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Abstract
Introduction Marine planktonic communities are complex microbial consortia often dominated by microscopic algae. The 
taxonomic identification of individual phytoplankton cells usually relies on their morphology and demands expert knowledge. 
Recently, a live single-cell mass spectrometry (LSC-MS) pipeline was developed to generate metabolic profiles of microalgae.
Objective Taxonomic identification of diverse microalgal single cells from collection strains and plankton samples based on 
the metabolic fingerprints analyzed with matrix-free laser desorption/ionization high-resolution mass spectrometry.
Methods Matrix-free atmospheric pressure laser-desorption ionization mass spectrometry was performed to acquire single-
cell mass spectra from collection strains and prior identified environmental isolates. The computational identification of 
microalgal species was performed by spectral pattern matching (SPM). Three similarity scores and a bootstrap-derived 
confidence score were evaluated in terms of their classification performance. The effects of high and low-mass resolutions 
on the classification success were evaluated.
Results Several hundred single-cell mass spectra from nine genera and nine species of marine microalgae were obtained. 
SPM enabled the identification of single cells at the genus and species level with high accuracies. The receiver operating 
characteristic (ROC) curves indicated a good performance of the similarity measures but were outperformed by the bootstrap-
derived confidence scores.
Conclusion This is the first study to solve taxonomic identification of microalgae based on the metabolic fingerprints of the 
individual cell using an SPM approach.

Keywords Microalgal identification · Live single-cell mass spectrometry · Matrix-free laser desorption/ionization high-
resolution mass spectrometry · Spectral pattern matching · Spectrum similarity · Metabolic fingerprinting

1 Introduction

Phytoplankton inhabiting aquatic ecosystems worldwide is 
highly complex and can contain thousands of interacting 
species, which coexist and potentially compete for the same 
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resources (Poulin et al. 2019; Schwartz et al. 2016). The 
classical taxonomic identification of larger phototrophic 
microalgae over 20 µm is based on morphological features 
of the cells that are investigated by light or electron micros-
copy (Hoppenrath et al. 2009). The identification requires 
expert knowledge and often leads to misclassifications due 
to morphological similarities of different species. Automated 
approaches, such as PlanktoVision have been developed and 
use a neural network that analyzes light-microscope pictures 
to classify microalgae (Schulze et al. 2013). More advanced 
workflows combine the algorithm-assisted picture analysis 
with fluorescence information, and yield taxonomic resolu-
tion on a single-cell level, even deriving the growth phase of 
the analyzed microalgae (Dunker et al. 2018). This approach 
has been applied for identification based on features from 
morphological criteria (e.g. ornamentation, contour, shape) 
or image characteristics (e.g. transparency, area) of living 
algal cells (Sosik and Olson 2007; Zheng et al. 2017) or 
purified diatom cell walls (Bueno et al. 2017). Complemen-
tary molecular genetic methods determining the taxonomic 
identity of algae are available since the 1970s and include 
now the genome sequencing of single microbial cells (Step-
anauskas 2012). Nevertheless, most of these existing meth-
ods require time-consuming sample preparation and do not 
give information on the physiological status of cells, nor on 
cellular metabolites.

Matrix-assisted laser desorption-ionization time-of-flight 
mass spectrometry (MALDI-TOF MS) allows the identifica-
tion of microorganisms such as bacteria, fungi, and algae, 
based on mass spectra of protein extracts from groups of 
cells (Barbano et al. 2015; Crossay et al. 2017; Mello et al. 
2017; Murugaiyan and Roesler 2017). MALDI-TOF mass 
spectra analysis is established for the automated identifica-
tion of bacteria by spectral pattern matching (SPM) and clus-
tering algorithms, even when consortia of organisms were 
analyzed (Sandrin and Demirev 2018; Yang et al. 2018).

However, a group of cells, even sampled from a single 
clonal culture, is far from being homogeneous. Cells of the 
same population with very different physiological status can 
coexist (e.g. mitotically dividing, encysting, sexually repro-
ducing, actively growing, resisting against pathogen). Work-
ing at the single cell level is the only way to explore both 
the identity and the physiology of a specimen. Single-cell 
analysis has been introduced in the last decade to profile the 
cellular content, providing information on the genes, pro-
teome, transcriptome or metabolome of the organism under 
study (Yuan et al. 2017). Single-cell mass spectrometry of 
algal cells has already been developed with matrix-free laser 
desorption-ionization using the ionization-enhancing effect 
of diatom cell walls (Jaschinski et al. 2014). Live single-cell 
mass spectrometry (LSC-MS) with laser-desorption ioniza-
tion high-resolution mass spectrometry was developed to 
profile reliably the low-molecular-weight metabolites of 

living cells kept in their native environment prior to analysis. 
This allows the study of the cellular physiology in microal-
gae (Baumeister et al. 2019). High-resolution atmospheric 
pressure scanning microprobe laser desorption/ionization 
mass spectrometry with its high spatial resolution (10 µm) 
enables individual targeting of intact live microbial cells 
under ambient conditions. Coupling of the source to an 
Orbitrap mass spectrometer provides high-resolution mass 
spectra (Baumeister et al. 2019; Schober et al. 2012). The 
analysis of such high-throughput data is however challeng-
ing. To date, only a few bioinformatic classification tools 
are available for (MA)LDI derived workflows, including 
the Bruker Biotyper® (Bizzini and Greub 2010), VITEK® 
MS (Branda et al. 2014) and the freeware Matlab based tool 
MicrobeMS (Lasch 2015). Recently, Yang et al. 2017 intro-
duced an optimized SPM pipeline, whereby the reliability 
of the prediction was boosted by confidence scores that were 
derived from the identification results of bootstrap spectra 
from the query spectrum (Yang et al. 2017). This study 
aimed to demonstrate the utility of LSC-MS for the taxo-
nomic discrimination of live single cells picked from natu-
ral samples. Therefore, we combined LSC-MS to generate 
single-cell mass spectra with the optimized SPM approach to 
enable microalgal cell identification, based solely on single-
cell mass spectrometry profiles.

2  Materials and methods

2.1  Sampling and identification of microalgae

Algae strains were purchased from the Roscoff Culture 
Collection (RCC, Vaulot et  al. 2004) and maintained 
under fluorescent lamps (irradiance 100 mE m−2 s−1) with 
a 14 h photoperiod coupled to a thermo-regulated cycle 
(16–12  °C  day–night). Novel microalgal isolates were 
obtained during field sampling at the bloom season in 
the waters of Penzé Estuary (France, June 2018), Lesvos 
(Greece, May 2018), Helgoland (Germany, August 2016 
and 2017) and Farsund (Norway, September 2017). The 
workflow from algal cell isolation to single-cell analysis is 
detailed in Fig. 1a. The field samples were concentrated by 
filtration using nylon mesh (40, 70 and 100 µm pore size, 
Corning Life Sciences) and washed with sterile-filtered sea-
water. Single algal cells were picked by micromanipulation 
under a binocular stereomicroscope (binocular VisiScope®, 
VWR International GmbH, Pennsylvania, US). Cells were 
transferred into Petri dishes with 5 mL sterile natural seawa-
ter (ATI, Gebesee, Germany). Single cells were then either 
re-isolated by pipetting and/or purified by dilution (Andersen 
2005). Almost all of the isolated cells divided and multiplied 
to give sufficient individuals for analysis within 15 days. 
Meanwhile, cultures were visualized with light microscopy, 
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photographed, and their morphological characteristics were 
compared with descriptions from previous studies of phy-
toplankton blooms in these areas (Hoppenrath et al. 2009). 
The isolated algal cells were identified to the genus level 
using light microscopy. All algae from field samplings and 
culture collection were maintained under the same cul-
ture conditions and grown in Guillard’s (F/2) enrichment 
medium (Sigma-Aldrich, Munich, Germany) prepared with 
natural 0.2 µm filtered and autoclaved seawater. Among the 
algal isolates, 15 were deposited in the RCC collection under 
strain numbers RCC6807 to RCC6821. Pictures of cells were 
taken with a 20 × /0.4 Ph2-Korr-Achroplan on an Axiovert 
200 microscope (Zeiss, Jena, Germany).

2.2  LSC‑MS analysis and pre‑processing 
of single‑cell spectra

Single algal cells growing in the replete medium at the 
early growth stage were manually collected with a 20 µL 
pipette and deposited onto a GF/C glass fiber filter wetted 
with medium (Whatman, Maidstone, United Kingdom) 
according to Baumeister et al. (2019). For chain-forming 
diatoms such as Chaetoceros spp. or Thalassiosira spp., 
only cells separated from chains were analyzed, since the 
spatial resolution of the laser does not allow an analysis of 
single cells in chains. The AP-SMALDI ion source (Trans-
MIT, Gießen, Germany) was coupled to a Q Exactive™ 
Plus (Thermo Fisher Scientific, Bremen, Germany) mass 
spectrometer to record high-resolution LSC-MS spectra. 
Individual cells were either analyzed in positive or negative 
polarity with 120 cycles per cell (1 min acquisition time). 

One cycle comprises 30 laser shots with a frequency of 
60 Hz with an approximate energy of 1.5 μJ per shot. Mass 
spectra were recorded in the mass range from m/z 100 to 
1000 with a resolving power of 280 000 (at m/z 200). This 
range was chosen to cover a sufficient amount of metabolites 
for fingerprinting but it could be extended if metabolites 
of interest fall outside of the range. Every single-cell mass 
spectrum represents an average of all scans from the one-
minute data acquisition. MS raw files were converted with 
the Thermo File Converter from the Xcalibur suite 3.0.63 
to the netCDF format and processed with the MALDIquant 
R package (Gibb and Strimmer 2012). Sample spectra were 
de-noised (signal-to-noise ratio 5) and peaks co-occurring 
in medium blanks acquired from the sterile medium were 
removed. Processed spectra were conserved in the comma-
separated values (CSV) file format. Upfront similarity scor-
ing, spectra were normalized to the most abundant signal in 
the individual spectrum (base peak normalization). Integer 
mass spectra were generated from the high-resolution mass 
spectra by rounding the m/z values to integers and sum-
ming up the corresponding intensities of those signals that 
matched together after rounding. Datasheets with metadata 
were created (data files S11–S14), and a unique identifier 
(ID) was assigned to each LSC-MS profile. The metadata 
files contain information about the sampling site, date of 
isolation, date of LSC-MS analysis, growth medium used, 
and strain availability in a culture collection. The dataset 
structure and content are presented in Fig. 1b. Spectra, R 
scripts, metadata files and result data files used in this study 
are available in the Pohnert-Lab GitHub repository (https ://
githu b.com/Pohne rt-Lab/SC-MS-Ident ifica tion).
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 To HR-MS 
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Fig. 1  Workflow of the spectral database generation and data analysis 
using SPM. a Microalgae were obtained from culture collection and 
field sampling during the bloom season. Microalgal cells from the 
field samplings were isolated and identified. Single algal cells were 
analyzed in their native environment with matrix-free laser desorp-
tion/ionization high-resolution mass spectrometry. After pre-process-
ing, each single-cell spectrum received a unique identification num-

ber and was recorded in the single-cell profile database. b Structure 
and content of the datasets analyzed with SPM: the collection strain 
dataset is a subset of the mixed dataset which includes single-cell 
spectra from field sampling algae. c Principle of the SPM, from the 
database (DB) containing N spectra, each spectrum (n) was once iso-
lated and used as a query against the reduced DB
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2.3  Spectral similarity matching and statistical 
analysis

Data analysis was conducted in R 3.4.2 (R Core Team 2017). 
Normalization, similarity scoring, and bootstrap assess-
ment (n = 500) of top hits from spectral pattern matching 
(SPM) were performed based on a method established by 
Yang et al. (2017). Mass tolerance for matching of high-
resolution masses was set to ± 5 ppm, and for integer masses 
to ± 500 ppm. SPM of live single-cell mass spectra was per-
formed with three similarity measures, the cosine correlation 
(Cos), the relative Euclidean distance similarity (Eu) and 
the intensity-weighted relative Euclidean distance similarity 
(iEu). Each spectrum of the in-house database was removed 
once from the database and used as the query (Fig. 1b). Only 
the match result with the highest score (top hit) was used for 
data evaluation. Sensitivities and error rates were calculated 
according to Yang et al. (2017), corresponding threshold 
scores were determined and the receiver operating character-
istic (ROC) curves produced using the pROC package 1.10.0 
(Robin et al. 2011). Confusion matrices were produced using 
the ModelMetrics package 1.1.0 (Hunt 2016). A qualitative 
rating of the AUC values was established according to Xia 
et al. (2013). The plots displaying the number of peaks per 
genus or species (Figs. S2, S3) and the plots showing the fre-
quencies of peaks per spectrum (bin size m/z 10) per genus 
or species (Figs. S4–S7) were produced with the ggplot2 
package 2.2.1 (Hadley 2016). Graphics were processed in 
Adobe Illustrator CS5.

3  Results and discussion

3.1  Microalgae samplings and LSC‑MS acquisition

Microalgae belonging to the group of bloom-forming sin-
gle-cell eukaryotes, coexisting in marine ecosystems, were 
selected for the study. Several diatom genera and one dino-
flagellate genus were obtained from monoclonal public col-
lection strains and from field samplings at many different 
locations in Europe. The established workflow, from algae 
isolation, maintenance in culture to single-cell analysis is 
depicted in Fig. 1a. Single algal cells from the field sam-
plings were purified by dilution, photographed under a light 
microscope (Fig. S1), and identified based on morphologi-
cal characteristics and literature (Hoppenrath et al. 2009). 
A high number of strains, mainly belonging to the genera 
Guinardia, Coscinodiscus, and Chaetoceros were recovered 
(Table S1). The process of obtaining one mass spectrum 
of one cell, including sample preparation, data acquisition 
to computation can be performed within few minutes. An 
important advantage of the method introduced here, com-
pared to competing techniques is the low effort in sample 

preparation, which involves only filtration. Also the pos-
sibility to rely on data bases for identification once expert 
knowledge has been put in to classify the species is superior 
compared to traditional light microscopy approaches. High-
resolution single-cell mass spectra of intact live algal cells 
were acquired in negative and positive polarity (Table S1). 
The overall data set, denoted as the "mixed dataset", con-
tained 662 mass spectra acquired in positive (383 spectra) or 
negative polarity (279 spectra), obtained from 64 strains of 
9 genera (Fig. 1b, Table S1). A subset of the whole dataset, 
referred to as the "collection strain dataset", consisted of 
spectra obtained from 9 species from culture collections. 
The collection strain dataset contained 224 spectra, includ-
ing 137 single-cell spectra acquired in positive polarity and 
87 spectra in negative polarity (Fig. 1b). To first assess the 
SPM methodology a dataset that contains only spectra from 
cells unambiguously identified to the species level was used. 
Later the mixed species datasets with more genera or isolates 
from the field were analyzed. Most of the spectra were rich 
in peaks but the number of peaks per cell was dependent on 
the individual and varied according to genus and species 
(Figs. S2, S3). The total count varied in the range from less 
than ten to several thousand peaks per spectrum. The abso-
lute count of peaks tended to be higher in spectra obtained in 
positive polarity, with Thalassiosira being an exception (Fig. 
S2). The spectra were not further filtered, nor were peaks 
removed, as it is the practice in the generation of MALDI 
reference spectra of bacteria (Freiwald and Sauer 2009).

Frequencies of m/z values per spectrum (bin size m/z 
10, split by genus and species) showed a similar trimodal-
type pattern (Figs. S4–S7), whereby the region in between 
m/z 100–330 usually contained most of the signals, followed 
by the range m/z 430–660 and few but pronounced signals 
were observed in the range of m/z 760–880. The follow-
ing taxonomic identification approach relied entirely on the 
whole mass spectral fingerprint and therefore the underlying 
pattern produced by all detected signals. Nevertheless, the 
molecular classes that are principally addressed with this 
technique are noteworthy. It was shown that direct LDI-MS 
of intact microalgal cells addresses photosensitive molecules 
such as pigments (e.g. carotenes and chlorophyll), as well 
as lipids and even zwitterionic molecules such as DMSP 
(Urban et al. 2011; Baumeister et al. 2019).

3.2  Identification of microalgae based on spectral 
pattern matching

Each single-cell mass spectrum was used as a query for the 
SPM (Fig. 1c) and was therefore isolated from the database 
following the method from Yang et al. 2017. Identifica-
tion success was evaluated independently for the respec-
tive polarity and spectral similarity measure. Results were 
visualized in confusion matrices (Figs. 2, 3, S8–S10). A 
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confusion matrix gives an overview of the classification 
success (hits) and misclassification of the queried spectra 
dependent on the used classifier (Dunker et al. 2018).

The analysis of the collection strain dataset revealed con-
vincing identification results, with overall accuracies in the 
range of 88.6% to 100% at the genus (Fig. 2) and 73.4% to 
98.7% at the species level (Fig. 3). The similarity measures 
Eu and iEu performed slightly better than Cos, especially at 
the species level (Fig. 3), as did spectra obtained in negative 
polarity (Figs. 2, 3). However, the direct comparison of both 
polarities is challenging, since each cell could only be ana-
lyzed by one polarity. Misclassifications at the species level 
often occurred in the way that species were misclassified as 
a species from the same genus, as indicated by the very high 
accuracies of up to 100% at the genus level.

The mixed dataset which extended the collection strain 
dataset by cells from field sampling showed lower over-
all classification accuracies of 79.0% to 89.9% (Fig. S8). 

Especially Pleurosigma and Rhizosolenia were wrongly 
assigned quite often to various different genera. The differ-
ences in accuracy between the similarity measures and also 
the ionization polarities were negligible and small. Never-
theless, the obtained accuracies are in the same range as of 
taxonomical experts (Culverhouse et al. 2003) or machine 
learning approaches (Zheng et al. 2017) which assign the 
algal identity based on microscopy images.

3.3  Statistical assessment of the SPM‑driven 
identification

To evaluate the performance of the microalgal identification 
based on SPM, the receiver operating characteristic (ROC) 
curves were obtained for the three similarity measures and 
the bootstrap-derived confidence scores, further divided by 
dataset, genus or species level and polarity (Figs. 4, 5, S11, 
S12). The ROC curves illustrate the relationship between 
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sensitivity (true positive rate) and specificity (true nega-
tive rate) of one or more classifiers by constantly altering 
the decision threshold (Zweig and Campbell 1993). In this 
study, the classifiers are the three similarity measures (Cos, 
Eu, iEu) and the corresponding bootstrap-derived confi-
dence scores. The area under the ROC curve (AUC) is an 
established measure of performance of analyzed classifi-
ers, whereby an area greater than that under the diagonal 
(AUC > 0.5) indicates a positive non-stochastical classifica-
tion (Hanley and McNeil 1982).

We first evaluated the classifier performance at the 
genus and species level based on the collection strain 
dataset (Fig. 4). At the genus level, the best scores were 
obtained with Cos (AUC: 0.931) and Eu (AUC: 0.942) 
for single-cell spectra acquired in positive and negative 
polarity, respectively (Fig. 4a, c). Fair AUCs of 0.753 to 
0.791 (positive polarity) and good to excellent AUCs of 
0.850 to 0.970 (negative polarity) were reached at the spe-
cies level (Fig. 4e, g). The scoring measures Eu and iEu 
surpassed Cos in all analyses, except for the spectra at the 

genus level in positive polarity (Fig. 4a). The classification 
performance dropped when the mixed dataset was used 
and poor to fair AUCs in the range of 0.680 to 0.789 were 
obtained (Fig. 5a, c). The bootstrap-dependent confidence 
scores improved the classification performance for most of 
the analyses, but especially for those that exhibited poor 
to fair AUCs when the similarity scores were used as the 
classifier (Fig. 4b, d, f, h, 5b, d).

Furthermore, we determined threshold scores and the cor-
responding sensitivities at error rates below a fixed value 
(Table S2). For example, error rates of less than 5%, sensi-
tivities of up to 100% were achieved at the genus level using 
the collection strain dataset. The confidence scores yielded 
in general higher sensitivities than the similarity measures 
Cos, Eu, and iEu at the same error rate (Table S2). This 
finding is in accordance with the initial study by Yang et al. 
classifying bacterial species by protein mass spectra (Yang 
et al. 2017). Based on these results, it is recommended using 
the bootstrapping assessment for the classification of micro-
algae by single-cell mass spectrometry profiling and SPM.
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Fig. 3  Confusion matrices of identification results of microalgae at 
the species level by Cos, Eu, and iEu, for the collection strain dataset. 
a Underlying high-resolution single-cell spectra acquired in positive 

polarity. b Underlying high-resolution single-cell spectra acquired in 
negative polarity. Confidence intervals (95%) of overall accuracies 
are indicated above each plot
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3.4  Assessment of the mass resolution 
on microalgal species identification

In proteomics, metabolomics, and related fields, high resolu-
tion and accuracy of the analyzed masses is a desired feature 
(Comi et al. 2017). Many database-driven SPM methods 
still rely on unit mass resolution spectra (Kwiecien et al. 
2015; Stein 1999). SPM of bacterial spectra obtained with 
MALDI-TOF works with very high relative mass deviations 
(over 200 ppm) (Sauer and Kliem 2010). To evaluate if the 
single-cell identification depends solely on high mass resolu-
tion data, the spectra were rounded to unit mass resolution, 
referred then as integer mass spectra, and analyzed with the 
SPM workflow.

The number of peaks per genus and per species dropped 
substantially in some cases (Figs. S2, S3) and four spectra 
had to be removed from the database for Chaetoceros since 
only one peak remained in the respective spectra. However, 
the confusion matrices and ROC curves showed high simi-
larities with those obtained from high-resolution spectra 
(Figs. S9–S12). Consequently, future acquisitions of mass 
spectra from microalgae could be performed at a lower reso-
lution, which would allow the use of mass spectrometers 
with less resolving power, or, for Orbitrap measurements, to 
acquire more scans per time interval (Zubarev and Makarov 

2013), hence increasing the sensitivity. Furthermore, SPM 
with integer mass spectra allows faster computation, since 
peak matching between reference and query spectrum is 
simplified as the mass deviation no longer has to be taken 
into account. However, it can be assumed that increasing 
the database with more algal genera and species will require 
more resolution to distinguish between taxonomic groups. In 
terms of mass spectra, high-resolution delivers greater space 
in the m/z domain, which would allow for more taxonomic 
resolution as long as the metabolite diversity correlates with 
the taxonomic diversity of the analyzed species. With a big-
ger single-cell profile database, the SPM algorithm would 
have to be simply optimized to avoid an increase in compu-
tation time.

4  Conclusion

Here, we combined live-single cell mass spectrometry with 
an SPM approach in one workflow to reliably derive the 
taxonomic identity of a microalgal cell through its meta-
bolic fingerprint. The analysis of single-cell spectra in both 
negative and positive polarity resulted in robust assign-
ments of the taxonomic identity. Of the three tested simi-
larity measures, Eu and iEu performed better in almost all 
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Fig. 4  Receiver operating characteristic curves and corresponding 
areas under the curves (AUC) for the identification of single microal-
gal cells for the collection strain dataset. Assessment of identification 
at either the genus (a–d) or species levels (e–h). The analysis was 
performed with bootstrap assessment (b, d, f, h) or without (a, c, e, 

g). High-resolution single-cell spectra recovered from the positive (a, 
b, e, f) or negative (c, d, g, h) polarity were independently analyzed. 
The AUC curves obtained for each classifier (Cos, Eu, iEu) analyzed 
are indicated in purple, green or orange color, respectively
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test situations. The bootstrap-derived confidence scores 
improved the classification, mainly when applied to the 
more diverse mixed dataset (Fig. 5). The comparison of 
high-resolution spectra versus unit-mass resolution showed 
little gain in the success of the method at this early stage of 
the database development.

The herein described method demands no phycologi-
cal expert knowledge, once a single-cell profiling data-
base is established, ideally as an open-source repository. 
Since only cultures in well-defined conditions have been 
investigated, future studies will implement various stress 
conditions, as those were shown to have a strong influence 
on the metabolic profile of a microalgal cell (Faulkner 
et al. 2019; Driver et al. 2015). The present approach that 
monitors the metabolome has the potential to generate data 
about the physiological state of the single cells and thus 
about the metabolic heterogeneity of a plankton popula-
tion. The discrimination of nutrient-depleted or aged cells 
could already be explained with single-cell metabolic pro-
filing (Baumeister et al. 2019; Krismer et al. 2017). In 

future studies, a broader set of spectra that also takes into 
account the cells´ physiological condition could be imple-
mented so that not only the cells identity but also its health 
status is revealed.
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