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1 Introduction

How do human beings reason when the conditions for rationality postulated

by the model of neoclassical economics are not met – for example, when no

one can define the appropriate utility function? (Simon, 1989, p. 377)

It is sometimes more rational to admit that one does not have sufficient infor-

mation for probabilistic beliefs than to pretend that one does. (Gilboa et al.,

2012, p. 28)

If we reassess the rationality question under the assumption that the uncertainty of

the natural world is largely unquantifiable, where do we end up? Organisms rely on an

ability to make accurate inferences from limited observations of complex, uncertain, and

unstable environments, and an answer to the rationality question should formulate both

the nature of this problem and its solution. The orthodox answer is that the nature of the

problem is probabilistic inference and the nature of the solution is probabilistic optimality.

If we approach the rationality question with this view in mind then the prospects appear

slim for a formally viable, normative theory of rational action when probabilities can’t

be quantified. In this article I argue that this view neglects alternative formulations of

the problem of statistical inference, and the statistical theory of ecological rationality in

particular (Brighton and Gigerenzer, 2007; Gigerenzer and Brighton, 2009; Brighton and

Gigerenzer, 2012; Brighton, 2018). By setting out the statistical foundations of ecological

rationality, my argument will undermine the claim that bounded and ecological rational-

ity offer no normative challenge to orthodox rationality. The principle casualty in this

statistical reassessment of the rationality question is optimality. Once we view optimality

as a formal implication of quantified uncertainty rather than an ecologically meaningful

objective, the rationality question shifts from being axiomatic/probabilistic in nature to

being algorithmic/predictive in nature. In short, by reassessing the rationality question

in this way, we end up not with a revised solution to the same statistical problem but a

theory of rationality that responds to a different statistical problem.

I will first argue that the implications of deepened uncertainty are often obscured by a

cluster of commonly held statistical intuitions collectively termed the bias bias (Brighton

and Gigerenzer, 2015). The bias bias leads many researchers in several disciplines to

neglect the relationship between two critical and controllable components of prediction

error, bias and variance. Bias is widely understood, at least intuitively, and reflects the

ability of a model to accurately capture systematic regularities in observations. The

variance component of prediction error reflects the sensitivity of a model’s predictions
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to different observations of the same problem, such as a different sample from the same

population. These two components additively contribute to expected prediction error

(O’Sullivan, 1986; Geman et al., 1992; Hastie et al., 2001; Bishop, 2006). Unlike bias,

the role of variance is less intuitive and often neglected, causing a bias bias in statistical

thinking that simplifies the role of uncertainty, masks a wide range of predictive models

from consideration, and leads to the development of questionable theories and poorly

justified policies. To illustrate the bias bias I will examine examples of social and economic

systems that pose problems without optimal solutions.

Once the statistical pathologies associated with the bias bias have been clarified, I

argue that the bias bias also characterizes the orthodox formulation of rational decision

making under uncertainty. This second stage of my argument appeals to Breiman’s (2001)

distinction between two cultures of statistical modeling known as data modeling and al-

gorithmic modeling. Data modeling characterizes much of traditional statistical inquiry

and proceeds by conjecturing a data generating model. Algorithmic modeling proceeds

under the assumption that the data generating model is indeterminable or non-existent,

and does so by analyzing the relative ability of competing learning algorithms to incur low

prediction error. This distinction echoes deeper distinctions in statistics and information

theory (Geisser, 1993; Rissanen, 2007; Shmueli, 2010). I then argue that these distinct

modes of statistical inquiry map directly onto the practices of orthodox rationality and

ecological rationality, and, crucially, justify different kinds of rationality claim (Brighton,

2018). Claims of ecological rationality refer to the ability cognitive algorithms, such as

simple heuristics, to incur low prediction error relative to alternative algorithms. Such

claims neither imply optimal functioning, nor do they require that an optimal response be

determinable in order to be established, explained, or justified.

The strategy of extending the categories of uncertainty assumed when formulating

the rationality question, and then examining how robust established rationality principles

are to these revised uncertainty conditions, is familiar but neglected (Binmore, 2009). A

central concern for Savage (1954) was the category small worlds that he assumed when

formulating the foundations of Bayesian decision theory. Small worlds are those that can

modeled using a decision matrix defining a mutually exclusive and exhaustive set of states

of the world, consequences, and actions that map between them. If we assume, as many

do, that “the worlds of macroeconomics and high finance certainly don’t fall into this cat-

egory” (Binmore, 2009, p. 2) then this raises the question of which categories these worlds

do fall into. In this article I focus on problems characterized not only by unmeasurable un-

certainty (Knight, 1921; Kozyreva and Hertwig, 2019) or probabilistic ambiguity under the

subjective interpretation of probability (e.g., Gilboa and Schmeidler, 1989; Machina and
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Schmeidler, 1992; Epstein, 1999), but by unquantifiable uncertainty under any definition

of probability, and to the extent that it is more rational to regard generating distributions

as a non-existent than to view them as the foundation for formulating the rationality

question. As the following example illustrates, worlds of this kind are not hard to find.

2 Bias, Variance, and the Bias/Variance Dilemma

Consider a serial offender who has committed a series of crimes while living at a single home

location. Given only the locations of these crimes, how accurately can the location of the

offender’s home be predicted? I will use this well-studied problem in geographical criminal

profiling to illustrate the relationship between bias, variance, and prediction error. Figure

1(a) depicts a map covering an area of roughly 30km2 of Baltimore county, Maryland,

USA. Superimposed on this map are 15 blue circles identifying the locations of a series of

burglaries committed by a serial burglar residing at a single address1. In additional to these

locations, Figure 1(b) plots the true home location of the offender and the home locations

predicted by two geographical profiling models. The first model is the centroid method

that predicts the “center of gravity” of the crime locations, which is simply the mean x-

coordinate and mean y-coordinate of the observed crimes. The second model computes

a probability surface over the crime area using an exponential decay function. Given a

crime area divided into an array of cells, this model estimates the probability that each

cell contains the home address of the offender. As the distance d from a crime location

increases, the exponential decay function models the finding that the probability that

offenders commit crimes a distance d from their homes decreases as a negative exponential

function of d. By integrating the probabilities calculated from each crime location, the

model estimates a probability surface over the crime area, shown in Figure 1(c). For this

offender, the cell with greatest probability predicts the true home location with nearly zero

error. The centroid method, on the other hand, predicts a point roughly 1.5km north-west

of the true home location.

Is the probability surface model more accurate in general, or might this near perfect

prediction be a lucky guess? One way of addressing this question is to evaluate the two

models over a range of serial criminals (e.g., Block and Bernasco, 2009; Leitner and Kent,

2009; Levine and Block, 2011). In addition, further insights into this specific example

can be gained by deepening the uncertainty conditions under which predictions are made.

For example, how would the two models perform when, rather than predicting the home
1The data for this offender, labeled TS15D, can be found in the dataset supplied as part of the

CrimeStat (Levine, 2010) package available from https://www.icpsr.umich.edu/CrimeStat/.
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location of the offender from all 15 crime locations, they only had 5 locations to work with?

Figure 1(d) examines this question by plotting the prediction error of the two models as

a function of the number of crimes sampled. Specifically, r crimes are repeatedly sampled

without replacement from the complete series of 15 crimes. For each such sample we
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Figure 1 Panel (a) plots the locations of 15 burglaries committed by a single offender in Baltimore

County. Panel (b) plots the true home location of the offender and the home locations predicted by

the centroid method and a probability surface model with an exponential decay function depicted in (c).

Panel (d) plots the prediction error of the two models as a function of the number of crimes sampled. The

relative superiority of the two models inverts after 9 crimes have been observed. Note: Crime locations

visually overlap in 5 cases.
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measure the prediction error of both models, and then report the mean prediction error of

both models as a function of r. What is striking about Figure 1(d) is that when fewer than

9 crimes are observed the centroid method outperforms the probability surface model. In

other words, when the uncertainty conditions are deepened the relative performance of the

two models inverts. Our next step is to understand how the concepts of bias and variance

help to explain why.

2.1 Decomposing Prediction Error Into Bias and Variance

Suppose we are given n crime locations c1, . . . , cn where each crime location ci = (xi, yi) is

a point in a compact 2-dimensional Euclidean space covering the crime area. For simplicity

I will assume that the offender’s home location h also lies within the crime area. The task

of the two models is to then map a series of crime locations to a point prediction of the

offender’s home location. Because the area that law enforcement may need to search

before locating the offender’s home will grow as a squared function of the prediction error,

I will consider squared loss, and specifically, the squared Euclidean distance between the

predicted and true home location, ||h − f ||2. Now, at a given sample size r, analyses

of the kind shown in Figure 1(d) sample r crimes k times to yield an ensemble of k

predictions denoted f (1), . . . , f (k). For a given sample size the expected error of a model

can be decomposed as follows:

Expected error = (bias)2 + variance + noise. (1)

The derivation of this decomposition for squared loss can be found in most machine learn-

ing textbooks (e.g., Duda et al., 2001; Hastie et al., 2001; Bishop, 2006) as well as a

landmark article by Geman et al. (1992). For this problem the bias is the distance be-

tween the mean prediction of the ensemble defined above and true location of offender’s

residence. The mean prediction of the ensemble is simply the centroid of f (1), . . . , f (k),

denoted f̄ . Thus, bias is given by:

(bias)2 = ‖f̄ − h‖2. (2)

Figure 2(a) provides a visual illustration of the relationship between an ensemble of

5 example predictions, the true home location, and bias. Variance is then the degree to

which the individual model predictions – the members of the ensemble – vary about the

mean prediction f̄ :

variance =
1

k

k∑
i=1

‖f̄ − f (i)‖2. (3)
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Figure 2(b) illustrates the relationship between the same ensemble of 5 predictions

above, the mean prediction f̄ , and variance. Finally, the noise term in Equation 1 plays

no role in this example, but could represent the additional and irreducible error we would

incur if, say, an adversary added some normally distributed error to our predictions.

2.2 Using Bias and Variance to Analyze and Explain Relative Predic-
tion Error

To better understand the relative performance of the two models shown in Figure 1(d),

Figure 2(c) decomposes their prediction errors into bias and variance. Focusing on bias

first we see that the centroid model suffers from high bias across all sample sizes because

the assumption that the offender’s home lies at the centroid of the crime locations fails

to hold for this offender. The probability surface model also has high bias at low sample

sizes but its bias steadily decreases as the sample size increases, eventually approaching

zero. If bias were the only concern then the probability surface model is clearly superior.

Turning to variance, we see that the “trick” behind the centroid method is that it incurs

remarkably low variance until roughly 14 crimes are observed, at which point the variance

of both models approaches zero. The key insight here is that although the probability

surface model is unbiased and makes a near perfect prediction, this is only true under

complete information. When uncertainty is increased due to fewer crimes being observed,

the probability surface model suffers from high variance, the upshot being that the biased,

low-variance model centroid method incurs lower total prediction error. Thus, the ability

of a model to match, represent, or capture the underlying structure of the problem – its

potential to incur low bias – is only one determinant of low prediction error. How robust

the predictions of the model are to different realizations of the problem – its potential to

incur low variance – will often prove critical.

2.3 The Bias/Variance Dilemma

There will always be an infinite number of explanations that are consistent with our ob-

servations. Models code the assumptions needed to select which explanations we entertain

in their functional form, their parameters, and in the constraints they impose on what

values these parameters can be assigned. Assumptions are like bets. For example, we

could hedge our bets by deploying a nonparametric model such as a multilayer neural

network capable of representing a wide range of systematic patterns. The hope is that the

network will incur low bias, but due to the large number of parameters needed to model

layers of the network, we run the risk of incurring high variance. Another approach is
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Figure 2 Panels (a) and (b) illustrate the calculation of bias and variance for an ensemble of 5 predictions,

f (1), . . . , f (5). Bias, shown in (a), is the difference between the mean prediction of the ensemble, f̄ , shown

as a blue square, and the true home location of the offender, h, shown using a red cross. Variance, shown

in (b), is variation among the individual members of ensemble relative to the mean prediction. Panel (c)

decomposes prediction errors of the model comparison shown in Figure 1(d) into bias and variance.

to deploy a parametric method such as a linear model in the hope that the systematic

patterns in the observations are governed by a linear function, or something close. This

risk might be worth taking, given that the fewer parameters needed to specify the lin-

ear model could keep variance within acceptable bounds. An even bolder approach is to

deploy a parameterless model with no free parameters. Here, we ignore the observations
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completely to guarantee zero variance. Unless this bold conjecture turns to be correct, or

close to correct, the problem is that the model will incur high bias.

These issues clarify that whenever uncertainty surrounds our choice of model, we face

a bias/variance dilemma (Geman et al., 1992). The dilemma arises because techniques for

reducing variance tend to increase bias, and techniques for reducing bias tend to increase

variance. As we have seen, the number of observations also play critical role in determining

the bias and variance incurred by a model. All told, predictive inference involves complex

interactions between models, observations, the data generating process, and prediction

error. These complexities are often glossed over, and the bias bias explains to some extent

why.

3 The Bias Bias

To suffer from the bias bias is to develop, deploy, or prefer models that are likely to achieve

low bias, while simultaneously paying little or no attention to models with low variance

(Brighton and Gigerenzer, 2015). The bias bias manifests itself in a range of statistical

intuitions and practices which over-simplify or ignore the complexities of the bias/variance

dilemma. In this sense the bias bias approximates the problem of statistical inference. This

approximation is justified when the data generating machinery is known with a high degree

of certainty, or when the number of observations asymptotes. The following four examples

illustrate the dangers of the bias bias when dealing with the uncertainty of the natural

world, and social and economic systems in particular.

3.1 Four Examples of the Bias Bias

Example 1: Geographical Criminal Profiling. A guiding concern for geographical

criminal profiling is achieving low prediction error, and the field progresses in large part

through the competitive testing of diverse models ranging from the centroid method to

sophisticated probabilistic models (e.g., Rossmo, 1999; Canter et al., 2000; Snook et al.,

2005; Levine and Block, 2011). This seems like an unlikely field to harbor a bias bias,

yet the bias/variance perspective appears to be unfamiliar to researchers in this area2.

Unlike the analysis above, I have failed to find any studies that decompose prediction

error into bias and variance or systematically examine, for a specific offender, prediction

error as a function of the number of crimes sampled. While it is typical for studies to
2Levine (2009, pp. 177-181) discusses the related concepts of accuracy and precision, and argues that

both should considered in evaluating models, but doesn’t draw a connection to the bias and variance, or

the bias/variance dilemma.
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compare predictive models over a range of serial offenders who have committed varying

numbers of crimes, this can only offer a limited insight into the potential of low variance

models. Reversals in relative model performance, like we see in Figure 1(d), are masked

by standard practices of model evaluation, and this is likely to steer model development

away from techniques that incur low variance under conditions of heightened uncertainty.

Failure to explicitly consider and analyze bias and variance does not necessarily imply

a bias bias, although it often goes hand in hand with a focus on bias reduction as the

driving concern. This is reflected in the tendency of recent work to use increasingly

complex probabilistic methods to model the factors thought to drive offender behavior

(Block and Bernasco, 2009; Leitner and Kent, 2009; Levine and Block, 2011). I use

the terms “simple” and “complex” here in a non-technical sense to refer to the degree to

which one attempts to model the geographical, psychological, social, and economic factors

likely to drive where and how many offenses an individual commits. In short, there is an

argument to made that the field of geographical criminal profiling suffers from a mild bias

bias, principally because the concept of variance is unfamiliar, and common techniques for

reducing variance appear to play an increasingly minor role in model development. On

the other hand, this field scores highly on model diversity and there is a broad recognition

that simple models are often hard to improve on. As the following example illustrates,

the influence of the bias bias is often far stronger.

Example 2: Regulating International Banks. How can financial crises be avoided?

Regulating international banks is one option, but what rules should the regulators impose?

If systematic regularities in past bank failures can be identified then these regularities

should help to predict future failures, and then the problem can viewed, at least in part,

as a prediction problem. Focusing on the Basel accord, Haldane and Madouros (2012)

point out that the regulatory rules introduced by Basel I in 1988, and their subsequent

development into Basel III introduced in 2010, have undergone a striking increase in

complexity. In numbers, the Basel I agreement was 30 pages long and required banks to

calculate only five risk weights, while the post-2008 financial crisis Basel III was 616 pages

long and involved calculating several million risk weights. Has this increase in complexity

made international banks more resilient and financial crises less likely? Based on a sample

of 8,500 US banks, 442 of which entered receivership, Haldane and Madouros found that

all five CAMELS indicators – a standard set of indicators used to summarize the condition

of a bank – contributed to the in-sample fit of a linear model used to explain bank failure.

Turning to the more challenging problem of out-of-sample prediction, they then estimated
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the predictive accuracy of the full CAMELS model, a number of single indicator models,

and constant model.

With model parameters estimated from small samples of banks, and hence conditions

of increased uncertainty, this test of out-of-sample predictive accuracy revealed that a sin-

gle liquidity indicator model achieved the lowest prediction error, outperforming the full

CAMELS model over a range of uncertainty conditions. These results follow a similar pat-

tern to the criminal profiling example. Models that integrate several factors that should,

intuitively, improve predictive accuracy can in fact reduce predictive accuracy under con-

ditions of high uncertainty. Appealing to further analyses, and the concepts of bias and

variance, Haldane and Madouros argue that the regulators have mistakenly assumed that

complex problems like regulating an international banking system require complex solu-

tions. This strongly implicates a bias bias in the intuitions of the architects of Basel III,

and the benefits of simple, low variance models found by Haldane and Madouros support

this conclusion (see also Aikman et al., 2014). These architects appear to have over-

looked basic principles of out-of-sample prediction error and competitive model testing,

and consequently overlooked effective responses to the bias/variance dilemma.

Example 3: The Mean-Variance Portfolio. From banks to individuals, economic

agents frequently face the problem of investing money into N funds. Harry Markowitz’s

Nobel prizing winning contributions to portfolio theory included the mean-variance model,

an optimal solution to this problem (Markowitz, 1959). An overarching concern for this

discussion is the nature of the assumptions needed to formulate optimality results. Under

conditions of unquantifiable uncertainty these assumptions are likely to be violated, the

upshot being that the status of “optimal” solutions must be relegated to “just another

model.” DeMiguel et al. (2009) shed some light on this issue by comparing the performance

of 15 models on seven investment problems. As well as the mean-variance model they

considered a range of probabilistic models and a simple heuristic, 1/N , which allocates

money equally to the N funds. The task was to predict the performance of each portfolio

in the following month based on parameters estimated from the preceding 10 years of stock

data. Sliding this 10-year window forward one month at a time, DeMiguel et al. compared

the accumulated performance of the 15 models and found the 1/N heuristic ranked first

on certainty equivalent returns, second on turnover, and fifth on the Sharpe ratio. Notice

that 1/N embodies an extreme response to the bias/variance dilemma. Its lack of free

parameters means ignoring the observations altogether and opting for zero variance at

a potential cost of high bias, and the success of 1/N tells us that the seven investment

problems considered by DeMiguel et al. represent close to ideal uncertainty conditions for
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exposing a bias bias. These conditions are not exceptional. Jagannathan and Ma (2003),

to take another example, examined the role of bias and variance in the performance of

portfolios constructed using regularization techniques that impose “wrong constraints”,

those that violate statistical characteristics of the population. These regularized portfolios,

like 1/N , often improved investment performance. We either view such results as to some

extent foreseeable or accept that our intuitions suffer from a bias bias.

Example 4: Modeling Consumer Behavior. Managers in the retail industry often

need to distinguish between active and inactive customers. One strategy is to use ob-

servations of past customer activity to estimate the parameters of a probabilistic model

detailing the processes thought to drive customer behavior. For example, the Pareto/NBD

model estimates the parameters of a Poisson process modeling customer purchasing be-

havior and the parameters of exponential distribution modeling customer dropout rates

(Schmittlein et al., 1987). Combined with further probabilistic assumptions about the

heterogeneity of customers within the population, categorization decisions are then made

using a maximum likelihood calculation (Fader et al., 2005). An alternative strategy is to

deploy a simple hiatus rule where customers who have not made a purchase within a hiatus

period of, say, 9 months are classified as inactive, and all other customers are categorized

as active. These two approaches differ in how they prioritize either bias reduction, the

ability to accurately model the regularities of the data-generating processes, or variance

reduction, the ability to limit the instability of predictions. Pitting these two strategies

against each other, Wübben and Wangenheim (2008) compared simple hiatus rules and

the Pareto/NBD model using transaction data from the apparel, airline, and music indus-

tries. First, they used 40 weeks of customer transaction data to estimate the parameters

of the Pareto/NBD model. Using transaction data for the subsequent 40 weeks, they then

estimated how accurately each model predicted future customer activity. For the apparel,

airline, and music customers, the Pareto/NBD model achieved predictive accuracies of

75%, 74%, and 77%. Hiatus rules with cutoff periods recommended by experienced man-

agers, on the other hand, predicted customer activity with accuracies of 83%, 77%, and

77%. Again, we see that prioritizing bias at the expense of variance appears to be the

wrong choice, and the intuition that accurate probabilistic models of the data generating

process will result in accurate predictions is another manifestation of the bias bias.

3.2 Categories of Uncertainty

We err when making predictions, forecasts, and decisions because the world is uncertain

and models provide only a distorted representation of the complex processes that determine
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events of interest. There are a number of ways the uncertain nature of our understanding

can be formulated and categorized. Relative to a given model, the most basic category

of uncertainty is stochasticity, also termed noise, randomness, or irreducible error. For

example, we will err when attempting to predict the outcomes of a series of fair coin

tosses. Underspecification is another source of uncertainty that occurs when there are

insufficient observations to reliably estimate model parameters. For example, if we have

only observed a limited number of bank failures then however sophisticated and well-

justified our model of bank failure might be, uncertainty will surround the parameter

values. Model misspecification, on the other hand, arises from discrepancies between model

and the system being modelled. For example, if serial burglars tend to avoid offending

in the immediate vicinity of their homes then modeling their journey to crime behavior

using an exponential decay function will only approximate this behavior. Stochasticity,

underspecification, and misspecification correspond to the noise, variance, bias terms of

Equation 1 (Brighton and Gigerenzer, 2012).

Additional uncertainties arise when we consider that many systems are non-stationary.

Sources of uncertainty when modeling how systems change over time include covariate shift

and predictive shift (Shimodaira, 2000; Quionero-Candela et al., 2009). Covariate shift

occurs when the distribution over the independent variables changes, and, say, the obser-

vations used to estimate model parameters and the observations we attempt to predict

may be drawn from different regions of the observation space. Predictive shift occurs when

the functional relationship between independent and dependent variables changes. For ex-

ample, bank failures could occur for new and unforeseen reasons after the implementation

of new regulations. It is relative to these categories of uncertainty, which are by no means

comprehensive, that the role of the bias bias should considered. The statistical patholo-

gies associated with the bias bias, recall, stem from viewing bias reduction as the primary

means for reducing prediction error. This is equivalent to viewing model misspecification

as key, which justifies a focus on high fidelity, causal models of the system being studied.

Notice, though, that the bias bias does not imply an argument against the development

of potentially complex causal models. Rather, it is an argument against the idea that we

necessarily discover more predictive models by doing so. Indeed, some degree of causal

thinking is needed to develop models at all. Haldane and Madouros (2012), for instance,

decided to use a single liquidity indicator as a predictor of bank failure. This choice can

have a causal justification even though they chose to disregard other potential causes of

bank failure.
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3.3 Modeling Under Uncertainty: Bias, Variance, and Optimality

When seen through the lens of the bias bias, how might Examples 1-4 above shed light on

the rationality question? Before making a direct connection to considerations of rational-

ity, three points need to be considered:

1. None of the four preceding examples have optimal solutions. The social and eco-

nomic processes at work are unstable, complex, largely latent, and by any measure

deeply uncertain. Of course, there is nothing to stop us from quantifying subjective

probabilities and then using probability theory to derive and justify an optimality

claim. But in doing so there is a sense in which we resort to changing the problem

rather than exploring the space of potential solutions. Indeed, formulating optimal

solutions to the problems of criminal profiling, bank regulation, portfolio invest-

ment, and customer profiling would say more about our modeling techniques than

the systems being modeled.

2. This brings us to the issue of the relationship between bias, variance, and the exis-

tence of an assumed data generating function. Given that the meaning and measure-

ment of bias requires that the underlying data generating function is known, how can

I claim that the bias/variance perspective offers an insight into problems without

optimal solutions? My claim is not that the bias/variance perspective undermines

the goal of optimality. Rather, it brings into focus the need to understand how,

when, and why statistical models incur low prediction error outside of their implied

optimality conditions, and relative to other models. The meaning and measurement

of variance, though, does not presuppose or require knowledge of the data generat-

ing function. Examples of abound of both justifying and explaining the performance

of probabilistic models in terms on their relative ability to reduce variance outside

of their optimality conditions (Hand and Yu, 2001; Domingos and Pazzani, 1997;

Friedman, 1997; Ng and Jordan, 2002; Van Der Putten and Van Someren, 2004;

Webb et al., 2005).

3. The preceding examples are not meant to imply that simple models necessarily

incur lower prediction error. I selected these examples to underscore the point that

variance reduction is a fundamental part of modeling under uncertainty, and that

simplicity has proven to be a highly productive heuristic for discovering low variance

models. They offer points of contrast to the popular assumption that advances in

statistical modeling arise from greater sophistication and complexity (Hand, 2006).

Other perspectives on variance reduction include regularization (Chen and Haykin,
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2002) and ensemble methods (Seni and Elder, 2010), the latter being an example

of how averaging the predictions of potentially complex models can also reduce

variance.

In summary, the outcomes of exploratory statistical analyses tend not to be optimality

claims, the bias/variance trade-off is a familiar concept in statistics, machine learning,

forecasting, and econometrics, and the potential benefits of simplicity in statistical mod-

eling have long been known. My argument has on occasion been misinterpreted as a claim

that these three points are novel, whereas my argument is in fact that these three points

are novel considerations when formulating the rationality question. Put differently, one

may be familiar with and subscribe to the statistical approach I have presented when mod-

eling social, economic, and other systems, but somehow regard them as being irrelevant

to the problem of formulating rational action in these same contexts. The next stage of

my argument details how the preceding insights, and the bias bias in particular, can and

should guide a reassessment of the rationality question under conditions of unquantifiable

uncertainty.

4 Towards Ecological Rationality

By any measure the bias/variance perspective has failed to penetrate the orthodox study

of decision making under uncertainty. Consider first the case of decision theory, where ra-

tional actors are seen as Bayesian maximizers of expected utility operating over a mutually

exclusive and exhaustive set of future states of the world, consequences, and the actions

that map between them (Savage, 1954). On this view rationality is a primarily a subjec-

tive matter of axiomatic coherence rather than one of making rational inferences about

the world. The cognitive and biological sciences tend to adopt a different attitude toward

the rationality question by viewing rational decision makers as optimal Bayesian decision

makers defined relative to a probabilistic model of the task environment (McNamara and

Houston, 1980; Anderson, 1991b; Chater and Oaksford, 1999; Chater et al., 2006; Griffiths

and Tenenbaum, 2006; Knill and Pouget, 2004; Gershman et al., 2015). On this view ra-

tional decisions are probabilistically justified decisions, or equivalently, predictions whose

accuracy will depend on the fidelity of the assumed model of the environment.

This second notion of rationality, one centered on environmental correspondence rather

than axiomatic coherence, is of greater relevance to the decisions of criminal profilers,

bank regulators, portfolio managers, and marketing executives given that any loss their

decisions incur will be determined by latent or future states of the task environment
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(Arkes et al., 2016). When seen in this way, we cannot escape the bias/variance dilemma

when formulating the rationality question because all claims flow from an assumed ability

to model the data generating process. On recognizing this, I will argue that orthodox

rationality – the view that rational decisions under uncertainty are optimal Bayesian

decisions – can be seen as falling foul of the bias bias. Using a different but related notion

of bias, Gigerenzer (2018) argues that behavioral economics also suffers from a bias bias in

its formulation of the rationality question. However, to focus the discussion, this second

stage of my argument will center on a contrast between Bayesian optimality modeling and

ecological rationality. To establish this contrast it is first necessary to take a step back and

consider how these two approaches to formulating the rationality question rest on distinct

forms of statistical inquiry.

4.1 Constructing the Rationality Problem

The statistician Leo Breiman (2001) characterized two cultures of statistical modeling

illustrated schematically in Figure 3. Consider first the scenario where we start with

observations, each relating a set of independent variables to a dependent variable. The

environment can be seen as a black box containing data-generating machinery that de-

termines the joint distribution over the inputs to the black box (independent variables)

and the output (the dependent variable) shown in Figure 3(a). Much of traditional sta-

tistical inquiry, and this includes the orthodox study of Bayesian optimality considered

here, requires that we make a conjecture about the contents of this black box, depicted

in Figure 3(b). We might, for instance, formulate an hypothesis space, prior distribution,

and various parameters that we fit using the available observations. Breiman termed this

approach data modeling and its defining characteristic is that at some point a conjecture

is made about the contents of the black box.

An alternative to data modeling is what Breiman termed algorithmic modeling. When

algorithmic modeling we refrain from making a conjecture about the contents of the black

box and instead try to predict its behavior. As shown in Figure 3(c), the observations are

used to estimate the predictive accuracy of competing models of inductive inference, which

in practice usually means comparing machine learning algorithms using the principles of

exploratory data analysis, much like the modeling approaches detailed in my discussion

of the bias bias. Crucially, learning algorithms and the probabilistic assumptions they

imply tend not to be seen as models or properties of the environment, but rather induc-

tive biases likely to introduce model infidelities in order to reduce variance. Among the

algorithms being considered, one or more will achieve the lowest prediction error. Such
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(a) The problem of statistical inference
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(d) Bayesian optimality modeling (e) Study of ecological rationality
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unknown
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cognitive model 1, 

cognitive model 3, ...
cognitive model 2, optimal response 

Figure 3 How should the problem of statistical inference be formulated? We start with observations of

an unknown functional relationship between input vectors x (the independent variables) and output y (the

dependent variable) determined by some aspect of nature, shown in (a). Following Breiman (2001), the

statistical culture of data modeling views the conjecture of a stochastic model y = mθ(x) of nature’s black

box an essential step in statistical inference, shown in (b). Rather than attempt to model the contents

of nature’s black box, algorithmic modeling is an incremental search for learning algorithms that can,

to varying degrees, accurately predict the input-output relationship, shown in (c). Bayesian optimality

modeling conducts data modeling in order to define an optimal response (d), while the study of ecological

rationality conducts algorithmic modeling and interprets predictive models as potential cognitive models,

shown in (e). Diagrams (a-c) adapted from Breiman (2001).

findings in no way license an optimality claim. They merely provide an indication of

the kinds of algorithmic design decisions or statistical techniques that reduce prediction

error, thereby suggesting further algorithms worth evaluating. Algorithmic modeling is

exploratory, yields a functional understanding of the algorithms being considered, yet in

no way invokes the concept of optimality to explain model performance. In short, algo-

rithmic modeling seeks a relative understanding of the ability of competing algorithms to

reduce prediction error.
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Defining Optimality: Data Modeling

Because the claims of Bayesian optimality being considered here are made relative to a

probabilistic model of the task environment they necessarily adhere to Breiman’s notion of

data modeling. To be clear on this point, probabilistic models of this kind are not (initially)

seen as subjective models personal to the actor, but the outcome of an ecological analysis

conducted by the theorist seeking to make the rationality claim. In his pioneering work

on the Bayesian analysis of cognition, for example, Anderson (1991a) states that “the

structure of such a theory is concerned with the outside world rather than what is inside

the head” (p. 410). The decisions of this rational actor will be probabilistically optimal

with respect to the model, but not necessarily the environment being modeled. This raises

two concerns. First, how can this model be formulated when we lack sufficient knowledge

or the observations needed to probabilistically quantify the relevant uncertainties? If we

have observed only a limited sample of banking failures over one or two crisis cycles, or

observed only a small number of offenders who commit a certain kind of serial crime, how

should we proceed?

The orthodox solution is that whatever uncertainties we face, they can and should

be probabilistically quantified using, say, uninformed priors, second-order probabilities, or

imprecise probabilities. Alternatively, we could recall the second of the two epigraphs that

began this discussion, the proposal that “it is sometimes more rational to admit that one

does not have sufficient information for probabilistic beliefs than to pretend that one does”

(Gilboa et al., 2012, p. 28). But what is this “more rational” alternative, and how might

it be justified? The second concern is that by conjecturing an explanatory, causal, or

high fidelity probabilistic model of the environment we run the risk of succumbing to the

bias bias. This modeling goal will often diverge from the goal of predictive modeling

because a simpler, possibly regularized, and likely biased model incorporating known

representational inaccuracies may incur lower prediction error. How can cases where,

as Haldane and Madouros (2012) put it, “simple does not just defeat complex; it trumps

the truth” (p. 17) be reconciled with the goal of developing probabilistic models of the

environment? My claim is that ecological rationality represents a “more rational” response

that avoids the bias bias, and it proceeds through algorithmic modeling.

Exploring Ecological Rationality: Algorithmic Modeling

The study of ecological rationality considers the adaptive fit between organisms and the

structure of natural environments (Gigerenzer et al., 1999; Gigerenzer and Selten, 2001;

Gigerenzer et al., 2011; Todd et al., 2012). It proceeds by examining the interaction
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between three components: (1) algorithmic models of how organisms make inductive in-

ferences, with a particular focus on simple heuristics; (2) the properties of natural envi-

ronments whose probabilistic structure is either uncertain or unknown; and (3), a formu-

lation of the problem of statistical inference that defines and quantifies the meaning of

an adaptive fit. A defining characteristic of simple heuristics is that they ignore infor-

mation, and the overarching hypothesis is that these heuristics are a vital part of how

organisms successfully cope with the uncertainty of the natural world. Results supporting

this hypothesis are termed less-is-more effects, and they detail how minimalist processing

strategies improve the accuracy of decisions relative to more complex and supposedly so-

phisticated strategies commonly assumed in the cognitive sciences (e.g., Gigerenzer and

Goldstein, 1996; Czerlinski et al., 1999; Goldstein and Gigerenzer, 2002; Brighton, 2006;

Gigerenzer and Brighton, 2009; Şimşek and Buckmann, 2015).

Because the overarching concern here is the contrast between orthodox and ecological

rationality, I will sidestep a detailed discussion of models of ecological rationality and

experimental studies focusing on their use by humans and other animals. I will instead

focus on how component (3) of the interaction above typically assumes the perspective

algorithmic modeling. Because of this, rationality claims are made relative to alternative

models rather than an assumed data model. On finding that one model achieves lower

prediction error than the alternatives, this model is regarded as more ecologically rational

than the alternatives. Optimality plays no role (Brighton and Olsson, 2009). In Figure

1(d), for instance, the centroid method outperformed the probability surface model at

low sample sizes not because is it optimal, and not because the centroid assumption

holds for this offender. Similarly, when Haldane and Madouros (2012) found that a single

indicator model outperformed the full CAMELS model, it was not because single indicator

model was optimal, and not because the “true” economic processes determining bank

receivership reduce to a single measure of liquidity. In both cases the simpler model

was more ecologically rational than the competitors, and in both cases this was due to

knowingly biased and “incorrect” models incurring low variance. The same statistical

arguments justify the use of simple cognitive heuristics (Brighton and Gigerenzer, 2007;

Gigerenzer and Brighton, 2009).

4.2 Orthodox Rationality and the Bias Bias

Advocates of ecological rationality have always maintained that the concept is incompat-

ible with orthodox rationality. At the same time, several commentators have argued that

while models of ecological rationality may generate interesting and insightful findings,

www.economics-ejournal.org 19



Economics: The Open-Access, Open-Assessment E-Journal 14 (2020–2)

these findings not only fail to challenge orthodox rationality but require established ratio-

nality principles to be explained (Chater et al., 2003; Chater and Oaksford, 1999; Oaksford

and Chater, 2009; Gintis, 2012; Jones and Love, 2011). I have argued that a fundamental

incompatibility does exist, and to establish it requires that the relationship be considered

at the level of the assumed statistical problem. Previous critiques, in contrast, have as-

sumed that the terms of the relationship can be established by considering the algorithmic

properties of models of ecological rationality alone. Algorithms alone, though, do not fully

specify the problem they attempt to solve, leaving critics of ecological rationality free to

assume optimality as the assumed goal. The onus is therefore on advocates of ecological

rationality to not only specify component (3) of the interaction above, but explain why it

leads to an incompatibility with orthodox rationality. I will now revisit previous critiques

of ecological rationality in the light of my proposed response to this challenge.

A recurring critique is that when a heuristic works, one still needs a rational expla-

nation for why it works, and that the concept of ecological rationality must ultimately

appeal to orthodox rationality principles when formulating such an explanation (Chater

et al., 2003). And this explanation should be Bayesian in nature. This view extends to

critics of Bayesian optimality modeling, such as Jones and Love (2011), who argue that

the two approaches are “highly compatible” because “any inference algorithm implicitly

embodies a prior expectation about the environment” (p. 186). I interpret this point to

mean that a heuristic (or any learning algorithm) is rational to the extent that this prior

expectation coincides the probabilistic structure of the environment. The problem with

this line of reasoning is that it requires that the probabilistic structure of the environment

be known in order to establish and explain instances of success. As I have shown, this

assumption is incompatible with and challenged by ecological rationality. Furthermore,

even if we assume a probabilistic model of the task environment, this kind of explanation

remains problematic. First, the relative rationality claims of ecological rationality are

made relative not only to an estimate of prediction error, but relative to the alternative

models being considered. These relative claims highlight that models can and typically

do succeed outside of the their implied optimality conditions, and for reasons not easily

explained in terms of a discrepancy between these conditions and the structure of the

environment. Indeed, from bias/variance perspective, they can succeed because of this

discrepancy3.
3A classic example is the naïve Bayes classifier, a simple learning algorithm that makes a strong

assumption that the features (i.e., cues, attributes, or independent variables) are conditionally independent

of each other, given the class. Despite this assumption being extremely unlikely to be met in practice the

naïve Bayes classifier has a long history of performing surprising well, particularly when learning from
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A recurring theme among compatibility arguments is the idea that any simple heuristic

can be reformulated as a probabilistic model operating with respect to a set of optimal-

ity conditions (e.g., Parpart et al., 2018). A compatibility between formulations of the

rationality question, though, cannot be established at the level of specific models. One

has to consider the issue at the level of the assumed statistical problem and uncertainty

conditions characterising this problem. Gintis (2012) applies this reformulation argument

slightly differently by noting that advocates of bounded and ecological have failed to ap-

preciate that any algorithm with consistent preferences can be reformulated as maximizing

an objective function. Therefore, assuming consistent preferences, instances of heuristic

success can always be seen as solutions to an optimization problem (see also Boland, 1981).

What this argument fails to consider is that we can also establish and justify cases of rel-

ative success in task environments where the optimal solution is undefined, and therefore

in situations where we have no basis on which to claim that optimality has been achieved.

The goal of reducing prediction error does not imply that we know what the minimum

achievable prediction error is, and hence what the optimal response is. Gintis’ argument

would carry weight if the incompatibility between ecological and orthodox rationality cen-

tered exclusively on the issue of incompatible algorithmic properties, and specifically, a

contrast between algorithms that don’t explicitly optimize and those that do.

Finally, these concerns return us to the issue of the bias bias when we consider Oaksford

and Chater’s (2009) claim that Bayesian optimality modeling “cannot be replaced by, but

seeks to explain, ecological rationality” (p. 110). Seen at the level of the assumed statistical

problem, this claim implies that Breiman’s notion of algorithmic modeling is reducible to

data modeling. I have argued that two are incompatible, but there is also an argument

to made that Oaksford and Chater’s claimed relationship should be reversed, and that

data modeling is more accurately seen a special case of algorithmic modeling. Specifically,

data modeling is a special case of algorithmic modeling where we assign a single model

the authority of assumed truth and we interpret all other models as approximations. It

is relative to this “true” data model that optimality claims are then made. Crucially, the

authority of this data model stems not from an analysis of its prediction error relative

to alternative models, but faith in our ability to formally integrate the observations and

our probabilistic beliefs about the environment. This is a form of Bayesianism, and the

resulting model is assumed to be unbiased, and by conjecturing it rather than inferring it,

the variance component of prediction is rendered irrelevant. On this view, it makes little

sense to make an optimality claim relative to a model that sacrifices bias in order to achieve

sparse data (Hand and Yu, 2001; Domingos and Pazzani, 1997; Friedman, 1997; Ng and Jordan, 2002;

Webb et al., 2005).
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a greater reduction in variance, and this is why orthodox formulations of rationality can

be seen as another instantiation of the bias bias.

5 Discussion

You have a big approximation and a small approximation. The big approx-

imation is your approximation to the problem you want to solve. The small

approximation is involved in getting the solution to the approximate problem.

(attributed to George Box [e.g., Fieberg et al., 2010, p. 10; Hand, 2014])

Individuals, groups, and organizations make decisions based on limited observations of

complex, uncertain, and unstable environments. I take this to be the overarching problem

that theories of rationality formulate and provide a normative solution to. Despite the

controversial status of optimality in scientific inquiry (Dupré, 1987; Schoemaker, 1991),

the idea that rationality implies optimality is so widely assumed as to seem barely worth

discussing. Optimal Bayesian decision makers in the cognitive sciences, optimal foragers in

biology, and Bayesian maximizers of expected utility in economics are different faces of the

same interdisciplinary orthodoxy. My goal has been to reassess this view by first recogniz-

ing that in formulating the rationality problem we necessarily make a big approximation.

Specifically, an optimal probabilistic response is a solution, a type of small approximation,

to a specific kind of big approximation that presupposes all relevant uncertainties can and

should be quantified. Given the uncertainty of the natural world I consider this to be an

approximation worth questioning, and the examples I used underscore this point. There

exist no optimal solutions to the problems of locating serial burglars, regulating interna-

tional banks, managing portfolios, or identifying active customers. It is not the concept

of rationality that implies optimality, but the big approximation of quantified uncertainty

that implies optimality.

For each of the problems I considered, some models incur lower prediction error than

others. For a specific task environment, it is therefore reasonable to regard some models

as being more rational than others. The concepts of bias, variance, and the bias/variance

dilemma help to disentangle the often complex relationship between the number of avail-

able observations, properties of models being considered, and their relative performance.

Moreover, these concepts allow us to understand how biased, low variance models can out-

perform more “principled” models under conditions of heightened uncertainty, such as in

the criminal profiling example detailed in Figure 2(c). Previous analyses of the problems

I considered exhibited the negative consequences of the bias bias, a cluster of statistical
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intuitions that neglect or ignore the role of variance. As such, the bias bias is the man-

ifestation of a big approximation to the problem of statistical inference that masks the

discovery of predictive, low variance models. If we then run with the idea that rationality

claims can be relative claims, that these relative claims can be made in contexts where

optimality is indeterminable and can be explained in terms of variance reduction, then

orthodox rationality can be seen as falling foul of the bias bias. This is because optimal-

ity claims flow from an assumed ability to profitably conjecture an accurate, unbiased,

probabilistic model of the data generating process. Variance plays no role in formulating

conjectures of this kind. This is the point at which the substantive contrast between ortho-

dox rationality and ecological rationality begins, and the contrast centers not on specific

models or competing theories of cognitive processing, but on the assumed nature of the

statistical problem. It is a clash of big approximations.

The study of ecological rationality makes relative rationality claims that refer to the

ability of one cognitive mechanism to incur lower prediction error relative to other cogni-

tive mechanisms in a given task environment. And because ecological rationality proceeds

by conjecturing and analyzing the performance of cognitive mechanisms in environments

with unknown or non-existent generating distributions, it is fundamentally exploratory.

This is the big approximation of ecological rationality, and I used to Breiman’s (2001)

distinction between data modeling and algorithmic modeling to locate this clash of big

approximations within the broader context of statistical inquiry. Although this distinc-

tion has not previously been related to the study of rationality, I argued that Breiman’s

distinction maps directly onto the big approximations of ecological and orthodox rational-

ity. Furthermore, this contrast is not specific to Breiman but reflects long-standing, deep

divisions in statistics (e.g., Tukey, 1962; Geisser, 1993; Vapnik, 1998; Shmueli, 2010). For

example, the foundations of both algorithmic modeling and ecological rationality share

those of the Minimum Description Length (MDL) principle developed by Rissanen (1978,

1986, 1989) which rests on the idea that “no assumption of a ‘true’ data-generating dis-

tribution is needed. This changes the objective and foundation for all model building”

(Rissanen, 2007, p. 6). This general mode of statistical inquiry, I propose, also changes

the foundation and objective for theories of rationality.

I began with a question: If we reassess the rationality question under the assumption

that the uncertainty of the natural world is largely unquantifiable, where do we end up?

We have arrived at the statistical, cognitive, and normative theory ecological rationality.

Other arrival points are undoubtedly feasible, but it is worth noting that this reassessment

of the rationality question provides a converging line of argument in support of Simon’s

(1956, 1978) bounded rationality. In his critique of Homo economicus, Simon stressed
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that bounded rationality is shaped not only by the computational and cognitive bounds

of the decision maker, but also informational bounds. In cognitive science and economics

there is a tendency to focus on the first aspect of Simon’s proposal, and view bounded

rationality as reducing to the claim that optimization is infeasible due to cognitive and

computational limitations, and this renders optimal responses either out of reach or in

need of redefinition (e.g., Boland, 1981; Gintis, 2012; Griffiths et al., 2015; Gershman et al.,

2015). This view neglects the potential for informational bounds to undermine the assumed

objective of optimality and reshape the rationality question. In contrast, my reassessment

of the rationality question stems entirely from a consideration of informational bounds,

and specifically the impact of unquantifiable uncertainty. Yet this statistical reassessment

converges on the same conclusion. The conclusion is that rationality in an uncertain

world is algorithmic/predictive in nature rather than axiomatic/probabilistic in nature.

Reinhard Selten (2001) argued that “bounded rationality cannot be precisely defined. It

is a problem that needs to be explored” (p. 15). I agree, and my argument elaborates on

Selten’s point by concluding that once we accept that the uncertainty of the natural world

is largely unquantifiable, from a statistical standpoint, the rational response is to explore

algorithms capable of reducing uncertainty rather than seek to define a probabilistic model

that attempts to fully quantify all relevant uncertainties.
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