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The chemical industry makes extensive use of solvents,

especially for chemical reactions and separations. When

considering the large number of existing solvents and the

necessity for finding new and alternative ones, systematic

methods for the optimal selection and molecular design of

solvents become significant for efficient and sustainable

chemical manufacturing. During the past decade, a substantial

number of contributions have been made in this area. This

article summarizes property models for predicting solvent

effects and introduces theoretical methods for solvent

selection and design. Recent developments in computer-aided

solvent selection/design for four selected application areas

including reaction rate acceleration, carbon capture, extractive

desulfurization, and homogeneous catalyst recovery are briefly

reviewed. To conclude, several remaining challenges and

possible future directions are discussed.
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Introduction
Nowadays millions of tons of solvents are used in industrial

processes annually and the demand is increasing. Chipper-

field [1] summarized four major applications of solvents

within the chemical process industries as reactants, reaction

media, separation agents, and transportation agents. As

reaction media, solvents help by increasing the reaction

rate and/or improving the equilibrium conversion. Solvents

are also used as separation agents in various processes, such

as gas absorption, liquid-liquid extraction, and extractive
www.sciencedirect.com 
distillation, where their use increases the separation factor

(e.g. relative volatility). Zhou [2��] illustrated and rational-

ized the significant effects of solvents on reaction and

separation processes from the perspectives of molecular

interactions and fluid phase thermodynamics. It was

demonstrated that solvent effects are closely related to

certain solvent properties. Thus, our knowledge of these

properties and our ability to predict them play an important

role in solvent selection and design strategies.

Because of the significant effect of solvents on chemical

processes, careful solvent selection is often essential for

reducing process costs. In addition to this economical

driving force, stricter safety, environmental, and health

regulations are bolstering the transition towards greener

solvents. Considering the vast number of possible

solvents, the trial-and-error approach to solvent selection

would be very time-consuming and costly. Moreover, the

limitations in a user’s experience and knowledge as well

as bias may also lead to suboptimal performance of the

identified solvents. With constantly improving theoretical

and modeling methods, coupled with the exponential

growth of computing power, it is now possible to incor-

porate computational methods in guiding the selection

and design of solvents in more applications.

This article begins with a summary of the property

models for predicting solvent effects and then introduces

theoretical methods for solvent selection and design.

Finally, recent works on computer-aided solvent screen-

ing and design for four selected application areas are

briefly reviewed.

Solvent property modeling
It was demonstrated that solvent effects are closely related

to a certain solvent property or to a set thereof [2��].
Therefore, the key to selecting or designing solvents is

to find reliable property prediction models. The following

section briefly discusses the methods for predicting solvent

physical and thermodynamic properties.

Physical property prediction

Solvent physical properties are usually predicted using

quantitative structure-property relationship (QSPR) mod-

els where the property of interest is correlated with

certain molecular (usually structure-related) descriptors

[3]. Typically, linear correlations are used in QSPR

modeling, but when complex, nonlinear relationships exist
Current Opinion in Chemical Engineering 2020, 27:35–44
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between the input descriptors and output property, more

advanced correlation methods, such as artificial neural

networks (ANN) can be used [4]. Currently, linear group

contribution (GC) models are the most important QSPR

models for predicting solvent physical properties [5�]. In

these models, the structural descriptors are the number of

functional groups that comprise the molecule. The model

parameters, that is, contribution of each group to the

property, are regressed from experimental property data

for a set of known solvents. It is worth noting that despite

the popularity and effectiveness of first-order GC models,

their accuracy is restricted to simple molecules due to their

neglection of the group’s connectivity. To predict proper-

ties for large complex molecules, more sophisticated GC

models, for example, higher-order GC and ANN-GC, are

recommended.

Thermodynamic property prediction

Thermodynamic models used with solvents can be

classified broadly into two categories: activity coefficient

models and equations of state (EoS) [6�].

Prediction of activity coefficients is fundamental in evaluat-

ing solvent performance in many separation processes, such

as liquid-liquid extractionand  crystallization. UNIFAC [7] is

a GC variant of the UNIQUAC activity coefficient model.

Because of its GC basis, UNIFAC has been extensively

used for solvent molecular design [8–10]. Unlike conven-

tional models that require the use of experimental data to fit

either molecular-specific or group-specific parameters,

COSMO-RS [11] (commercial) and COSMO-SAC [12] (free

of charge) allow for the prediction of activity coefficients

based only on the s-profiles (screening charge density

distributions) of molecules. Taking into account the existing

s-profile databases, large-scale solvent screening can be

performed efficiently using COSMO-RS or COSMO-SAC

predictions [13,14]. Notably, a few GC methods have been

developed recently for predicting solvent s-profiles, making

it possible to use COSMO-type models to perform solvent

molecular design [15–17]. Because of the use of experimen-

tally regressed group interaction parameters, UNIFAC is

usually quantitatively more accurate than COSMO-type

models. However, COSMO-RS and COSMO-SAC can

provide qualitatively satisfying predictions on solvent per-

formance without the need for molecular and group-specific

parameters.

When selecting solvents for applications involving high-

pressure vapor-liquid equilibrium (such as gas absorption

and extractive distillation), an EoS is usually employed.

Among different EoS models, cubic EoS are mathemati-

cally simple and show satisfying predictions of thermo-

dynamic properties for gas and oil mixtures at a wide

range of pressures [18]. These models usually require the

input of pure-component critical properties. In cases

where there is a lack of data or one wants to apply such

models in a purely predictive way, these parameters
Current Opinion in Chemical Engineering 2020, 27:35–44 
can be estimated by GC models [5�]. With the pure-

component parameters, mixture-dependent parameters

can be calculated using mixing rules. The most common

and simple one is the classical van der Waals one fluid

(vdW1f) mixing rule [19]. An EoS using this mixing rule

cannot appropriately represent highly polar species. This

drawback has been solved by another type of mixing rule

that incorporates an activity coefficient model into the

calculation of the mixture parameters. An EoS employing

such a mixing rule is called an EoS/GE model [20]. One of

the most popular predictive EoS/GE models is PSRK

where the SRK EoS is combined with the UNIFAC

activity coefficient model. Compared to the traditional

cubic EoS, EoS models based on statistical thermody-

namics are more complex and can more accurately

estimate liquid compressibility and the related thermo-

dynamic properties. The most successful examples of

such theory-based models are the SAFT-type models,

such as PC-SAFT [21]. The model parameters can be

regressed from experimental data or determined from GC

methods. In fact, several GC models [22] have been

developed to estimate the SAFT parameters, allowing

it to be used in solvent design. It is worth noting that

compared to cubic EoS, the SAFT models usually have a

limited capability of simultaneously modeling the sub-

critical and critical states [23]. This should be taken into

account when selecting models for particular systems.

As discussed above, each model has its own strengths and

weaknesses. How to address model limitations and

combine the advantages of different models deserves

extensive study in future works. For activity coefficient

models, experimental data can be used to calibrate the

COSMO-RS predictions. One can then perform large-

scale solvent screening based on the calibrated model.

Additionally, calibrated predictions can be used as

pseudo-experimental data to regress UNIFAC group

interaction parameters [24], which consequently expands

the solvent design space. For EoS, Polishuk [23] built a

hybrid model by adding a cubic EoS’s cohesive term to

the SAFT residual Helmholtz free energy (Ares) expres-

sion. It has been demonstrated that the resulting hybrid

model preserves the advantages of both the cubic EoS

and SAFT approaches. This hybrid modeling idea opens

a new way to upgrade the EoS, potentially leading to

more accurate predictions on solvent thermodynamic

properties.

Solvent selection and design methods
Methods for solvent selection can be classified into two

categories: database screening and molecular design.

When performing solvent screening, a given set of solvent

candidates is pre-specified and solvent molecules are

usually treated as complete structures. Numerous works

using COSMO-RS as the predictive thermodynamic

model for large-scale solvent screening can be found in

the literature [13,14,25]. Unlike in solvent screening,
www.sciencedirect.com
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whose aim is to identify the best solvent from a known set

of candidates, molecular design attempts to find promis-

ing solvent molecules from the optimal combination of

molecular fragments, which in most cases are functional

groups. This strategy can lead to unconventional but

outstanding solvent structures.

Computer-aided molecular design (CAMD), first intro-

duced by Gani and Brignole [8], is a general term describ-

ing the procedure of rational design of molecules that

possess pre-specified, desirable properties. A standard

CAMD procedure consists of two steps. The first is to

establish certain property models that can reliably predict

molecular properties from molecular structures. The

second step is to solve the reverse problem, that is, to

determine the optimal molecular structure having a set of

desirable properties by either generate-and-test or math-

ematical optimization techniques. Unlike the generate-

and-test method that enumerates all possible molecules

and tests them one by one against the target property

[8], the mathematical optimization method finds the

molecule with optimal properties by formulating and

solving an optimization problem without testing all the

candidates in the design space [26]. Austin et al. [27��]
provides an overview on the CAMD methodology, soft-

ware/tools, and solution techniques. Since its emergence,

CAMD has been widely used for designing solvents for

various applications [28].

It is worth noting that in addition to solvent design, the

process, in which the solvent is used also needs to be

optimally designed. Two solution methods, decomposed

and integrated design strategies, can be employed for

combined solvent and process design. The decomposed

design method [10] solves solvent and process design

problems sequentially. In contrast, an integrated design

strategy [29�,30–32] attempts to simultaneously identify

the best solvent and optimal process conditions. This is

usually achieved by formulating and solving mixed-

integer nonlinear programming (MINLP) problems.

Generate-and-test methods consider every possible struc-

ture, and it is inefficient for problems with large design

spaces. Optimization methods have a distinct advantage

for these kinds of problems. However, most of the solvent

(and process) design problems are inherently nonconvex

MINLP problems that are not easy to solve to global

optimum with the current local solvers. For this reason,

the development of global MINLP algorithms with an

acceptable computational cost is important. In addition to

pure solvents, solvent blends are also widely used in

industry. The advantage of using solvent mixtures is that

their properties can be well tuned by changing the

composition. The inclusion of additional constraints rel-

evant to the mixture properties makes the problem much

more challenging. For tackling these problems, decom-

position-based solution strategies can be employed.
www.sciencedirect.com 
Applications
In the following sections, representative works on solvent

screening and design in four chosen application areas are

briefly discussed. These include reaction rate acceleration,

carbon capture, extractive desulfurization, and homoge-

neous catalyst recovery. These topics are selected due to

the following considerations: Firstly, the area should

already have been substantially studied, secondly, it is

preferable to cover different types of solvent applications

(reaction, separation, environment, etc.), thirdly, both

solvent screening and molecular design, as well as organic

and ionic liquid solvents, should be discussed, and lastly,

we have tried to focus on solvent applications within the

authors’ area of competence.

Solvent design for reaction rate acceleration

The selection of solvents, in which to carry out liquid-

phase organic reactions often has a large impact on reac-

tion rate and selectivity and is thus a key decision in

process design. However, in contrast to the extensive

work performed in solvent design for separations, only a

handful of attempts have been made in the optimal

design of solvents for chemical reactions.

Quantum chemical (e.g. DFT) calculations can be used to

quantify the reaction rate in different solvents. However,

this procedure is usually computationally expensive.

Alternatively, one can build empirical QSPR models to

predict solvent kinetic effects. Foli�c et al. [33] proposed

such a method for the optimal design of solvents to

promote chemical reactions. They built a solvent-

affected kinetic model by correlating experimental rate

constants measured in a few known solvents with their

corresponding solvent solvatochromic parameters. A

CAMD problem was then formulated using this model

and solved to identify the optimal solvent that provides a

maximum rate constant. The method has been success-

fully applied to an SN1 reaction. Siougkrou et al.
[34] extended the method to the optimal design of

CO2-expanded solvents for a Diels-Alder (DA) reaction.

The best solvent was selected from three candidates:

acetonitrile, methanol and acetone and the solvent

composition in the gas-expanded liquid was optimized

using process economics (instead of reaction rate) as the

objective function. In theory, DFT calculations can be

used to predict rate constants when experimental kinetic

data are unavailable. In accordance with this idea, Strueb-

ing et al. [35] developed a framework combining DFT

computations and the CAMD method proposed in [33] to

design solvents that maximize reaction rates. The reac-

tion rate constants from a diverse set of six or seven

solvents are predicted with DFT calculations and then

used to parameterize the solvatochromic equation. This

fitted model is later used to find optimal solvents via the

CAMD strategy. Although in principle no experimental

data are required, the authors claimed that the method is

flexible enough to include experimental rate constants to
Current Opinion in Chemical Engineering 2020, 27:35–44
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complement the DFT predictions as long as they are

available and reliable.

Unlike previous works that employ empirical solvatochro-

mic parameters, Zhou et al. [36] proposed a novel solvent

screening method using theoretical descriptors to corre-

late the effects of solvents on reaction rate and selectivity.

Based on extensive model predictions with 136 common

solvents, a few promising candidates showing the highest

reaction rates or selectivities were identified. The method

has been successfully applied to three different organic

reactions. Zhou et al. [29�] introduced new solvent

theoretical descriptors (S1 � S6, see Figure 1) based on

COSMO-RS s-profile areas. They used these descriptors

to correlate solvent effects on the kinetics as embedded in

the rate constant. On the basis of the parameterized

kinetic model and a GC model developed to estimate

the descriptors, optimal solvents with the highest pre-

dicted reaction rate constants were identified from the

formulation and solution of a CAMD problem. This

method has been demonstrated on a simple DA reaction,

and Zhou et al. [37] then extended it to a competitive DA

reaction with the objective of maximizing the production

of the desired product relative to that of the byproduct.

Liu et al. [17] proposed another rate constant prediction

model using infinite dilution activity coefficients, hydro-

gen-bond strengths, and surface tension as the solvent

descriptors. The established model was used to find the

solvent showing the highest rate constant. Austin et al.
[38] proposed a method to design optimal solvent
Figure 1

Structural framework of the reaction solvent design method proposed in Re
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mixtures through the optimization of pure-component

molecular structures and mixture compositions using

COSMO-RS for property predictions. This solvent design

method has been successfully applied to a few different

applications including the maximization of the reaction

rate of a Menschutkin reaction.

The solvent descriptors introduced in Zhou et al. [29�,37]
have been proven to be good parameters for quantifying

solvent effects on reaction kinetics. Because of their mole-

cule-specific characteristics, these descriptors, in theory,

can be used to correlate many other solvent properties,

effects, and behaviors. This makes it possible to expand the

solvent design method to other applications. Despite many

achievements, challenges and limitations still exist. First,

the accuracy of DFT calculations in predicting liquid-

phase reaction rates needs to be improved. Second, the

miscibility of the reactants with different solvents should

be carefully checked in order to make sure that no phase

splitting occurs when adding the solvent.

Solvent selection for carbon capture

A substantial number of works on the optimal selection

and design of solvents for carbon capture have been

reported. Stavrou et al. [39] proposed a two-stage solvent

and process design method to identify promising physical

solvents for pre-combustion CO2 capture. The solvent

molecule is represented as a set of PC-SAFT parameters

that are simultaneously optimized along with the operat-

ing conditions of the process. Afterwards, an existing
Current Opinion in Chemical Engineering
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Figure 2
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Multi-scale framework for carbon capture solvent design [43��].
solvent is identified that most closely matches the optimal

molecular parameters. Instead of relying on database

mapping, Lampe et al. [40] employed a GC method for

estimating PC-SAFT parameters to identify the optimal

solvent. Burger et al. [32] developed another multi-level

approach to tackle complex solvent and process design

problems. First, the design problem based on simplified

process models is solved via multi-objective optimization

to generate a set of Pareto-optimal solutions. These

solutions are then used as initial estimates for solving a

second MINLP-based integrated solvent and process

design problem where rigorous process models are

applied. The method has been successfully demonstrated

on a CO2/CH4 separation process.

Ionic liquids (ILs) are molten salts at or near room

temperature and are widely used as separation solvents.

Farahipour et al. [25] proposed a fast IL screening method

using COSMO-RS to predict the activity coefficient of

CO2 in ILs and GC models to estimate the viscosity and

melting point of the ILs. Hundreds of possible cation and

anion combinations were evaluated which resulted in ten

promising ILs for CO2 physical absorption. Based on

extensive COSMO-RS predictions, Zhao et al. [14] estab-

lished a large database of Henry’s constants of CO2 and

CH4 in more than 10 000 ILs at 313.15K based on which

optimal ILs were found for CO2/CH4 separation. Chong

et al. [41] employed the CAMD method to design IL

solvents for carbon capture. The UNIFAC model was

used to predict CO2 solubility in ILs and GC methods

were applied to estimate the physical properties of ILs.

Realizing the strong interaction between solvent selec-

tion and process operation, Chong et al. [42] performed

integrated IL and process design for carbon capture

where the best IL structure and optimal process condi-

tions were simultaneously identified. Valencia-Marquez

et al. [31] proposed a multi-objective optimization based

method for integrated IL and process design for post-

combustion CO2 capture to handle conflicting design

objectives related to process economics and environmen-

tal impacts.

Because of their strong affinities for the CO2 molecule,

chemical solvents show high potential for carbon capture,

especially for the selective separation of low-concentration

CO2. Papadokonstantakis et al. [43��] proposed a multi-scale

design framework to search for chemical solvents used in

CO2 capture. As depicted in Figure 2, at the molecular level,

multi-objective CAMD problems are solved to generate a

set of Pareto-optimal solvents considering performance cri-

teria that reflect solvent thermodynamic, reactivity, and

sustainability properties. Later, the obtained solvents are

introduced to the phase level where the chemical and phase

equilibria of the solvent-water-CO2 mixture are accurately

predicted by the SAFT models, based on which solvent

candidates are further short-listed. Finally, for each of the

remaining solvents, the absorption-desorption process
www.sciencedirect.com 
economics and sustainability are evaluated. On the basis

of the results, the optimal solvent and process are finally

identified. Limleamthong et al. [44] screened 125 amine-

based solvents for CO2 capture considering 10 diff ;erent

solvent properties relevant to technical, health, safety, and

environmental aspects. The CO2 solubility was estimated

from Hansen solubility parameters. Otherproperties, such as

viscosity and toxicity, were estimated from various empirical

correlations.Zarogiannis etal. [45]proposedanenumeration-

based approach for the screening of binary amine mixtures

forCO2capture. Important properties were predicted by GC

models, activity coefficient models, and EoS.

There has been much effort applied to the optimal design

of solvents for carbon capture through physical or chemi-

cal absorption. The hybrid physical-chemical absorption

combining advantages of both absorptions and hybrid

separation processes combining absorption with other

separation technologies (such as adsorption and mem-

brane) have attracted much attention. Taking into

account these hybrid schemes when selecting carbon

capture solvents can potentially help in finding more

cost-effective solutions, and thus deserves further

investigation.

Ionic liquid screening and design for extractive

desulfurization

Extractive desulfurization is a very important process

for ultra-clean fuel production in the petroleum indus-

try where ILs as extraction solvents have been exten-

sively studied [46]. In this section, some important IL

screening and design works are briefly introduced

focusing exclusively on the extractive desulfurization

process.
Current Opinion in Chemical Engineering 2020, 27:35–44
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The early IL screening works on extractive desulfuriza-

tion (such as Kumar and Banerjee [47]) primarily employ

COSMO-based models to estimate the extraction capac-

ity and selectivity of ILs based on infinite dilution activity

coefficients (g1). However, one should note that the goal

of extractive desulfurization is to remove the residual

traces of aromatic sulfur compounds from fuel oils. Most

ILs contain nitrogen and/or sulfur and for this reason,

Song et al. [13] suggest that IL-in-raffinate solubility

should be considered along with the extraction capacity

and selectivity when screening ILs for such processes. By

evaluating the structural effect of cations and anions on

these three thermodynamic criteria with COSMO-RS, a

very promising IL solvent was found. The practicality of

the solvent in extractive desulfurization was further

validated by ternary liquid-liquid equilibria (LLE) and

multistage extraction experiments.

Moving beyond using merely thermodynamic property

estimation in IL screening, a multilevel IL screening

approach was proposed to evaluate the extraction perfor-

mance of ILs from multiple aspects. Song et al. [48�]
combined phase equilibrium calculations, physical prop-

erty estimations, and process simulations in order to

screen IL solvents for extractive desulfurization. At the

first stage, the LLEs for systems composed of a model

fuel oil and different ILs were calculated using COSMO-

RS. It is worth mentioning that the mass-based
Figure 3
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distribution coefficient, selectivity, and IL-in-raffinate

concentration derived from LLE were employed as the

thermodynamic criteria. Compared to the g1-based

thermodynamic criteria, the LLE-based ones better

address the effects of IL molecular weight and mixture

composition on the solvent performance. This leads to

the identification of more practical solvents than previ-

ously. At the second stage, several physical properties of

ILs, such as melting point and viscosity, were estimated

using GC methods to ensure the screened ILs are liquid

and show relatively high mass transfer rate at the extrac-

tion condition. At the third stage, the process perfor-

mances of the top IL candidates were analyzed using

Aspen Plus to finally identify the optimal solvent.

Recently, Song et al. [49] further extended this multilevel

method to search double salt ILs (IL mixtures) for

extractive desulfurization, where the g1-based and

LLE-based thermodynamic properties of IL mixtures

are considered instead. Compared with the screening

of traditional ILs, IL mixture design provides a much

larger solvent space and an easier way to tune solvent

properties.

In addition to IL screening, CAMD methods have also

been used to design IL solvents for extractive desulfuri-

zation. Song et al. [50�] performed an optimal IL design

study on the extractive desulfurization process following

the framework depicted in Figure 3. In this work, the
Extractive
desulfurization

process

LLE
Best

IL

CAMD objective
properties

Current Opinion in Chemical Engineering
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Figure 4
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The methodology for green TMS solvent screening [54�,55].
UNIFAC model was first extended to cover 20 IL main

groups and seven conventional main groups (including

thiophene) with the group interaction parameters

regressed from experimental data. Then, using the result-

ing UNIFAC-IL model and the available GC models for

predicting the physical properties of ILs, a CAMD prob-

lem for IL design was formulated. This problem was

solved to optimize the LLE performance of ILs while

considering constraints on the IL structure, thermody-

namics, and physical properties. The top candidates

identified from the CAMD optimization were further

evaluated and compared to the benchmark organic

solvent sulfolane by simulating the continuous extractive

desulfurization process using Aspen Plus. Compared to

sulfolane, the best IL solvent designed shows a negligible

solvent loss and potentially leads to a more than 80%

reduction in the required heat utility of the process.

Despite the progress made, the previous studies have

only covered the tip of the iceberg when considering the

large number of potential ILs. Important IL properties

such as cost, toxicity, and biodegradability have not been

considered due to the lack of reliable prediction models.

Therefore, continuously developing reliable models for a

wide range of IL properties is required in order to expand

the current IL screening and design methods to other

application areas. Besides, one should note that a certain

level of uncertainty is usually associated with experimen-

tal data. A robust framework incorporating these uncer-

tainties into the model development and IL design

procedure is essential to ensure highly reliable results.

Thermomorphic solvent selection for homogeneous

catalyst recovery

Another area where solvents play an important role is in

facilitating reactions using homogeneous transition metal

catalysts (HTMC). The economic feasibility of such

reactions usually depends upon minimizing the amount

of catalyst leached or otherwise lost during the process

due to the expense of the metal and ligands comprising

the catalyst complex [51]. There are many solvent-based

strategies for recovering these expensive catalysts based

on switchable solvent systems. Included among these are

thermomorphic solvent systems (TMS) that use a simple

change in temperature to induce phase switching. At

reaction conditions, the temperature is high enough to

ensure that a single, homogeneous phase exists. After-

wards, the product mixture is cooled and a biphasic

mixture develops. The polar phase containing the catalyst

is recycled back to the reactor and the non-polar phase

containing the product is further processed downstream

[51]. Normally, a TMS comprises three solvents with

different polarities, one polar, one non-polar, and one

with a polarity somewhere in between. The last solvent is

called the mediator and is used to better control the

miscibility behavior of the mixture. TMS may sometimes

be composed of only a polar catalyst solvent and a
www.sciencedirect.com 
non-polar product solvent without an additional mediator

solvent, whose role is instead performed by one or more of

the reactants. A recent review by Bianga et al. [52]

presents a comprehensive list of recent TMS used in

reducing catalyst leaching in HTMC supported reactions.

As is common, choice of the solvent may exhibit a strong

influence on process performance and selecting the right

TMS component solvents for a specific application may

not be trivial. In the literature, the primary design

methodology uses heuristics and expert knowledge to

determine promising TMS solvents. Behr et al. [53]

proposed a design strategy for TMS composed of three

solvents. Initially, the polar and non-polar solvents are

fixed and the mediator is chosen such that the TMS phase

switching is achieved in the desired temperature range.

For selecting the mediator, five criteria are introduced:

polarity, being liquid at ambient conditions, miscibility

with the polar and nonpolar solvents, and being stable

during reaction. Functional mediators for novel TMS

were identified using this approach.

Another strategy, this time for two-solvent TMS design, is

a database-driven screening approach using thermody-

namic property predictions made by COSMO-RS to

identify solvents [54�,55]. A depiction of this method is

presented in Figure 4. McBride et al. [54�] applied this

approach to the hydroformylation of 1-dodecene using an

Rh-BiPhePhos catalyst complex. In a hierarchical proce-

dure, the solvent search space is first reduced according to

certain physical property constraints, such as the boiling
Current Opinion in Chemical Engineering 2020, 27:35–44
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point and molecular weight limitations. Afterwards, the

catalyst solubility in each solvent is calculated with

COSMO-RS. In accordance with the solubility ranking,

polar and nonpolar solvent pairs that can potentially form

TMS are screened. The LLE behavior as well as product

and catalyst partition coefficients are predicted to identify

which TMS (solvent pairs) are functional, and the most

promising candidates are subsequently investigated exper-

imentally. Surprisingly, the TMS comprising dimethylfor-

mamide and n-decane, which has already been used in

previous experimental studies, was found to be one of the

most suitable TMS for the hydroformylation application.

Although no improved TMS was found, this work was

successful in bridging a gap between expert knowledge

and experimental findings with computational methods.

Taking into account environment, health, and safety

(EHS) criteria, McBride et al. [55] refined the TMS solvent

screening method to identify functional TMS composed

of green solvents for a similar hydroformylation reaction

(see Figure 4).

Although several methods for determining TMS constit-

uent solvents have been developed, one remaining and

substantial difficulty lies in predicting the solvent effects

on the reaction, especially on catalyst stability and activ-

ity. This is a complex problem that demands either a deep

understanding of the reaction mechanism or suitable

amounts of experimental data for data-driven model

development.

Conclusion
Solvent selection is a key factor in chemical process

industries due to their substantial effects on process

performance. In view of the overwhelming number of

existing solvents and the necessity for exploring new

alternative solvents, systematic methods for the optimal

selection and design of solvents is essential. This article

provides a brief overview on the modeling and prediction

of solvent properties. Methods for solvent selection and

design are introduced. Recent works on computer-aided

solvent screening and design for reaction rate accelera-

tion, carbon capture, extractive desulfurization, and

homogeneous catalyst recovery are reviewed.

Despite the amount of progress made in solvent selection

and design, challenges remain. Much of the previous

work focuses on maximizing some measures of solvent

performance. However, one should note that solvent cost,

availability, and environmental impact are also important

factors. The simultaneous consideration of these criteria

and the solvent performance is significant for future

solvent selection frameworks. Property prediction lies

at the heart of solvent design and in some cases where

simple GC models are not able to provide accurate pre-

dictions on solvent physical properties, more powerful

QSPR models can be used. These include those based on

higher-dimensional structural descriptors (e.g. topological
Current Opinion in Chemical Engineering 2020, 27:35–44 
index) or those using advanced correlation methods, such

as more complex methods within the machine learning

discipline. The efficient incorporation of GC models,

complex QSPR models, and predictive thermodynamic

models into a solvent design framework is important.

Because of the possible deviations of the employed

property models, the performance of the computationally

screened or designed solvents should naturally be verified

by experiment.
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