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The space-time conservation
element and solution element
scheme for simulating two-phase
flow in pipes
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Abstract
In this article, the space-time conservation element and solution element scheme is extended to simulate the unsteady
compressible two-phase flow in pipes. The model is non-conservative and the governing equations consist of three equa-
tions, namely, two mass conservation equations for each phase and one mixture-momentum equation. In the third equa-
tion, the non-conservative source term appears, which describes the sum of gravitational and frictional forces. The
presence of source term and two mass conservation equations in considered model offers difficulties in developing the
accurate and robust numerical techniques. The suggested space-time conservation element and solution element numer-
ical scheme resolves the volume-contact discontinuities efficiently. Furthermore, the modified central upwind scheme is
also extended to solve the same two-phase flow model. The number of test problems is considered, and the results
obtained by space-time conservation element and solution element scheme are compared with the solutions of modified
central upwind scheme. The numerical results show better performance of the space-time conservation element and
solution element method as compare to the modified central upwind scheme.
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Introduction

Two-phase flows are widely observed in natural envi-
ronment, such as snowy or rainy winds, typhoons,
water and air pollution, and volcanic eruptions. They
are also extensively encountered in nuclear power
plants, combustion engines, bio-medical engineering,
food processing industry, and many more.1–3 Because
of these wide range applications, many researchers had
developed several two-phase models and numerical
methods to study the dynamics of such flows. These
two-phase flow models inherit several numerical diffi-
culties since each phase is considered separately and the

model comprises two sets of conservation of mass,
momentum, and energy. For example, the presence of
two momentum equations causes difficulties such as
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loss of hyperbolicity and uncertainties in specifying
interfacial interaction terms between the two phases.
Here, we are interested in the model that elaborates the
compressible two-phase flow in gas and liquid horizon-
tal pipelines. However, above-mentioned difficulties in
two-phase flow models are remarkably reduced by for-
mulating the drift-flux model, in which the mixture
momentum equation is utilized to describe the motion
of whole mixture. This model is a powerful tool for
gaining insight into the flow processes where oil and
gas are transported simultaneously out of a reservoir.
Without modeling of such flows in oil industry, it is
very difficult to describe effects that may arise within a
well bore over time to weaken or improve production.

In this article, we consider the drift-flux model4 that
consists of two mass conservation equations for each
phase and one momentum equation for the mixture.
The drift-flux model was initially designed by Zuber
and Findlay5 and has been improved by many research-
ers.4,6–9 The considered drift-flux model is derived from
the two-fluid model by adding the two momentum
equations for each phase.10 Now, more difficult terms
associated with phase interaction are canceled out, and
the missing information is obtained using the kinematic
constitutive equation,7 which relates the phase veloci-
ties at any point. Still, the source term that is sum of
gravitational and frictional forces is presented in the
considered model. This model explains the isothermal
liquid-gas flow in the long pipeline where the flow
behavior is averaged and perpendicular to the pipe axis.
Hence, the resulting model is one-dimensional (1D) in
the direction of axis.

Due to importance of the drift-flux model, many
numerical schemes had been designed and extended to
investigate this model in the literature. First of all,
Romate6 has developed an approximate Roe-type
Riemann solver for computing the drift-flux model.
Afterward, hybrid flux-splitting and relaxation-type
numerical schemes are designed to solve the same
model in Evje and Fjelde,7,11 respectively. Meanwhile,
Fjelde and Karlsen4 have developed high-resolution
hybrid upwind scheme to analyze the considered
model. In this scheme, for a smooth region, a simple
non-conservative Monotonic Upwind Scheme for
Conservation Laws (MUSCL) scheme and, in a region
of strong discontinuities, high-resolution conservative
scheme are utilized. Next, in Evje and Fjelde,12 another
splitting method, namely, advection upstream splitting
method, is extended to analyze the drift-flux model.7

Furthermore, for solving the same model, semi-implicit
relaxation scheme is proposed in Baudin et al.8 and a
numerical scheme weakly implicit mixture flux (WIMF)
is extended in Steinar et al.13 Subsequently, the multi-
stage approach (MUSTA) is used to develop the cen-
tered numerical scheme for investigating the drift-flux
model in Munkejord et al.9 Recently, Paula and

Valdes14 analyze the drift-flux model in two-phase slug-
flow in horizontal and inclined pipelines using experi-
mental non-Newtonian and Newtonian approaches.

In this article, the space-time conservation element
and solution element (CE/SE) scheme15 is extended for
simulating the compressible two-phase flow in horizon-
tal oil and gas pipelines. This scheme is entirely differ-
ent from the schemes which have been applied before
to solve the considered model. This method has many
distinct features, such as treatment of space and time at
the same step, introduction of conservation elements
(CEs) and solution elements (SEs), shock capturing
approach without utilizing Riemann solvers, and the
use of staggered grid. Besides these distinct features,
the suggested scheme is distinguished by the simplicity
of its conceptual basis-conservation of flux in time and
space; for details, see Chang.15 Various applications of
CE/SE scheme in different areas affirm the scheme’s
generality, robustness, and effectiveness.15–24 Later on,
H Shen and colleagues25,26 designed a new upwind CE/
SE scheme which is based on the ‘‘a’’ scheme (the origi-
nal CE/SE scheme). In this new scheme, the numerical
dissipation is added through the upwind procedure.
This upwind CE/SE scheme preserves almost all fea-
tures of the original CE/SE scheme. For extensive
detail, the reader is referred to the literature.27–31 The
number of test problems is considered to show that the
suggested scheme is highly robust, gives better resolu-
tions of the sharp volume-fraction contact discontinu-
ities, and preserves the positivity of flow variables such
as fluid densities, volume fractions, and pressure. For
checking the accuracy of proposed numerical scheme,
we have extended the modified central upwind scheme
(CUP)32 for solving the considered drift-flux model,
and the results obtained from CE/SE scheme are com-
pared with those of modified CUP.

The rest of article is organized as follows. In section
‘‘Drift-flux model,’’ the drift-flux model is given and
data-dependent terms are described. The CE/SE
scheme for drift-flux model is described in section
‘‘Construction of CE/SE scheme for 1D drift-flux
model.’’ In section ‘‘Numerical test problems,’’ different
interesting test problems are included, to validate and
compare the results of suggested numerical schemes.
Finally, a conclusion of this article is drawn in section
‘‘Conclusion.’’

Drift-flux model

In this section, we present the mathematical form and
eigen-structure of the drift-flux model. Also, we
describe the submodels that are used in this article. We
will restrict ourselves to consider liquid-gas isothermal
flow in the horizontal pipeline. The fundamental equa-
tions for the considered drift-flux model are written as
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∂t alrlð Þ+ ∂x alrlulð Þ= 0

∂t agrg

� �
+ ∂x agrgug

� �
= 0

∂t alrlul + agrgug

� �
+ ∂x alrlu

2
l + agrgu2

g + p
� �

=� q

ð1Þ

Here, al and ag are volume fractions, rl and rg are den-
sities, and ul and ug are velocities. Subscripts g and l

denote the gas and liquid, respectively. The mutual
pressure for gas and liquid is denoted by p. In third
equation, q on the right-hand side is the source term
and defined as

q=Fw +Fg =
32umixmmix

d2
+ gsinu alrl + agrg

� �
ð2Þ

Here, d denotes the inner diameter of pipeline, u repre-
sents the inclination, and g is the gravitational con-
stant. In this study, we have considered horizontal
pipes only, thus u= 0; however, there are some experi-
mental and theoretical studies available in the literature
which study liquid-gas flow in the inclined pipelines.33

The mixture quantities in frictional forces Fw, average
velocity umix, and viscosity mmix are defined as

mmix = alml + agmg and umix = agug + alul ð3Þ

The considered model contains seven unknowns
ul, ug, rl, rg, al, ag, p and three equations. Thus, to
obtain the solutions of the system, additional con-
straints are needed. For this purpose, we have the fol-
lowing relations:

1. Volume fractions are related by the following
relation

al + ag = 1 ð4Þ

2. We use submodel for density of liquid as

rl = rl, 0 +
p� pl, 0

a2
l

ð5Þ

and submodel for density of gas as follows

rg =
p

a2
g

ð6Þ

Here, al and ag are, respectively, sound velocities in
fluid phase and rl, 0 is reference liquid density with cor-
responding reference liquid pressure pl, 0.

3. We use the following algebraic form of gas slip
relation for computational purposes

ug =Coumix + ud ð7Þ

Here, Co is the flow dependent parameter, and ud and
um denote drift-gas and drift-mixture velocity, respec-
tively. The values of constant parameters used in equa-
tions (3)–(7) are given in Table 1.

Eigen-structure

The system of equation (1) can be written as

∂tW + ∂xF Wð Þ=Q Wð Þ ð8Þ

where

W =

alrl

agrg

alrlul + agrgug

0
B@

1
CA,

F Wð Þ=
alrlul

agrgug

alrlu
2
l + agrgu2

g + p

0
B@

1
CA, Q Wð Þ=

0

0

�q

0
B@

1
CA

with W =(w1, w2, w3)= (alrl, agrg, alrlul + agrgug),

F(W )= (f1, f2, f3)= (alrlul, agrgug, alrlu
2
l + agrgu2

g +

p), and Q(W )= (q1, q2, q3)= (0, 0, � q). Now, equation
(8) can be rewritten as

∂t

w1

w2

w3

0
@

1
A+ ∂x

w1ul

w2ug

w1u2
l +w2u2

g + p(w1,w2)

0
@

1
A=

0

0

�q

0
@

1
A

ð9Þ

Note that the passive variable pressure can be
obtained from the conservative variables w1 and w2.
Clearly, equation (9) shows that the components of
physical flux vector cannot be written completely in
terms of conserved variables. Hence, we use some
assumptions as described in Fjelde and Karlsen4 and
obtain the approximate sound velocity. For more com-
prehensive detail about the properties of drift-flux
model, reader is referred to the literature.4,7 Here, we
present only main assumptions that are directly
involved to obtain the approximate sound velocity.

Table 1. Parameters used in numerical computation of the
drift-flux model.

Parameters Value Description

ml 5310�2 Pa s Liquid viscosity
mg 5310�6 Pa s Gas viscosity
al 1000 m=s Sound velocity in liquid phase
ag 316:22 m=s Sound velocity in gas phase
rl, 0 1000 kg=m3 Reference density liquid
pl, 0 105 Pa Reference pressure liquid
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First, by assuming Co = 1 and ud = 0 in equation
(7), we get the no-slip condition, that is, ug = ul = u.
Now, using this assumption, the common velocity u

can be defined in terms of the conserved variable as
u(W )=w3=w1 +w2. Using this expression of u(W ),
equation (9) becomes

∂t

w1

w2

w3

0
@

1
A+ ∂x

w1w3

w1 +w2

w2w3

w1 +w2

w1w2
3

w1w2ð Þ2
+

w2w2
3

w1 +w2ð Þ2
+ p w1,w2ð Þ

0
BBBBBB@

1
CCCCCCA

=
0

0

�q

0
@

1
A ð10Þ

The above system is the required expression for finding the
Jacobian matrix. Now, by applying the definition of w1

and w2, equation (4) in terms of r and w can be written as

w1

rl pð Þ +
w2

rg pð Þ = 1 ð11Þ

Using the values of phase densities rl, g(p) as defined
in equations (5) and (6), equation (11) becomes

w1

rl, 0 +
p�pl, 0

a2
l

+
w2ag2

p
= 1 ð12Þ

By rearranging equation (12) with respect to pressure
p, we get a second-order polynomial of the type

p2 +Bp+C = 0 ð13Þ

where B=a2
l (rl, 0 � (pl, o=a2

l )� w1 � (ag=al)
2w2) and

C =w2(alag)
2((pl, o=a2

l )� rl, 0). The negative root

yields negative pressures for all w1 and w2 for solving
pressure, so here only positive root will be considered
for the physical solutions. The pressure is then given by

p w1,w2ð Þ= �B+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4C
p

2
ð14Þ

Now, from the flux vector in equation (10), we
obtain the Jacobian matrix as follows

J =

w2

w1 +w2

u � w1

w1 +w2

u
w1

w1 +w2

� w2

w1 +w2

u
w1

w+ w2

u
w2

w1 +w2

�u2 +
∂p

∂w1

� u2 +
∂p

∂w2

2u

0
BBBBB@

1
CCCCCA
ð15Þ

with u=w3=(w1 +w2).
Second, we assume that agrg � alrl, that is,

w2 � w1. Now, the Jacobian matrix (15) becomes

J =

0 �u 1

0 u 0

�u2 + ∂p

∂w1
�u2 + ∂p

∂w2
2u

0
@

1
A

The corresponding eigenvalues are

l1 = u� a, l2 = u, l3 = u+a ð16Þ

where l2 represents the velocity of the moving fluid
while l1 and l3 represent the velocity of pressure pulses
traveling in opposite directions. Thus, approximate
sound velocity a is obtained with the assumptions of
agrg � alrl and rl ’ constant; for details, see Fjelde
and Karlsen4

a2 =
p

agrl 1� Coag

� � ð17Þ

Construction of CE/SE scheme for
1D drift-flux model

The CE/SE numerical has entirely different concept
and methodology from the well-established numerical
techniques such as the finite difference, finite volume,
and finite element methods. In this section, the 1D CE/
SE scheme15 is constructed for 1D drift-flux model (1).
For the construction of CE/SE scheme, we rewrite
equation (8) in component form as

∂wm

∂t
+

∂fm

∂x
� Qm = 0, m= 1, 2, 3 ð18Þ

Let x0 = t, x1 = x be the coordinates of a two-
dimensional Euclidean space (E2). By applying the
Gauss divergence theorem, equation (18) is equivalent
to the integral equation

þ
S(V )

W � dS=

ð
V

QmdV ð19Þ

where W=(wm, fm)
T , m= 1, 2, 3, that is, for each

m= 1, 2, 3, the components of the vectorW in the t and
x directions are wm and fm, respectively, and dS =

def dsn

with ds and n being the area and unit outward normal
vector of a surface element on S(V ). Now, equation (19)
is enforced over a space-time domain, called CE, that
allows the discontinuities of flow variables. The actual
numerical integration is carried out in a discrete manner
using SEs. An SE is a different space-time region in
which the flow variables are assumed to be smooth,
thus discretization of the flow variables with a pre-
scribed order of accuracy can be performed.

We denote the computational domain by O as the
set of mesh points (j, n) in E2 space where n= 0, 1=2, 1,
3=2, . . . and for each n, j= 0, 6 1=2, 6 1, 6 3=2, . . ..
For each mesh point (j, n), there is an SE associated
with it—shown in Figure 1—as the interior of the

4 Advances in Mechanical Engineering



space-time region denoted by a dashed curve. It con-
sists of a horizontal line segment, a vertical line seg-
ment, and their immediate neighborhood. The exact
size of the neighborhood does not matter. For
any (x, t) 2 SE(j, n), wm(x, t), fm(x, t), and W(x, t) are
approximated by w�m(x, t; j, n), f �m(x, t; j, n), and W�(x, t;
j, n), respectively, as follows

w�m x, t; j, nð Þ= wmð Þnj + wmtð Þnj t � tnð Þ+ wmxð Þnj x� xj

� �
ð20Þ

and

f �m x, t; j, nð Þ= fmð Þnj + fmtð Þnj t � tnð Þ+ fmxð Þnj x� xj

� �
ð21Þ

Moreover

Q�m x, t; j, nð Þ=Qm w�m,w�mx

� �
ð22Þ

By employing chain rule, we obtain

fmxð Þnj =def
X3

k = 1

fm, kð Þnj wkxð Þnj ð23Þ

fmtð Þnj =
X3

k = 1

fm, kð Þnj wktð Þnj ð24Þ

where

fm, k =
∂fm

∂wk

, m, k = 1, 2, 3 ð25Þ

The Jacobian matrix is formed by fm, k , m, k = 1, 2, 3,
with m and k being the row and column indices, respec-
tively. Note that (wm)

n
j , (wmx)

n
j , and (wmt)

n
j are constant

in SE(j, n). These are numerical analogues of the values
of wm, ∂wm=∂x, and ∂wm=∂t at (xj, t

n), respectively. Since
W=(wm, fm)

T , one can write

W� x, t : j, nð Þ= w�m x, t : j, nð Þ, f �m x, t : j, nð Þ
� �T ð26Þ

Moreover, due to the smoothness assumption
of variables for any (x, t) 2 SE(j, n), w�m(x, t; j, n),
f �m(x, t; j, n), and Q�m(x, t : j, n) satisfy equation (1), that is

∂w�m x, t; j, nð Þ
∂t

+
∂f �m x, t; j, nð Þ

∂x
=Q�m x, t; j, nð Þ ð27Þ

Using equations (20) and (21), equation (27) is equiv-
alent to

wmtð Þnj =� fmxð Þnj +Qm wmð Þnj , wmxð Þnj
� �

ð28Þ

We notice that (fm)
n
j is function of (wm)

n
j , (fmx)

n
j is

function of (wm)
n
j and (wmx)

n
j , and (fmt)

n
j is function of

Figure 1. Space-time staggered grid near SE (j, n) (a) Space-time staggered grid near SE(j,n), (b) CE_(-)(j,n) and CE_(+)(j,n), and (c) CE(j,n).
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(wm)
n
j and (wmt)

n
j . As a result, (wm)

n
j and (wmx)

n
j are the

only independent discrete variables to be calculated in
the current marching scheme.

Let E2 be divided into non-overlapping rectangular
regions (see Figure 1(a)) referred to as CEs. As depicted
in Figure 1(b), two CEs, that is, CE�(j, n) and
CE+ (j, n), are associated with each interior mesh point
(j, n) 2 O. These CEs are referred to as basic conserva-
tion elements (BCEs). Contrarily, CE(j, n) in Figure
1(c), which is the union of CE�(j, n) and CE+ (j, n), is
called compounded conservation element (CCE).

Note that, among the line segments forming the
boundary of CE�(j, n), AB and AD belong to SE(j, n),
while CB and CD belong to SE(j� 1=2, n� 1=2).
Similarly, the boundary of CE+ (j, n) belongs to either
SE(j, n) or SE(j+ 1=2, n� 1=2). As a result, by imposing
two conservation conditions at each (j, n) 2 O, we obtain

þ
S(CE 6 (j, n))

W� � dS=

þ
CE 6 (j, n)

QmdV , m= 1, 2, 3 ð29Þ

According to this equation, the total flux leaving
boundary of any BCE is zero. Because the surface inte-
gration over any interface separating two neighboring
BCEs is evaluated using the information from a single
SE, obviously, the local conservation relation (29) leads
to a global flux conservation relation, that is, the total
flux of W� leaving the boundary of any space-time
region that is the union of any conservation of BCEs
will also vanish. In particular, because CE(j, n) is the
union of CE�(j, n) and CE+ (j, n)

ð
S(CE(j, n))

W� � dS=

ð
CE(j, n)

QmdV , m= 1, 2, 3, (j, n) 2 O

ð30Þ

must follow from equation (29).
Using equation (29) along with equations (20)–(22)

and (26), one obtains

wmð Þnj =
1

2
wmð Þn�

1
2

j+ 1
2

+ wmð Þn�
1
2

j�1
2

h i

� Dx

8
wmxð Þn�

1
2

j+ 1
2

� wmxð Þn�
1
2

j�1
2

h i
� Dt

2Dx
fmð Þ

n�1
2

j+ 1
2

� fmð Þ
n�1

2

j�1
2

h i

� Dt2

8Dx
fmtð Þ

n�1
2

j+ 1
2

� fmtð Þ
n�1

2

j�1
2

h i
+

Dt

4
Qmð Þn�

1
2

j+ 1
2

+ Qmð Þn�
1
2

j�1
2

h i

ð31Þ

or above equation can be written as

wmð Þnj =
1

2

�
wmð Þn�

1
2

j�1
2

+ wmð Þn�
1
2

j+ 1
2

+ Smð Þ
n�1

2

j�1
2

� Smð Þ
n�1

2

j+ 1
2

+
Dt

2
Qmð Þn�

1
2

j+ 1
2

+ Qmð Þn�
1
2

j�1
2

� ��
ð32Þ

where

Smð Þ
n�1

2

j 6 1
2

=
Dx

4
wmxð Þn�

1
2

j 6 1
2

+
Dt

Dx
fmð Þ

n�1
2

j 6 1
2

+
Dt2

4Dx
fmtð Þ

n�1
2

j 6 1
2

ð33Þ

Note that q1 = 0= q2 = 0 and q3 6¼ 0. Moreover

q3ð Þ
n�1

2

j+ 1
2

+ q3ð Þ
n�1

2

j�1
2

=
32

d2
hð Þn�

1
2

j�1
2

uð Þn�
1
2

j�1
2

+ hð Þn�
1
2

j+ 1
2

uð Þn�
1
2

j+ 1
2

� �

ð34Þ

where h is used in place of umix and u is used in place of
mmix, which are given in equation (2).

The numerical oscillations near a discontinuity can
be suppressed using the following limiting formulations
for the slopes of conservative variables

wmxð Þnj =Um wmx�ð Þnj , wmx+
ð Þnj ; z

� �
, m= 1, 2, 3 ð35Þ

Here, z ø 0 an adjustable constant (usually z = 1 or
a= 2). In this article, we set z = 1 and

Um x�, x+ ; zð Þ= jx+ jzx�+ jx�jzx+

jx+ jz + jx�jz
ð36Þ

Moreover

wmx+
ð Þnj =

w0mð Þnj+ 1
2
� wmð Þnj

Dx=2
, wmx�ð Þnj =

wmð Þnj� w0mð Þnj�1
2

Dx=2

ð37Þ

and

w0mð Þnj 6 1
2
= wmð Þn�

1
2

j 6 1
2

+
Dt

2
wmtð Þn�

1
2

j 6 1
2

, l= 1, 2, 3 ð38Þ

Equations (32) and (35)–(38) constitute the CE/SE
solver for 1D drift-flux model. This completes the con-
struction of proposed solver.

Numerical test problems

In this section, several test problems are presented for
the drift-flux flow model. The obtained results of CE/
SE scheme are also compared with the results of modi-
fied CUP.32 Furthermore, the reference solutions are
obtained using the CE/SE numerical scheme on uni-
form 5000 grid cells.

The first two test problems are taken from Kuila
et al.34 for checking the accuracy of proposed numeri-
cal schemes. Our proposed numerical schemes show
better performance in resolving strong discontinuities
as compared to the designed numerical schemes in
Kuila et al.34 The pressure p and speed of sound a are

calculated using the relations a2
grg + a2

l rl and
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Figure 2. The solution of Riemann problem at t= 0:185 s by CE/SE and CUP schemes.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=(rgag + rlal)

q
, respectively. Furthermore, the time step dt is computed using the relation

CFL � dx=max (jl1j, jl2j, jl3j), where CFL denotes the Courant–Friedrichs–Lewy condition. In the first two test
problems, we consider CFL= 0:6. Furthermore, gas and liquid phase velocities are taken the same, that is, no-slip
condition is used, as described in Kuila et al.34

Test problem 1. The left and right states of the Riemann problem are

rg, L = 50, rl, L = 100, ag, L = 500:0, al, L = 100:0 ug, L =� 100:0, ul, L =� 100:0 m=s
� �

rg,R = 50, rl,R = 1000, ag,R = 500:0, al,R = 100:0 ug,R = 100:0, ul,R = 100:0 m=s
� � ð39Þ

Here, the subscripts R and L represent the right and left states, respectively. In this test problem, ag and al repre-
sent the compressibility factors of gas and liquid, respectively. The solution profiles of the problem computed on
200 grid cells at time t = 1:85 s are given in Figure 2, which shows that the left wave is a rarefaction wave and a
contact discontinuity, and right wave is also a rarefaction wave.

Test problem 2. The left and right states of the Riemann problem are

rg, L = 0:1, rl, L = 0:1, ag, L = 700:0, al, L = 300:0 ug, L = 200:0, ul, L = 200:0 m=s
� �

rg,R = 0:1, rl,R = 0:1, ag,R = 700:0, al,R = 300:0 ug,R =� 200:0, ul,R =� 200:0 m=s
� � ð40Þ
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The solution profiles of test problem are given in
Figure 3 at time t= 0:015 and obtained on 200 grid
cells. Figure 3 shows that the left wave is a shock wave,
central wave is a contact discontinuity, and right wave
is also a shock wave.

The next two test problems are taken from Fjelde
and Karlsen.4 In these problems, we consider the liquid
density rl = 1000 kg=m3 and use the gas slip-condition
(7), with Co = 1:07 and ud = 0:216 m=s. The density of
gas is obtained using relation (6), and again for these
problems, we consider Fg = 0. Furthermore, the time
step dt is computed using the relation CFL � dx=max
(jl1j, jl2j, jl3j), where the value of a is taken from equa-
tion (17) and set CFL= 0:4. In both test problems, the
length of horizontal pipe is taken 100 m and solution
profiles are computed on 400 grid cells. Initially, the
pipe is separated in a left and right state at x0 = 50 m.

Test problem 3. The left and right states of this Riemann
problem are

ag,L = 0:55, u1, L = 10:37 m=s, pL = 80, 450 Pa
� �
ag,R = 0:55, u1,R = 0:561 m=s, pR = 24, 282 Pa
� � ð41Þ

The solution consists of a left going shock wave, a
contact wave, and a right going shock wave, as shown
in Figure 4. The results obtained by different schemes
at time t= 1:0 s are shown in Figure 4. The results
show that CE/SE scheme is more efficient than the
modified CUP.

Test problem 4. The left and right states of this Riemann
problem are

ag,L = 0:35, u1,L = 1:868 m=s, pL = 192, 170 Pa
� �
ag,R = 0:30, u1,R = 14:47 m=s, pR = 196, 690 Pa
� � ð42Þ
The solution composes of a left-going rarefaction

wave, a contact discontinuity wave, and a right-going
rarefaction wave, as shown in Figure 5. The solution
profiles of phase velocities, volume fraction, and pres-
sure are obtained from CE/SE and modified CUP
schemes at time t = 1:0 s, as shown in Figure 5. Once
again, the CE/SE numerical scheme efficiently resolves
the strong discontinuities as compared to the modified
CUP scheme.

The last two problems were also considered in
Fjelde and Karlsen.4 These test problems are

Figure 3. Numerical results of Riemann problem at t= 0:015 s by CE/SE and CUP schemes.
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considered the hardest for the numerical schemes. In
these test problems, the source term Fw is also involved.
In these test problems, the gas slip-condition (7) is used
with Co = 1:0 and ud = 0:0 m=s. Here, the length of
horizontal pipe is taken 1000 m with the diameter
0:1 m. In these test problems, the solution profiles are
computed on 200 grid cells.

Test problem 5. The first 750 m part of pipe is filled with
stagnant liquid, and the remaining area filled with 1%
gas and 99% liquid. Initially, the pressure is 105 Pa in
the horizontal pipe. A pressure pulse is generated by
increasing the inlet liquid rate from 0 to 0:3 kg=s in
0:0025 s. In the pure liquid region, the speed of sound
is considered 1000 m=s and in the 1% gas region, the
speed of sound is considered 100 m=s. Now, pressure
waves move from left to right and will develop a strong
shock wave, as shown in Figure 6. Because of sudden
changes in the speed of sound and density of mixture, a
large part of the pulse will be reflected. As a result of
reflection, there will be a rarefaction wave. The solution
profiles of liquid velocity and pressure at different times
(t=0.4, 0.9, and 1.3 s) are given in Figure 6, and the
reference solutions are obtained for time t=1.3 s. Both

schemes behave very well for this hardest test problem,
but the CE/SE numerical scheme shows better results
at t = 1:3 s.

Test problem 6. In this test problem, the pipe is initially
filled with stagnant liquid. By injecting liquid and gas at the
inlet, the mass flow rate of liquid as well as gas increased to
3:0 and 0:02 kg=s, respectively, in 10 s. The pressure
p= 105 Pa is kept constant at the outlet boundary. The
solution profiles of liquid and gas mass flow rates at the
four different positions x= 250, 500, 750, and 1000 m
are given in Figure 7, and the reference solutions are
obtained at position x= 1000 m.

The gas and liquid passing through the horizontal
pipe experience a decreasing pressure due to the fric-
tional forces. As a consequence, the gas will expand,
resulting in increased gas mass flow rates and the move-
ment of liquid with larger velocity in front of the gas.
Figure 7 shows that the liquid mass flow rate rises until
the gas increases and decreases rapidly after passing the
gas, while the rate of gas mass increases immediately
when the gas arrives. The gas and liquid mass flow rates
form sharp peaks at x= 1000 m and then drop quickly.
After 800 s approximately, the flow has stabilized.

Figure 4. Numerical results of Riemann problem by CE/SE and CUP schemes at t = 1.0 s.
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Once again, the results obtained by suggested numerical
schemes are comparable and closely match with the
results available in Fjelde and Karlsen.4 The CE/SE
numerical scheme captures the sharp peak efficiently as
compared to the modified CUP scheme, as shown in
Figure 7.

Conclusion

In this article, the CE/SE scheme was extended to
obtain the numerical solutions of the considered drift-
flux model. The suggested numerical technique was
capable to capture the volume-fraction discontinues
without producing the oscillations. For comparison

Figure 5. Numerical results of shock tube problem by CE/SE and CUP schemes at t= 1:0 s.

Figure 6. Numerical results of pressure pulse and liquid velocity at different times by CE/SE and CUP schemes.
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and validation, the modified CUP was also applied to
solve the same drift-flux model. The number of test
problems was considered. The numerical solutions
obtained by CE/SE scheme verified the robustness,
accuracy, and high resolutions for sharp discontinu-
ities. A good agreement was found between the numeri-
cal solutions of both types of techniques, but CE/SE
scheme has captured the strong shock waves and con-
tact discontinuities more accurately and efficiently.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

ORCID iD

Rana Danish Aslam https://orcid.org/0000-0001-5283-147X

References

1. Pelanti M and LeVeque RJ. High-resolution finite vol-

ume methods for dusty gas jets and plumes. SIAM J Sci

Comput 2006; 28: 1335–1360.
2. Dobran F, Neri A and Macedonio G. Numerical simula-

tion of collapsing volcanic columns. J Geo Res 1993; 98:

4231–4259.
3. Dufek J and Bergantz GW. Dynamics and deposits gen-

erated by the Kos Plateau Tuff eruption: controls of

basal particle loss on pyroclastic flow transport. Geochem

Geophy Geosy 2007; 8: 1–18.
4. Fjelde KK and Karlsen KH. High-resolution hybrid

primitive-conservative upwind schemes for the drift flux

model. Comp Flu 2002; 31: 335–367.
5. Zuber N and Findlay JA. Average volumetric concentra-

tion in two-phase flow systems. J Heat Transf 1965; 87:

453–468

6. Romate JE. An approximate Riemann solver for a two-

phase flow model with numerically given slip relation.

Comp Flu 1998; 27: 455–477.
7. Evje S and Fjelde KK. Hybrid flux-splitting schemes for

a two-phase flow model. J Compu Phy 2002; 175:

674–701.
8. Baudin M, Berthon C, Coquel F, et al. A relaxation

method for two-phase flow models with hydrodynamic

closure law. Numer Math 2005; 99: 411–440.
9. Munkejord ST, Evje S and Flatten T. The multi-stage

centered-scheme approach applied to a drift-flux two-

phase flow model. Int J Numer Methods Flu 2006; 52:

679–705.
10. Ishii M. Thermo-fluid dynamics of two-phase flow. Paris:

Eyrolles.
11. Evje S and Fjelde KK. Relaxation schemes for the calcu-

lation of two-phase flow in pipes. Mathema Comp Mod

2002; 36: 535–567.
12. Evje S and Fjelde KK. On a rough AUSM scheme for a

one-dimensional two-phase model. Comp Flu 2003; 32:

1497–1530.
13. Steinar E, Tore F and Munkejord ST. A WIMF scheme

for the drift-flux two-phase flow model, 2006, https://

pdfs.semanticscholar.org/7738/53a3da1866491f69a-

be83b949087f4465cc3.pdf?_g-

a=2.13019440.648436184.1576746035-

1540706140.1559042995
14. Paula DP and Valdes JP. Analysis of the drift flux in two-

phase gas-liquid slug-flow along horizontal and inclined

pipelines. J Flu Flo Heat Mas Trans 2018; 5: 53–70.
15. Chang SC. The method of space-time conservation ele-

ment and solution element a new approach for solving

the Navier-Stokes and Euler equations. J Compu Phy

1995; 119: 295–324.
16. Chang SC, Wang XY and Chow CY. New developments

in the method of space-time conservation element and solu-

tion element-applications to two-dimensional time-march-

ing problems (NASA-TM-106758), 1994, https://ntrs.nasa

.gov/search.jsp?R=19950010470
17. Chang SC, Wang XY and Chow CY. The space-time

conservation element and solution element method: a

new high-resolution and genuinely multidimensional

Figure 7. Numerical results at different positions by CE/SE and CUP schemes.

Danish Aslam et al. 11

https://orcid.org/0000-0001-5283-147X
https://pdfs.semanticscholar.org/7738/53a3da1866491f69abe83b949087f4465cc3.pdf?_ga=2.13019440.648436184.1576746035-
https://pdfs.semanticscholar.org/7738/53a3da1866491f69abe83b949087f4465cc3.pdf?_ga=2.13019440.648436184.1576746035-
https://pdfs.semanticscholar.org/7738/53a3da1866491f69abe83b949087f4465cc3.pdf?_ga=2.13019440.648436184.1576746035-
https://pdfs.semanticscholar.org/7738/53a3da1866491f69abe83b949087f4465cc3.pdf?_ga=2.13019440.648436184.1576746035-
https://ntrs.nasa.gov/search.jsp?R=19950010470
https://ntrs.nasa.gov/search.jsp?R=19950010470


paradigm for solving conservation laws. J Compu Phys

1999; 156: 89–136.
18. Liu M, Wang JB and Wu KQ. The direct aero-acoustics

simulation of flow around a square cylinder using the
CE/SE scheme. J Algo Compu Technol 2009; 1: 525–537.

19. Chang SC, Wang XY and To WM. Application of the
space-time conservation element and solution element
method to one-dimensional convection-diffusion prob-
lem. J Compu Phys 2000; 165: 189–215.

20. Loh CY, Hultgren LS and Chang SC. Wave computation
in in-compressible flow using the space-time conservation
element and solution element method. AIAA J 2001; 39:
794–801.

21. Loh CY, Hultgren LS, Chang SC, et al. Noise computa-
tion of a shock-containing supersonic axisymmetric jet
by the CE/SE method. In: 38th AIAA aerospace sciences

meeting, Reno, NV, 10–13 January 2000, AIAA paper

2000-0475, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.
nasa.gov/20000025236.pdf

22. Loh CY and Zaman KB. Numerical investigation of
transonic resonance with a convergent-divergent nozzle.
AIAA J 2002; 40: 393–401

23. Qamar S and Mudasser S. On the application of a variant
CE/SE method for solving two-dimensional ideal MHD
equations. App Numer Math 2010; 60: 587–606.

24. Wang XY, Chen CL and Liu Y. The space-time CE/SE
method for solving Maxwell’s equations in time-domain.
In: 2002 IEEE international symposium on antennas and

propagation national radio science meeting, San Antonio,
TX, 16–21 June 2002. New York: IEEE.

25. Shen H, Wen C-Y and Zhang D-L. A characteristic
space-time conservation element and solution element
method for conservation laws. J Compu Phy 2015; 288:
101–118.

26. Shen H and Wen C-Y. A characteristic space-time conser-

vation element and solution element method for conser-

vation laws II. Multidimensional extension. J Compu Phy

2016; 305: 775–792.
27. Shen H, Wen C-Y, Liu K-X, et al. Robust high-

order space-time conservative schemes for solving conser-

vation laws on hybrid meshes. J Compu Phy 2015; 281:

375–402.
28. Shen H, Wen C-Y, Parsani M, et al. Maximum-principle-

satisfying space-time conservation element and solution

element scheme applied to compressible multi-fluids. J

Compu Phy 2017; 330: 668–692.
29. Guan B, Liu Y, Wen C-Y, et al. Numerical study on

liquid droplet internal flow under shock impact. AIAA J

2018; 56: 3382–3387.
30. Wen C-Y, Massimi HS and Shen H. Extension of CE/SE

method to non-equilibrium dissociating flows. J Compu

Phy 2018; 356: 240–260.
31. Fan E, Guan B, Wen C-Y, et al. Numerical study on the

jet formation of simple-geometry heavy gas inhomogene-

ities. Phy Flu 2019; 31: 026103–026113.
32. Kurganov A and Lin CT. On the reduction of numerical

dissipation in central-upwind schemes. Commu Comp Phy

2007; 2: 141–163.

33. Pico PD, Valdés JP, Ratkovich N, et al. Analysis of the

drift flux in two-phase gas-liquid slug-flow along hori-

zontal and inclined pipelines through experimental (non)-

Newtonian and CFD Newtonian approaches. J Flu Flo

Heat Mas Trans 2018; 5: 100–117.
34. Kuila S, Raja Sekhar T and Zeidan D. A Robust and

accurate Riemann solver for a compressible two-phase

flow model. App Math Computation 2015; 265: 681–695.

12 Advances in Mechanical Engineering

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000025236.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000025236.pdf



