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Impact of magnetism on the phase stability of rare-earth based hard 
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A B S T R A C T   

In recent years, quantum-mechanically guided materials design has been used to identify candidate hard mag
netic materials with a reduced content of rare earth elements. The focus of these studies was on optimal magnetic 
properties. In the present work we address the issue of thermodynamic stability of such materials. As prototype 
system we consider CeFe11Ti and focus on the impact of magnetism on the free energy. To this end, we use the 
magnetic model suggested by Gerhard Inden as a reference. The performance of this model is compared to Monte 
Carlo simulations for the magnetic entropy contribution. We conclude that despite the empirical nature of the 
Inden model, it provides a surprisingly accurate description of the magnetic contribution. Based on this approach 
we are able to faithfully predict the critical temperature for the decomposition of CeFe11Ti into competing Laves 
phases. We further show that the Inden model can be improved if the reduction of the magnetic moment at finite 
temperatures is taken into account. This is demonstrated for the hard magnetic phase Nd2Fe14B. In addition, the 
impact of magnetism on the lattice vibrations of relevant phases in the Ce–Fe–Ti system is analyzed.   

1. Introduction 

Permanent magnets are critical components in various electronic 
devices. Applications range from generators of wind turbines to speakers 
of smartphones [1]. Most of the currently applied hard magnetic ma
terials contain rare-earth (RE) and transition metal (TM) elements. The 
desired magnetic properties such as a high magnetic energy density, a 
large magnetocrystalline anisotropy and a high Curie temperature have 
most convincingly been achieved by Nd2Fe14B magnets [2,3]. A disad
vantage of this alloy is the need of rare-earth additions that are limited 
and economically expensive. 

Next to experimental efforts [4,5], theoretical approaches promise to 
design novel magnets that are free of these expensive constituents. To 
find compositions with comparable magnetic properties, 
high-throughput screening calculations have been performed [6,7]. At 
the same time, theoretical efforts on such RE based alloys have been 
made that focus on magnetic properties such as the 4f-electrons 
magnetism [8], site preferences of substituted RE elements and mixed 
valency treatments [9,10] and intrinsic magnetic properties [11]. These 
methodologies and efforts are aiming at ground state properties. So far, 
the question of the thermodynamic stability of the thus identified phases 
has not been addressed. 

For the determination of phase stabilities, the calculation of the free 
energy for individual phases is vital. Next to Calphad, ab initio ap
proaches have been successfully used for computing the phase stability 
of various nonmagnetic materials and have shown to provide accurate 
predictions [12,13]. In both approaches, however, integrating magnetic 
entropies is not straight forward but important for the description of the 
considered material. A pragmatic solution has been introduced by 
Chuang et al. [14]: empirical mathematical expressions are used to 
describe the heat capacity of several magnetic elements and binaries. 
Within the Calphad community a formulation suggested by Inden [15, 
16] is widely used and has been established as a reliable tool. Despite its 
simplicity, this method turned out to be highly successful in the accurate 
thermodynamic description of many material systems. 

In order to assess the various empirical methods, we determine in 
this paper the magnetic free energy contribution by using the Heisen
berg model with the Hamiltonian, 

H ¼
X

ij
JijSiSj: (1) 

Here, the spins SiðjÞ are assumed to be localized at lattice sites i and j. 
The exchange interactions Jij can be determined with different DFT 
methods such as the Korringa-Kohn-Rostoker (KKR) technique [17,18] 
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or the application of the magnetic force theorem [19]. Although the 
exact analytical solution of the Hamiltonian in Eq. (1) is not known, 
classical Monte Carlo (cMC) [20] techniques can be used to provide a 
numerical solution for a given set of J parameters. In special cases, even 
quantum Monte Carlo (qMC) [21] simulations can be performed. 
Therefore, an ab initio determined set of Jij energies gives access to 
several magnetic properties such as the total magnetization at finite 
temperatures and the magnetic heat capacity. 

In this present work, we demonstrate the importance of including 
magnetism in modeling the thermodynamic stability of RE-based hard 
magnets. As shown in our recent work [22], CeFe11Ti is a promising 
candidate for novel hard magnetic applications. We therefore focus in 
this study on Ce–Fe–Ti alloys. The paper is organized as follows: In Sec. 
II we explain the technical aspects of our computational methods for ab 
initio thermodynamics and specially the treatment of magnetism. In Sec. 
III the impact of magnetism on phase stabilities and the methodological 
challenges in modeling RE-TM containing CeFe2 binaries are given. Also 
a comparison between the ab initio approach and the Inden model for 
various alloys is presented. Sec. IV covers the impact of magnetism on 
the phonon dispersions of relevant Ce–Fe–Ti alloys. In Sec. V the per
formance of the Inden model is further tested for Ce and Nd-based 
magnetic materials. It also includes a sensitivity analysis for 3 
different input parameters. We finally conclude the paper in Sec. VI. 

2. Computational details 

In this work, all first principles calculations are based on DFT as 
implemented in the Vienna ab initio simulation package VASP [23,24]. 
The projector-augmented wave (PAW) [25] method is employed. 
Exchange-correlation is treated within the generalized gradient 
approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) [26]. In 
particular, the Ce potential with 5s25p64f15d16s2 valence configuration 
is selected, where the single f-electron is treated explicitly as valence 
state in DFT. To address the localized 4f-electrons in Nd2Fe14B the DFT 
þ U method proposed by Dudarev et al. [27] is employed. However, in 
the case of Ce-based binaries as well as the Ce–Fe–Ti ternary compound 
investigated here, a Hubbard U correction is not needed. The underlying 
reason for this is the strong hybridization of Ce-4f with TM-3d electrons, 
which gives rise to an earlier filling of the bonding bands compared to 
the localized 4f of Ce. We further refer to Ref. 22 for more technical 
details. 

In order to calculate phase stabilities and thermodynamic properties, 
DFT is not only applied to ground state energies, but also used to 
determine finite temperature excitations [28]. The free energies are 
considered in the adiabatic approximation, therewith decoupling the 
degrees of freedom 

FðT;VÞ¼E0ðVÞþFelðT;VÞþFvibðT;VÞ þ FmagðT;VÞ; (2)  

which are the zero-temperature total energy E0, the thermal electronic 
Fel, the vibrational Fvib and the magnetic Fmag contributions to the free 
energy. 

The thermal electronic contribution to the free energy, Fel, is calcu
lated by using the finite temperature formulation of DFT [29]. 

Fel¼EtotðT;VÞ � E0ðVÞ � TSel; (3)  

where Etot is the total electronic free energy (including the binding en
ergies at 0 K). Sel is the electronic entropy obtained from Fermi occu
pation numbers fi 

Sel¼ kB

X

i
ðfi lnfi þð1 � fiÞlnð1 � fiÞÞ; (4)  

with kB the Boltzmann constant. We note that the electronic contribu
tion is evaluated for static lattice positions, though lattice vibrations 
modify the electronic density of states close to the melting point [30]. 

The evaluation of these coupling effects requires explicit ab initio mo
lecular dynamics simulations, which is beyond the scope of the present 
manuscript. 

Phonon spectra are computed with the direct force constant method 
[31,32] and used as an input for the vibrational free energy Fvib as well. 
A displacement of 0.02 Å is used for all phases to calculate 
Hellmann-Feyman forces. The number of inequivalent displacements 
depends on the symmetry of the crystal structure (translational and 
rotational symmetries) and the occupation of the sublattice. In order to 
determine these symmetries automatically we have used the S/PHI/nX 
tool [33,34]. The forces in a displaced structure are calculated using 
VASP. We have used the Methfessel-Paxton scheme [35] with a broad
ening parameter 0.1 eV. The k-point sampling is chosen such that Fvib is 
converged to ~1 meV/atom. For example, 10 � 10 � 10 k-points for a 3 
� 3 � 3 (54 atoms) supercell of B2–FeTi have been used (that corre
sponds to 54 � 103 kp ⋅ atom). The convergence criterion for the elec
tronic loop has been set to 10� 6 eV. The eigenvalues of the Fourier 
transformed dynamical matrix ωi enter the free energy expression in 
harmonic approximation [36]. 

Fvib¼
1
N
X3N

i

�

ℏωi þ kBT ln
�

1 � exp
�

�
ℏωi

kBT

���

; (5)  

where ℏ is the reduced Planck constant. The summation in Eq. (5) runs 
over all 3 N phonon states, where N is the number of atoms in the unit 
cell. In the quasi-harmonic approximation considered here, the volume 
dependence of the phonon frequencies, ωi, is additionally taken into 
account. Explicitly anharmonic contributions are not considered. In 
many magnetic materials, the phonon frequencies may depend on the 
actual magnetic state (see, e.g., Refs. [37, 38]). Therefore, this impact of 
magnetism will also be analyzed in the present work. 

The emphasis is, however, on the magnetic free energy, Fmag, and its 
treatment with the empirical formula developed in a pioneering work by 
Gerhard Inden [15] in 1976. The magnetic part of the heat capacity Cmag 

has a different physical origin below and above the magnetic transition 
temperature TC. At temperatures below TC a long range order (LRO) of 
the magnetic degrees of freedom is present. Slightly above TC the dis
tribution of the local magnetic moment directions is not yet random, but 
a short range order (SRO) can still be observed. Inden demonstrated that 
both regions of the heat capacity can be mathematically described by 
very similar LRO and SRO models as 
8
>><

>>:

CLRO
P ¼ KLROR ln

1þ τ3

1 � τ3; τ < 1

CSRO
P ¼ KSROR ln

1þ τ� 5

1 � τ� 5; τ > 1

(6)  

where CLRO
P and CSRO

P designate the magnetic heat capacity in the 
ferromagnetic (FM) and paramagnetic (PM) states, R is the gas constant 
and τ is the normalized temperature T=TC. The temperature independent 
empirical character is given in the LRO and SRO prefactors by 

KSRO¼
0:784⋅f ⋅Smag=R

0:5979 � 0:2114f
; (7)  

KLRO¼
Smag

�
R � 0:493KSRO

0:822
: (8) 

These equations have two further parameters, which are the ratio 
between the magnetic enthalpy due to SRO and LRO, f and the magnetic 
entropy, Smag. The magnetic enthalpy ratio is given by 

f ¼
ΔHSROð∞Þ

ΔHSROð∞Þ þ ΔHLROðTCÞ
; (9)  

where the enthalpy change ΔH is obtained from the integration of the 
heat capacities given in Eq. (6). The f parameter is calculated by Inden to 
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be 0.4 for bcc Fe and 0.28 for fcc Co and Ni [15], which has been 
generalized as the choice for bcc and fcc ferromagnets, respectively. The 
maximum magnetic entropy of an element with fixed magnetic moment 
β is 

Smag
max¼R lnðβþ 1Þ; (10)  

if β is in units of Bohr magneton. 
Therefore, the Inden approach is using three physical parameters, 

which are the critical temperature TC, the enthalpy ratio f, and the mean 
magnetic moment β. Since the Inden approach [15] was considered to be 
computationally too expensive for efficient calculations of phase dia
grams, the logarithmic function has been approximated by Hillert an 
Jarl [39] in 1978 

8
>><

>>:

CLRO
P ¼ 2KLROR

�

τm þ
1
3

τ3m þ
1
5

τ5m
�

; τ < 1

CSRO
P ¼ 2KSROR

�

τ� n þ
1
3

τ� 3n þ
1
5

τ� 5n
�

; τ > 1;

(11)  

where m ¼ 3 and n ¼ 5. Being a power series expansion, the basic 
structure of the expression for the heat capacity given in Eq. (6) and of 
the set of parameters are unchanged. Since this expression does not yield 
a mathematical divergence at the transition temperature, it is commonly 
used in CALPHAD databases as a description of magnetism. Several 
other modifications exist, including the proposal of Chen and Sundman 
to extend the expansion to seventh order [40]. 

A critical parameter in the above formulation is the magnetic 
moment β, which is used to calculate the magnetic entropy and controls 
the magnitude of the λ-shaped magnetic heat capacity. In the case of 
multi-component alloys the simplest choice for β is the mean magnetic 
moment [16]. If the individual magnetic moments βi are known, they 
can be weighted with their mole fraction xi, yielding an effective mag
netic moment [41] β via 

Smag
max ¼R lnðβþ 1Þ¼R

X

i
xilnðβi þ 1Þ: (12) 

Since the effective magnetic moments are supposed to give more 
accurate results than mean moments [41], this concept has been used in 
the present work. The magnetic moments, which were used as input 
parameters for Eq. (12), were calculated from ab initio and are listed in 
Table 1. 

The resulting expression for the Gibbs energy using an additional 
term [40] and n ¼ 7 in Eq. (11) is given as [41]. 

Gmag ¼TSmaggðτÞ; (13)     

D¼ 0:33471979þ 0:49649686
�

1
f
� 1
�

: (15) 

Here, the structural factor f is modified to 0.37 for bcc and 0.25 for 
non-bcc crystal structures, due to the re-optimized KSRO and KLRO values 

for the extension of the power series to seventh order. However, this 
change in f does not have a significant effect on the heat capacity for Co 
and Ni, as shown by Chen and Sundman [40]. 

One has to take into account that Gmag as given in Eq. (13) has been 
developed to describe the magnetic free energy arising from magnetic 
ordering. Therefore, the total magnetic free energy, Fmag, is the sum of 
this term and the free energy contribution of the paramagnetic disorder, 
which is considered by the expression 

GPM
magðTÞ¼RTlnðβþ 1Þ: (16) 

We note that an alternative empirical expression has been employed 
recently to investigate the partitioning of substitutional impurities in 
cementite and ferrite by Sawada et al. [42]. They have calculated the 
heat capacity analytically as given by Chuang et al. [14]. 

3. Impact of magnetic models on phase stabilities 

As mentioned above, the CeFe11Ti phase shows the most promising 
hard magnetic properties among the Ce–Fe–Ti alloys. However, the 
presence of Ti also yields the formation of the secondary Fe2Ti Laves 
phase. Similarly, depending on its chemical potential, Ce can give rise to 
large phase fractions of CeFe2 in the microstructure, which are detri
mental for the magnetic performance of the material. 

To computationally predict and subsequently suppress the stability 
of the Laves phases at elevated temperature, their temperature depen
dent free energies need to be determined by means of Eq. (2). The 
relative stability of CeFe11Ti with respective to a decomposition into the 
two Laves phases and pure α-Fe is given by the following expression 
[22]. 

FdecðT;VÞ ¼ FCeFe11TiðT;VÞ � 7FFeðT;VÞ �
�
FCeFe2 ðT;VÞ þ FFe2TiðT;VÞ

�

(17) 

A positive value of Fdec means that the decomposition of CeFe11Ti 
into the three competing phases is favored, while the desired CeFe11Ti 
phase is stable for negative values. Here, all phases have been consid

ered as line compounds, ignoring solubility regions in the common 
tangent construction. Furthermore, our previous analysis demonstrated 
that a consideration of additional binary phases in the phase diagram is 
not required [22]. 

The ab initio computed temperature dependence of Fdec is plotted in 
Fig. 1. Here, the main result is the red line, for which electronic, 
vibrational and magnetic entropy contributions are taken into account, 

Table 1 
Calculated magnetic moments, M, for the considered element and alloys 
in the competition energy (Eq. (17)) by using first principles. The corre
sponding sub-lattices are given in parenthesis.  

Phase Magnetic moment M (μB)  

Fe 2.21 
Fe2Ti 1.31 Fe (6h), 0 Fe (2a), 0.14 Ti (4f) 
CeFe2 1.81 Fe (16a), -0.91 Ce (8b) 
CeFe11Ti 2.30 Fe (8i), 1.76 Fe (8f), 2.18 Fe (8j),  

� 0.74 Ce (2a), -1.07 Ti (8i)  

gðτÞ¼

8
>>>>>><

>>>>>>:

0 τ � 0

1 �
1
D

�

0:38438376
τ� 1

f
þ 0:63570895

�
1
f
� 1
��

τ3

6
þ

τ9

135
þ

τ15

600
þ

τ21

1617

��

0 < τ � 1

�
1
D

�
τ� 7

21
þ

τ� 21

630
þ

τ� 35

2975
þ

τ� 49

8232

�

τ > 1

(14)   
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the latter using the above described modified Inden model. The 
competition energy yields positive values up to 710 K, indicating a 
thermodynamic instability of CeFe11Ti due to the decomposition into 
CeFe2, Fe2Ti and Fe. Above this critical temperature, however, the 
ternary hard magnetic phase will form. This result has been published 
earlier [22] and the dependence of the stability on the annealing tem
perature is consistent with experiments using the reactive crucible 
melting (RCM) technique. The latter method indicates the presence of 
the CeFe11Ti phase above 1173 K and its absence at lower temperatures, 
but cannot provide exact decomposition temperatures due to kinetic 
limitations. 

Since the focus of the present discussions is on the magnetic contri
bution, we have also plotted the decomposition energy without mag
netic free energy contributions in Fig. 1 (black line). The result is 
remarkably different. Over the whole temperature range plotted here, 
Fdec now shows positive values, i.e. a decomposition of CeFe11Ti into 
CeFe2, Fe2Ti and Fe. This is clearly inconsistent with experiments, such 
as RCM, where the formation of the phase at latest sets in at 1173 K. This 
result demonstrates the importance of including magnetic contribution 
to accurately describe the temperature dependence of the phase stabil
ity. At the same time, it raises the question how severe the applied 
magnetic approximations are for this result. 

To benchmark the magnetic results obtained with the Inden model, 
we have performed ab initio based Monte Carlo simulations. To limit the 
computational effort, the phases CeFe11Ti and Fe2Ti are still treated with 
the Inden model, and only the impact of the magnetic entropy for the 
phases α-Fe and C15–CeFe2 has been evaluated, both contributing to Fdec 

in Eq. (17). 
Ignoring the magnetic entropy for the latter two phases yields the 

blue line in Fig. 1. One observes a substantially reduced critical tem
perature for decomposition (585 K) as compared to the full result (710 
K). The main reason is the missing change of curvature at the Curie 
temperature of CeFe2 (230 K). The magnetic entropy of Fe, however, is 
only significant for temperatures above 1000 K and therefore does not 
affect the critical temperature of decomposition. Furthermore, for Fe 
Monte Carlo calculations have been published earlier [43]. Therefore, 
we will focus in this study on the phase CeFe2 only to discuss the chal
lenges of an ab initio based magnetic modeling of RE-TM compounds. 
This will give sufficient insights into the reliability of the methods. 

We have started with the calculation of the exchange-coupling pa
rameters using the ab initio electronic structure code Machikaneyama 

(AkaiKKR) [44–46]. It employs the Korringa-Kohn-Rostoker Green’s 
function method, following the prescription proposed by Lichtenstein 
et al. [47]. The calculated exchange interactions for CeFe2 are given in 
Fig. 2. The two sublattices of C15–CeFe2, namely Fe (16a) and Ce (8b), 
give rise to the three kinds of interactions Fe–Fe, Fe–Ce and Ce–Ce that 
are shown separately in the figure. Positive energies imply ferromag
netic and negative ones antiferromagnetic interactions. 

The 4f-electrons are treated in two different ways. The setting lmax ¼

3 puts all the 4f-electrons in the valence state and lmax ¼ 2 treats them in 
the core. The f-electrons in the valence mainly increase the nearest 
neighbor (NN) interactions for Fe–Ce and Ce–Ce (e.g., by almost 450% 
for Fe–Ce). There is also an indirect impact of the f-electrons on the 
Fe–Fe interactions, with a decrease of the NN interaction by ~25%. 
Substantial consequences are observed in the magnetic heat capacity, 
Fig. 3(a). For both cases, the transition temperature from the ordered to 
the disordered state appears at ~500 K, well above the experimental 
[48] transition temperature of 230 K. In case of the treatment with lmax 

Fig. 1. Temperature dependence of the decomposition energy Fdec, which de
termines the phase stability of CeFe11Ti. An approach with the full free energy, 
including the Inden model for the magnetic contribution Fmag (red line) is 
compared to a calculation without magnetic entropy (black line). Starting from 
the full result, the magnetic entropy of the phases Fe and CeFe2 has been 
removed (blue line) and replaced by rescaled Monte Carlo simulations with 
(green line) and without (orange line) adjusted Curie temperatures. 

Fig. 2. Calculated exchange interaction energies for CeFe2 as a function of 
distance. Two different treatments of the f-electrons are compared: for lmax ¼ 2 
the f-electrons are part of the core and for lmax ¼ 3 they are considered as 
valence electrons. In all cases, experimental lattice constants are used. 
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¼ 3, the λ-shaped peak is more pronounced and narrow than for lmax ¼ 2. 
Further, the height and shape of the peak are more consistent with 
experiment [48], considering the overestimation by a classical as 
compared to a quantum-mechanical calculation. 

Furthermore, Fig. 3 shows for lmax ¼ 2 an unexpected minimum at 
~200 K, which we have not observed in earlier classical MC calculations 
of Fe-based materials. We were able to demonstrate in Fig. 3(b) that this 
feature is due to the treatment of the 3d-4f interactions: It is not 
observed, if we limit ourselves to the 18 NN Fe–Fe interactions, which 
form the largest contribution to the heat capacity. The additional 864 
Fe–Fe interactions in a range of 1.5 times the lattice constant hardly 
change the heat capacity. If Ce–Ce interactions are added, a quantita
tive, but not a qualitative change in the shape is observed. Only if the 
Fe–Ce interactions are considered (with or without Ce–Ce interactions), 
the local minimum in the heat capacity around 200 K is observed. It is 
apparently an artifact of lmax ¼ 2, underlying the choice lmax ¼ 3. 

A major drawback of the classical Monte Carlo (cMC) approach is, 
however, that all these calculations show a non-vanishing heat capacity 
for T→0. As we have discussed for pure Fe earlier [43], this is due to the 
neglect of quantum effects. They are accurately accounted for in quan
tum Monte Carlo (QMC) calculations. To avoid computationally very 
expensive QMC simulations, we have applied the rescaling Monte Carlo 
(rMC) scheme developed by K€ormann et al. [43], which approximates 
the required quantum corrections (qc) by the function 

f qcðτ; SÞ ¼CQMC
V ðτ; SÞ

CcMC
V ðτ; SÞ

¼

�
2τs=τ

expðτs=τÞ � expð� τs=τÞ

�2

: (18) 

This function is multiplied with the heat capacity of the cMC result. It 
contains only the normalized temperature τ ¼ T=TC and the spin quan
tum number S as parameters, but is universal in the sense that it does not 
dependent on the specific material system. The scaling parameter τs is 
given as. 1=τs � 0:54ð1ÞSþ 0:54ð2Þ:

The Monte Carlo results for CeFe2 with different spin quantum 
numbers S are compared with the Inden model in Fig. 4. The results 
confirm the limited agreement of the cMC calculations with the Inden 
model, which is substantially improved when using the rMC approach. 
We note that the empirical function fqc fulfills the limiting cases 
fqcðτ →∞; SÞ→1 and fqcðt; S →∞Þ→1, meaning that the quantum 
approach converges to the classical solution in the limit of infinite 
temperature T or spin quantum number S. 

The agreement between the Inden model and rMC is, however, best 
for low S values. For α-Fe the spin quantum number S ¼ 1.1 has been 
used [43], corresponding to the ab initio calculated ground state mag
netic moment of m ¼ 2:2μB. In the case of CeFe2, we use again the 
concept of an effective magnetic moment for the ferrimagnetically 
coupled magnetic moments of Fe and Ce of 1.8 μB and -0.9 μB, respec
tively. According to Eq. (12) this yields a value β ¼ 1.46 μB, which can in 

Fig. 3. Classical Monte Carlo calculations of the magnetic heat capacity of 
CeFe2 for the two different treatments of the f-electrons shown in (a) and 
restricting the exchange interactions to certain pairs of atoms for lmax ¼ 2 (b). 
The cMC calculations have been performed in 10� 10� 10 supercells with the 
same lattice constants. 

Fig. 4. Comparison of classcial Monte Carlo (cMC), rescaled Monte Carlo (rMC) 
and the Inden model for the heat capacities of CeFe2 using different spin 
quantum numbers S ¼ 1/2, 3/4, 3/2 and 7/2. 

Fig. 5. Comparison of the calculated heat capacity of CeFe2 with experimental 
results integrating the different treatments of the magnetism shown in Fig. 4. In 
addition the temperature of the rMC results is rescaled such that the Curie 
temperature matches the experimental value (orange line). The experimental 
data is taken form Haldar et al. [48]. 
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good approximation be expressed as m ¼ ð2 ⋅1:8 μB þ 0.9 μBÞ. Therefore, 
we use S ¼ 3/4 in the present evaluation. 

Fig. 5 shows the combination of the rMC results with other entropy 
contributions. As can be seen, the rMC result (turquoise line) success
fully cures one of the drawbacks of cMC (purple line), namely the 
incorrect low temperature limit resulting to a starting value of the heat 
capacity of ~1 kB. A second drawback of the classical Heisenberg model 
underlying the Monte Carlo simulations is however, the overestimation 
of TC. Therefore, we additionally rescale the temperature of the rMC 
heat capacities to match the experimental TC. 

The resulting heat capacity yields very good agreement with the 
experimental data well below and above the magnetic transition tem
perature. In the same way as the Inden model, however, the λ-shaped 
peak is overestimated by the Monte Carlo simulations as compared to 
experiment. Furthermore, the rMC results yield a small offset above 250 
K. This indicates remaining shortcomings in the Monte Carlo approach, 
either related to the determination of the exchange coupling parameters, 
the underlying Heisenberg model, its classical solution, or finite-size 
effects. It further conveys the message that the conceptually simpler 
and more efficient Inden approach is a competitive model for the mag
netic heat capacity. 

Most important for our considerations are, however, the conse
quences for the decomposition energy shown in Fig. 1. We note that the 
rMC approach for the magnetic entropy of Fe and CeFe2 yields a critical 
temperature for the decomposition, which is 40 K below the prediction 
of the Inden model. This is mainly due to the wrong Curie temperature of 
CeFe2. After rescaling this temperature the differences between the 
Monto Carlo results and the Inden model below 800 K are very small. 
This indicates that the actual shape of the heat capacity of CeFe2 is not 
very decisive for the resulting free energies, further highlighting the 
performance of the Inden model. 

4. Effect of magnetism on finite temperature vibrational 
properties 

While the magnetic part of the free energy Fmag has a strong impact 
on the decomposition energy Fdec (Fig. 1), the vibrational term Fvib 

usually forms the largest part of the total free energy in Eq. (2). 
Nevertheless, the magnetic state as well as finite temperature magnetic 
excitations also have a strong impact on the vibrational properties, as 
shown for pure Fe [49]. In the present work, we compute and analyze 
this impact on the two competing Laves phases in the Ce–Fe–Ti alloys, 
namely C14–Fe2Ti and C15–CeFe2. 

The phonon dispersion of Fe2Ti is calculated within DFT (Fig. 6) by 
considering a 1� 1� 1 supercell containing 12 atoms. The magnetic 

properties of Fe2Ti have been reported to be sensitive to deviations from 
stoichiometry [50]: The Fe-rich phase is ferromagnetic, while the Ti-rich 
Laves phase shows antiferromagnetic ordering. Here we limit ourselves 
to the stoichiometric case, which turns out to be antiferromagnetic and 
plot the corresponding phonon dispersion as black solid lines. In order to 
describe the lattice vibrations above the N�eel temperature of 275 K [51], 
paramagnetic calculations are required [49]. For the complex structure 
of Laves phases, this would imply a huge numerical effort. 

In the same spirit as in Fig. 1, we therefore use the nonmagnetic state 
to investigate the impact of magnetism (green dashed lines in Fig. 6). 
The deviation is not a trivial effect of volume expansion, since the 
theoretical lattice constants in the antiferromagnetic case are a ¼ 4.689 
Å and c ¼ 7.788 Å, while the nonmagnetic calculations yields a ¼ 4.669 
Å and c ¼ 7.716 Å. Larger lattice constants are expected to result into 
softer phonon modes, but opposite results are seen in Fig. 6. A com
parison with the experimental phonon dispersions of Fe2Ti is not 
possible, since it has not yet been reported in literature. This is likely a 
consequence of the complex primitive unit cell (P63/mmc#194), which 
has 12 atoms leading to the 36 phonon branches. 

For CeFe2, we also computed the phonon dispersion in a nonmag
netic and the ferrimagnetic state by considering a 1� 1� 1 supercell 
containing 24 atoms. In the second case, Ce and Fe atoms have different 
spin moments that are aligned anti-parallel. The results are shown in 
Fig. 7 and compared with experimental data [52]. The latter are 
extended to a Born-von-K�arm�an model taking longitudinal and trans
verse forces up to the fifth nearest neighbor shell into account. Due to 
difficulties in finding suitable force constants [52], the 
Born-von-K�arm�an fit (triangles) deviates from the actual experimental 
data (dots). 

For the ferrimagnetic case, we observe an overall better agreement in 
the phonon dispersion with experiment. Due to the lack of experimental 
data points, the quality of the acoustic branches in the Γ→ K direction is 
difficult to assess. The measurements were performed on CeFe2 (lattice 
constant ¼ 7.307 Å) and compared with our calculations (lattice con
stant of 7.092 Å for the nonmagnetic and of 7.218 Å for the ferrimag
netic case). Since in the nonmagnetic calculations the lattice constant is 
smaller, a stiffening of the phonon modes may be expected. However, 
this was not detected in our calculations. In addition to this it results in 
softer frequencies at the high-symmetry Γ points. 

A further challenge in the DFT treatment of CeFe2 are the strong 

Fig. 6. Calculated phonon dispersion lines for C14–Fe2Ti along high symmetry 
directions in the antiferromagnetic (black solid lines) and a nonmagnetic (green 
dashed lines) state. 

Fig. 7. Calculated phonon dispersion of C15–CeFe2 compared to neutron 
scattering experiments performed at room temperature [52]. The calculations 
are performed in a ferrimagnetic (black solid lines) and a nonmagnetic (green 
dashed lines) state. Orange dots are experimental frequencies taken from the 
longitudinal configuration of the spectrometer. Triangles are phonon disper
sions obtained by fitting a Born-von K�arm�an model to the measured data. Di
amonds are branches that are not observable in the scattering plane. Squares 
are optical phonon frequencies determined at the centers of the Brillouin 
zones (Γ-point). 
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correlation effects related to the Ce-4f electrons. Therefore, we have 
calculated phonon dispersion lines for two different Ce valencies in 
CeFe2, which are the trivalent (Ceþ3Fe2) and the tetravalent (Ceþ4Fe2) 
case. The comparison of calculated and experimental data is shown in 
Fig. 8. In case of the trivalent treatment, the employed potential has a 
4f1 configuration, where the f-electron is treated in the valence. In case 
of the tetravalent configuration the f-electron is treated in the core. We 
observe dramatic deviations in the phonon spectrum due to the differ
ence in the valency treatment, in particular for the higher frequency 
optical branches. 

The two approaches also result in large differences in the lattice 
constants, which are 7.218 Å (trivalent) and 7.526 Å (tetravalent). Thus, 
the trivalent CeFe2 is expected to agree better with experiment, since the 
experimental lattice constant is 7.307 Å. This expectation is confirmed 
by the good agreement in the optical branches. However, some of the 
acoustic branches are too soft. The tetravalent treatment shows better 
agreement with the acoustic phonon modes, but fails completely for the 
optical branches. The reason of such a large discrepancy may be the 
absence of the 4f-3d interaction in this formalism. The impact of such 
deviations in the phonon dispersion based on the valency treatment on 
the total free energy and therefore the stability of the hard-magnetic 
phase is subject to further investigations. 

5. Sensitivity analysis for the inden model 

As discussed in Sec. III, the physics of compounds containing RE 
elements as well as the treatment of the f-electron valency are challenges 
for KKR and MC calculations. Remarkably, the empirical Inden model 
provides heat capacities with comparable accuracy, though the method 
was originally designed for much simpler, unary ferromagnets such as 
Fe, Co, and Ni. To understand this universal applicability of the Inden 
model, it is necessary, to study its performance for different permanent 
magnetic materials more systematically. To do this, we consider 
CeFe11Ti and Nd2Fe14B, in which f-electrons have itinerant and localized 
character, respectively. We note that the established treatment of both 
phases in the framework of DFT differs: In the phase CeFe11Ti, the 4f 
electrons are strongly hybridized with the 3d electrons, making the 
application of conventional DFT feasible. In the case of Nd2Fe14B, 
however, the localization of the 4f electrons requires the application of 
correction schemes such as DFT þ U [27]. 

Fig. 9(a) shows the ab initio computed heat capacity for CeFe11Ti 
together with available experimental data reported by Kavakbasi [53]. 
The experimental sample had a purity of 98.82% CeFe11Ti, according to 
a X-ray diffraction (XRD) analysis. Experiments were performed in a 
temperature range of 0–395 K. An excellent agreement between 

simulations and experiment was found up to room temperature. Since 
heat capacity data close to the magnetic transition are missing, evalu
ating the accuracy of the Inden model to predict the λ-shaped peak is not 
possible. Since theoretical curve in Fig. 9 shows a pronounced peak, it is 
important to evaluate the dependence of its shape on the parameters in 
the Inden model. 

Fig. 9(b) gives the calculated heat capacity of the presently best hard 
magnet Nd2Fe14B together with corresponding experimental data. Fujii 
et al. [55] measured the heat capacity up to room temperature and re
ported a spin-reorientation and a small bump at T ¼ 135 K. Sima et al. 
[54] performed additional measurements in the temperature range be
tween 350 to 780 K. 

Our ab initio calculations of Nd2Fe14B employed DFT þ U, to account 
for the localization of the f-electrons. In order to obtain an appropriate 
choice for the Hubbard U, we have screened U values between 1 and 10 
eV. U ¼ 6 eV yields the best description of the magnetic moments of the 
Nd atomic sites (the Hubbard U is only applied to this site) and of 
spectroscopic properties. A good agreement between the theoretical and 
experimental values for the heat capacity is observed good until ~500 K. 
Beyond this temperature the magnetic contribution slightly over
estimates the experimental heat capacity. Given the empirical nature of 
the Inden model, the λ-shaped peak is very well described. 

Since experimental data for the heat capacity of Nd2Fe14B are 
available for larger temperatures ranges that contain the magnetic 
transition, we will focus the upcoming discussion on this compound. To 
resolve the remaining differences, we analyze the sensitivity of the heat 

Fig. 8. Calculated phonon dispersion of Ceþ3Fe2 (black solid line) and Ceþ4Fe2 
(green dashed line). Similar to Fig. 7, the orange symbols represent neutron 
scattering experiments performed at room temperature [52]. 

Fig. 9. Calculated heat capacity of CeFe11Ti and Nd2Fe14B, separating the 
different free-energy contributions in Eq. (2). The theoretical results are 
compared with experimental data obtained by Kavakbasi [53] for CeFe11Ti and 
Sima et al. [54] and Fuji et al. [55] for Nd2Fe14B. 
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capacity on the parameters in the Inden model: the mean magnetic 
moment β, the structural parameter f, and the order of the Taylor 
expansion. The results are plotted in Fig. 10. The original choice for the 
Inden model used in Fig. 9 is f ¼ 0.28, β ¼ 2.21 μB and the 7th order in 
the Taylor expansion. The choice of the mean magnetic moment 
perfectly agrees to the experimental value, 2.18 μB, that has been 
measured at 4.2 K by Givord et al. [56]. 

The change in the heat capacity, if f is kept constant as 0.28 and β is 
gradually changed from 1 μB to 3 μB is shown in Fig. 10(a). The modi
fication of the qualitative shape in the LRO and SRO part of the λ peak is 
significant. The best agreement with experiment is achieved for β ¼
1μB. Therefore, the overestimation of the heat capacity by the initial 

setup (β ¼ 2.21 μB) can be a consequence of determining the ab initio 
based magnetic moments at T ¼ 0 K. In reality, longitudinal fluctuations 
reduce the magnetic moments at finite temperatures, an effect that is 
also missing in the MC simulations presented in Chap. III. 

In order to test whether the improvement is merely a mathematical 
coincidence we tested alternative parameter sets. We therefore set β ¼
2.21 μB and vary the f parameter from 0.1 to 0.5. As can be seen in 
Fig. 10(b), the parameter f mainly serves as a scaling factor, resulting 
however into two opposite trends: While the reduction of f clearly im
proves the agreement of the heat capacity above TC, the opposite is the 
case below TC. The value f ¼ 0:1 best describes the SRO part. In contrast, 
a value of f above 0.5 is required to achieve a reasonable description of 
the LRO part of the peak. 

Following the discussion in Sec. II we have also tested the depen
dence of the heat capacity on the Taylor expansion (given in Eq. (11)), 
while setting β ¼ 2.21 μB and f ¼ 0:28. By construction, this dependence 
only changes absolute values and slopes of the heat capacity close to the 
transition temperature. We start with an expression of the heat capacity 
that contains up to 7th order in temperature as proposed by Chen and 
Sundman [40]. As can be seen in Fig. 10(c) the consideration of the 7th 
and even 5th order term has negligible impact on the shape of the λ peak. 
While the reduction to lower orders yields a quantitatively better 
agreement with experiment, the shape of the λ-peak gets worse. Hence, 
an improved description of the heat capacity can only be achieved with 
the initial values for f and the power of the Taylor expansion and an 
adaptation of the parameter β for the magnetic moment. 

6. Conclusion 

In conclusion, we systematically studied how magnetism impacts the 
finite temperature phase stability of Ce–Fe–Ti alloys. Only when 
including magentic contributions, our free energy calculations are able 
to accurately reproduce the competition between the desired hard 
magnetic phase CeFe11Ti and the parasitic Laves phase CeFe2 in the 
microstructure of these materials [22]. Based on this insight, the ab initio 
methodology to compute the magnetic free energy has been analyzed in 
detail. 

A central quantity studied in this paper is the critical temperature at 
which the phase CeFe11Ti decomposes into the Laves phases CeFe2, 
Fe2Ti and pure Fe. The correct treatment of the magnetic entropy is 
found to be decisive for this purpose, because its neglect yields a critical 
temperature that is by far too high. Using the magnetic model originally 
suggested by Gerhard Inden, however, allowed us to achieve in this 
study free energies of the involved phases that accurately reproduce this 
critical quantity. 

A more rigorous but computationally much more expensive 
approach using Monte Carlo simulations for an ab initio magnetic model 
Hamiltonian was found to be not superior: When taking the experi
mental heat capacity as a benchmark a similar performance has been 
achieved. Some of the challenges we had to resolve to obtain an accurate 
description are the treatment of f-electrons and the valency of Ce in the 
KKR method and the inclusion of quantum corrections to the Monte 
Carlo simulations. For the latter case, we demonstrated that the rescaled 
Monte Carlo (rMC) approach, which has previously been developed for 
unary materials, works also well for these compounds. Nevertheless, the 
necessary approximation of the underlying Heisenberg Hamiltonian and 
the omission of longitudinal fluctuations are possible reasons for the 
remaining discrepancies and the limited performance of this approach. 

Our investigations reveal that the Inden model tends to overestimate 
the λ-shaped peak in the heat capacity associated with the magnetic 
phase transition. For a deeper analysis we have considered the example 
of the hard magnetic material Nd2Fe14B. This alloy is chemically and 
structurally similar to CeFe11Ti, but has been calorimetrically investi
gated over the full temperature window including the magnetic transi
tion. We have investigated the sensitivity of the heat capacity on the 
parameters of the Inden model and have revealed that a reduction of the 

Fig. 10. Calculated heat capacities of Nd2Fe14B for different set of parameters 
in the mathematical formulation of the Inden model. Sensitivity of the mean 
magnetic moment β, structure parameter f and the order of Taylor expansion is 
given from (a) to (c), respectively. The separation of the heat capacity in 
different free-energy contributions in Eq. (2) is designated as in Fig. 9. Theo
retical results are compared with the experimental works Sima et al. [54] and 
Fuji et al. [55] for Nd2Fe14B. Since the agreement is perfect at low tempera
tures, figures are started with 125 K and 2 kB heat capacity for bet
ter comparison. 
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mean magnetic moment β substantially improves the agreement be
tween theory and experiment. The physical interpretation of this phe
nomenon is a reduction of the local magnetic moment due to 
longitudinal fluctuations close to the magnetic transition temperature. 
In contrast to previous studies, the order of the Taylor expansion in the 
magnetic model of the Gibbs energy turns out to be of comparatively 
small importance. 

We note that the magnetic entropy is not the largest contribution to 
the free energies determining the decomposition temperature. Rather, 
vibrational contributions dominate. Based on a detailed comparison 
with the heat capacity data, the quasi-harmonic approximation for the 
phonon excitations was found to provide a sufficiently accurate 
description of lattice vibrations. A comparison with the experimentally 
available phonon dispersions, however, revealed the importance of the 
correct choice of the magnetic state of the material. This impact of 
magnetism on phonons has been analyzed with focus on Fe2Ti and 
CeFe2. An extension of the current approach to the paramagnetic state 
above the Curie temperature is, therefore, required and subject to 
further investigations. 
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