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ABSTRACT 

Centrioles must be eliminated or inactivated from the oocyte to ensure that 

only the two functional centrioles contributed by the sperm are present in the 

zygote. Such removal can occur during oogenesis, as in Drosophila where 

departure of the Polo kinase from centrosomes leads to loss of microtubule 

nucleating activity and centriole removal. In other species, oocyte-derived 

centrioles are removed around the time of fertilization through incompletely 

understood mechanisms. Here, we use confocal imaging of live starfish 

oocytes and zygotes expressing markers of microtubule nucleating activity 

and centrioles to investigate this question. We first assay the role of Polo-

like-kinase 1 (Plk1) in centriole elimination. We find that although Plk1 

localizes around oocyte-derived centrioles, kinase impairment with BI-2536 

does not protect centrioles from removal in the bat star P. miniata. Moreover, 

we uncover that all four oocyte-derived centrioles lose microtubule 

nucleating activity when retained experimentally in the zygote of the radiate 

star A. forbesi. Interestingly, two such centrioles nevertheless retain the 

centriolar markers mEGFP::PACT and pmPoc1::mEGFP. Together, these 

findings indicate that centrioles can persist when Plk1 activity is impaired, as 

well as when microtubule nucleating activity is lacking, uncovering further 

diversity in the mechanisms governing centriole removal.  
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INTRODUCTION 

Centrioles are microtubule-based cylindrical organelles fundamental notably 

for recruiting the pericentriolar material (PCM), and thus for forming the 

centrosome, an important microtubule organizing center (MTOC) of animal 

cells (reviewed in Bornens, 2012; Gönczy and Hatzopoulos, 2019). Control 

of centriole inheritance at fertilization is critical to ensure bipolar spindle 

formation and faithful chromosome segregation during the first cell division of 

metazoan organisms. In most species, maternal centrioles are eliminated or 

inactivated from the oocyte, whereas two paternal centrioles are contributed 

to the zygote by the sperm (reviewed in Delattre and Gönczy, 2004; 

Manandhar et al., 2005). The mechanisms by which maternal centrioles are 

removed are incompletely understood. 

Most proliferating animal cells are born with two centrioles, each of 

which then seeds assembly of one procentriole that remains engaged in its 

vicinity until mitosis. At that time, the two centrosomes, each containing a 

centriole/procentriole pair, act as MTOCs and direct bipolar spindle 

formation. The centriole and procentriole within each centrosome then 

disengage from one another during mitosis, so that each resulting cell will be 

endowed with two centrioles. These two centrioles are structurally distinct, 

with the older centriole, also called the mother centriole, harboring 

appendages, which are absent from the younger, or daughter, centriole 

(reviewed in Firat-Karalar and Stearns, 2014; Loncarek and Bettencourt-

Dias, 2018; Gönczy and Hatzopoulos, 2019) .  

There are exceptions to the above canonical cycle of centriole 

inheritance. One such interesting case is encountered at fertilization 

(reviewed in Delattre and Gönczy, 2004; Manandhar et al., 2005). If each 

gamete contributed a pair of centrioles, then the zygote would be endowed 

with four centrioles that would each duplicate during the first cell cycle, thus 

leading to the presence of four centrosomes and potentially tetrapolar 

spindle formation. In most metazoan species, including Drosophila and 

human beings, this problem is solved through the removal of centrioles 

during oogenesis (Mahowald and Strassheim, 1970; Szollosi et al., 1972; 

Gard, 1994; Sathananthan et al., 2001; Mikeladze-Dvali et al., 2012). In 

other organisms, such as starfish, centrioles remain in the oocyte and 



 4 

assemble the two meiotic spindles before being removed (Nakashima and 

Kato, 2001; Shirato et al., 2006; Crowder et al., 2015). In either scenario, the 

zygote inherits solely the two functional centrioles contributed by the sperm. 

Whilst being a fundamental feature of metazoan development, how 

centrioles are removed from the female gamete remains generally poorly 

understood. 

One exception to such lack of understanding is in Drosophila. Here, 

regulation of the PCM by the kinase Polo is key for eliminating centrioles 

during oogenesis (Pimenta-Marques et al., 2016). Polo localizes to 

centrosomes during early oogenesis but is no longer detectable at that 

location as oocytes mature; this is followed by PCM disassembly, loss of 

microtubule nucleating activity and then centriole elimination. Moreover, 

RNAi-mediated depletion of Polo results in precocious PCM disassembly 

and centriole elimination. Conversely, targeting excess Polo to centrioles 

enables PCM maintenance and prevents centriole elimination. Such 

persisting centrioles act as MTOCs and result in abnormal meiosis and 

abortive zygotic development (Pimenta-Marques et al., 2016). The extent to 

which the contribution of Polo uncovered in flies will prove general is unclear, 

including in systems where maternal centrioles serve to assemble the two 

meiotic spindles and are eliminated or inactivated solely thereafter.  

Starfish constitute an attractive model to analyze centriole removal 

from the oocyte, since in this system the process takes place in a 

stereotyped manner after oocyte maturation. In the bat star Patiria miniata, 

two of the four centrioles present in the mature oocyte are shed in the first 

polar body, whereas a further one is expelled with the second polar body, 

leaving a single centriole in the zygote (Fig. 1A, B). This remaining centriole 

is eliminated shortly after meiosis II completion. Monitoring of fluorescent 

fusion proteins specific for either mother or daughter centriole established 

that this last remaining unit is a daughter centriole (Borrego-Pinto et al., 

2016a). Moreover, mother and daughter centrioles show distinct behavior 

when experimentally retained in the P. miniata zygote through inhibition of 

cytokinesis with an actin-depolymerizing drug. The two oocyte-derived 

mother centrioles nucleate microtubules and persist, which, together with the 

two sperm-derived centrioles, leads to the formation of a tetrapolar spindle 
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during the first mitosis. By contrast, daughter centrioles do not act as 

MTOCs and are eliminated. Intriguingly, an analysis in the radiate star 

Asterias forbesi suggested an apparent difference with P. miniata, since all 

four centrioles experimentally retained in the A. forbesi zygote fail to sustain 

microtubules nucleation as observed by polarization microscopy (Sluder et 

al., 1989, 1993). In the absence of molecular markers, however, it is not 

clear how this apparent difference relates to the fate of centrioles.
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RESULTS AND DISCUSSION 

  

Plk1 localizes at centrioles in starfish oocytes 

We sought to investigate whether Polo-like-kinase 1 (Plk1) can protect 

centrioles from elimination in starfish, in a manner analogous to the role exerted by 

its homologue Polo in Drosophila. First, we determined whether Plk1 localizes to 

centrioles in P. miniata oocytes. To this end, we generated mRNAs coding for 

mEGFP tagged P. miniata and H. sapiens Plk1 proteins. Here and thereafter, 

oocytes were injected with in vitro transcribed mRNAs, in this case encoding 

mEGFP::pmPlk1, as well as the microtubule associated protein hsEB3::mCherry3 to 

monitor growing microtubules and thus MTOC activity. After overnight incubation to 

allow translation of the injected mRNAs, oocytes were matured with 

1-methyladenine (1-MA) (Kanatani et al., 1969), leading to resumption of cell cycle 

progression, nuclear envelope breakdown (NEBD) and then execution of the two 

meiotic divisions, which were filmed using time-lapse confocal microscopy (Figures 

1A and 1B). The number of oocytes analyzed for each experiment and a summary 

of the results are provided in Table S1.  

As shown in Figure 1C, we found that mEGFP::pmPlk1 localizes to the two 

poles of the meiosis I spindle in P. miniata oocytes (-25:15, insets 1 and 2). At the 

onset of meiosis II, the focused signal at the inner pole of the meiosis I spindle splits 

into two foci (00:00, insets 3 and 4) that then each localizes to the two poles of the 

meiosis II spindle (07:20, insets 5 and 6). We noted a difference in fluorescence 

intensity between these two mEGFP::pmPlk1 foci, with a brighter signal for the 

outer focus, closer to the plasma membrane (07:20, compare inset 5 and inset 6). In 

addition, we found that the inner focus of mEGFP::pmPlk1 is no longer detected 

shortly after extrusion of the second polar body (27:32, inset 7). Similar dynamics 

were observed for the human hsPlk1:mEGFP fusion protein (Fig. S1A). Such 

distributions mirror those reported for pan-centriolar components in P. miniata 

oocytes (Borrego-Pinto et al., 2016a), indicating that Plk1 localizes initially to all 

centrioles or their immediate vicinity, albeit to different degrees. Moreover, we 

observed that both mEGFP::pmPlk1 and hsPlk1::mEGFP also label what appears 

to be kinetochores (Figure 1C, -25:15 and 07:20; Figure S1A, -19:34 and 16:00; 

arrows), in line with the distributions reported in other systems for this kinase family 

(reviewed in Archambault and Glover, 2009). We found analogous localizations at 
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spindle poles and kinetochores when examining hsPlk1::mEGFP in A. forbesi 

oocytes (Figure S1B).  

Overall, we conclude that Plk1 is present initially at all four oocyte-derived 

centrioles in starfish oocytes, with more protein detected at mother centrioles, and is 

then lost from daughter centrioles before MTOC activity ceases.  

 

Plk1 activity does not protect centrioles from elimination in P. miniata oocytes 

 We set out to test whether Plk1 protects centrioles from elimination in 

P. miniata oocytes. Plk1 is required for bipolar spindle formation in a wide range of 

systems, including in the starfish Asterina pectinifera, where function-blocking 

antibodies result in monopolar spindle assembly during meiosis I (Okano-Uchida et 

al., 2003). However, the fate of centrioles was not addressed in that study. Here, 

analyzing oocytes expressing hsEB3::mCherry3 and the pan-centriolar marker 

pmCentrin2::mEGFP, we established that treatment with 10 µM of the Plk1 inhibitor 

BI-2536 (Lénárt et al., 2007) at the time of 1-MA addition prevents bipolar spindle 

assembly during meiosis I (compare Figure 2A with Figure 2B). Instead of a bipolar 

spindle (Figure 2A), a diffuse crown of microtubules forms transiently around 

centrioles (Figure 2B). Thereafter, centrioles in drug-treated specimens typically 

move deeper into the oocyte proper and lose microtubule nucleation activity (Figure 

2B 01:36:04, compare with Figure 2A, 01:40:55), although sometimes 

hsEB3::mCh3 can be present around one centriole at later times (Figure 2B, 

02:02:52, inset 9).   

 If Plk1 activity were to protect centrioles from elimination, then BI-2536 

treatment should provoke disappearance of the two mother centrioles and 

potentially precocious elimination of daughter centrioles. To best determine whether 

this is the case, we analyzed mildly centrifuged oocytes expressing 

hsEB3::mCherry3 and pmCentrin2::mEGFP. Centrifugation leads to nuclear 

detachment from the animal pole, where centrioles remain cortically anchored 

(Figure 2C; Figure S1C-F). Even though centrosomes nucleate microtubules in 

such centrifuged oocytes (Figure 2C, 01:29:23), the meiotic spindles do not capture 

the distant chromosomes and, consequently, polar bodies are not extruded. As a 

result, all four oocyte-derived centrioles remain typically close to the plasma 

membrane, thus facilitating their monitoring throughout meiosis (Matsuura and 

Chiba, 2004; Borrego-Pinto et al., 2016a). In centrifuged control oocytes, two of the 
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four pmCentrin2::mEGFP foci persist and nucleate microtubules, whereas the other 

two lose MTOC activity and are no longer detectable by the end of meiosis II 

(Figure 2C, 02:11:13 and 03:00:48; Figure 2E; Figure S1G). Importantly, in 

centrifuged BI-2536-treated oocytes, all four centrioles have essential no MTOC 

activity as early as MI, but at least one and often two of the four retained 

pmCentrin2::mEGFP foci persist until the end of MII (Figure 2D, 01:31:03 and 

03:02:28; Figure 2E; Figure S1H). Moreover, we observed that loss of the 

pmCentrin2::mEGFP foci corresponding to daughter centrioles occurred on average 

~18 minutes earlier in BI-2536 treated oocytes than in the control condition (Figure 

2E). This may not reflect a bona fide temporal shift, but instead reflect the loss of 

focused hsEB3::mCh3 signal and the typically dimmer pmCentrin2::mEGFP signal 

upon BI-2536 treatment, rendering daughter centriole tracking more challenging 

(Figure S1H).  

We cannot exclude that a potential Plk1-dependent mechanism modulating 

centriole elimination requires only minute kinase activity. Moreover, whereas the 

Drosophila genome encodes a single Polo kinase, there is a second Polo-like 

kinase in P. miniata that is ~ 40% identical to Plk1 (sequences IDs PMI_003306 and 

PMI_004640 from EchinoBase aligned with ClustalW), which could potentially act 

redundantly with Plk1. However, 10 µM BI-2536 is expected to readily inhibit both 

Plk1 and Plk2, considering that the corresponding IC50s for their human 

counterparts are of 0.83 nM and 3.5 nM, respectively (Steegmaier et al., 2007).  

Overall, within the time frame of this experiment, these findings lead us to 

conclude that inhibiting Plk1 activity in P. miniata oocytes is sufficient to provoke 

loss of MTOC activity but not to trigger the elimination of mother centrioles or a 

drastic precocious disappearance of daughter centrioles. 

 

Mother centrioles are extruded into polar bodies of A. forbesi oocytes 

Early observations raised the possibility that centriole fate may differ in the 

radiate star A. forbesi compared to the bat star P. miniata (Sluder et al., 1989, 1993; 

see Introduction). We set out to investigate this potential difference using molecular 

markers. As a first step, we tested whether the two mother centrioles are 

systematically directed to the first and second polar bodies in A. forbesi, as they are 

in P. miniata (Borrego-Pinto et al., 2016a). We injected oocytes with mRNA 

encoding a fusion protein between mEGFP and the mother centriole-specific 
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component Odf2. We found that, like in P. miniata, the strong focused signals of 

pmOdf2::mEGFP were systematically present on both poles of the meiosis I spindle 

and on the pole closest to the plasma membrane of the meiosis II spindle (Figure 

3). Therefore, mother centrioles are systematically extruded in polar bodies in 

A. forbesi as they are in P. miniata.  

 

Retained oocyte-derived centrioles lose MTOC activity upon meiosis II exit in 

A. forbesi 

 We next set out to investigate whether oocyte-derived centrioles 

experimentally retained in A. forbesi zygotes exhibit MTOC activity. To this end, we 

injected oocytes with mRNA encoding hsEB3::mCherry3 to label growing 

microtubules. Following 1-MA-induced maturation and NEBD, we added sperm to 

activate development and then Latrunculin B to block extrusion of the two polar 

bodies. MTOC activity of the centrioles thus retained in the zygote was assessed 

from meiosis I until the first mitotic division by time-lapse confocal microscopy. We 

found that the meiosis I spindle forms normally, with a pair of centrioles at each 

pole, and that centrioles disengage normally thereafter (not shown); this is followed 

by the formation of two small bipolar spindles with one centriole at each pole during 

meiosis II (Figure 4A, 10:00). Importantly, we found that all oocyte-derived 

centrioles lose their MTOC activity upon exit from meiosis II (Figure 4A, 30:47 and 

4B), leading to the formation of a bipolar spindle driven exclusively by sperm-

derived centrioles during the first mitotic division in the zygote (Figure 4A, 77:35). 

This is in stark contrast to P. miniata, where a tetrapolar spindle assembles 

following retention of oocyte-derived centrioles in the fertilized zygote (Borrego-

Pinto et al., 2016a). We conclude that mother centrioles retained in the A. forbesi 

zygote do not function as MTOCs, in contrast to the situation in P. miniata.  

 

Centriolar markers persist at retained oocyte-derived centrioles in A. forbesi 

zygotes  

 At least three scenarios could explain the lack of MTOC activity of centrioles 

retained in A. forbesi zygotes. First, all four centrioles could be eliminated. Second, 

all four centrioles could be retained, but without exhibiting MTOC activity. Third, 

daughter centrioles could be removed but mother centrioles could persist without 

nucleating microtubules. To distinguish between these possibilities, we set out to 
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monitor centriolar markers from meiosis II until the first mitosis in A. forbesi zygotes 

treated with Latrunculin B (Figures 5 and S2; Movie S1). To follow centrioles, we 

injected mRNAs coding for a fusion protein between mEGFP and PACT, a small 

protein fragment derived from human Pericentrin and AKAP450 that marks 

centrioles across a range of organisms (Gillingham and Munro, 2000). As shown in 

Figure 5, we found that mEGFP::PACT labels initially all four centrioles localizing at 

the poles of the two bipolar spindles formed during meiosis II upon Latrunculin B 

treatment (Figure 5A, 3:30; Figure 5B, centrioles 1-4 and Figure 5C). After meiosis 

II exit, the MTOC activity of all four centrioles is lost, as monitored with 

hsEB3::mCherry3, whereas all four mEGFP::PACT foci persist initially (Figure 5A, 

29:09; Figure 5B, centrioles 1-4; Figure 5C). Thereafter, two of the four 

mEGFP::PACT foci, presumably corresponding to the daughter centrioles, are no 

longer detectable (Figure 5A, 59:14; Figure 5B, centrioles 1 and 2; Figure 5C). 

Importantly, we found in addition that the two other foci, which we surmise 

correspond to the two mother centrioles, remain present at least until the first 

mitosis and were still observed as far as the second mitosis in some oocytes that 

were analyzed until then (data not shown). Upon onset of the first mitotic division, 

these two oocyte-derived units approach the sperm-derived bipolar spindle, 

probably through the action of minus-end directed motors, without regaining MTOC 

activity (Figure 5A, 59:14; Figure 5B, centrioles 3 and 4; Figure 5C).  

 We sought to extend the above observation to another centriolar marker. 

Therefore, we investigated oocytes injected with mRNA coding for 

pmPoc1::mEGFP, a centriolar component and microtubule binding protein 

conserved from green algae to human beings, including starfish (Keller et al., 2005; 

Borrego-Pinto et al., 2016a). As reported in Figure S2, we found that 

pmPoc1::mEGFP labels all four centrioles and microtubules also in A. forbesi 

zygotes treated with Latrunculin B. Although the weaker pmPoc1::mEGFP centriolar 

signal compared to mEGFP::PACT sometimes prevented us from determining with 

certainty the number of oocyte-derived centrioles that persist until mitosis, there was 

usually at the least one left (Figure S2C, Table S1). Analysis of the minute foci 

harboring mEGFP::PACT and pmPoc1::mEGFP using serial section electron 

microscopy would be needed to ascertain whether they retain the full native 

architecture of centrioles. Regardless, the findings to date establish that foci of 
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oocyte-derived centriolar components can remain present until mitosis in A. forbesi.

  

 

Concluding remarks 

We set out to investigate whether the persistence of MTOC activity from the 

PCM surrounding oocyte-derived centrioles retained in P. miniata zygote (Borrego-

Pinto et al., 2016a) may reflect a mechanism analogous to that operating during 

Drosophila oogenesis (Pimenta-Marques et al., 2016). However, we found that 

centrioles can persist in P. miniata zygotes with impaired Plk1 activity, as well as in 

A. forbesi without them nucleating microtubules, uncovering diversity in the 

mechanisms governing centriole removal across metazoan organisms. We note that 

whereas centrioles are eliminated during oogenesis in Drosophila, removal occurs 

after the meiotic divisions in starfish. Such differential timing may explain why Plks 

play a role in flies and seemingly not in starfish for ensuring proper centriole number 

at fertilization.  

What mechanisms ensure that oocyte- and sperm-derived centrioles are 

endowed with different fates in the newly fertilized zygote? In P. miniata, MAP kinase 

activity suppresses the formation of sperm asters during meiosis and thus prevents 

them from interfering with active oocyte-derived centrioles driving meiotic spindle 

formation (Stephano and Gould, 2000). A related phenomenon operates in the clam 

Spisula soldissima, where -tubulin and MTOC activity of sperm centrioles is lost 

during meiosis I and regained only during meiosis II (Wu and Palazzo, 1999). 

Moreover, during physiological polyspermy in the newt Cynops pyrrhogaster, multiple 

sperm cells initially enter the oocyte, but only two centrioles develop a large aster 

that then drive mitotic spindle formation, with the remaining centrioles degenerating 

(Iwao et al., 2002). It will be interesting to unravel how specific centrioles can be 

earmarked for retention or removal in the same cell in these diverse settings. In 

starfish, it will also be interesting to explore whether variations in PCM and centriolar 

components, as well as in activities present in the cytoplasm, could explain the 

differential ability of persisting mother centrioles to nucleate microtubules during 

mitosis in the two species (Figure 5D), and thus further unravel the diversity of 

mechanisms governing centriole removal.   
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MATERIALS AND METHODS 

 

mRNA generation  

mRNAs were synthesized and purified as described (Borrego-Pinto et al., 2016b). 

Briefly, the ORF of the protein of interest in frame with either an N- or C-terminal 

fluorescent tag was subcloned into pGEMHE for in vitro transcription reactions 

(Borrego-Pinto et al., 2016b). Capped mRNAs were synthesized from linearized 

templates using the AmpliCap-Max T7 High Yield Message Maker kit (CellScript), 

and a poly-A tail added using the A-Plus Poly(A) Polymerase Tailing Kit (CellScript). 

Purified mRNAs (typically 2-6 μg/μl) were diluted in 11 μl RNAse-free water 

(Borrego-Pinto et al., 2016b). 

 

Starfish and gamete collection  

Patiria miniata (previously known as Asterina miniata) was purchased from 

Monterey Abalone Company (Monterey, USA), and Asterias forbesi collected from 

the waters of Cape Cod by the Marine Resource Center (MRC) of the Marine 

Biological Laboratory (MBL) (Woods Hole, USA). Animals were maintained in sea 

water tanks at 16-20oC at the MRC or at EMBL's Marine Facility (Heidelberg, 

Germany). Ovaries were dissected from female animals, washed for 20 minutes in 

calcium-free sea-water supplemented with phenylalanine (437 mM NaCl, 9 mM KCl, 

22.9 mM MgCl2, 25.5 mM MgSO4, 2.1 mM NaHCO3, 50 mM phenylalanine; pH 8), 

after which oocytes were collected upon treatment of ovary pieces with ~100 µM 

acetylcholine as described (Terasaki et al., 1994 and 

http://mterasaki.us/panda/injection/). Healthy-looking oocytes were selected and 

kept in filtered seawater at ~14°C to be used within two days of extraction. Sperm 

was obtained by extracting testis fragments from male animals; such fragments 

were kept dry for several days at 4°C and tested daily before use.  

 

Microinjection, maturation, drug treatments and fertilization 

Oocytes were mounted in Kiehart-Ellis chambers and injected using mercury back-

filled needles (Terasaki, 1994; Borrego-Pinto et al., 2016b). The amount of injected 

mRNAs was calibrated using an ocular micrometer and the optimum determined 

empirically for each mRNA. Injected oocytes were incubated overnight at ~14°C in a 



 13 

humidified Petri dish to allow protein expression. Meiosis resumption was then 

induced by 10 μM 1-methyladenine (1-MA, Acros Organics). To prevent polar body 

extrusion, oocytes were treated with 250 nM Latrunculin B (EMD Biosciences) in 

seawater 5-10 min after sperm addition, since fertilization depends on actin 

polymerization. BI-2536 (https://www.axonmedchem.com/product/1129) was diluted 

1:1000 in sea water from a 10 mM stock in 100% DMSO, and added to oocytes 

simultaneously with 1-MA. Control oocytes were exposed to 1:1000 DMSO in 

seawater. We noted that treatment with 10 µM BI-2536 did not result in a noticeable 

difference in the timing of NEBD compared to DMSO control in P. miniata oocytes 

observed under a dissecting microscope. For in vitro fertilization, sperm was diluted 

1:1000 - 1:8000 in seawater depending on the motility on the day of the experiment, 

and added 30-45 min after 1-MA addition.  

 

Centrifugation and drug treatments  

Oocyte centrifugation was performed in a clinical centrifuge at 2400 rpm for 1h at 

4°C (Multifuge 3 L-R, Heraeus) after placing the oocyte chamber into a plastic 

holder in a 50ml Falcon tube filled with sea water (see Figure S1B) (Matsuura and 

Chiba, 2004; Borrego-Pinto et al., 2016a). After centrifugation, the oocyte chamber 

was placed into a 35mm μ-dish (Vitaris) for 1-MA addition and BI-2536 treatment.  

 

Microscopy and image processing 

After overnight incubation and experiment-specific handling following maturation, 

injected oocytes were transferred to a confocal microscope for multi-position dual 

color time-lapse imaging. Depending on the experiment, data were acquired with a 

40x 1.25NA water immersion lens on a Nikon A1+ confocal, a 40x HCX PL APO 

1.10 NA water immersion lens on a Leica SP5II or a 40x C-Apochromat NA 1.2 

water immersion lens on a Zeiss LSM780 confocal microscope. Z-stacks of the 

relevant portion of the oocyte were captured typically every micron at ~3-5 minutes 

intervals. Brightness/contrast adjustments were performed using Fiji in a uniform 

manner for all time points in a given oocyte, and panels assembled using Adobe 

Illustrator.  
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Figure legends 

 

Figure 1. Centriole behavior and Plk1 distribution in P. miniata oocytes. 

(A and B) Schematic of centriole fate during meiotic divisions of P. miniata starfish 

oocyte, together with overview of experimental procedure utilized in this work, not to 

scale; B shows higher magnification views of the region with meiotic spindles. 

Arrested oocytes are injected with mRNA(s) coding for the protein(s) of interest; 

meiotic resumption is induced by 1-Methyladenine (1-MA), followed by fertilization, 

depending on the experiment, and then by confocal time-lapse microscopy. During 

the first meiotic division, pairs of centrioles, each containing a mother centriole (dark 

green, bearing appendages) and a daughter centriole (light green) are present at 

the poles of the spindle (B, meiosis I, metaphase represented). First polar body 

(PBI) extrusion results in the removal of 2n DNA and of a pair of centrioles from the 

oocyte (B, meiosis II onset). The two remaining centrioles then disengage from one 

another and drive the formation of the meiosis II spindle (B, meiosis II, metaphase 

represented). The mother centriole is invariably positioned towards the plasma 
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membrane and thus extruded in the second polar body (PBII), together with 1n DNA 

(B, meiosis II exit). The remaining daughter centriole then loses MTOC activity and 

is eliminated (depicted as fading away in meiosis II exit panel). Fertilization results 

in the sperm contributing 1n DNA and a pair of centrioles (yellow) to the zygote. 

Sperm-derived centrioles then duplicate, leading to two centriole pairs that recruit 

PCM (dark grey) and govern bipolar spindle formation during the first mitosis (A, 

mitosis). (C) Still images from dual color time-lapse confocal microscopy of P. 

miniata oocyte expressing mRNAs encoding the microtubule marker 

hsEB3::mCherry3 (in magenta throughout the paper) and mEGFP::pmPlk1 (green), 

which localizes at centrioles (insets) and kinetochores (arrows point to three of them 

at metaphase of meiosis I and II). Here and in other figures, images are maximum 

intensity projections of selected z-planes spanning the region of interest, and insets 

1.4x magnified single z-plane of the boxed regions; the oocyte plasma membrane is 

indicated with a dashed line. Moreover, unless stated otherwise, time is indicated in 

minutes:seconds starting from centriole disengagement at meiosis II onset and 

scale bars are 5 µm.  
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Figure 2. Plk1 inhibition does not provoke centriole elimination in P. miniata. 

(A-D) Still images from dual color time-lapse confocal microscopy of P. miniata 

oocytes expressing hsEB3::mCherry3 to mark microtubules and 

mEGFP::pmCentrin2 to mark centrioles, treated with either 0.1% DMSO as a 

control or 10 µM BI-2536 in 0.1% DMSO, both added simultaneously with 1-MA. A, 

B: non-centrifuged oocytes; note that grey levels were adjusted differently in A and 

B, which stem from independent experimental series. C, D: centrifuged oocytes. (E) 

Oocyte-derived centriole number (green) and MTOC activity (magenta) over time as 

monitored by mEGFP::pmCentrin2 foci and hsEB3::mCherry3 (magenta), 

respectively, in DMSO (C) or BI-2536-treated (D) centrifuged oocytes. Each line 

corresponds to one oocyte. Centriole number is indicated with different shades of 

green and different line thicknesses. Dark or light magenta lines indicate whether 

microtubules are focused around centrioles or instead diffuse, respectively. In 

BI-2536 oocytes, hsEB3::mCh3 is usually diffuse before disappearing completely 

(n= 5/10) or sometimes refocusing in a very limited area around centrioles (n= 

5/10). Small grey discs: actual data points; grey circles: ambiguous data points, 

either because foci are out-of-focus or because foci disappear and reappear within 

3 frames. Small vertical black marks indicate for each oocyte when the number of 

detected foci drops below 3, and vertical dashed lines the resulting average time of 

dropping below 3 for each condition (138 minutes for DMSO control, 120 minutes 

for BI-2536-treated). Time is indicated in hours:minutes:seconds after 1-MA 

addition, as meiosis II onset is difficult to discern in BI-2536 treated oocytes. In A, 

the parentheses around 1-MA denote the fact that timing in this particular oocyte is 

merely estimated from the actual timing of NEBD and the observation that NEBD 

occurs ~30 min after 1-MA addition.  
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Figure 3. Mother centrioles are extruded into polar bodies in A. forbesi oocytes. 

Top: still images from time-lapse confocal microscopy of A. forbesi oocyte 

expressing the mother centriole marker pmOdf2::mEGFP. A bright focus is 

observed in each polar body. In some oocytes, as illustrated here, a weak focus can 

also be detected at the inner-most centriole at the end of meiosis II. Bottom: 

corresponding schematic representation. 
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Figure 4. Oocyte-derived centrioles lose MTOC activity when retained in A. forbesi 

zygote. 

(A) Still images from time-lapse confocal microscopy of A. forbesi zygote treated 

with Latrunculin B to retain all centrioles, monitoring MTOC activity using 

hsEB3::Cherry3 from meiosis II onset until mitosis. Here, as well as in Figure 5, 

oocyte-derived centrioles are bounded by squares and sperm-derived centrioles by 

circles. Note that hsEB3::mCherry3 is lost from the surroundings of all four oocyte-

derived centrioles, whereas the two sperm-derived centrioles (S and then S1, S2) 

exhibit MTOC activity. Scale bar: 10 µm. (B) Single confocal z-planes corresponding 

to the zygote shown in A and showing differential MTOC activity of oocyte-derived 

versus sperm-derived centrioles from meiosis II to mitosis. Each image is 3.73x3.73 

µm. 
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Figure 5. Two retained foci of mEGFP::PACT persist until mitosis in A. forbesi.  
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(A) Still images from dual color time-lapse confocal microscopy of A. forbesi zygote 

treated with Latrunculin B to retain all centrioles, monitoring microtubules labeled 

with hsEB3::mCherry3 and centrioles marked with mEGFP::PACT from meiosis II 

onset until mitosis. Scale bar: 10µm; see also Movie S1. (B) Single confocal z-

planes showing MTOC activity and presence of mEGFP::PACT foci in oocyte-

derived and sperm-derived centrioles from meiosis II until mitosis. Images boxed by 

a dashed line for centriole 1 indicate time frames when this centriole was slightly out 

of focus. Note that the little signal for hsEB3::mCherry3 of centriole 3 at time point 

67:14 stems from sperm-derived MTOC activity. Each image is 3.98x3.98 µm. (C) 

Oocyte-derived centriole number over time as monitored by mEGFP::PACT foci 

(green) and MTOC activity as monitored by hsEB3::mCherry3 (magenta). Each line 

corresponds to one oocyte, with asterisks indicating mitosis onset. Centriole number 

is indicated with different shades of green and line thicknesses. Grey filled discs: 

data points; grey circles: ambiguous data points due to mEGFP::PACT not being 

yet detected at all centrioles, to foci being out-of-focus or to the presence of 

multiple, probably spurious, foci. (D) Schematic representation of centriole fate in P. 

miniata based on Borrego-Pinto et al., 2016a and A. forbesi zygotes treated with 

Latrunculin B. The same color code is used as in Figure 1. See text for details. 

 

 

 


