88 and ~82 ka BP before δ18Obenthic increases again to ~3.5–4.5‰
at the end of MIS 5b, fluctuating around 4.0‰ throughout MIS 4 to
MIS 2. Highest δ18Obenthic values (around 4.5‰) are reached at the
end of MIS 2 (last glacial maximum (LGM)) before a sharp drop to
lower values (<3.5‰) is observed at ~16 ka BP, marking the onset

of the Postglacial (Figures 4 and 5).

4.2. Alkenone Concentration and Reconstructed SST

The sum concentration of n‐C37:2 and n‐C37:3 varies throughout the record between ~50 and >700 ng g−1

with the concentration of n‐C37:3 being in general one magnitude lower than that of n‐C37:2 (Figure 4).
Characteristic are frequent multimillennial‐scale fluctuations between intervals of high and low alkenone
concentrations. The UK'

37 index ranges between 0.802 and 0.989, yielding SST estimates between ~22.0
and ~29.2 °C (Figure 4). The SST reconstruction for the last ~130 kyr is characterized by a considerable
short‐term variability with occasional fluctuations of >1.5 °C within a few centuries. Changes in the sum
concentration of n‐C37:2 and n‐C37:3 are apparently not correlated with changes in SST as low alkenone con-
centrations occur during intervals of both high and low SSTs (Figure 4). However, higher total alkenone con-
centrations (>200 ng g−1) are observed only during intervals with SSTs exceeding 25.0 °C. In general, highest
SSTs (>27.5 °C) are observed during intervals of interglacial and interstadial climate conditions, that is, dur-
ing MIS 1 (since ~15 ka BP) and during MIS 5e to early MIS 5b (~129–89 ka BP), while slightly lower SSTs
characterize the late MIS 5 as well as MIS 4 to MIS 2. SSTs significantly below 27.0 °C are only observed dur-
ing late MIS 4 as well as throughout MIS 3 and MIS 2 with lowest values (<25.0 °C) occurring at ~51–46 and
~35–30 ka BP. The average Holocene (0–10 ka BP) SST is ~27.9 °C, while it reaches ~26.2 °C during the LGM
(20–26 ka BP) and ~28.9 °C during MIS 5e (115–129 ka BP) (Figures 4 and 5).

4.3. The δ18Oplanktonic Record and Calculated δ18Osw‐ivc

The long‐term pattern of the δ18Oplanktonic record is fairly similar to that of δ18Obenthic. Lowest δ
18Oplanktonic

values (below −3.5‰) are observed during MIS 5e prior to a distinct increase by ~1.5‰ starting at ~120 ka
BP. Between ~117 and ~68 ka BP, δ18Oplanktonic ranges between about−3.0‰ and−1.5‰with relatively low

Figure 3. Age model of Core 17286‐1 as derived from the P_Sequence deposi-
tional model implemented in OxCal 4.3 (Bronk Ramsey, 2008, 2009a, 2009b;
Bronk Ramsey & Lee, 2013). The calibrated ages of the individual AMS 14C dating
samples (Table 1) and the ages of isotopic tie points derived from correlation of
the δ18Obenthic record with the LS16 global δ18Obenthic stack (Lisiecki & Stern,
2016; Table 2) are displayed as 2σ probability functions. The solid black line and
the gray shading represent the age model and its 2σ probability range,
respectively.
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Figure 4. Proxy data obtained from Core 17286‐1. (a) δ18Obenthic obtained from Uvigerina spp. The LS16 global
δ18Obenthic stack (Lisiecki & Stern, 2016) is given for comparison. Note the partial temporal difference between the two
records, which is owed to the age modeling procedure of Core 17286‐1 (see sections 3.2 and 4.1). (b) δ18Oplanktonic
obtained from G. ruber (white). (c) Concentrations of n‐C37:2 and n‐C37:3. Note the logarithmic scale. (d) UK'

37 index. (e)
SST calculated from the UK'

37 index using the core top calibration established for the tropical and subtropical Indian
Ocean by Sonzogni et al. (1997). Filled circles mark samples with parallel δ18Oplanktonic measurements that were used to
calculate δ18Osw‐ivc. (f) δ

18Osw (calculated from UK'
37‐based SST and δ18Oplanktonic; for details see section 3.4) and

Δδ18Oicevol (Waelbroeck et al., 2002; tuned to the LS16 global δ18Obenthic stack), which has been used to calculate δ18Osw‐

ivc. (g) δ
18Osw‐ivc (δ

18Osw corrected for the effect of global ice volume changes according to Waelbroeck et al. (2002); for
details see section 3.4). Relatively higher δ18Osw‐ivc values (note the reverse scale) reflect WMIs. Marine isotope stages
(MIS) are given for comparison with boundaries following Lisiecki and Raymo (2005) and Martín‐Puertas et al. (2014).
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Figure 5. Comparison of proxy records of climatic changes in the North Atlantic realm and the ISM/EASM domain during the last ~130 kyr. (a) NGRIP ice core
δ18O record, Greenland (Seierstad et al., 2014), reflecting climate variability and particularly Heinrich events in the North Atlantic realm. (b) Combined δ18O record
of speleothems fromHulu and Dongge Cave, eastern China (Cheng et al., 2016), reflecting past EASM changes. (c and d) δ18Osw‐ivc and U

K'
37‐based SST records of

Core 17286‐1, northern BoB (this study). (e) Speleothem δ18O record from Bittoo Cave, northern India (Kathayat et al., 2016), reflecting past ISM changes. (f)
Spectral reflectance of Core SO 130‐289KL, Arabian Sea (Deplazes et al., 2014), as a proxy for past ISM variability. (g) δ18O of benthic foraminifera (G. ruber) from
Core SO 93‐126KL, northern BoB (Kudrass et al., 2001), as a proxy for past ISM variability. Marine isotope stages (MIS) are given for comparison with boundaries
following Lisiecki and Raymo (2005) and Martín‐Puertas et al. (2014). The gray bars mark Heinrich events (H0 (Younger Dryas) to H11) as reflected in the NGRIP
ice core δ18O record as well as their correlatives in the Asian monsoon proxy records.
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values occurring at 106–90 and 83–73 ka BP, that is, during MIS 5c and 5a. From ~68 to ~15 ka BP, that is,
during MIS 4 to MIS 2, δ18Oplanktonic ranges mainly between −2.0‰ and −1.0‰ but values of up to −0.5‰
are observed at 38–40 and 28–15 ka BP. A distinct drop in δ18Oplanktonic by ~1.5‰, starting at ~15 ka BP,
characterizes the onset of MIS 1 (Figures 4 and 5).

After applying the corrections for changes in local SST and global ice volume (see section 3.4) to the mea-
sured δ18Oplanktonic values, the calculated δ

18Osw‐ivc reveals a characteristic multimillennial‐scale variability.
On the one hand, prominent episodes of low δ18Osw‐ivc values occur at about 124–128, 108–98, 83–73, 57–46,
and 33–31 ka BP, around 13 ka BP, and from ~10 to ~3 ka BP. On the other, also several short intervals of
relatively higher δ18Osw‐ivc values can be identified, which are superimposed on the multimillennial‐scale
variability. The most prominent of these short‐term increases of δ18Osw‐ivc are observed at 10.5–12.5, 13.5–
18.0, 23.0–25.0, 38.0–40.5, 47.5–49.5, 52.0–55.0, and 58.0–60.5 ka BP, around 71.5–73.0 ka BP as well as at
74.0–76.0, 84.0–88.5, 89.5–91.0, 94.0–98.0, and 112.5–117.0 ka BP and before ~125.0 ka BP (Figures 4 and 5).

Although the δ18Oplanktonic record largely mirrors that of δ18Obenthic, there are also some distinct differences
between the records. Most notable are occasional multimillennial offsets between distinct peaks in the
δ18Obenthic and δ18Oplanctonic records, for example, around 50–60 and 80–85 ka BP (Figure 4). A similar epi-
sodic out‐of‐phase behavior between δ18Obenthic and δ18Oplanctonic has also been observed in other records
from the Indian Ocean during the last glacial period (e.g., Dürkop et al., 2008; Jung et al., 2009) and is most
likely a consequence of episodic propagations of Antarctic Intermediate Water (AAIW) into the northern
Indian Ocean (cf. Ahmad et al., 2012; Jung et al., 2009; Yu et al., 2018). This could have influenced the oxy-
gen isotope composition of the water in the intermediate Indian Ocean and consequently also δ18Obenthic,
causing a temporal decoupling between the surface and deep water δ18O signal. As the chronology of
Core 17286‐1 prior to ~40 ka BP is based on wiggle matching of the δ18Obenthic record to the LS16 global
δ18Obenthic stack, an episodic influence of northward propagations of AAIW on δ18Obenthic might have at
least partly consequences for the age model and thus also for the relative timing of events in the δ18Osw‐ivc

record compared to other regional proxy records (see section 5.1 for further discussion).

5. Discussion
5.1. The δ18Osw‐ivc Record and Evidence for Recurrent WMIs

To assess whether the Core 17286‐1 δ18Osw‐ivc record predominantly reflects ISM variability, it is first neces-
sary to evaluate the reliability of the UK'

37‐based SST reconstruction as this is used to correct the measured
δ18Oplanktonic values for the influence of superimposed SST changes.

In general, the UK'
37 values obtained from Core 17286‐1 are close to 1 (see section 4.2) and reconstructed

SSTs should therefore be expected to be close to the upper end of the temperature range covered by global
core top calibration studies, which is 28.5 to 30.0 °C (Conte et al., 2006;Müller et al., 1998 ; Sonzogni
et al., 1997). As it has been shown that the relation between UK'

37 and SST is not linear across the entire
SST range but has a different slope above ~24 °C (e.g., Sonzogni et al., 1997; Tierney & Tingley, 2018), a cali-
bration suitable for high UK'

37 values and SSTs is necessary to get reliable temperature estimates for Core
17286‐1. Therefore, a calibration equation established by Sonzogni et al. (1997) for the tropical and subtro-
pical Indian Ocean for a temperature range of 24 to 29 °C has been chosen to convert the Core 17286‐1 UK'

37

values into SSTs (see section 3.3). In comparison to global core top calibrations (Müller et al., 1998; Sonzogni
et al., 1997), which are linear over a much broader temperature range (0–30 °C), this yields a generally very
similar trend throughout the record with all small‐scale SST fluctuations being recorded, but generates more
pronounced relative SST changes at the upper and lower end of the temperature range covered by the record,
that is, above 28 °C and below 25 °C. Particularly, the more pronounced SST variability during MIS 5, which
is also observed in other Indian Ocean SST records (Bard et al., 1997; Mohtadi et al., 2010; Saraswat et al.,
2005; see discussion below), therefore clearly argues for applying a more temperature‐confined calibration
to the Core 17286‐1 UK'

37 data. However, it needs to be mentioned that reconstructed SSTs below 24 °C
(e.g., around 30–35 and 50 ka BP)might be slightly too low as the applied calibration equation was developed
only for the temperature range between 24 and 29 °C.

Furthermore, SSTs reconstructed from UK'
37 might not necessarily reflect mean annual SST as initially pro-

posed (Conte et al., 2006; Müller et al., 1998) but could possibly be seasonally biased towards the summer
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season as indicated by several studies utilizing for example sediment trap
data and proxy‐model comparisons (Schneider et al., 2010; Sonzogni et al.,
1997; Wang et al., 2013). Nevertheless, despite the relatively complex sea-
sonal cycle of coccolithiphore productivity in the Indian Ocean with the
highest flux occurring during the summer monsoon season (Sonzogni
et al., 1997), it has been shown that the productivity‐weighted UK'

37‐SST
relationship can be simply approximated by mean annual SST
(Sonzogni et al., 1997), and therefore, the calibration equation applied to
Core 17286‐1 provides a reasonable measure for past mean annual SST
variability in the northern BoB.

In support of our SST reconstruction, we find a generally good agreement
of the Core 17286‐1 UK'

37‐based SST record with foraminifera Mg/Ca‐
based SST reconstructions from the northern BoB and the adjacent
Andaman Sea throughout the last ~30 kyr (Figure 6). These records indi-
cate spatially largely consistent average SSTs, which varied between ~25.0
and ~27.0 °C during the LGM (20–26 ka BP) and between ~27.0 and ~29.0
°C during the Holocene (0–10 ka BP), consistently indicating an ocean
surface warming of ~1.0–2.0 °C across Termination I (Gebregiorgis
et al., 2016; Govil & Naidu, 2011; Rashid et al., 2007; Rashid et al., 2011;
Raza et al., 2017). This is comparable to the UK'

37‐derived SST values
recorded in Core 17286‐1 (Figure 6). Although the foraminifera Mg/Ca‐
based SST reconstructions are characterized by a much higher short‐term
variability, particularly those from the northwestern BoB share several
common features with the Core 17286‐1 SST record, for example, slightly
higher SSTs before the LGM and a continuous SST rise starting between
15 and 20 ka BP (Figure 6). In contrast, there are obvious differences
between the BoB and Andaman Sea SST records, which might be related
to oceanographic differences between both areas but can also be explained
by chronological uncertainties as the chronologies of all other SST records
displayed in Figure 6 are based on very simple age modeling approaches
(linear interpolation between the uncertainty range midpoints of indivi-
dual 14C dates) and outdated 14C calibration data sets.

In addition to the similarities between the Core 17286‐1 SST reconstruc-
tion and adjacent SST records across Termination I, we also find a good
overall agreement with long‐term SST reconstructions from the equatorial
Indian Ocean, particularly regarding the amplitude of SST changes. For
example, a foraminifera Mg/Ca‐based SST record off SW India (Core
SK157/4; Figure 1a) also reveals slightly lower SSTs during the
Holocene (~28.3 °C; 0–10 ka BP) than during MIS 5e (~28.6 °C; 115–130
ka BP) and a similar difference of ~1.3 °C between LGM (20–26 ka BP)
and Holocene mean SST values (Saraswat et al., 2005). Also, the magni-

tude of SST variability throughout MIS 5 in this record, which is ~3.1 °C (~26.8 to ~29.9 °C; 71–130 ka
BP), is comparable to the values in Core 17286‐1 (~26.3 to ~29.3 °C; Figures 4 and 5). Lower SSTs during
the Holocene (~27.3 °C) than during MIS 5e (~28.1 °C) and a SST variability of ~3.1 °C throughout MIS 5
(~25.6 to ~28.5 °C) are also revealed by a UK'

37‐based SST reconstruction from the eastern tropical Indian
Ocean off SW Sumatra (Core GeoB 10038‐41), although the SST rise from the LGM to the Holocene (~0.8
°C) appears slightly subdued there (Mohtadi et al., 2010). The relatively lower absolute SSTs in this record
during MIS 5e compared to Core 17286‐1 are, however, solely related to a different temperature calibration
as the range of UK'

37 values in both records is virtually identical (approximately 0.96 to 0.99). In addition, a
foraminifera Mg/Ca‐based SST reconstruction from the same site provides similar evidence for lower SSTs
during the Holocene (~24.5 °C) than duringMIS 5e (~25.5 °C), a deglacial SST rise of ~1.4 °C and a SST varia-
bility of ~3.2 °C throughout MIS 5 (~23.4 to ~26.6 °C), although reconstructed SST values are lower than for
the UK'

37‐based reconstruction (Mohtadi et al., 2010). Furthermore, a low‐resolution UK'
37‐based SST record

Figure 6. Comparison of SST records from the BoB and the Andaman Sea
during the last ~30 kyr. (a) UK'

37‐based SST record of Core 17286‐1, north-
ern BoB (this study). (b) Mg/Ca‐based SST record of Core VM29‐19, north-
western BoB (Rashid et al., 2011). (c) Mg/Ca‐based SST record of Core
SK218/1, northwestern BoB (Govil & Naidu, 2011). (d) Mg/Ca‐based SST
record of Core RC12‐344, Andaman Sea (Rashid et al., 2007). (e) Mg/Ca‐
based SST record of Core SK168/GC‐1, Andaman Sea (Gebregiorgis et al.,
2016). (f) Mg/Ca‐based SST record of Core SK157‐14, southern BoB (Raza
et al., 2017). For the location of the individual proxy records see Figure 1b.
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from Core MD90‐963 off SW India (Figure 1a; Rostek et al., 1993) reveals a comparable LGM‐Holocene SST
difference of ~1.1 °C, but slightly higher instead of lower SSTs during the Holocene (~28.0 °C) compared to
MIS 5e (~27.4 °C) and a rather subdued SST variability during MIS 5, which, however, might be attributed to
the low temporal resolution of this record and the applied UK'

37‐SST calibration.

In summary, taking the good agreement with other regional SST records together with the fact that the
reconstructed SST for the most recent sediments of Core 17286‐1 is very close (within the uncertainty of
the calibration) to the instrumentally recorded present‐day mean annual SST at the coring site (see
section 2), we are confident that the UK'

37‐based SST reconstruction for Core 17286‐1 reliably reflects mean
annual SST variability during the last ~130 kyr and can therefore be used to calculate δ18Osw from
δ18Oplanktonic. Nevertheless, it needs to be mentioned that UK'

37 values during MIS 5e are mostly >0.98, that
is, at the upper end of the calibration range, which is why reconstructed SSTs during this interval should be
considered with caution with respect to the absolute values.

In consequence, the SST‐ and ice volume‐corrected δ18Osw‐ivc record can be considered to primarily reflect
changes in ISM intensity throughout the last glacial‐interglacial cycle. This is mainly related to the
predominant influence of 18O‐depleted riverine freshwater from monsoon precipitation on the isotopic
composition of the ocean surface water in the northern BoB in which the planktonic foraminifera grow.
In particular, high freshwater input from the GBM river system during phases of strong ISM is lowering
δ18Osw‐ivc values whereas more positive values are indicative of less freshwater input and thus reduced
ISM intensity. Although certain differences between δ18O paleomonsoon records from the ISM and
EASM domain, particularly regarding the magnitude of glacial‐interglacial δ18O variability, have recently
been discussed (Cai et al., 2015), the Core 17286‐1 δ18Osw‐ivc data show in general a good agreement with
EASM variability recorded in speleothems from Hulu and Dongge Cave in eastern China (Cheng et al.,
2016; Figure 5). Moreover, not only long‐term ISM changes throughout the last ~130 kyr are reflected in
the Core 17286‐1 δ18Osw‐ivc record but also the short‐term variability. Most prominent are several distinct,
centennial‐ to millennial‐scale episodes of relatively high δ18Osw‐ivc values (see section 4.3), which are
considered to reflect low riverine freshwater discharge and therefore particularly dry conditions in the
ISM domain. These WMIs are characterized by a close synchroneity (within the uncertainty range of the
Core 17286‐1 chronology) with reductions in EASM intensity observed in speleothem δ18O records from
Hulu and Dongge Cave, eastern China (e.g., Cheng et al., 2016; Wang et al., 2001) as well as in ISM
intensity recorded in speleothem δ18O data from Bittoo Cave, northern India (Kathayat et al., 2016), and
marine proxy records from the western Arabian Sea (Core SO 130‐289KL; Deplazes et al., 2014) and the
northern BoB (Core SO 93‐126KL; Kudrass et al., 2001) (Figure 5). Slight differences between the Core
17286‐1 δ18Osw‐ivc and the Hulu and Dongge Cave δ18O record, particularly regarding the overall shape
and timing of individual events, for example, at the onset of MIS 5 or between ~50 and ~80 ka BP, are most
likely related to (1) general differences between ISM and EASM paleomonsoon records due to differing
changes in atmospheric circulation and moisture trajectories (cf. Cai et al., 2015), (2) the fact that the
Core 17286‐1 δ18Osw‐ivc record indirectly reflects variability of ISM precipitation runoff through changes
in BoB surface water conditions, while the Chinese stalagmites directly reflect changes in EASM
precipitation amount, and (3) the inherent chronological uncertainty of the Core 17286‐1 sediment record
due to a variable and poorly assessed marine 14C reservoir age (cf. Sarnthein et al., 2015), the uncertainty of
the astronomical tuning of the δ18Obenthic data, and the possible effect of episodic northward propagations
of AAIW on the δ18Obenthic record (see section 4.3). Particularly, the latter might explain the slight
temporal offset observed for WMIs in the Core 17286‐1 δ18Osw‐ivc and the Hulu and Dongge Cave δ18O
record during the interval ~50–85 ka BP, which is, however, still within the range of the chronological
uncertainty. Nevertheless, because of the generally good temporal agreement of WMI occurrence in the
individual ISM and EASM proxy records, we conclude that WMIs are an overarching, synchronously
occurring characteristic of the entire Asian monsoon system. We also observe a close temporal
correspondence between WMIs and abrupt short‐term shifts to colder temperatures during Heinrich events
in the North Atlantic realm, which are most prominently recorded in the NGRIP ice core from Greenland
(Rasmussen et al., 2014; Seierstad et al., 2014) (Figure 5). The most prominent reductions in monsoon
precipitation around the northern BoB, inferred from pronounced positive peaks in the Core 17286‐1
δ18Osw‐ivc record, occurred during the Younger Dryas/Greenland Stadial 1 (sometimes referred to as
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Heinrich event H0) as well as during Heinrich events H1, H2, H4, H5, H5a, H6, H7a, H7b, H8, H9, and
H11. In contrast, the reduction in monsoon intensity during Heinrich events H3 and H10 was most prob-
ably rather weak as reflected by relatively small positive peaks in the δ18Osw‐ivc record (Figure 5). The syn-
chroneity between WMIs and Heinrich events throughout the last glacial period has previously been
observed in several other paleomonsoon records (e.g., Cheng et al., 2016; Colin et al., 1998; Deplazes
et al., 2014; Kathayat et al., 2016; Mingram et al., 2018; Mohtadi et al., 2014; Stager et al., 2011; Wang
et al., 2001) and recently been proven by connecting Greenland ice core and Asian speleothem chronolo-
gies via cosmogenic radionuclides (Adolphi et al., 2018). However, although WMIs can therefore be consid-
ered as the regional Asian response to cold spells in the North Atlantic realm, the teleconnective
mechanism that links the two regions is still debated.

5.2. Were WMIs Always Connected to Indian Ocean Surface Water Cooling Throughout the Last
Glacial‐Interglacial Cycle?

Several possible mechanisms have so far been considered to explain the observed close synchroneity
between the occurrence of Heinrich events in the North Atlantic realm and WMIs in Asia and thus
the climatic coupling between both regions. For example, it has been proposed that ISM weakening dur-
ing North Atlantic cold spells was caused by perturbations of the subtropical westerly jet over Africa and
Eurasia, driven by SST anomalies in the tropical Atlantic Ocean in response to freshwater input into the
North Atlantic and related weakening of the Atlantic meridional overturning circulation (Marzin et al.,
2013). Other studies instead suggest a reorganization of the Hadley circulation after the slowdown of the
Atlantic meridional overturning circulation during Heinrich events, causing a southward displacement
and parallel weakening of the Intertropical Convergence Zone (ITCZ) and finally a reduction of mon-
soon precipitation in Asia (Mohtadi et al., 2014). A similar repositioning of the ITCZ has also been
favored as the most likely trigger for phases of reduced EASM strength in southeastern China during
the Holocene (Yancheva et al., 2007). However, it needs to be mentioned in this context that for the
weakening of the monsoon the reduction of the evaporative moisture content of the ITCZ is considered
much more important than its repositioning (Stager et al., 2011). Furthermore, climate model simula-
tions have also shown that reduced SSTs in the Indian Ocean in response to the cooling of the
Northern Hemisphere (triggered by increasing sea ice extent in the North Atlantic), which are expected
to reduce the evaporative moisture content of the ITCZ (cf. Stager et al., 2011), could possibly act as the
link between Heinrich events and reduced monsoon intensity in Asia (Pausata et al., 2011). Particularly,
the latter hypothesis of Indian Ocean SST lowering being the linking element between North Atlantic
cold events and reductions in ISM intensity has recently been supported by evidence for ocean surface
cooling during WMIs in the Arabian Sea derived from combining proxy data and climate modeling
(Tierney et al., 2016). However, as the underlying foraminifera Mg/Ca‐ and UK'

37‐based SST reconstruc-
tions are not unambiguous and this linkage has only been established for the two most recent North
Atlantic cold spells, that is, the Younger Dryas and Heinrich event H1, it is still unresolved whether this
mechanism is also valid under full glacial boundary conditions. In this regard, longer marine proxy
records from the Asian monsoon domain with paired δ18Oplanktonic/δ

18Osw‐ivc and SST data could pro-
vide the opportunity to further test the relationship between Indian Ocean SST variability and changes
in monsoon precipitation. Although there are already quite many paired δ18Oplanktonic and SST records
from the northern Indian Ocean available (e.g., Anand et al., 2008; Gebregiorgis et al., 2016; Govil &
Naidu, 2011; Kudrass et al., 2001; Rashid et al., 2007; Rashid et al., 2011; Saraswat et al., 2013;
Tierney et al., 2016), most of them are rather short, mainly focusing on the last glacial‐interglacial tran-
sition and rarely reaching beyond ~50 ka BP. In contrast, the only parallel δ18Oplanktonic and SST records
that cover the entire last glacial‐interglacial cycle are located in the equatorial Indian Ocean off SW
India (Rostek et al., 1993; Saraswat et al., 2005) and off SW Sumatra (Mohtadi et al., 2010), which is
rather outside the core zone of the ISM. As most of the mentioned records moreover lack the necessary
temporal resolution to resolve centennial‐ to millennial‐scale SST changes, it still remains ambiguous
whether the proposed linkage between North Atlantic Heinrich events and WMIs via Indian Ocean
SST changes (Pausata et al., 2011; Tierney et al., 2016) also prevails under different climatic boundary
conditions throughout the entire last glacial period. The UK'

37‐based SST record derived from Core
17286‐1 therefore offers, in conjunction with the parallel δ18Osw‐ivc record, the opportunity to assess this
relationship in more detail.
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Comparing the SST record with the parallel δ18Osw‐ivc data reveals that WMIs were apparently only in very
few cases accompanied by decreases in SST (Figures 4 and 5). In particular, we observe a correspondence
between reduced ISM intensity and lower SSTs in the BoB only for the two most recent intervals of reduced
monsoon precipitation, which occurred parallel to the Younger Dryas and Heinrich event H1, but even in
these cases the decreases in SST are not very pronounced. An exception might be the WMI that parallels
Heinrich event H5, which, however, occurred during a longer phase of relatively low Indian Ocean SST
(Figure 5), thus questioning a direct relationship at submillennial time scales. Hence, although our
observation of slightly reduced SSTs during the two most recent WMIs is in agreement with the findings
of Tierney et al. (2016), the apparent lack of pronounced SST decreases during WMIs that occurred under
glacial boundary conditions, that is, before ~15 ka BP, and even during Termination II clearly challenges
the general validity of a direct connection between lowered SSTs in the Indian Ocean and reduced monsoon
precipitation as proposed by Pausata et al. (2011) and Tierney et al. (2016). In fact, we observe only very sub-
dued SST changes during most of theWMIs and in some cases even temporarily increased SSTs, for example,
for the WMIs that correspond to Heinrich Events H2, H3, H4, H5a, and H6 (Figure 5). We also find no evi-
dence for a mediation of the parallel occurrence of WMIs and Indian Ocean SST changes through the super-
imposition of changes in the Earth's orbital parameters, that is, a parallel occurrence of SST reductions and
WMIs during either maxima or minima in Northern Hemisphere insolation. This is in good agreement with
findings from mainland NE China, indicating that phases of EASM weakening occurred synchronously to
Heinrich events regardless the insolation forcing (Mingram et al., 2018). Hence, the assumption that
WMIs are in general coupled to North Atlantic Heinrich events via cooling of the Indian Ocean surface water
must at least be questioned based on the proxy evidence from Core 17286‐1. Although our data do not
provide information about possible SST changes and their relation to WMIs in the source region of the
ISM, that is, the western Indian Ocean, our interpretation is supported by other proxy records from the
Arabian Sea (Anand et al., 2008; Saher et al., 2007; Saraswat et al., 2013) and the BoB (Panmei et al.,
2017), which show no particular cooling of the Indian Ocean surface water during the most recent WMIs,
occurring contemporaneously to the Younger Dryas and Heinrich events H1 and H2 in the North Atlantic
realm. Furthermore, the general validity of Indian Ocean SST lowering being the trigger of WMIs is also
questioned by compelling evidence from combined climate modeling and examination of instrumental data,
showing that the weakening of the ISM during the last decades is paralleled by Indian Ocean warming rather
than by cooling (Roxy et al., 2015). Hence, the connection between SST changes in the Indian Ocean and the
occurrence of WMIs is apparently more complex than initially suggested with probably significant spatial
and temporal differences between (1) the BoB and the Arabian Sea and (2) post‐LGM and full glacial climatic
boundary conditions. Amore complex, transient triggering ofWMIs in the Asianmonsoon domain would be
in line with a previous study, suggesting that short‐term EASM variability during the deglaciation was
mainly controlled by processes in the Northern Hemisphere while during the last glacial period the influ-
ence of Southern Hemisphere climate variability prevailed (Rohling et al., 2009). Furthermore, other
mechanisms such as the proposed perturbation of the subtropical westerly jet over Africa and Eurasia
(Marzin et al., 2013) or a reorganization of the Hadley circulation and an associated displacement of the
ITCZ (Mohtadi et al., 2014) should also be considered to explain the teleconnective coupling between
Heinrich events andWMIs. Particularly, the latter mechanism is corroborated by speleothem δ18O data from
Ball Gown Cave, northern Australia (Denniston et al., 2013), pollen data from Lynch's Crater, northern
Australia (Muller et al., 2008), and speleothem δ18O data from Liang Luar Cave, south‐central Indonesia
(Ayliffe et al., 2013), which are all located south of the present‐day mean position of the ITCZ. These records
provide evidence for increased precipitation during Heinrich events, most likely reflecting a southward dis-
placement of the ITCZ. This would be in line with a synchronous reduction of monsoon precipitation in the
northern BoB and other paleomonsoon records north of the equator, reflecting a hemispheric antiphased
pattern of ITCZ‐controlled monsoon changes. However, such shifts in the position of the ITCZ, if supposed
to be of a considerable latitudinal range, were most likely rather limited in their longitudinal extent (McGee
et al., 2014). In consequence, further studies are necessary to finally clarify the linkage between North
Atlantic Heinrich events and WMIs in Asia and to shed light on the possible influence of Southern
Hemisphere climate variability. This should particularly include the establishment of new paired high‐
resolution SST and δ18Osw‐ivc records from the source region of the ISM, the Arabian Sea, to clarify the rela-
tionship between SST changes and WMIs in this region also under full glacial climatic boundary conditions.
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6. Conclusions

Paired foraminifera δ18O and UK'
37‐based SST data obtained from Core 17286‐1 represent the first records of

paleoceanographic changes in the northern BoB that cover the entire last glacial‐interglacial cycle at
submillennial‐scale resolution. The δ18Oplanktonic record provides clear evidence for changes in Indian
Ocean surface water conditions in response to variable riverine freshwater input due to changing ISM inten-
sity. Orbital‐ to millennial‐scale changes in ISM intensity thereby reveal a good temporal agreement with
other regional paleomonsoon records but also with proxy data from the EASM domain. Furthermore, sev-
eral short‐term reductions of ISM intensity are documented for the first time throughout the last glacial per-
iod in this part of the Indian Ocean. These WMIs occurred synchronously to similar events previously
documented in other terrestrial and marine paleomonsoon archives, but also to cold Heinrich events in
the North Atlantic realm. However, when compared with the parallel UK'

37‐based SST record, which is so
far the first regional high‐resolution data set of this kind that covers the entire last glacial‐interglacial cycle,
we find only in very rare cases a correspondence between SST reductions and WMIs recorded in the
δ18Oplanktonic/δ

18Osw‐ivc record. This challenges the previous assumption that Indian Ocean SST represents
the linking element between cold Heinrich events in the North Atlantic realm andWMIs in the ISM domain.
Hence, other mechanisms must be invoked to explain the evident synchroneity of climatic events between
these two regions.
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