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Abstract 

The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory 

chain, contains heme and copper centers for electron transfer. The conserved COX2 

subunit contains the CuA site, a binuclear copper center. The copper chaperones 

SCO1, SCO2, and COA6 are required for CuA center formation. Loss of function of 

these chaperones and the concomitant cytochrome c oxidase deficiency cause 

severe human disorders. Here we analyzed the molecular function of COA6 and the 

consequences of COA6 deficiency for mitochondria. Our analyses show that loss of 

COA6 causes combined complex I and complex IV deficiency and impacts 

membrane potential driven protein transport across the inner membrane. We 

demonstrate that COA6 acts as a thiol-reductase to reduce disulphide bridges of 

critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain 

of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 

interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA 

biogenesis. 
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Introduction 

Mitochondria fulfil central functions in eukaryotic metabolism. In addition to 

participating in metabolite turnover and synthesis, mitochondria supply cells with the 

bulk of energy to drive cellular processes. At the heart of this process is the oxidative 

phosphorylation system (OXPHOS), which is located in the inner mitochondrial 

membrane.  The protein complexes of the OXPHOS system derive from subunits of 

dual genetic origin. Thirteen subunits are encoded on human mitochondrial DNA 

(mtDNA), whereas the rest of the components are encoded in the nucleus, 

synthesized on cytosolic ribosomes, and transported into mitochondria [1,2]. Hence, 

biogenesis of respiratory chain complexes and the F1Fo ATP synthase requires 

assembly of proteins that reach the inner membrane through different supply routes 

[3,4]. In addition, during the assembly process the redox-active cofactors need to be 

integrated. The cytochrome c oxidase (complex IV) contains two heme cofactors (a 

and a3) and two copper centers (CuA and CuB), required for reduction of molecular 

oxygen to water.  

 COA6 represents a conserved complex IV assembly factor required for the 

metalation of the COX2 subunit, which is critical for the formation of the CuA center in 

the intermembrane space domain [5-10]. Loss of COA6 function is associated with 

hypertrophic cardiomyopathy and loss of either complex I and IV [11] or isolated 

complex IV deficiency [12]. COA6 was found in a complex with the 

metallochaperones SCO1 and SCO2, which are required for copper insertion into the 

CuA center [7,8] (Fig 1A). SCO1 and SCO2 have distinct but cooperative functions in 

copper delivery to the CuA. While SCO2 is thought to deliver the copper molecule to 

COX2, SCO1 facilitates copper transfer to SCO2 from COX17 [13,14]. In addition, 

SCO2 is considered to regulate the thiol redox or metalation state of SCO1, thereby 

fulfilling a signalling role to regulate cellular copper efflux [15]. In contrast, recent in 
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vitro studies suggested that copper transfer to the CuA site only requires SCO1, while 

SCO2 regulates the thiol redox state of COX2 but not of SCO1 [16]. Since cofactor 

insertion into the CuA center is thought to be coupled to COX2 insertion into the 

membrane, SCO1 and SCO2 have been found to interact with FAM36A [17] . In 

addition SCO1, SCO2 and COA6 have been found to interact with COX16, a factor 

involved in delivering COX2 after metalation to the complex IV assembly 

intermediates (MITRAC complexes) [18]. A structural analysis of Coa6, revealed that 

the four Cys of the CX9C-CX10C motive form disulphide bridges. Based on the 

observation, that the Cys58-Cys90 disulphide bridge could be chemically reduced to 

free thiol groups, has been taken as indication that these residues could be required 

for copper coordination [19]. However, the molecular function of COA6 in copper 

insertion into the CuA center and the question as to how the structural determinants 

of the protein relate to its molecular function remain unaddressed. 

 Here, we generated a COA6 knock out HEK 293T cell line to analyze COA6 

function in CuA-site formation. Loss of COA6 function led to combined complex I and 

complex IV deficiency. A concomitant reduction of the inner membrane potential (∆Ψ) 

caused defects in membrane potential driven protein transport across the inner 

mitochondrial membrane, whereas the Mitochondrial intermembrane space import 

and assembly protein 40 (MIA40/ CHCHD4)-dependent import into the 

intermembrane space was not compromised. Our analyses demonstrated that COA6 

acts as a thiol-reductase to reduce disulphide bridges in the metallochaperones 

SCO1 and SCO2. The cysteines of the thioredoxin-like fold of SCO2 are required for 

the interaction with COA6 but dispensable for the dynamic interaction between SCO1 

and SCO2. We conclude that the thiol reduction activity of COA6 is necessary for 

proper copper transfer to the CuA site. 
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Results 
 
Lack of COA6 affects complex I and complex IV  

COA6 participates in copper insertion into COX2 through interactions with the copper 

chaperones SCO1 and SCO2 and the assembly factors COX18 and COX16 

([7,8,10,18]. However, the mechanism of copper transfer to COX2 and the role of 

COA6 in this process are ill defined. To understand COA6 function in this process, 

we generated a COA6 knock out HEK 293T cell line (COA6KO) using the 

CRISPR/Cas9 system. Sequencing analyses revealed a deletion in Exon 2 that 

generates a premature Stop codon in the COA6 gene (Fig. Sup1A). The COA6KO 

displayed a strongly reduced growth rate compared to the wild type. Introduction of a 

FLAG-tagged COA6 version into the knock out partially restored cellular growth (Fig. 

1B). Since patients carrying COA6 mutations displayed fatal hypertrophic 

cardiomyopathy and presented in one case with combined complex I and complex IV 

[11] and in another case with isolated complex IV deficiency [12], we assessed 

respiratory chain function in the mutant cells. Therefore, we measured oxygen 

consumption by real time respirometry in intact cells. Respiration of COA6 knock out 

cells was drastically reduced compared to the wild type in agreement with a defect of 

oxidative phosphorylation (Fig. 1C). To define how loss of COA6 affected the 

different complexes of the respiratory chain, we measured the activity and amounts 

of the cytochrome c oxidase. Complex IV activity and amount were drastically 

reduced in COA6 knock out cells as expected. Expression of a FLAG-tagged COA6 

largely restored this defect (Fig. 1D and E) and in Western blot analyses was also 

found to rescue steady state proteins levels of complex IV components (Fig. Sup1B). 

We previously showed that silencing of COA6 by siRNA treatment also led to 

reduced activity and amounts of complex I [7]. In contrast, Stroud et al. reported that 

the loss of COA6 led to selective  complex IV deficiency [8]. Therefore, we 
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investigated if complex I was affected in COA6KO cells. To this end, we determined 

the enzymatic activity of complex I in a colorimetric assay. Interestingly, compared to 

wild type, the activity of complex I was strongly decreased in COA6KO cells (Fig. 1F). 

Under certain conditions, defects in oxidative phosphorylation can cause production 

of reactive oxygen species (ROS)[20] and thus affect the mitochondrial glutathione 

redox potential. To address this, we measured superoxide production in wild type 

and COA6KO cells using the fluorescent dye MitoSOX. As depicted in (Fig. 1G) we 

found a decrease in superoxide levels in the absence of COA6. In addition, we 

analyzed the general redox buffering capacity of mitochondria by measuring 

glutathione redox potential using the Grx1-roGFP2 sensor targeted to the 

intermembrane space (IMS) or the mitochondrial matrix. These fluorescent sensors 

monitor the glutathione redox potential that is affected by ROS [21]. These analyses 

showed no differences of the redox potential between wild type and COA6KO cells 

(Fig. 1H). Accordingly, loss of COA6 leads to a combined complex IV and complex I 

deficiency in mitochondria. However, an increase in ROS production was not 

apparent in mutant cells nor did we detect alterations in the mitochondrial glutathione 

redox potential. 

 

Lack of COA6 impacts protein import 

To address to which extent the different components of complexes I and IV were 

altered in the absence of COA6 and if other mitochondrial proteins were also 

affected, we assessed changes in the proteome of mitochondria isolated from 

wildtype and COA6-deficient cells by quantitative mass spectrometry. Interestingly, 

the mitochondrial-encoded core components of cytochrome c oxidase COX1, COX2, 

and COX3 were strongly decreased in COA6KO mitochondria. In addition, other 

structural components of complex IV and of complex I were decreased in 
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mitochondria in the absence of COA6. In contrast, constituents of complex V were 

not significantly affected (Fig. 2A). These results were confirmed using SDS-PAGE 

and Western blotting (Fig. 2B). However, to our surprise, many other mitochondrial 

proteins not related to the OXPHOS system were decreased in COA6KO 

mitochondria. We reasoned that a reduced activity of the respiratory chain would 

impact the transfer of protons to the intermembrane space and thereby affect the 

mitochondrial inner membrane potential, which drives protein import into 

mitochondria. To this end, we measured the membrane potential by flow cytometry. 

COA6KO cells indeed displayed a strongly reduced membrane potential (Fig. 2C). 

Accordingly, it is conceivable that the loss of complexes I and IV and the resulting 

decrease of the inner membrane potential reduced the import capacity of 

mitochondria leading to alterations in protein abundance. Therefore, we imported 

radiolabeled precursor proteins that follow different import routes into purified 

COA6KO mitochondria. The presequence-containing precursors OTC (ornithine-

transcarbamylase) and Su9-DHR (subunit 9 of the F1Fo ATP synthase) are 

transported by the TIM23 complex in a membrane potential-dependent manner into 

the mitochondrial matrix. Compared to wild type mitochondria, the import of both 

precursor proteins was reduced in the absence of COA6 (Fig. 2D and E). Metabolite 

carriers are imported and inserted into the inner mitochondrial membrane by the 

TIM22 complex in a membrane potential dependent manner. We performed in vitro 

import analyses of the model carrier transport pathway substrate ANT3 (ADP/ATP 

carrier 3) and SLC25A19 (thiamine pyrophosphate carrier). After import, 

mitochondria were solubilized and imported proteins analyzed by Blue Native PAGE 

(BN-PAGE). In both cases, we observed a strongly decreased import in COA6KO 

mitochondria (Fig. 2F and G). In contrast to presequence-containing precursors and 

carriers, mitochondrial proteins of the intermembrane space that contain twin CXNC 
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motifs, which are oxidized upon import forming disulphide bridges with the assistance 

of MIA40, are imported independent of a membrane potential. Hence, we analyzed 

the import efficiency of the MIA40 substrates COX6B1 and COX19 in the absence of 

COA6. Interestingly, import of precursors into the intermembrane space along the 

MIA40 pathway was not impaired in the absence of COA6 but rather accelerated 

(Fig. 2H and I). In summary, in the absence of COA6, the import routes that depend 

on the inner membrane potential are affected. However, the membrane potential 

independent import into the intermembrane space via MIA40 was not reduced but 

rather stimulated. Hence, a loss of membrane potential due to loss of complexes I 

and IV causes pleiotropic defects via compromised import of proteins that translocate 

across the inner membrane. 

 

Cysteines in the CXXXC motif of SCO2 are required for binding to COA6 

COA6 cooperates with SCO1 and SCO2 in the metalation of COX2 [7,8]. Mimicking 

pathologic mutations in either COA6 or SCO2 affected co immunoisolation of these 

proteins [7]. To address if SCO2 and COA6 directly interacted with each other, we 

incubated COA6FLAG containing mitochondria with the sulfhydryl reactive crosslinker 

BMH. After FLAG immunoisolation, COA6-SCO2 crosslinks were recovered in the 

eluate, indicating that both proteins were covalently linked via crosslinking of cysteine 

residues (Fig 3A).  

SCO1 and SCO2 contain a CX3CXnH motif that allows them either to bind 

Cu(I) with high affinity or to act as thiol-oxidoreductases [22,23]. Therefore, we 

analyzed the relevance of the cysteines of the CX3CXnH motif for the interaction with 

COA6 and consequently for the dynamics of the copper transfer reactions. To this 

end, we generated cysteine mutants of SCO2. SCO2 contains three cysteines (C115, 

C133, and C137), with C133 and C137 being part of the CX3CXnH motif. We generated 
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single mutants changing cysteine to serine residues (SCO2C115S, SCO2C133S, 

SCO2C137S) (Fig. 3B). In order to analyze the effect of the cysteine mutants, we 

generated radiolabelled versions of wild type, SCO2C115S, SCO2C133S, and 

SCO2C137S. SCO2 could be efficiently import into purified wild type mitochondria in a 

membrane potential-dependent manner. Upon import SCO2 was processed to the 

mature form (Fig.3C). Similarly, the mutant versions of SCO2 were efficienctly 

imported into wild type mitochondria (Fig. 3D). To analyze how the cysteine mutants 

in SCO2 affected the interaction with COA6, we performed in vitro import of 

radiolabelled versions of SCO2 into isolated mitochondria from cells expressing C-

terminally FLAG-tagged COA6. After import, COA6 was immunoisolated and bound 

SCO2 detected by autoradiography. Wild type SCO2 (SCO2WT) efficiently co-

precipated with COA6FLAG after in vitro import. SCO2C115S (not being in close 

proximity to the copper coordination center) interacted with COA6FLAG in similar 

amounts as wild type SCO2. Interestingly, the SCO2C133S and SCO2C137S mutants, 

which are affected in the CX3CXnH motif, displayed drastically decreased interactions 

with COA6FLAG by about 80% (Fig. 3E). Thus, the cysteines of the CX3CXnH motif are 

important for SCO2/COA6 interaction. Therefore, we addressed if COA6 and SCO2 

directly interacted through disulphide bridge formation. For this we treated samples 

with Cu2+  as a redox catalysts to oxidize free sulfhydryls and to form disulfide bonds 

between cysteine residues in proximity to each other. After immunoisolation of 

COA6FLAG, we observed specific adducts detected by both SCO2 and FLAG antisera 

(Fig 3 F). 

SCO1 and SCO2 cooperate in the delivery of copper to the cytochrome c 

oxidase subunit COX2 [14]. To analyze if the cysteines in SCO2 determined not only 

the interaction with COA6 but also the dynamics of SCO1 and SCO2, we performed 

in vitro import of radiolabelled versions of SCO2 into mitochondria isolated from cells 
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expressing FLAG-tagged SCO1. Interestingly, the interaction between SCO1 and the 

fully imported, mature SCO2C137S was similar to that of wild type SCO2 (Fig.3G). 

Accordingly, the CX3CXnH motive of SCO2 was not relevant for the SCO1/SCO2 

interaction. Thus, it is tempting to speculate that the SCO1/SCO2 interaction does 

not occur through disulphide bridge formation. However, based on these 

observations, it is likely that a COA6/SCO2 complex forms disulphide bridges during 

the copper transfer cycle.  

 

COA6 acts as a thiol-reductase for copper metallochaperones SCO1 and SCO2 

SCO2 has been shown to reduce cysteines residues in the copper coordination site 

of COX2 in vitro,  whereas it was unable to oxidize cysteines in SCO1, implying that 

other factors are involved in these redox reactions in mitochondria [16]. Our analyses 

showed that the cysteines present in the CX3CXnH motive in SCO2 are determinants 

for the interaction with COA6. Therefore, we considered the possibility that COA6 

might be involved in the regulation of the redox state of the copper 

metallochaperones during CuA biogenesis. To address this, we analyzed the redox 

state of cysteines in SCO2 in COA6KO mitochondria using a maleimide derivate 

coupled to a DNA probe. Upon reaction of the probe with a free cysteine, the target 

protein shows an apparent size shift of approx. 14 kDa in SDS-PAGE analysis. In 

wild type mitochondria SCO2 displayed a molecular weight shift corresponding to 

three free thiol groups. In contrast, in COA6KO mitochondria, SCO2 accumulated in a 

state corresponding to a single reduced cysteine (Fig. 4A). A quantitative 

assessment of the ratio between reduced and oxidized form of SCO2 revealed a 

drastic shift towards the oxidized state in mitochondria lacking COA6. To address if 

the oxidized form of SCO2 in COA6KO mitochondria represented a form with 

disulphide bridge, we pre-incubated COA6KO mitochondria with DTT prior to the 
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maleimide-mediated modification. Upon chemical modification of DTT treated 

COA6KO mitochondria, SCO2 displayed a wild type like migration pattern (Fig. 4A and 

B). To analyze if COA6 contributed to the oxidative state of SCO1 in organello, we 

assessed the availability of free cysteines by maleimide modification analyses in 

mitochondria lacking COA6. While a shifted form of SCO1 that corresponded to two 

free thiol groups was apparent in wild type mitochondria, COA6KO mitochondria 

displayed an accumulation of non-modified SCO1, implying that the two cysteines 

were oxidized. The quantification of the ratio of reduced and oxidized SCO1 showed 

again a drastic decrease of the oxidized state in the absence of COA6 (Fig. 4C). 

Upon treatment of COA6KO mitochondria with DTT, SCO1 could be fully reduced and 

thus be modified by the maleimide (Fig. 4C and D). To support the specificity of the 

observed redox phenotype upon lack of COA6, we expressed a FLAG-tagged 

version of COA6 in COA6KO cells. The redox phenotype of SCO1 and SCO2 in 

COA6KO cells could be rescued by expression of COA6 (Fig. 4E and F), confirming 

that COA6 is required for reduction of the disulphide bridges in both proteins. In 

summary, our findings showed that COA6 is required to reduce a disulphide bridge in 

both SCO1 and SCO2 and that this effect is not indirectly caused by increased ROS 

production or an altered redox state of the intermembrane space.  

 

Discussion 

The catalytic core of the cytochrome c oxidase is conserved from bacteria to human. 

The formation of the binuclear copper center CuA is therefore a common process and 

the particular high reactivity of copper ions necessitates that the copper delivery is 

assisted by copper metallochaperones. However, the mechanisms of CuA biogenesis 

differ between organisms with regard to the participating copper-binding proteins. In 

bacteria, the activity of a periplasmic thioredoxin-like reductase TlpA maintains the 
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active site cysteine pairs of CoxB and ScoI in the reduced state and is thus required 

for Cu2+ binding. The copper chaperone ScoI reacts with apo-CoxB to establish a 

stable Cu2+ containing complex, which is released to form a CoxB-Cu2+ with the aid of 

the chaperone PcuC. A second round of PcuC action delivers Cu+ to CoxB, forming 

the CuA center [24]. In human mitochondria, other players among these COA6 have 

been identified as members of the copper insertion machinery for COX2 [7,8]. 

Interestingly, mammalian mitochondria lack a TlpA homolog. Therefore, the required 

thiol-reductase activity has to be a function of either SCO1, SCO2, or COA6. Our 

findings suggest that COA6 shows a thiol-reductase activity and is involved in the 

reduction of cysteines in the CX3CXnH motif of SCO1 and SCO2. Whereas SCO1 

has been shown to transfer copper to COX2 in vitro in a two-step reaction, SCO2 

presented a thiol-reductase activity that was able to reduce cysteinyl sulfurs of COX2 

in a copper bound state [16]. Based on these observations, we propose that COA6 

recycles SCO2 cysteines into a redox-active form, enabling further rounds of COX2 

cysteinyl sulfur reduction. Remarkably, SCO2 reduced thiol groups of Apo-COX2 at a 

2:1 stoichiometry in vitro [16]. Since COA6 cooperates with SCO2 during COX2 

metallation, it is plausible that in vivo COA6 and SCO2 each provide one reducing 

equivalent per one COX2 molecule. Indeed, the redox potential of yeast COA6 (-

349±1mV) [19] indicated that COA6 could reduce the disulphide bonds in COX2 (-

288±3mV) [16], SCO2 (less than -300mV) [25] or SCO1 (-277±3mV) [26]. However, 

the ability of COA6 to reduce thiol groups of COX2 in vivo could not be addressed in 

our model system, since cells lacking COA6 lack detectable levels of COX2. In 

addition, our analysis suggests that COA6 is involved in SCO1 reduction. In vitro, 

SCO1 can receive copper atoms from COX17 independently of the redox state of its 

cysteine. Whereas SCO2 necessarily needs to be in a reduced state to receive 

copper, SCO1 can be either in a reduced state or it can  be in an oxidized state, 
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being reduced by  COX17 in a simultaneous step with copper transfer [27]. However, 

it is also conceivable that prior to copper transfer by COX17, SCO1 may be reduced 

by COA6. During revision of this manuscript, Soma et al solved the structure of 

human COA6 and showed in in vitro analyses that COA6 was able to reduce 

cysteine residues in purified SCO1, SCO2, and COX2. These results, support our 

analyses of COA6 acting as a thiol-reductase in vivo. However, using COA6 patient-

derived cells, they could only observed effects on cysteine oxidation of SCO1 but not 

SCO2. Differences in the cellular models used for investigation may account for this 

difference with our analyses and need to be further studied in the future [28].  

In conclusion, our results provide insights into the mechanistics of CuA 

biogenesis and defines the function of COA6 as a thiol-reductase for copper 

metallochaperones. In addition, we demonstrate that the loss of COA6 not only 

affects complex IV assembly but also the formation of respiratory chain complex I. 

Remarkably, only one of the patients described with COA6 mutations showed a 

decreased complex I activity [11] [12]. The COA6 knock out mutant used here 

displays reduced complex I and IV activity. However, at this point the question as to 

how a loss of COA6 affects complex I remains open as no link between copper 

chaperone activity and complex I biogenesis has been observed.  

Our analyses indicate that that loss of OXPHOS activity and the concomitant 

reduction of the membrane potential indirectly influences the mitochondrial proteome 

through protein import defects. Interestingly, the ∆ψ-independent import of substrates 

along the MIA40 pathway was not decreased but rather increased in the absence of 

COA6. Upregulation of mitochondrial import pathways has been frequently shown 

when one import pathway is defective [29-31]. However, the molecular reason behind 

this phenomenon remains unclear. In addition, other additional mechanisms apart 

from reduced membrane potential may contribute to the altered mitochondrial 
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proteome in COA6KO cells. For instance, alteration of copper homeostasis drastically 

alters the Fe/S cluster formation that involves the mitochondrial ISCA1/2 and GLRX5 

proteins [32]. Interestingly, the protein levels of ISCA2 and to lesser extent those of 

GLRX5 are decreased in the absence of COA6 (see Sup table 1). Thus, it is 

conceivable that impaired iron-sulfur cluster biogenesis affects may impact the 

steady state levels of different mitochondrial protein and thereby cause alterations in 

protein abundance in many mitochondrial functions in addition to the respiratory 

chain e.g. citric cycle, heme biosynthesis, lipoic acid synthesis. Accordingly, COA6 

dysfunction, e.g. in COA6 patients, leads to pleiotropic defects in mitochondrial 

function.   
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Material and Methods 

 

Cell Culture, Generation of Cell lines and Proliferation Assay. 

HEK293T Flp-In™ T-REX™ or HEK293 were cultured in DMEM media, 

supplemented with 10% (v/v) FBS, 2 mM L-glutamine, 1 mM sodium pyruvate and 

50 µg/mL uridine at 37 °C under a 5% CO2 humidified atm osphere. The COA6KO 

HEK293T cell line was generated using CRISPR-Cas9 genome editing as previously 

described [33]. Briefly, specific sgRNA were designed to target all isoforms of COA6. 

Oligonucleotides were then annealed and ligated into the pX458 vector, which 

contains GFP. Cells were transfected and sorted into single wells of a 96-well plate. 

Clones were screened for the absence of COA6 by immunoblotting. 1 clone was 

used for further analysis and sequencing after genomic DNA isolation confirmed 

disruption of the COA6 gene. Rescue cell line expressing C-terminally tagged 

generated using HEK293T Flp-In™ T-REX™ as previously described [18] . Cell lines 

stable expressing C-terminally FLAG tagged versions of COA6 and  SCO2  were 

generated using  HEK293T Flp-In™ T-REX™ during previous studies[7]. C-terminally 

FLAG tagged SCO1 was generated amplifying SCO1 (NM_004589.4) from cDNA 

and incorporating FLAG sequence in the reverse primer. Amplicon was cloned into 

pcDNA5/FRT/TO vector and HEK293T Flp-In™ T-REX™cells were transfected and 

selected as previously described [34]. For SILAC analysis, cells were grown for five 

passages on DMEM medium lacking arginine and lysine, supplemented with 10% 

(v/v) dialyzed fetal bovine serum, 600 mg/l proline, 42 mg/l arginine hydrochloride 

(13C6,
15N4-arginine in ‘heavy’ media), and 146 mg/l lysine hydrochloride (13C6, 

15N2-

lysine in ‘heavy’ media) (Cambridge Isotope Laboratories, Tewksbury, MA, USA). 
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Cell proliferation experiments were performed by seeding 250000 cells in 6 

well-plates. After 72h hours, cells were recovered in PBS and counted using an 

automated cell counter CountessTM (Invitrogen). 

 

Real-time respirometry 

Oxygen consumption rate (OCR) was measured with a XF96 Extracellular Flux 

Analyzer (Seahorse Bioscience, Billerica, MA, USA). HEK293T cells were seeded 

the day of the measurement at a density of 40.000 cells/well. Baseline respiration 

was measured in DMEM supplemented with 1 mM pyruvate and 25 mM galactose 

after calibration at 37 °C in an incubator without CO2. Periodic measurements of 

oxygen consumption were performed and OCR was calculated from the slope of 

change in oxygen concentration over time. Metabolic states were measured after 

subsequent addition of 3 µM oligomycin, 1 µM carbonyl cyanide 4 

(trifluoromethoxy)phenylhydrazone (FCCP), 1 µM antimycin A, and 2 µM rotenone. 

 

Enzymatic activities  

A quantitative method (ELISA) for cytochrome c oxidase (CIV) specific activity and 

quantity of complex determinations (Abcam) was applied using manufacturer’s 

instructions as previously described [35]. The lack of a negative slope due to 

Cytochrome c oxidation was consider as a complete lack of cytochrome c oxidase 

activity and set to 0. In the same way, Complex I activity measurements were 

performed according to manufacturer’s instructions (Abcam), as previously published 

[7]. 

 

Membrane Potential and ROS measurements. 
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For estimation of membrane-potential of the mitochondria, cells were stained with 

200µM JC-1. The values of the two fluorescence readings gave a ratiometric 

comparison of mitochondrial membrane potential. Further, cells were also stained 

with 3µM MitoSox Red for measuring mitochondrial ROS. In each case, 5x105 cells 

were stained with the respective dyes for 15 min at 37°C, washed twice with 1xPBS 

and then measured by flow cytometry. 

Flow cytometric analyses were carried out using the BD-Canto flow cytometer 

(Becton Dickinson). 10,000 gated events were captured and FACS-Diva software 

was used to compute the numeric data.  

 

Redox potential measurements 

For measuring Glutathione redox potential, WT or COA6KO cells (100,000 - 300,000) 

were seeded on 25 mm round glass coverslips 24 – 48 h before transfection. 

Genetically encoded protein sensors were transfected using Fugene® HD (Promega 

GmbH, Mannheim, Germany) along with 1 µg of plasmid DNA, according to the 

manufacturer’s instructions. Imaging was performed 24 h after transfection. Plasmids 

pLPCX-mito-Grx1-roGFP2 and pLPCX-IMS-Grx1-roGFP2 were kindly provided by 

Dr. Tobias P. Dick, Heidelberg, Germany. 

Imaging was performed 24 h after transfection using an inverted Olympus 

IX83 microscope, equipped with a MT20 Mercury-Xenon light source, CellSense 

Dimension software (Olympus) and a 40 × air objective (UPlanSApo 40x 0.95, 

Olympus). Measurements were performed at room temperature in Ringer’s buffer 

(pH 7.4) containing 145 mM NaCl, 4 MgCl2, 10 mM Glucose, 10 mM HEPES, 2 mM 

MgCl2 and 0.25 mM CaCl2. The exposure time for both fluorescent channels was 

kept constant during the whole experiment. Excitation filters 405/20 and 470/40 were 
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combined with a dualband CFP/YFP emission filter (F58-017). Data are presented as 

background corrected fluorescence ratios of F405 nm / F470 nm. 

 

Mitochondrial Isolation 

Mitochondria used for Western blotting purposes were isolated by differential 

centrifugation as previously described [36]. For import experiments, mitochondria 

were isolated as previously described [37]. Briefly, cells were harvested and 

resuspended in ice‐cold isotonic buffer (10 mM MOPS [pH 7.2], 75 mM mannitol, 

225 mM sucrose, and 1 mM EGTA) supplemented with 2 mg/ml BSA and 2 mM 

PMSF, and subjected to centrifugation at 1,000 × g for 5 min at 4°C. The cell pellet 

was then resuspended in cold hypotonic buffer (10 mM MOPS [pH 7.2], 100 mM 

sucrose, and 1 mM EGTA) and incubated on ice for 5–7 min. The cell suspension 

was homogenized in a Dounce glass homogenizer (Sartorius). Cold hypertonic buffer 

(1.25 M sucrose and 10 mM MOPS [pH 7.2]) was added to the cell homogenate 

(1.1 ml/g of cells). The homogenate was subjected to centrifugation at 1,000 × g for 

10 min at 4°C to pellet the cellular debris. The su pernatant that contained 

mitochondria was then carefully aspirated and centrifuged again. The supernatant 

was then subjected to high‐speed centrifugation at 10,000 × g for 10 min at 4°C to 

pellet mitochondria. The pellet was resuspended in isotonic buffer without BSA and 

quantified using the Bradford assay.  

 

Quantitative mass spectrometry and data analysis 

Mitochondrial fractions isolated from differentially SILAC-labeled cells were mixed in 

a 1:1 ratio. Proteins were precipitated using acetone and resuspended in 8 M 

urea/10 mM ammonium bicarbonate (AmBic). Cysteine residues were reduced and 

alkylated by consecutive incubation with 5 mM tris(2-carboxyethyl)-phosphine/10 mM 
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AmBic (30 min at 37°C) and 55 mM iodoacetamide/10 m M AmBic (45 min at room 

temperature in the dark). Urea concentration was adjusted to a final concentration of 

2 M using 50 mM AmBic and trypsin was added (1/30 protease-to-protein ratio) for 

proteolytic digestion overnight at 37°C. The experi ment was performed in two 

individual replicates. 

Peptide mixtures were analyzed on an Orbitrap Elite mass spectrometer 

coupled to an UltiMate 3000 RSLCnano HPLC system (Thermo Scientific), which 

was equipped with nanoEase™ M/Z Symmetry C18 pre-columns (length, 20 mm; 

inner diameter, 180 µm) for washing and preconcentration of the peptides and a 

nanoEase™ M/Z HSS C18 T3 analytical column (length, 250 mm; inner diameter, 75 

µm; particle size, 1.8 µm; packing density, 100 Å) (Waters) for peptide separation. 

The solvent system for peptide elution consisted of 4% (v/v) dimethyl sulfoxide/0.1% 

(v/v) formic acid (solvent A) and 30% (v/v) acetonitrile/48% (v/v) methanol/4% (v/v) 

dimethyl sulfoxide/0.1% (v/v) formic acid (solvent B). Peptides were eluted by 

applying a gradient of 3 - 60% solvent B in 305 min, 60 - 95% B in 25 min and 5 min 

at 95% B at a flow rate of 300 nl/min.  

The Orbitrap Elite was operated in data-dependent mode. Survey scans 

ranging from m/z 370 - 1700 were acquired in the orbitrap at a resolution of 120,000 

(at m/z 400) with an automatic gain control (AGC) of 1 x 106 ions and a maximum 

injection time (IT) of 200 ms. The 25 most intense multiply charged precursor 

peptides were selected for low energy collision-induced dissociation in the linear ion 

trap applying a normalized collision energy of 35%, an activation q of 0.25, an 

activation time of 10 ms, an AGC of 5 x 103, and a maximum IT of 150 ms. Dynamic 

exclusion of previously fragmented precursor peptides was set to 45 sec.  

Mass spectrometric raw data were processed using MaxQuant/Andromeda 

(version 1.5.5.1; [38,39] and searched against the Uniprot human proteome set 
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including isoforms (downloaded December 2017) using default settings, except that 

the number of unique peptides and ratio counts required for protein identification and 

quantification, respectively, was set to one. Arg10 and Lys8 were selected as heavy 

labels. Carbamidomethylation of cysteine residues was set as fixed modification and 

methionine oxidation and acteylation of protein N-termini were considered variable 

modifications. The option "Requantify" was enabled to allow for the calculation of 

SILAC ratios even if only the isotope-labeled or unlabeled variant of a peptide is 

present in a sample by assigning a peptide intensity for the missing counterpart from 

the background signals in MS spectra at the expected m/z value. Information about 

proteins identified and COA6KO/WT SILAC ratios determined by MaxQuant are 

provided in Supplemental Table S1. Annotations for mitochondrial proteins are 

derived from the 'Integrated Mitochondrial Protein Index' (IMPI), which was 

downloaded from the MitoMiner database (http://mitominer.mrc-mbu.cam.ac.uk; IMPI 

version Q2 2018; [40]. Only entries for known mitochondrial proteins were 

considered. Information about components of complex I, IV and V (F1Fo ATP 

synthase) are derived from the Human Genome Organisation (HUGO) Gene 

Nomenclature Committee (HGNC; https://www.genenames.org/; [41] 

   

Radioactive precursor synthesis and in organello import 

Radiolabeled precursor proteins were synthesized using rabbit reticulocyte lysate 

(Promega) in the presence of [35S] methionine. The import of radiolabeled 

precursors into isolated mitochondria was performed at 30°C in import buffer 

(250 mM sucrose, 80 mM potassium acetate, 5 mM magnesium acetate, 5 mM 

methionine, 10 mM sodium succinate, 5 mM adenosine triphosphate, and 20 mM 

HEPES/KOH [pH 7.4]). For TIM22 substrates, import buffer was supplemented with 

supplemented with 2 mM ATP, 1 mM DTT, 5 mM creatine phosphate and 0.1 mg/mL 
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creatine kinase. 2% Lysate was used for TIM23 and MIA40 proteins, whereas 10% was 

used for TIM22 imported carrier proteins. Samples were incubated with radiolabelled 

precursors for different times. Import of TIM23 and TIM22 substrates was stopped by 

the dissipation of membrane potential on ice using 8mM antimycin A, 1 mM 

valinomycin and 10 mM oligomycin. MIA40 import was stopped by addition of 50 mM 

IAA and incubation on ice. Non-imported proteins were removed by proteinase K 

(20µg/mL) treatment for 10 min on ice. PMSF (2 mM) was added to inactivate 

proteinase K for 10 min on ice. Mitochondria were collected, washed with SEM buffer 

(250 mM sucrose, 1 mMEDTA, 20 mM Mops [pH 7.2]) and used for SDS-PAGE 

analyses or BN-PAGE analyses. Results were visualized using digital 

autoradiography. Quantifications were performed using ImageQuantTL (GE 

Healthcare) using rolling ball background subtraction. 

 

BN PAGE analyses  

Mitochondria were solubilized in buffer containing 1% digitonin (20 mM Tris/HCl [pH 

7.4], 0.1 mM EDTA,50 mM NaCl, 10% (w/v) glycerol and 1 mM PMSF) to a final 

concentration of 1 mg/mL for 30 min at 4 °C. Lysate s were cleared by centrifugation 

at 14,000g for 15 min at 4 °C and 10x BN loading dy e was added (5% Coomassie 

brilliant blue G-250,500 mM 6-aminohexanoic acid, and 100 mM Bis-Tris [pH 7.0]). 

Samples were loaded onto 6%–16%polyacrylamide gradient gels and separated as 

described [42]                                                                                                                                                 

Cysteine modification Assay and Crosslinking 

Modification of free thiol groups was performed using the Sulfobiotics Protein Redox 

State Monitoring Kit Plus (Dojinjo) according to manufacturer’s indications with slight 

modifications. In brief, 200 µg mitochondria were solubilised at 10 µg/ µl using 

provided detergent for 30 min at 4°C. After clearin g samples by centrifugation at 
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14,000g for 15 min at 4 °C, they were subjected to Cys modification for 30 min at 

37°C and subsequently separated by SDS-PAGE. Acryla mide gel was irradiated with 

UV-light for 15 min and Western blotting was performed afterwards. In organello 

crosslinking was performed using the sulfhydryl crosslinker BMH at 1mM 

concentration or 1mM CuSO4  in crosslinker buffer (Sorbitol 0.6 M, 20 mM Hepes [pH 

7.2]) for 45 min on ice. Samples were quenched by adding 50 mM Cysteine (for 

BMH) or 10 mM EDTA and N-ethylmaleimide (NEM) (final concentration).  

Mitochondria were re-isolated by centrifugation at 10,000xg 10 min at 4°C and 

subsequently washed with SEM buffer once in the case of BMH crosslinking. 

Afterwards, FLAG immunoisolation and Western blotting under non-reducing 

conditions were performed.  

 

FLAG immunoisolation  

Isolated mitochondria were solubilized in buffer (50 mM Tris-HCl, [pH 7.4], 150 mM 

NaCl, 1 mM EDTA, 10% (w/v) glycerol, and 2 mM phenylmethylsulfonyl fluoride 

[PMSF]) containing 1% (w/v) digitonin (Merck) or 0.2 % triton-x100 (in the case of 

CuSO4 crosslinking) and incubated at 4°C. Samples were c leared by centrifugation, 

and supernatants applied to equilibrated anti-FLAG-agarose (Sigma). After washing, 

bound proteins were eluted with 1.5x Sample Buffer (94 mM Tris-HCl [pH 6.8], 3% 

SDS, 25% glycerol, 0.015% Bromophenol Blue) or FLAG peptide and subjected to 

SDS-PAGE and Western blotting. 

Miscellaneous  

Standard procedures were used for SDS-PAGE and Western blotting of proteins 

adsorbed to polyvinylidene fluoride membranes (Millipore). Primary antibodies were 

raised in rabbit or purchased (COX11, Proteintech. NDUFS1, Proteintech. NDUFS5, 

Abcam. NDUFA8, Abcam. NDUFB7, Abcam. NDUFA5, Proteintech, COX7A2, 
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Proteintech. COX3, Proteintech. ATP5O, Proteintech. ATP5F1, Proteintech.). 

Antigen-antibody complexes were detected by HRP-coupled secondary antibodies 

and enhanced chemiluminescence detection on X-ray films. 
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Figure Legends 

 

Figure 1. Lack of COA6 affects complex I and complex IV 

A. Scheme of COA6 function in copper transfer to CuA center in COX2 (IMS, 

intermembrane space). B Cell were seeded in glucose containing medium to equal 

density and counted after 72h. Cell numbers were calculated and are presented as % 

of wild type (WT) (mean +/– SEM, n= 3). C. Representative real-time respirometry 

analysis of intact cells. Values are presented as mean +/– SEM, n=6. D. Activity of 

complex IV (mOD/min) was measured photometrically; (mean +/– SEM, n= 3). E 

Complex IV amount was measure by ELISA (mean +/– SEM, n= 3). F. Complex I 

activity (mOD/min) was measured photometrically; (mean +/– SEM, n= 3). G. 

Reactive oxygen species in wild type (WT) and COA6 knock out cells (COA6KO) cells 

were assessed by MitoSOX staining and flow cytometry; (mean +/– SEM, n= 3). H. 

Glutathione redox potentials were measured in wild type (WT) and COA6 knock out 

cells upon transfection with either Mito-Grx1-roGFP2 or IMS-Grx1-roGFP2 and 

analyzed by live imaging. Ratio of fluorescence at 405/470 nm is presented as 

average +/– SEM, n>44.  

 

Figure 2. Lacks of COA6 impacts protein import. 

A. Quantitative MS analysis of changes in the mitochondrial proteome in cells lacking 

COA6. B. Purified wild type (WT) and COA6KO mitochondria were analyzed by SDS-

PAGE and Western blotting. C. Mitochondrial membrane potential was measured by 

flow cytometry using the dye JC-1. Fluorescence signals are depicted as mean +/– 

SEM, n= 4. D. In vitro import of radiolabeled precursor proteins into purified wild type 

(WT) and COA6KO mitochondria. Su9-DFHR and OTC were imported for indicated 

times in the presence or the absence of membrane potential (∆ψ). Samples were 
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Proteinase K (PK) treated after import, subjected to SDS-PAGE, and proteins 

visualized by digital autoradiography (p, precursor; m, mature). E. Quantification of 

Su9-DFHR import into mitochondria. Signals were quantified and are presented as 

percent of the longest import timepoint in the wild type (WT) sample, mean, SEM +/– 

SEM, n=3. F. In vitro import of radiolabeled carrier precursors ANT3 (ADP/ATP 

carrier 3) and SLC25A19 (thiamine pyrophosphate carrier) into purified wild type 

(WT) and COA6KO mitochondria. Import was carried out for different times in the 

presence or absence of ∆ψ. After import mitochondria were proteinase K (PK) 

treated, solubilized, and subjected to BN-PAGE separation and digital 

autoradiography. G. Quantification of ANT3 import into mitochondria. Signals were 

quantified and are presented as percent of the longest import timepoint in the wild 

type (WT) sample, mean, SEM +/– SEM, n=3. H. In vitro import of radiolabeled twin 

CXNC motifs containing precursors COX6B1 and COX19 into purified wild type (WT) 

and COA6KO mitochondria. Import was carried out for indicated times in the presence 

or absence of the cysteine modifying agent iodoacetamide (IA). Samples were 

subjected to proteinase K (PK) digested and analyzed by SDS-PAGE and digital 

autoradiography. I. Quantification of COX6B1 import into mitochondria. Signals were 

quantified and are shown as percent of the longest import timepoint in the wild type 

(WT) sample; mean, SEM +/– SEM, n=3. 

 

Figure 3. Cysteines in the CXXXC motif of SCO2 are required for binding to 

COA6 

A. Wild type (WT) and COA6FLAG mitochondria were subjected to chemical 

crosslinking using the homo-bifunctional crosslinker BMH. After crosslinking, 

mitochondria were solubilized and subjected to anti-FLAG immunisolation. Samples 

were analyzed by SDS-PAGE and Western blotting. B. Schematic representation of 
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generated SCO2 mutants. Red, cysteines of the CX3XNH motif; Green, ex-changed 

residue; TM, transmembrane span. C In vitro import of radiolabeled SCO2WT into 

purified wild type mitochondria in presence or the absence of membrane potential 

(∆ψ). Samples were subjected to proteinase K (PK) digest, and analyzed by SDS-

PAGE and digital autoradiography. D. In vitro import of SCO2 cysteine mutants as in 

C. E. After in vitro import of indicated SCO2 variants into purified wild type (WT) and 

COA6FLAG mitochondria, samples were solubilized, subjected to anti FLAG 

immunoisolation, and eluates analyzed by SDS-PAGE, digital autoradiography and 

Western blotting. F. Wild type (WT) and COA6FLAG mitochondria were subjected to 

CuSO4 treatment. After treatment, mitochondria were solubilized and subjected to 

anti-FLAG immunisolation. Samples were analyzed by SDS-PAGE and Western 

blotting. G. SCO1FLAG immunoisolation after in vitro import of SCO2 variants into 

purified wild type (WT) and SCO1FLAG mitochondria. After import of radiolabeled 

SCO2 variants, anti FLAG immunoisolation was performed and eluates analyzed by 

SDS-PAGE and digital autoradiography. 

 

Figure 4. COA6 acts as a thiol-reductase for copper metallochaperones SCO1 

and SCO2 

A. Wild type (WT) and COA6KO mitochondria were incubated in the presence or 

absence of DTT and subjected to cysteine modification. Samples were subjected to 

SDS-PAGE and western blotting. B. Quantification of the ratio between most reduced 

and most oxidized form of SCO2 in wild type (WT) and COA6KO mitochondria 

presented as percent of WT; mean +/– SEM, n=3 C and D. Cysteine redox 

modification assay for SCO1 was carried out as described in A and B. E and F. 

Cysteine redox modification assay for SCO2 and SCO1 in cells expressing 
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COA6FLAG. Wild type (WT) COA6KO and COA6KO+COA6FLAG mitochondria were 

subjected cysteine modification and analyzed by SDS-PAGE and western blotting. 
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• Loss of COA6 affects respiratory chain complexes IV and I. 

• Decreased membrane potential driven protein import due to loss of COA6. 

• Cysteine residues in CX3CXNH motif of SCO2 mediate COA6 interaction. 

• COA6 acts as thiol reductase for copper metallochaperones during CuA biogenesis. 


