The Structure of Social Influence
in Recommender Networks

Pantelis P. Analytis”
pantelis@sam.sdu.dk
University of Southern Denmark

Philipp Lorenz-Spreen
lorenz-spreen@mpib-berlin.mpg.de
Max Planck Institute for Human Development

ABSTRACT

People’s ability to influence others’ opinion on matters of taste
varies greatly—both offline and in recommender systems. What
are the mechanisms underlying these striking differences? Using
the weighted k-nearest neighbors algorithm (k-nn) to represent an
array of social learning strategies, we show—leveraging methods
from network science—how the k-nn algorithm gives rise to net-
works of social influence in six real-world domains of taste. We
show three novel results that apply both to offline advice taking
and online recommender settings. First, influential individuals have
mainstream tastes and high dispersion in their taste similarity with
others. Second, the fewer people an individual or algorithm consults
(i.e., the lower k is) or the larger the weight placed on the opin-
ions of more similar others, the smaller the group of people with
substantial influence. Third, the influence networks emerging from
deploying the k-nn algorithm are hierarchically organized. Our re-
sults shed new light on classic empirical findings in communication
and network science and can help improve the understanding of
social influence offline and online.
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1 INTRODUCTION

We all have opinions on matters of taste. Whether it is a new song,
the design of a building, or the performance of an actor, people are
eager to express their opinions offline and online. However, the
opinions of some are sought out and appreciated more than the
opinions of others. Consider renowned film critics such as Roger
Ebert or wine critics like Robert Parker: their opinions are recog-
nized as an indicator of quality by most other critics and the general
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public alike—and can thus affect the price or financial success of a
product [1, 5]. Relative to such highly influential individuals, most
people exert little social influence over others.

Sociologists and communication scientists have been interested
in the study of influential individuals since the mid-20th century,
and understandably so. By accurately identifying individuals with
influence, policy makers can sway public opinion on critical mat-
ters such as public health and the diffusion of socially beneficial
innovations. Early studies [27, 33, 55] surveyed large numbers of
people, typically residents of representative mid-sized cities in the
United States, and asked them whom they would consult for advice
in various domains (e.g., public health, fashion, politics). This early
work revealed (i) that within each domain people seek advice from
a small group of other individuals (typically around 5), (ii) that
some key individuals, commonly referred to as opinion leaders, are
consistently sought out by others for advice, and therefore exert a
much larger influence than others, and (iii) that opinion leaders are
domain specific. Although this work revealed that people rely on
just a few individuals to inform their opinion, there was no way to
evaluate the quality of the decisions that people made.

With the advent of computational methods, network theory, and
the Internet, the research focus shifted to describing networks of
social influence and developing methods for leveraging the clout
of influential individuals in them [3, 28, 35, 54]. Social networks
could be directly reconstructed by observing friendships or fol-
lower counts on online websites. Seminal methods for ranking
search results, such as PageRank, use a network’s structure to as-
sign value to different sources of information or individuals (e.g.,
webpages or blogs, see [41]). PageRank’s general approach has
been used by social scientists to assign status to different people or
sources of information in the offline world. Here, social influence
is a consequence of the network’s structure, where well-connected
(or well-positioned) individuals are most influential [13, 26].

Coming to grips with the structure of social influence is cru-
cial for the recommender systems and computational social sci-
ence communities. Classic collaborative filtering algorithms, such
as the weighted k-nearest neighbors algorithm (k-nn), essentially
distribute social influence among the individuals in the system’s
knowledge base [11]. For each target individual, k-nn pays atten-
tion to only a relatively small number of similar others (typically
between 10 and 50, see [22, 23])—implying a particular network of
social influence [29, 32]. Critically, k-nn can also represent a broad
array of decision strategies that have been studied by social and
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Social learning (taste) Social learning (objective)

Algorithm parameters Cognitive strategies

Doppelgénger [2, 56] Follow the expert, richest [6, 30]
Clique [39, 56] Select crowd [20, 36]

Weighted clique Weighted select crowd [51]
Weighted crowd [2] Weighted crowd [8]

Whole crowd [2, 56] Averaging [24]

k =1and p = any
k=nandp=0 -
k=nandp>0 -
k=N-landp>0
k=N-landp=0

Take the best, single attribute [17, 25]

Weighted additive [9, 42]
Equal weights [9, 14]

Table 1: Correspondence between the collaborative filtering algorithm parameterizations we consider (see Equations 1, 2, and
3) and the social learning and information aggregation strategies broadly studied in the social and behavioral sciences [2].

behavioral scientists in offline settings (see Table 1). As in the com-
munities studied by sociologists and communication scientists since
the 1950s, the opinions of a few, influential individuals might be
consulted more often by recommender systems. Going beyond pre-
vious research, we can now uncover the statistical properties of the
opinions of the individuals whose advice is sought, and investigate
the performance of different social learning strategies.

Previous research on social influence in recommender systems
has focused on two main topics. First, motivated by the threat of
malicious attacks on recommender systems (i.e., “shilling attacks”),
researchers have developed techniques to identify and avert attack-
ers who want to exploit the system for their own benefit [31, 45, 48].
Bot attacks in which each item is rated by its average score (with
some random error added to it), are particularly effective in influenc-
ing collaborative filtering recommenders [31]. Second, researchers
have leveraged social influence to design more effective collab-
orative filtering algorithms or run more cost-efficient marketing
campaigns [11, 16, 47]. By studying the structure of social influence,
we hope to derive insights into how recommendation algorithms
can be further improved and made resilient against attacks.

Several questions pertaining to both offline and online opinion
spaces remain unaddressed: First, is it possible to identify charac-
teristics (e.g., statistical properties) that reliably predict whether
somebody is influential or has the potential to become influential
within a domain? Second, how do the recommender algorithms or
social learning strategies used determine the distribution of social
influence (e.g., varying k in k-nn or the number of people asked
for advice offline)? Third, what is the structure of the networks
produced by k-nn and the corresponding social learning strategies?
In this paper, we investigate these three questions in a diverse set
of large- and small-scale datasets.

2 FRAMEWORK AND METHODS

The simulation framework, results, and the code for visualizing the
results are publicly available at https://osf.io/duj8q/.

2.1 Recommendation algorithms

In our analysis, we rely on the widely used k-nearest neighbors
algorithm (k-nn) [15, 44, 46], allowing for differential weights [7].
Such a weighted nearest neighbor algorithm can be expressed as
follows:

k
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um:—Zijuj (1)
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j=1"J j=1

where i, is an individual’s estimate of the utility of an option m,
and j is the jth nearest neighbor to the target user. For k = 1, the
algorithm seeks advice from only the most similar other individual.
Setting k = N — 1, where N is the total number of people in a
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dataset, amounts to the weighted averaging strategy. For values of
k between these two extremes, we obtain the well-known k-nn, but
with differential weights.

We used the Pearson correlation coefficient as a measure of sim-
ilarity (w) between two individuals i and j [23], defined as follows:

SM Wim = T)tjm — )
SM_ i — T2 jm — T)?

where u;p, is the evaluation that the target individual i gave to item
m and ujy, is the evaluation that the jth individual gave to the same
item m. M stands for the total number of items.

We use a similarity sensitivity parameter p that allows us to
amplify or dampen the weights of different individuals [7, 40]. We
directly modify the weights obtained from Eq. 2 using the following
scheme:

w(i, j) = (2

, w]‘? if w(i,j)=0

YISl i wag) <o ®
i o] :

By varying k and p, we can produce several collaborative filtering
algorithms and social learning and information aggregation strate-
gies studied in the social and behavioral sciences [2]. For instance,
setting p = 0 and k = n gives the original formulation of k-nn,
while setting p > 1 overweights the opinions of the individuals
more similar to the target, as is common in implementations of
the weighted nearest neighbors strategy in collaborative filtering
[7]. In Table 1, we illustrate how different parameterizations of our
model map onto different information aggregation strategies.

2.2 The datasets

We analyzed an array of datasets, including Jester, a widely studied
collaborative filtering dataset on humor collected by Goldberg and
colleagues [19]; datasets on visual art, architecture, and landscapes
collected by Vessel and colleagues [53]; and data on the attractive-
ness of people’s faces collected by DeBruine and Jones [10]. The
Vessel et al. and DeBruine/Jones datasets have the structure of col-
laborative filtering datasets and represent key domains of interest
for the recommender systems community (e.g., real estate, travel,
dating). Below we specify how the stimuli were selected and de-
scribe the study protocols used to elicit the ratings. In the Vessel et
al. studies, participants were asked to evaluate the same images ona
7-point scale from “not aesthetically moving” to “very aesthetically
moving” two or three times; we used the average evaluation across
multiple ratings from the same participant.

Visual art: 24 people evaluated 109 photographs of visual art
sourced from the Catalog of Art Images Online (CAMIO) and from
museum collections. The collection included lesser-known artwork
from a variety of periods, styles, genres, and cultural backgrounds.
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Dataset No. people No. items First published Scale  Shared taste Taste dispersion
Jester 14,116 (100) 100 Goldberg etal. (2001)  -10to 10 0.113 (0.110) _ 0.131 (0.132)
Faces 2,513 (100) 102 DeBruine and Jones (2017) 1to7 0.349 (0.348) 0.125 (0.125)
Interior architecture 17 118 Vessel et al. (2018) 1to7 0.158 0.171

Exterior architecture 19 108 Vessel et al. (2018) 1to7 0.172 0.161

Landscapes 18 148 Vessel et al. (2018) 1to7 0.363 0.138

Visual art 24 109 Vessel et al. (2018) 1to7 0.105 0.171

Table 2: Array of datasets representing key recommendation domains. The datasets vary in terms of the amount of shared taste
(defined as the average mean taste correlation with others), the degree of taste dispersion (the mean dispersion in taste similar-
ity with others), and the number of people who evaluated the alternatives. For large datasets, we also present (in parentheses)
results for a reproducible random subsample of 100 people used for plotting in Figure 1.

Interior and exterior architecture: 17 people evaluated 118
interior architecture images and 19 people evaluated 108 exterior
architecture images, all of which were chosen to highlight archi-
tectural detail. Most of them were selected from ArtStor, an image
database that covers many cultures and periods.

Landscapes: 18 people evaluated 148 natural images represent-
ing a diverse set of biomes, weather, and views.

Faces: 2,513 people (ages 17-90 years) evaluated the attractive-
ness of 102 male and female individuals of varying ages and eth-
nic backgrounds on a 1-7 scale ranging from “much less attrac-
tive than average” to “much more attractive than average” (see
http://faceresearch.org/).

Jester jokes: The Jester dataset was collected from April 1999 to
May 2003 by an online recommender system that allowed Internet
users to read and rate jokes on a scale ranging from “not funny”
(—10) to “funny” (+10). Users first evaluated a number of jokes in
random order; the system then recommended jokes from a pool of
100 items until all jokes were presented. For simplicity, we used
only the data from participants who evaluated all jokes (reducing
the number of participants from 73,421 to 14,116).

2.3 Performance of k-nn

For all individuals in the dataset, we calculated the performance of
different versions of the weighted k-nearest neighbors algorithm
by independently varying the value of k and similarity sensitivity
parameter p. To this end, we assessed the out-of-sample perfor-
mance of the k-nn algorithm by splitting the data into two equally
sized parts: training vs. test sets. We used the training set to esti-
mate the free parameters (i.e., the correlation coefficients between
each pair of individuals; see Eq. 2). We then created all possible
paired comparisons between two items in the test set and used the
correlations obtained from the training set to predict which items
people would prefer more strongly (i.e., rate more highly) for each
version of (weighted) k-nn (defined by its respective pair of k and
p).1 For each individual, each version of k-nn, and each dataset, we
calculated the proportion of correct predictions across all paired
comparisons in the test set. We then averaged the results across
100 simulation repetitions.

2.4 Reconstructing social influence networks

For the network analyses, we used the same procedure as described
above except that we used all items in a dataset (i.e., no cross-
validation procedure). We varied the value of k [i.e., 2, 5, 10, and

! All presented conclusions also hold when using mean square error to evaluate ratings.
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50] and then constructed advice networks with nodes representing
the different people in the dataset. While all individuals had by
definition the same number of k outgoing edges connecting them to
other nodes, people could have a varying number of incoming edges
depending on how often the recommendation algorithm sought
their advice for other people. We used node strength, defined as
the sum of the absolute weights? assigned to each of the k nearest
neighbors, as a measure of social influence that naturally fits the
weighted k-nn algorithm and weighted networks more generally
[4]. This general approach can be also used with algorithms that
calculate similarity between users on a dimensionally reduced space
[34] or when using other observable information about individuals
to calculate similarity between them [21].

3 RESULTS

To investigate the relation between the statistical properties of peo-
ple’s taste and the performance of k-nn, we calculated the mean
taste similarity, defined as the (arithmetic) average correlation be-
tween each individual’s taste ratings and the ratings of all of their
potential peers, and taste dispersion, defined as the standard de-
viation of those same correlations [2]. In Table 2, we also report
the grand mean of those mean taste similarities (referred as shared
taste) and taste dispersions for each dataset. Unless otherwise noted,
we present results for p = 1. For the Jester and Faces environments,
we plot the networks for a subsample of individuals in Figure 1.

3.1 Who are the most influential individuals?

The most influential individuals are also those who benefit most
from weighted k-nn’s recommendations; the least influential indi-
viduals benefit much less (Figure 1). To quantify this relationship,
we calculated Kendall’s 7 between an agent’s node strength and the
predictive out-of-sample performance of the k-nn algorithm for that
individual; we found a strong relationship in all datasets (see Figure
1 for the values of 7). The most influential individuals typically
have mainstream tastes but also high dispersion in taste similarity
with others (Figure 2). These two attributes can be used to directly
predict k-nn’s performance for different individuals. For example,
when comparing the people with the highest and lowest accuracy
in the Jester and Faces datasets, differences can be as large as 30%
(see also [2]). When k = N — 1, the finding that individuals with
higher dispersion in taste similarity exert a larger influence follows

20ur framework allows for negative correlations among ratings, and thus negative
values of w} (see Eq. 3). Because both positive and negative correlations imply influence,

we used the absolute values, \(w})l, to calculate node strength.
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Figure 1: The network and influence structure generated by the weighted k-nn algorithm (for k = 5 and p = 1) across different
recommendation domains. The people for whom the prediction algorithms perform best are also the people who are the most
influential in the population. The node’s color shows the out-of-sample performance (50% train/test split) of 5-nn for each
individual. The width of the edges shows the similarity between nodes, and the darker (less transparent) end of each edge
indicates the incoming side (i.e., the node that is consulted by the other node). The variable tau denotes Kendall’s rank
correlation coefficient between out-of-sample accuracy and node strength for each individual.

almost directly from our definition of influence: Their opinions
on average correlate more strongly with those of others—either
positively or negatively. However, this relation is non-trivial for
lower values of k: As k decreases, people with mainstream taste
but low dispersion in taste similarity do not enter the group of
consulted individuals as often. They tend to be overshadowed by
individuals with slightly higher correlations to the target.

3.2 Weighting and social influence distribution

The inequality in social influence stems from two distinct, but
mutually compatible, aspects of how weighted k-nn works. The
first is that unequal weights are assigned to different individuals
(Eq. 1). The second is that—irrespective of any weights—only a few
(k) individuals are considered. For k = N — 1 and p = 1, the only
cause of influence inequality is the simple, proportional weighting
(i.e., when p = 1). Even in this case, where the opinion of each
individual enters the calculation of recommendations, there is some
inherent inequality in people’s clout due to the different extents
to which their opinions correlate with those of others. To quantify
this relationship, we calculated the Gini coefficients—a common
measure of inequality—for each domain for k = N—1and p = 1. The
mean Gini coefficient was 0.23, with the smallest in the landscapes
environment (0.13), and the largest in the Jester environment (0.34),
indicating that in all domains using the correlations directly as
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weights produces moderate inequality of social influence. When p
is increased, as expected, the Gini coefficient consistently increases
as well, producing a mean coefficient across environments of 0.7
for p = 10. Overall, social influence inequality tends to be larger in
taste domains with little shared taste. To see this, compare again
the Jester environment, which has the second lowest shared taste
(shared taste: 0.113, Gini: 0.86) with the Landscapes environment,
which has the largest (shared taste: 0.363, Gini: 0.51); this result
holds for all values of p we investigated.

3.3 Attention and social influence distribution

In many cases, people in real life and recommender systems al-
gorithms do not pay attention to every other individual. There
are good reasons for this: focusing on a subset of people, rather
than taking everybody’s opinion into account, can lead to better
predictive performance [23, 51]. In addition, paying attention to
fewer “advisers” can reduce the effort of actively collecting and
aggregating information. In other words, even if paying attention
to everybody actually improved predictive performance, it may still
make sense for people to pay attention to just a few individuals. Our
results show that limiting attention to a few similar others can lead
to substantial influence inequality. This can be seen by comparing
the average Gini coefficient across environments. In the baseline
case where k = 5 and p = 1 (see Figure 1), the mean Gini coefficient
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Figure 2: Relative node strength (i.e., influence percentile) of individuals with different mean taste similarity and dispersion of
taste similarity with others (for k = 5 and p = 1) and across environments. People with mainstream taste and high dispersion
of taste similarity with others tend to be more influential than people with alternative and idiosyncratic taste.

is 0.43, which reflects substantial inequality. Influence inequality
further increases as the number of individuals to which people or
algorithms pay attention decreases. For example, when k = 2, that
is, an individual or algorithm consults only two other people, the
influence distributions become even more unequal with a mean
Gini coefficient of 0.53. For small values of k, the distribution of
social influence is more unequal in environments where people
have high levels of shared tastes—the inverse of high p values. This
can be seen by comparing the landscapes environment with the art
environment (Figure 1, Gini 0.43 vs 0.30, respectively, for k = 5), or
the faces environment with the Jester environment (Figure 3, Gini
0.67 vs. 0.62, respectively, for k = 5) .

3.4 Resulting network structures

To shed more light on the social networks that emerge from k-nn, we
focused on Jester and Faces, the two large datasets in our collection,
and examined the simple case of an unweighted k-nn algorithm (p
= 0). In this case, node strength reduces to in-degree, the arguably
most basic centrality measure. In our setting, in-degree represents
the number of times a node (person) was sought for advice (or
involved in the calculation of a recommendation). The analysis
shows that in-degree varies greatly across people: For a wide range
of values of k there are only a few influential individuals (hubs;
see Figure 3). A second metric, the local clustering coefficient—
which measures the extent to which an individual’s advisers also
advise each other—is inversely related to the in-degree following
the power law C(d) = d~P: the less influence individuals exert over
others, the tighter the clusters they tend to form (see scatter plots
and fit in Fig. 3). This exact relation is predicted by the hierarchical

2659

network model [43] and cannot be accounted for by other scale-free
network models. This relation is stable over a wide range of values
of k in both datasets; it is only lost in the Jester dataset for very
large values of k.

4 GENERAL DISCUSSION AND CONCLUSION

Roger Ebert is probably the most famous film critic in the history
of film-making. His opinion was sought by scores of movie-goers
and a website bearing his name is still active. But was there some-
thing special about Ebert’s opinions that made him a nationwide
phenomenon in the United States and source of advice for so many
people? Are there people like Ebert in recommender systems? And
is it possible to identify them solely on the basis of the statistical
properties of their tastes?

Our work looks at social influence in recommender systems
through the lens of network theory. Hitherto, the recommender
systems community has used social networks primarily as an addi-
tional source of information [18, 37, 50], and used network theory
more broadly to visualize recommender systems as bipartite user—
item networks (see, e.g., [57]). Here, extending early work by Lathia
et al. [32], we investigated the social networks of influence pro-
duced by the weighted k-nearest neighbors algorithm (k-nn). We
found that skewed social influence distributions are inherent in
recommender systems and that the emerging networks are hierar-
chically organized. The most influential individuals (sitting on top
of the hierarchies) tend to be those who benefit the most from the
k-nn algorithm.

Previous research showed that malicious individuals can game
recommender algorithms by designing bots that evaluate options
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Figure 3: Topological properties of reccommender networks from the Faces and Jester datasets as a function of different values
of k (from left to right: 2, 5, 10, 50): The three-dimensional visualization (green) of the networks uses a Fruchterman-Reingold
layout in the x-y plane and sorts nodes along the z-axis depending on their in-degree. The scatterplots show the relationship
of the total degree (d) to the average clustering coefficient (C(d)) = ¥; 4,—4 C(di)/Ng, and the black line shows the functional

relation C(d) = d P, where f was fitted to the data (values shown in the legend).

in a way that makes the evaluations appear informative to many
similar others [31, 45, 48]. Our results provide an explanation for the
efficiency of averaging attacks on collaborative filtering algorithms
(i.e., rating each item by its average and adding some noise). Rating
profiles using averaging schemes score very high, in terms of both
mean taste correlation and often also dispersion of taste similarity
with the crowd. If such an individual actually existed, they would
be among the most influential in the settings we studied and would
benefit a lot from recommendations. More broadly, our results show
that it is possible to consistently identify individuals who are more
likely to become influential by looking at the statistical properties
of their taste.

The k-nn algorithm and its capacity to emulate different social
learning strategies provides a fresh way to look at networks of so-
cial influence in the offline world. For example, our analysis points
to a simple yet plausible process by which homophily [38] and
opinion leaders [27] might emerge in real-world networks: People
can learn more by connecting to people who are similar to them
and fare better if they limit their attention to just a few similar oth-
ers. The relationship between in-degree and clustering coefficient
we identified is a property of many real-world networks (e.g., the
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WWW or protein-interaction networks; see [52]) and we found
that such a network structure can also emerge when recommenda-
tion algorithms (like k-nn) create links from pairwise similarities in
people’s tastes. Some networks observed in the offline world may
have emerged from mechanisms akin to those we described here—
further amplified or dampened by cognitive or physical limitations
that people experience offline (e.g., limitations in the size of the
social network they can maintain [12] or in how sensitive they are
to differences in similarity [49]).

Taken together, our results show that it is possible to analyze
recommender systems algorithms and their consequences at both
the individual and aggregate level. The data of each individual can
be seen as a unique environment with its own statistical properties,
nested within a larger overarching data structure. Understanding
how the data from different individuals create structure can help
us unpack the workings of recommendation algorithms and lead to
the development of better and more robust recommender systems.
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