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Abstract
We extend the index-aware model-order reduction method to systems of nonlinear
differential-algebraic equations with a special nonlinear term f(Ex), where E is a singu-
lar matrix. Such nonlinear differential-algebraic equations arise, for example, in the spatial
discretization of the gas flow in pipeline networks. In practice, mathematical models of real-
life processes pose challenges when used in numerical simulations, due to complexity and
system size. Model-order reduction aims to eliminate this problem by generating reduced-
order models that have lower computational cost to simulate, yet accurately represent the
original large-scale system behavior. However, direct reduction and simulation of nonlin-
ear differential-algebraic equations is difficult due to hidden constraints which affect the
choice of numerical integration methods and model-order reduction techniques. We propose
an extension of index-aware model-order reduction methods to a special class of nonlinear
differential-algebraic equations without any kind of linearization. The proposed model-order
reduction approach involves automatic decoupling of nonlinear differential-algebraic equa-
tions into nonlinear ordinary differential equations and algebraic equations, based on the
decoupling of the linear differential equations obtained by ignoring the nonlinear term, thanks
to an additional structural condition. This allows applying standard model-order reduction
techniques to both parts without worrying about the index. The same procedure can also be
used to simulate nonlinear differential-algebraic equations by standard integration schemes.
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1 Introduction

We consider nonlinear differential-algebraic equations (DAEs) of the form;

Ex′ = Ax + f(Ex) + Bu, Ex(0) = Ex0, (1a)

y = Cx, (1b)

where f(Ex)∈R
n and E is a singular matrix, A∈R

n×n, B∈R
n×m, C∈R

�×n . The symbol ′
denote time differentiation. x∈R

n and y ∈ R
� are the state and output vectors, respectively.

The input function u ∈ R
m must be smooth enough, with the smoothness requirements

depending on the index of the DAE. DAEs are known to be difficult to simulate and the level
of difficulty is measured using index concepts such as differential index, tractability index,
etc. The higher the index, the more difficult to simulate the DAE. Moreover, in practice,
often such descriptor systems have very large n, compared to the numberm of inputs and the
number � of outputs, which are typically small. Despite the ever increasing computational
power, dynamic simulation using the system (1) is costly, see [1–3]. We are interested in a
fast and stable prediction of the dynamics of DAE models, and therefore the application of
model-order reduction (MOR) is vital. MOR aims to reduce the computational burden by
generating reduced-order models (ROMs) that have lower computational cost to simulate, yet
accurately represent the original large-scale system behavior. MOR replaces (1) by a ROM

Erx′
r = Arxr + fr (Erxr ) + Bru, Erxr (0) = Erxr0 , (2a)

yr = Crxr , (2b)

where Er ,Ar ∈ R
r×r , fr (Erxr ) ∈ R

r ,Br ∈ R
r×m and yr ∈ R

�,Cr ∈ R
�×r , such that

the reduced-order of the state vector xr ∈ R
r is r � n. A good ROM should have small

approximation error ‖y − yr‖ in a suitable norm ‖.‖ for a desired range of inputs u. There
are many MOR methods for nonlinear systems such as proper orthogonal decomposition
(POD), POD in conjunction with the discrete empirical interpolation method (POD-DEIM),
see [3–5]. However, applying these MOR methods directly to DAEs leads to ROMs which
are inaccurate or very difficult to simulate and sometimes have no solution, see [1,6]. It is a
common practice to first convert nonlinear DAEs to ordinary differential equations (ODEs)
by using index reduction (reformulation) techniques in order to be able to apply standard
MORmethods for nonlinear systems such as POD.However, this index reductionmay lead to
drift-off effects or instabilities in the numerical solutions andmay also depend on the structure
of the nonlinear DAE. In [7], index-awareMOR (IMOR)methodswere proposed to eliminate
the index problem to allow employing standard techniqueswith ease.However, thesemethods
were dedicated to linear DAEs.We propose an IMORmethod for nonlinear DAEs of the form
(1) which does not involve any kind of linearization. The starting point is a generalization
of the index concept to this special class of nonlinear DAEs. The proposed generalization
relies heavily on its linear counterpart together with some structural assumptions on the
nonlinear term, and is consistent with the accepted definition of tractability index of nonlinear
DAEs (see for instance [8]). The proposed IMOR approach is realized in two steps. The first
step involves automatically decoupling the nonlinear DAEs into nonlinear differential and
algebraic parts. Then, each part can be reduced separately using standard MOR techniques.
The decoupled system generated from the first step can be used for numerical simulations
by applying numerical integration on the ODE part and then solving the algebraic part.
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The IMOR procedure can be applied to nonlinear DAEs of the form (1) with arbitrary
index. Herewe concentrate on index-1 systems, which can be used for a first assessment of the
procedure. Nevertheless, we observe that index-1DAEs can be found in relevant applications,
such as in the description of gas transport networks.

The paper is organized as follows. In Sect. 2, we discuss the background of decoupling of
DAEs and the tractability index. In Sect. 3, we propose the automatic decoupling of nonlinear
DAEs of the form (1) using special projectors. In Sect. 4, we discuss the proposed IMOR
method for nonlinear DAEs. In Sect. 5, we apply the proposed IMORmethod to the nonlinear
DAEs arising from gas transport networks. In the final section, we present some numerical
examples illustrating the performance of the proposed method.

2 Decoupling of Linear Constant Coefficient DAEs

In this section, we repeat the procedure of decoupling linear DAEs and the theory it is based
on, as this is the basis for the nonlinear decoupling.

2.1 Weierstraß Canonical Form

Our decoupling strategy was initially used to understand the underlying structure of linear
constant coefficient DAEs via the Weierstraß canonical form [8,9]. Assuming f(Ex) = 0
and that the matrix pencil (E,A) is regular, (1) can be written as a Weierstraß-Kronecker
canonical form which leads to an equivalent decoupled system

x̃′
1 = Jx̃1 + B̃1u, x̃1(0) = x̃10 , (3a)

x̃2 = −
μ−1∑

i=0

Ni B̃2u(i), (3b)

where J ∈ R
k×k and N ∈ R

(n−k)×(n−k) is a nilpotent matrix with index μ. The vector

u(i) = di

dt i
u ∈ R

m is the i-th derivative of the input data. The control input matrices are

B̃1 ∈ R
k×m and B̃2 ∈ R

(n−k)×m . Subsystems (3a) and (3b) represent the inherited ODE
and algebraic part, respectively, and the solutions of (1) can be obtained using x = Wx̃

where Wn×n is a nonsingular matrix and x̃ = (
x̃T1 , x̃T2

)T
. The vectors x̃1 ∈ R

k and x̃n−k
2

are commonly known as the slow and fast parts of the solution, respectively. In [9], only
complex-valued matrix pencils are considered and even for a real-valued pencil the matrix J
in (3a) will be complex-valued in general, since in the Weierstraß canonical form J contains
the (possibly complex) eigenvalues of the ODE part of the pencil. This can be circumvented
by using the quasi-Weierstraß form introduced in [10]. This form guarantees that J and N
have entries in the same field as those of (E,A).

An index concept was introduced to classify different types of DAEs with respect to the
difficulty arising in the theoretical and numerical treatment of a given DAE. “Index” is a
notion used in the theory of DAEs for measuring the distance from a DAE to its related
ODE. There are several definitions of a DAE index. The index μ in (3) is known as the
Kronecker (nilpotency, differentiability) index. An equivalent decoupled system (3) shows
the dependence of the solution of a linear DAE on the derivatives of the input function. In
(3b), we can observe that the input function has to be at least μ − 1 times differentiable. The
higher the index the more differentiations of the input data are involved. Since numerical
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differentiation is an unstable process, the index μ is a measure of numerical difficulty when
solving the DAE. We can also observe that the initial condition x̃1(0) of the differential part
can be chosen arbitrary while x̃2(0) has to satisfy hidden constraint

x̃2(0) = −
μ−1∑

i=0

Ni B̃2u(i)(0).

Thus, DAE (1) has a unique classical solutions if x(0) = x0 is consistent. The index problem
affects the choice of numerical integration schemes strongly if standard numerical integration
schemes are applied to DAEs directly without decoupling. This lead to the development of
numerical integration schemes which were specifically designed for DAEs, see [8,11,12].
Hence, a promisingway to solve and applyMOR toDAEs is to first split them into differential
and algebraic parts, see [6]. According to [11], transforming linear DAEs into a Kronecker
canonical form is numerically infeasible and it is restricted to linear DAEs. Due to this
drawback other index concepts, such as the tractability index, differentiation index, etc, see
[13], were proposed with each of them stressing different aspects of the DAE. It is worth
mentioning that there are other techniques, such as the staircase form [14], which avoids the
computation of eigenvalues and provides a numerically stable algorithm for the decoupling
of matrix pencils. We also mention the quasi-Weierstraß form from [10], which makes use
of so called Wong sequences and does not require the computation of eigenvalues.

2.2 Tractability Index

In this paper, we consider the tractability index introduced in [15] and its generalization in
[16] defined as in Definition 1. For a thorough discussion of this concept we refer to [8].

Definition 1 (Tractability index) Given a regular matrix pair (E,A), we can define a matrix
and projector chain by setting E0 := E and A0 := A, and

E j+1 := E j − A jQ j , A j+1 := A jP j , for j ≥ 0, (4)

whereQ j are projectors onto KerE j and P j = I−Q j . Then, if there exists an index γ such
that E j is singular for all 0 ≤ j ≤ γ − 1, while Eγ is non-singular, we say that γ is the
tractability index of (E,A).

It is possible to prove that such an index γ exists for any regular matrix pair [8]. This index
criterion does not depend on the special choice of the projector functions Q j , see [17].
The tractability index has gained a lot of attention since it can be calculated without the
use of derivative arrays [18]. Hence, it is numerically feasible to compute the tractability
index compared to computing the Kronecker index. This is the main tool that we chose in the
decoupling of linear DAEs into their differential and algebraic parts, since it allows automatic
decoupling procedures, see [7,13,16]. In order to decouple linear DAEs with index higher
than one, so-called canonical projectors were introduced in [19] with additional constraints

Q jQi = 0, for j > i . (5)

Based on these projectors, special projector bases were introduced leading to a decoupled
system of the same dimension as the original, see [7]. A key step in forming the projectors
in (4) is to find the initial projectors Q j spanning the nullspaces of the usually sparse E j .
Standard ways of identifying the nullspace include the singular value decomposition (SVD)
or alike, which does not utilize matrix patterns and can be expensive for large-size matrices.
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One feasible way is to employ the sparse LU decomposition-based routine, called LUQ, see
[20]. This routine was also used to construct the projector bases efficiently. This motivated
the development of the index-aware MOR methods in [7]. In [7], equivalent explicit and
implicit decoupling methods were proposed which are discussed in the following. According
to [7], if we also assume f(Ex) = 0 and that the matrix pencil (E,A) is regular, using the
special projectors proposed in [19] and projector bases introduced in [21], DAE (1) can be
rewritten into an equivalent explicit decoupled system given by

ξ ′
p = Apξp + Bpu, ξp(0) = ξp0 , (6a)

ξq =
γ−1∑

j=0

L j
(
Aqξ

( j)
p + Bqu( j)

)
(6b)

y = Cpξp + Cqξq , (6c)

where L ∈ R
nq×nq is a nilpotent matrix with index γ. u( j) and ξ

( j)
p are the j-th derivatives

with respect to t . The subsystems (6a) and (6b) correspond to the differential and algebraic
parts of system (1). ξp ∈ R

n p and ξq ∈ R
nq are the differential and algebraic variables. The

dimension of the decoupled system is given by n = n p + nq . The original variable x can be
reconstructed by

x = Mpξp + Mqξq , (7)

whereMp ∈ R
n×n p ,Mq ∈ R

n×nq , and the overall matrix (Mp,Mq) is invertible. BothMp

andMq are constructed iteratively using a finite number of steps, and depend on the projector
chain which leads to the index definition. We can observe that decoupled systems (3) and (6)
are equivalent if Aq = 0. Decoupled system (6) can be constructed automatically, and thus
is numerically feasible. However, according to [7] the decoupling procedure of (6) involves
the inversion of the non-singular matrix Eγ which is costly for large-scale systems. Then,
the implicit version of (6) was also proposed in [7] which does not involve the inversion of
non-singular matrix Eγ . Using this decoupling procedure, DAE (1) can be re-written into an
equivalent implicit decoupled system given by

Epξ
′
p = Apξp + Bpu, ξp(0) = ξp0 , (8a)

Lqξq =
γ−1∑

j=0

N j
q

(
Aqξ

( j)
p + Bqu( j)

)
, (8b)

y = Cpξp + Cqξq , (8c)

where Nq = LL −1
q is also a nilpotent matrix with the same index γ as L . The matrices

Lq ∈ R
nq×nq and Ep ∈ R

n p×n p are always non-singular, see [21]. The subsystems (8a) and
(8b) correspond to the differential and algebraic parts of system (1). ξp ∈ R

n p and ξq ∈ R
nq

are the differential and algebraic variables. We can observe that the inherited ODEs (6a) and
(8a) of the explicit and implicit decoupled systems can be simulated using standard ODE
integration schemes.After obtaining the solutions of (8a), the algebraic part (8b) can be solved
using numerical solvers such as LU decomposition-based routines. It is not straightforward
to extend this to nonlinear DAEs. However, specific classes of nonlinear DAEs have been
studied, usually those appearing in practice, namely DAEs with quadratic nonlinearity [22].
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3 Decoupling of Nonlinear DAEs

In this section, we propose the decoupling of a class of nonlinear DAEs of the form (1a).
This decoupling strategy is an extension of the decoupling strategy for linear DAEs proposed
in [19]. A more general extension to nonlinear DAEs can be found in [8]. Here we adopt
a simplified approach, which is feasible thanks to the special structure of the DAEs we are
considering.

3.1 Decoupling Using Projectors

The tractability index of (1a) is independent of the nonlinearity if we assume the condition

EMq = 0. (9)

This implies that, after we apply the decoupling procedure for the linear part, the nonlinear
term

f(Ex) = f(EMpξp) (10)

depends only on the differential variables. In [7], it was shown that (6) can be rewritten in
the compact form

ξ ′
p = Apξp + Bpu, ξp(0) = ξp0 , (11a)

−L ξ ′
q = Aqξp − ξq + Bqu, (11b)

y = Cpξp + Cqξq , (11c)

Then using (11), we arrive at the explicit nonlinear decoupled system,

ξ ′
p = Apξp + fp(ξp) + Bpu, ξp(0) = ξp0 , (12a)

−L ξ ′
q = Aqξp − ξq + fq(ξp) + Bqu, (12b)

y = Cpξp + Cqξq . (12c)

The linear coefficients of the above system can be constructed in following the procedure in
[7]. The nonlinear functions are defined as

fp(ξp) = Ap f f(EMpξp) ∈ R
n p (13)

and

fq(ξp) = Aq f f(EMpξp) ∈ R
nq . (14)

The matrix coefficients Ap f ∈ R
n p×n and Aq f ∈ R

nq×n can also be constructed iteratively
from projector bases proposed in [7]. This procedure can be applied to systems of arbitrary
index. Here, we concentrate on index-1 systems, showing the explicit form of the additional
condition (9).

Setting E0 = E, A0 = A, (1a) can be written as

E0x′ = A0x + f(E0x) + Bu. (15)

We choose a projector Q0 such that ImQ0 = KerE0 and its complementary projector P0 =
I − Q0. Using (4),

E1 = E0 − A0Q0, A1 = A0P0,
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which satisfy the identities:

E1P0 = E0, A1 − E1Q0 = A0. (16)

Substituting the above identities into (15) and simplifying leads to

E1
[
P0x′ + Q0x

] = A1x + f(E1P0x) + Bu. (17)

If we assume E1 to be nonsingular, then (17) can be written as

P0x′ + Q0x = E−1
1

[
A1x + f(E1P0x) + Bu

]
. (18)

SinceE1 is nonsingular, then we say that the nonlinear DAE (1) is of tractability index 1. Left
multiplying (18) by projectors P0 andQ0 separately, we obtain the differential and algebraic
subsystems, respectively, of (1) given by

x′
P = P0E

−1
1 A0xP + P0E

−1
1 f(E1xP ) + P0E

−1
1 Bu,

xP (0) = P0x(0), (19a)

xQ = Q0E
−1
1 A0xP + Q0E

−1
1 f(E1xP ) + Q0E

−1
1 Bu, (19b)

y = CxP + CxQ, (19c)

where xP = P0x and xQ = Q0x. It is immediate to see that condition (9) is equivalent to
EQ0 = 0 in the index-1 case, which holds by construction. This procedure can be extended
to higher index if projectors, constructed with the additional condition (5), are used. Then
the original variable x can be decomposed as [7]

x = xP + xQ,

with differential component xP = �γ−1x and algebraic component xQ =
γ−2∑

j=0

� jQ j+1x +
Q0x, with � j = P0P1 . . .P j . In order to ensure that the nonlinear term in (1a) depends only
on the differential variable, that is,

f(Ex) = f(ExP + ExQ) = f(Exp),

we need to enforce the following condition:

E

⎛

⎝
γ−2∑

j=0

� jQ j+1 + Q0

⎞

⎠ = 0, (20)

which is equivalent to condition (9). A detailed discussion of condition (20) can be found in
[23].

We can see that the decoupled system (19) is of dimension 2n while the DAE (1) is of
dimension n. This implies that decoupling using projectors does not preserve the dimension
of the original DAE. In the next section, we discuss how to derive a decoupled system which
preserves the dimension of the nonlinear DAE (1).

3.2 Explicit Decoupling Using Bases

Projector bases can be applied to (19) as follows.
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Let nq = dim(KerE0) and n p = n − nq . If, we also let q0 ∈ ImQ0 and p0 ∈ Im P0, then,
we can expand x with respect to the bases, obtaining

x = q0ξq + p0ξp, (21)

where ξq ∈ R
nq , ξp ∈ R

n p , which implies that xP = p0ξp and xQ = q0ξq in (19). The
left inverses of matrices q0 ∈ R

n×nq and p0 ∈ R
n×n p are denoted by q∗T

0 ∈ R
nq×n and

p∗T
0 ∈ R

n p×n, respectively. Substituting xP = p0ξp and xQ = q0ξq into (19) leads to a
decoupled system which can be left multiplied by the left inverses p∗T

0 and q∗T
0 , respectively.

This yields a decoupled system in compact form:

ξ ′
p = Apξp + fp(ξp) + Bpu, ξp(0) = p∗T

0 x(0), (22a)

ξq = Aqξp + fq(ξp) + Bqu, (22b)

y = Cpξp + Cqξq , (22c)

where

Ap = p∗T
0 E−1

1 A0p0 ∈ R
n p×n p , Bp = p∗T

0 E−1
1 B ∈ R

n p×m,

Cp = Cp0 ∈ R
�×n p , Cq = Cq0 ∈ R

�×nq ,

Aq = q∗T
0 E−1

1 A0p0 ∈ R
nq×n p , Bq = q∗T

0 E−1
1 B ∈ R

nq×m .

and

fp(ξp) = p∗T
0 E−1

1 f(E1p0ξp) ∈ R
n p ,

fq(ξp) = q∗T
0 E−1

1 f(E1p0ξp) ∈ R
nq .

Using the modified decoupling procedure, we can identify the matrices in (7) withMp = p0,
Mq = q0, so that condition (9) is equivalent to Eq0 = 0, which is satisfied by construction.
We can observe that system (22) has the same structure as system (12)withmatrix coefficients
given by L = 0, Ap f = p∗T

0 E−1
1 ∈ R

n p×n, and Aq f = q∗T
0 E−1

1 ∈ R
nq×n . It is clear that

f(E1p0ξp) = f(Ep0ξp), in accordance with (10).
We can now observe that the total dimension of the decoupled system is n = n p + nq ,

which is equal to the dimension of the nonlinear DAE (1). Instead of solving the coupled
nonlinear DAE (1) we can now solve the decoupled nonlinear system (22). We obtain the
solution ξp by applying standard integration schemes to (22a) and the solutions of ξq can be
computed by post-processing using (22b). Then, the desired output solution can be obtained
using (22c). However, we can observe that the coefficients of (22) involve computing the
inverse of E1 which is computationally expensive and requires large storage for large scale
systems. Moreover, it also leads to dense matrix coefficients of the decoupled system (22).

3.3 Implicit Decoupling

In this subsection, we discuss a decoupling strategy which does not involve inversion of
matrix E1. In [7], it was shown that (8) can be rewritten in the compact form

Epξ
′
p = Apξp + Bpu, ξp(0) = ξp0 , (23a)

−L ξ ′
q = Aqξp − Lqξq + Bqu, (23b)

y = Cpξp + Cqξq , (23c)
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where Lq and L are as defined in (8). Then using the above system we can deduce the
implicit nonlinear decoupled system of (1) with condition (9) given by

Epξ
′
p = Apξp + fp(ξp) + Bpu, ξp(0) = ξp0 , (24a)

−L ξ ′
q = Aqξp − Lqξq + fq(ξp) + Bqu, (24b)

y = Cpξp + Cqξq , (24c)

where nonlinear functions fp(ξp) ∈ R
n p and fq(ξp) ∈ R

nq are defined as in (13) and (14). The
construction of the matrix coefficients of system (24) can be done using the same procedure
as for the case of linear DAEs in [7] for index greater than one. For simplicity, we discuss
the index-1 systems.

This is done as follows. Substituting (21) into (17) leads to

(
E1p0 0

) (
ξp
ξq

)′
= (

A0p0 −E1q0
) (

ξp
ξq

)
+ f(E1p0ξp) + Bu. (25)

Instead of inverting matrix E1, we can decouple (25) into differential and algebraic parts
using matrices p̂0 ∈ R

n×n p and q̂0 ∈ R
n×nq proposed in [7] which are defined as via

p̂0 ∈ Ker qT0E
T
1 and q̂0 ∈ Ker pT0E

T
1 . Left multiplying (25) by

(
p̂T0 q̂T0

)T leads to
(
p̂T0E1p0 0

0 0

) (
ξp
ξq

)′
=

(
p̂T0A0p0 0
q̂T0A0p0 −q̂T0E1q0

)(
ξp
ξq

)

+
(
p̂T0 f(E1p0ξp)
q̂T0 f(E1p0ξp)

)
+

(
p̂T0B
q̂T0B

)
u. (26)

The system (26) can be reduced to a nonlinear decoupled system given by

Epξ
′
p = Apξp + fp(ξp) + Bpu, ξp(0) = p∗T

0 x(0), (27a)

Eqξq = Aqξp + fq(ξp) + Bqu, (27b)

y = Cpξp + Cqξq , (27c)

where

Ep = p̂T0E0p0 ∈ R
n p×n p , Ap = p̂T0A0p0 ∈ R

n p×n p ,

Bp = p̂T0B ∈ R
n p×m, Eq = −q̂T0A0q0 ∈ R

nq×nq ,

Aq = q̂T0A0p0 ∈ R
n p×nq , Bq = q̂T0B ∈ R

nq×m .

The nonlinear terms are defined as: fp(ξp) = p̂T0 f̃(ξp) ∈ R
n p , fq(ξp) = q̂T0 f̃(ξp) ∈ R

nq

where f̃(ξp) = f(E1p0ξp) ∈ R
n . We note that matrices Ep and Eq are always nonsingular.

As expected, system (27) is equivalent to system (24) with matrix coefficients given by
L = 0, Lq = Eq Ap f = p̂T0 ∈ R

n p×n, and Aq f = q̂T0 ∈ R
nq×n . It is also clear that

f(E1p0ξp) = f(Ep0ξp), in accordance with (10). We can observe that (27) does not involve
any matrix inversions. It is an implicit version of the decoupled system (22) and their output
solutions must coincide. However, in practice it is computationally cheaper to construct
the coefficients of (27) than those in (22). Both decoupled systems preserve the dimension
and the stability of the nonlinear DAE (1). If (1) is of tractability index 1, then it can be
automatically decoupled into either (27) or (22). Thus, instead of simulating (1), we can
simulate its equivalent nonlinear decoupled system (27) easily using standard numerical
integration and solvers. Decoupled systems (22) and (27) can be constructed in efficient way
by employing the sparse LU decomposition-based routine, called LUQ, see [20], to construct
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the projectors and their respective bases. In the next section, we discuss how to apply MOR
to (27).

4 Index-AwareMOR for Nonlinear DAEs

Here, we consider the equivalent nonlinear decoupled system (24) corresponding to the
nonlinear DAE (1), but the same strategy can be applied to (12). Given such a nonlinear
decoupled system, our goal is to reduce the order of differential and algebraic parts separately.

4.1 MOR for the Nonlinear Differential Subsystem

We consider the nonlinear differential subsystem of the nonlinear decoupled system (24)
given by

Epξ
′
p = Apξp + fp(ξp) + Bpu, ξp(0) = p∗T

0 x(0), (28a)

yp = Cpξp, (28b)

where yp ∈ R
� is the output solution of the differential part. Our goal is reduction by

projection of system (28). This means we want to find a linear subspace in which the solution
trajectory lies approximately. This subspace is defined by its basis matrix Vp ∈ R

n p×rp

where rp � n p. We are interested in finding a solution ξpr ∈ R
rp such that ξp ≈ Vpξpr .

We can then project system (28) onto that subspace by Galerkin projection resulting in the
reduced differential subsystem

Epr ξ
′
pr = Apr ξpr + fpr (ξpr ) + Bpr u, (29a)

ypr = Cpr ξpr , (29b)

where Epr = VT
pEpVp ∈ R

rp×rp , Apr = VT
pApVp ∈ R

rp×rp , Bpr = VT
pBp ∈

R
rp×m, fpr (ξpr ) = VT

pfp(Vpξpr ) ∈ R
rp and Cpr = CpVp ∈ R

�×rp . Projection matrix
Vp can be computed using standard MOR techniques for nonlinear systems such as POD
[24]. However, if we employ model order reduction via POD by using (29a) to compute
the snapshots, the nonlinearity fpr (ξpr ) = VT

pfp(Vpξpr ) requires computation of fp(Vpξpr )

which has a complexity in the system dimension. Therefore, the discrete empirical inter-
polation method (DEIM) [5,25] is often used to create a truly low-dimensional function
approximating VT

pfp(Vpξpr ). In this paper we do not consider DEIM or other hyperreduc-
tion methods.

4.2 Reduction of Algebraic Subsystem

After reducing the differential subsystem using, for example, POD, the nonlinear term in the
algebraic subsystem (24b) is also affected leading to

−L ξ ′
q=AqVpξpr −Lqξq + fq(Vpξpr ) + Bqu, (30a)

yq=Cqξq , (30b)

where yq ∈ R
� is the output solution of the algebraic part after reducing the differential

subsystem. Here, we intend to reduce the size of the algebraic variables ξq by constructing
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another matrixVq ∈ R
nq×rq where rq � nq . That is, we replace (30) by a reduced algebraic

subsystem given by

−Lr ξ
′
qr =Aqr ξpr −Lqr ξqr + fqr (ξpr ) + Bqr u, (31a)

yqr = Cqr ξqr , (31b)

where Lqr = VT
qLqVq ∈ R

rq×rq , Lr = VT
qLVq ∈ R

rq×rq , Aqr = VT
qAqVp ∈

R
rq×rp , Bqr ∈ R

rq×m, Cqr = CqVq ∈ R
�×rq and fqr (ξpr ) = VT

q fq(Vpξpr ) ∈ R
rq . Reduc-

tion matrix Vq can also be computed using the POD by taking the algebraic solutions of
(24b) obtained by solving the linear system

Lqξq =
γ−1∑

j=0

N j
q

(
Aqξ

( j)
p + f ( j)q (ξp) + Bqu( j)

)
, (32)

where Nq is as defined in (8).
Combining (29) and (31), we obtain an index-aware reduced order model (I-ROM) of (1)

given by

Epr ξ
′
pr = Apr ξpr + fpr (ξpr ) + Bpr u, ξpr (0) = ξpr0 ,

−Lr ξ
′
qr = Aqr ξpr −Lqr ξqr + fqr (ξpr ) + Bqr u,

yr = Cpr ξpr + Cqr ξqr ,

(33)

where the reduced dimension is given by r = rp + rq � n. Thus, we replace (1) with (33)
instead of (2).

5 Nonlinear DAEs Arising fromGas Networks

In this section, we apply the implicit decoupling strategy proposed in Sect. 3.3 to nonlinear
DAEs arising from gas flow in pipeline networks.

5.1 Index Reduction of DAEs Arising from Gas Networks

We consider a spatial discretization approach of one dimensional isothermal Euler equations
arising from gas flow pipe networks proposed in [1,26], leading to a nonlinear DAE given
by

|A T
S |p′

s + |A T
0 |p′

d = −M−1
L q−, (34a)

q′+ = MA(A T
S ps + A T

0 pd) + g(q+,ps,pd), (34b)

0 = A0q+ + |A0|q− − Bdd(t), (34c)

0 = ps − s(t). (34d)

The unknowns are described by the pressure at the supply nodes ps ∈ R
ns , the pressure at

all other nodes pd ∈ R
nd+n0 , the difference of flux over a pipe segment q− ∈ R

nE and the
average of the mass flux over a pipe segment q+ ∈ R

nE , modelled over a graph with nE
edge segments, that correspond to the size of the discretization, ns supply nodes, nd demand
nodes and n0 interior nodes. The diagonal matrices ML ∈ R

nE×nE and MA ∈ R
nE×nE

encode parameters such as length, radius of the pipe segments as well as constants coming
from the gas equation. The matrix Bd ∈ R

(nd+n0)×nd is a matrix of ones and zeros making
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sure that the demand of the demand node is put at the right place in the mass flux equation.
The matrix A0 ∈ R

nd×nE is extracted from the incidence matrix of the graph representing
the refined gas transportation network and removing the rows corresponding to the supply
nodes, while AS ∈ R

ns×nE is the matrix extracted from the incidence matrix by only taking
rows corresponding to the supply nodes.The absolute value sign around the matrices |A0|
and |AS | mean that component-wise absolute values are taken to form the matrix, see [1].
The input functions d(t) = (. . . , di (t), . . .)T ∈ R

md and s(t) = (. . . , si (t), . . .)T ∈ R
ms are

vectors for flux (mass flow) at demand nodes and pressure at supply nodes, respectively. The
nonlinear term

g(q+,pd ,ps) = (. . . , gk(q+,pd ,ps), . . .)T ∈ R
nE ,

is the vector involving friction and gravitation effects with

gk(q+,pd ,ps) = −gAk

2γ0
ψk(pd ,ps)

�hk
Lk

− λkγ0

4Dk Ak

qk+|qk+|
ψk(pd ,ps)

, (35)

where ψk(pd ,ps) is the k-th entry of the vector-valued function:

ψ(pd ,ps) = |A T
S |ps + |A T

0 |pd ∈ R
nE .

The scalars λk, Dk, Lk and Ak denote friction, diameter, length and area of the pipe’s k-th
segment. The scalar �hk denotes the height difference of the pipe segment. These scalar
parameters in the system and those defined earlier are known at least within some range of
uncertainty. System (34) can be rewritten in the form (1) leading to a system of nonlinear
DAEs with dimension n = 2nE + nd + n0 + ns . The desired outputs in R

ns+nd can be
obtained using the output equation

y =
(
yq
yp

)
=

(
0 |AS | 0 0
0 0 BT

d 0

)
⎛

⎜⎜⎝

q−
q+
pd
ps

⎞

⎟⎟⎠ , (36)

where yq = |AS |q+ is the mass flow at the supply nodes and yp = BT
d pd is the pressure at

demand nodes. We can observe that the initial condition has to be consistent with the hidden
constraints in (34). Efficient simulation of (34) has numerical integration challenges since
the solutions of hyperbolic balance laws can blow-up in finite time, due to both the stiffness
and index problem. In [26], an index reduction strategy was proposed to eliminate the index
problem. This was done by reformulating (34) into an implicit nonlinear ODE given by
(|A0|ML |A T

0 | 0
0 I

) (
p′
d

q′+

)
=

(
0 A0

MAA
T
0 0

)(
pd
q+

)

+
(|A0|ML |A T

S |s′(t)
g(q+, s(t),pd)

)
+

(
0 −Bd

MAA
T
S 0

) (
s(t)
d(t)

)
. (37)

Since from (36) we are just interested in the solutions of q+ and pq , the dimension of the
nonlinear DAE (34) can be reduced to ñ = nd + n0 + nE with output equation

y =
(
yq
yp

)
=

(
0 |AS |
BT
d 0

) (
pd
q+

)
.

The generated ODE can be reduced further using standard MOR methods for nonlinear
systems, such as POD, POD-DEIM, etc, applied to (37), see [1]. However, the index reduction
approach presented depends on the spatial discretization approach used.
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In the next section, we propose an alternative model which preserves the DAE structure
independent of the spatial discretization method.

5.2 DecoupledModel of Gas Transport Networks

Here, we discuss the decoupling analysis of nonlinear DAE (34) arising from the gas trans-
portation networks. We can observe that (34) can be re-written into the form (1) where

E =

⎛

⎜⎜⎝

0 0 |A T
0 | |A T

S |
0 I 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , A =

⎛

⎜⎜⎝

−M−1
L 0 0 0

0 0 MAA
T
0 MAA

T
S|A0| A0 0 0

0 0 0 I

⎞

⎟⎟⎠ ,

B = −

⎛

⎜⎜⎝

0 0
0 0
0 Bd

I 0

⎞

⎟⎟⎠ , C =
(
0 |AS | 0 0
0 0 BT

d 0

)
, f(Ex) =

⎛

⎜⎜⎝

0
g̃(Ex)
0
0

⎞

⎟⎟⎠ . (38)

The unknown vector x and input vector u are given by x = (
qT− qT+ pTd pTs

)T
and u =

(
s(t)T d(t)T

)T
, respectively. g̃(Ex) = g̃(ψk(pd ,ps),q+) =(. . . , g̃k(ψk(pd ,ps),q+), . . .)T,

where

g̃k(ψk(pd ,ps),q+) = −gAk

2μ0
ψk(pd ,ps)

�hk
Lk

− λkμ0

4Dk Ak

q+|q+|
ψk(pd ,ps)

.

Since the gas transport model can be rewritten in the form (1), we can decoupled it into
either the form (12) or (23). In our discussion, we shall use the implicit decoupling strategy
proposed in Sect. 3.3 leading to an implicit decoupled system (23). For convenience, we can
partition (38) into a block form leading to

⎛

⎝
0 0 E13

0 I 0
0 0 0

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠
′

=
⎛

⎝
A11 0 0
0 0 A23

A31 A32 A33

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠

+
⎛

⎝
0

g̃(Ex)
0

⎞

⎠ +
⎛

⎝
0
0
B3

⎞

⎠
(
s(t)
d(t)

)
, (39a)

y = (
0 C2 C3

)
⎛

⎝
x1
x2
x3

⎞

⎠ , (39b)

whereE13 = (|A T
0 | |A T

S |) ∈ R
nE×nv , A11 = −M−1

L ∈ R
nE×nE ,A23 = (

MAA
T
0 MAA

T
S

) ∈
R
nE×nv , A31 =

(|A0|
0

)
∈ R

nv×nE , A32 =
(
A0

0

)
∈ R

nv×nE , A33 =
(
0 0
0 I

)
∈ R

nv×nv ,

B3 = −
(
0 Bd

I 0

)
∈ R

nv×m, C2 =
(|AS |

0

)
∈ R

�×nE , C3 =
(

0 0
BT
d 0

)
∈ R

�×nv , x1 = q− ∈
R
nE , x2 = q+ ∈ R

nE ,

x3 =
(
pd
ps

)
∈ R

nv , nv = nd + ns + n0. The nonlinear term is defined as

g̃(Ex) = g̃(E13x3, x2, 0, 0)
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= ˜̃g(x3, x2) = (. . . , ˜̃gk(xk3, xk2), . . .)T ∈ R
nE ,

with

˜̃gk(xk3, xk2) = −gAk

2γ0
E13xk3

�hk
Lk

− λkγ0

4Dk Ak

xk2|xk2|
E13xk3

. (40)

From the above expression, we can observe that the nonlinear function in (39a) only depends
on the differential variables, by noting that the algebraic variables ps in x3 are not included
in the definition of g̃. This implies that the tractability index of this system is independent of
the nonlinearity which satisfies condition (9). Hence we can apply our proposed decoupling
procedure in Sect. 3. In order to decouple (39), we need to first find the tractability index of
(39) using Definition 1. Setting

E0 =
⎛

⎝
0 0 E13

0 I 0
0 0 0

⎞

⎠ and A0 =
⎛

⎝
A11 0 0
0 0 A23

A31 A32 A33

⎞

⎠ , (41)

we can then construct projectors

Q0 =
⎛

⎝
I 0 0
0 0 0
0 0 Q

⎞

⎠ ∈ R
n×n and P0 = I − Q0 =

⎛

⎝
0 0 0
0 I 0
0 0 P

⎞

⎠ ∈ R
n×n, (42)

such that E0Q0 = 0, meaning E13Q = 0, or Q ∈ R
nv×nv is the projector onto the nullspace

of E13 and P ∈ R
nv×nv is its complementary projector. Substituting the above matrices and

projectors into (4) leads to

E1 = E0 − A0Q0 =
⎛

⎝
−A11 0 E13

0 I −A23Q
−A31 0 −A33Q

⎞

⎠ .

If E1 is nonsingular, the DAE (39) is of tractability index 1. Next, we construct the values of
the matrix coefficients of (27) as follows. Let n p = rank(E0) and nq = n − n p. Then, the
columns of the matrices

q0 =
⎛

⎝
I 0
0 0
0 q

⎞

⎠ ∈ R
n×nq and p0 =

⎛

⎝
0 0
I 0
0 p

⎞

⎠ ∈ R
n×n p (43)

are linearly independent and span the column spaces of Q0 and P0 in (42), respectively. The
left inverse of matrices p0 and q0 are given by

q∗T
0 =

(
I 0 0
0 0 q∗T

)
∈ R

nq×n and p∗T
0 =

(
0 I 0
0 0 p∗T

)
∈ R

n p×n, (44)

respectively, where q∗T and p∗T are the left inverses of columnmatrices q and p, respectively.
Let kq be the dimension of the nullspace ofE13, and kp = nv−kq .The columns ofq ∈ R

nv×kq

and p ∈ R
nv×kp are linearly independent and span the column spaces of Q and P in (42),

respectively. Finally, column matrices p̂0 ∈ R
n×n p and q̂0 ∈ R

n×nq can be constructed
such that their columns are linearly independent and span the null spaces of the matrices
qT0A

T
0 ∈ R

nq×n and ET
0 ∈ R

n×n, respectively. The differential and algebraic variables are
given by

ξp = p∗T
0 P0x =

(
x2

p∗Tx3

)
and ξq = q∗T

0 Q0x =
(

x1
q∗Tx3

)
, (45)
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respectively. The nonlinear term is defined as

f̃(ξp) =
⎛

⎝
0

gp(ξp)
0

⎞

⎠ (46)

where

gp(ξp) = g̃(E1p0ξp) = g̃(E13pξp2 , ξp1 , 0) = ˜̃g(ξp1 , ξp2)
= (. . . , ˜̃gk(ξ kp1 , ξ kp2), . . .)T ∈ R

nE ,

with ˜̃gk(ξ kp1 , ξ kp2) = − gAk
2γ0

Ẽ13ξ
k
p2

�hk
Lk

− λkγ0
4Dk Ak

ξ kp1
|ξ kp1 |

Ẽ13ξ kp2

and Ẽ13 = E13p. This is due to the

fact thatE13x3 = E13pp∗Tx3 = E13pξp2 . It can be proved that fq(ξp) = q̂T0 f̃(ξp) = 0 ∈ R
nq

always due to the structure of the nonlinearity. Finally, substituting (41), (43)-(45) into (27)
leads to an equivalent nonlinear decoupled system of (38) given by

Epξ
′
p = Apξp + fp(ξp) + Bpu, ξp(0) =

(
x2(0)

p∗Tx3(0)

)
, (47a)

Eqξq = Aqξp + Bqu, (47b)

y = Cpξp + Cqξq , (47c)

where fp(ξp) = p̂T0 f̃(ξp) ∈ R
n p with f̃(ξp) as defined in (46). The systemmatrix coefficients

are computed as defined in (27). We can observe that the nonlinear gas transport network
model has been decoupled into n p = nE + kp nonlinear differential equations, and nq =
nE + kq algebraic equations. Subsystem (47a) can be simulated using standard numerical
integration, then algebraic solutions of (47b) can be obtained by using numerical solvers
after post-processing. Hence, the desired output data can be obtained through (47c). We note
that the decoupling enables us to treat DAEs like ODEs. However, the stiffness problem is
inherited in the ODE subsystem (47a). In order to cope with the stiffness problem, we can
use IMEX integration scheme [27] instead of standard integration which makes an efficient
simulation of (47a) possible. We note that the values of the matrix coefficients of (47) can
vary depending on the choices of projectors in (42), but the solutions will always be the same.
In practice, system (47) can be constructed automatically following the implicit decoupling
procedure in Sect. 3.3. Numerical experiments show that (47a) and (37) have the same
dimension for the case of index 1 gas transportation networks.

6 Numerical Experiments

In this section, we illustrate the performance of the proposed decoupling and IMOR method
for nonlinear DAEs with a special nonlinear term f(x) = f(Ex),whereE is a singular matrix.
Such nonlinearDAEs can arise fromgas transportation networks as discussed in Sect. 5. Here,
we consider small to large examples of gas transportation networks leading to nonlinearDAEs
of tractability index 1.Wecompute the relative error in the formatRe.error = ‖y−yr‖2/‖y‖2.
The output error is defined as

max(Re.error(pressure),Re.error(mass flow)). (48)

Simulations were done using MATLAB®Version 2012b on a Unix desktop.
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Table 1 Comparison of gas transportation models

Non. DAE Nonl. ODE Nonl. Decoupled Supply nodes Demand nodes

n ñ n p nq n p + nq ms md

4 2 2 2 4 1 1

25 16 16 9 25 1 2

55 36 36 19 55 1 8

121 80 80 41 121 1 24

6.1 Numerical Integration

We compare the output solutions (mass flow at the supply node and pressure at demand
nodes) of different gas transportation models: nonlinear DAE model (34), nonlinear ODE
model (37) and nonlinear decoupled model (47).

Example 1 In this example, we consider small to medium gas pipeline networks from [28,29]
with steady pressure at the supply pressure node and steady mass flow at demand nodes. We
are interested in the comparison of the pressure and mass flows of different models of each
gas transportation network shown in Table 1.

In Table 1, we can observe that the index reduced ODE model has the same dimension as
the differential part of the nonlinear decoupled model. We use the implicit-Euler numerical
integration scheme to solve the nonlinear DAE and ODE models with a fixed time step. For
the nonlinear decoupled model we use the implicit-Euler numerical integration scheme on
the differential part and LU based numerical solver for the algebraic part. Figures 1, 2, 3, 4,
show the mass flow at the supply node and pressure at the first demand node for each network
presented in Table 1. In Fig. 1, we used steady pressure s(t) = 650bars at the supply node
and steady mass flow rate of d(t) = 100Kg/s at the demand node.

In Fig. 2, we used steady pressure s(t) = 700bars at the supply node and steady mass
flow rate of d(t) = (60, 30)T at the demand nodes.

In Fig. 3, we used steady pressure s(t) = 4.55 × 103bars at the supply node and steady
mass flow rate of

d(t) = (0.21, 34.86, 0.22, 2.83, 1.81, 1.04, 2.85, 1.45)T

at the demand nodes. In Fig. 4, we used steady pressure s(t) = 3.45× 104bars at the supply
node and steady mass flow rate of d(t) = 10 × ones(24, 1) at the demand nodes. In all test
cases, we can observe that all models decay towards steady mass flow at the supply node and
steady pressure at the demand nodes.

Example 2 In this example, we are interested in comparing the pressure and mass flow rate
while applying steady pressure at supply node and transient mass flow rate at the demand
node.We consider a medium size gas transport pipe network with 200 pipes, one supply node
and one demand node generated using the following data. The length, diameter and average
roughness of each pipe are chosen as constants given by 18.15m, 1.422m and 1.5×10−6m,

respectively. The gas composition through the network is methane with specific gas constant
518.26J/KgK at steady supply of 84bar and mass flow at demand as shown in the first row
of Fig. 5 in the time interval t ∈ [0, 1000s] .

This leads to a nonlinear DAE system of dimension n = 601 which we decoupled into
n p = 400 differential equations and nq = 201 algebraic equations. For comparison, we
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Fig. 1 Gas transportation network (n = 4,ms = 1,md = 1)

Fig. 2 Gas transportation network (n = 25,ms = 1,md = 2)

Fig. 3 Gas transportation network (n = 55,ms = 1,md = 8)

generated the ODE model (37) leading to an ODE model of dimension 400. In all models
for integration, we use the implicit-Euler scheme with the same step size of 8. In the second
row of Fig. 5, we can observe that the the pressure and mass flow coincide with the nonlinear
DAE model for both ODE model and the decoupled model. Using the solutions of the
nonlinear DAE model as reference, the solutions from the ODE model have relative errors
of 2.4×10−6 and 5.2×10−8 in the pressure and mass flow, respectively, while the solutions
from the decoupled model have relative errors of 3.1 × 10−6 and 4.5 × 10−7, respectively.
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Fig. 4 Gas transportation network (n = 121,ms = 1,md = 24)
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Fig. 5 Comparison of the output solutions

Example 3 In this example, we compare the matrix properties of the matrix pencils of the
derived models and the values of the nonlinear term at a fixed state vector. In Figs. 6, 7,
8, we compare the sparsity of the matrix pencils of the coupled model, decoupled model
and implicit ODE model. We can observe that all models are sparse, however the decoupled
model is the least sparse. In Table 2, we compare the finite spectrum of the matrix pencils and
the nonlinearity. For the definition of finite spectrum and singular values of a matrix pencil,
see [8]. We can observe that all models have the same spectrum with purely imaginary finite
eigenvalues and approximately the same values of the nonlinear function.
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Fig. 6 Sparsity of the matrix pencil (E,A) of the coupled model

0 20 40 60 80

0

10

20

30

40

50

60

70

80

nz = 304
0 20 40 60 80

0

10

20

30

40

50

60

70

80

nz = 344

Fig. 7 Sparsity of the matrix pencil (Ep,Ap) of the decoupled model

6.2 Model Order Reduction

Here, we illustrate the performance of the proposed IMOR method compared to existing
MOR methods.

Example 4 We consider a large-scale gas transport pipeline network with 5,000 pipes, 1
supply node and 1 demand node. This model was generated numerically using the following
data. The length, diameter and average roughness of each pipe are chosen as 0.726m, 1.422m
and 1.0×10−6m, respectively. The gas composition is with specific gas constant 1530J/KgK
at steady pressure 50bar at supply node and mass flow as a step function as shown in the
first row of Fig. 10 at the demand node at a time interval t ∈ [0, 86400] . This leads to a
nonlinear DAE (34) of dimension n = 15, 001. It took 63.7s to automatically decouple the
nonlinear DAE into n p = 10, 000 nonlinear differential equations and nq = 5, 001 algebraic
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Fig. 8 Sparsity of the matrix pencil of the implicit ODE model

Table 2 Comparison of the eigenvalues of the matrix pencil and the norm of the nonlinear term with that of
derived nonlinear models

n n f Nonlinear DAE Nonlinear ODE or nonlinear decoupled

λmin λmax ‖f(x)‖ λmin λmax ‖f(x)‖
4 2 −166.67i 166.67i 2.2202 −166.67i 166.67i 2.2202

25 16 −0.020803i 1.3352i 0.35903 −0.020803i 1.3352i 0.35903

55 36 −7.56 × 10−4i 39.558i 69.8168 −7.56 × 10−4i 39.558i 69.8168

121 80 −0.4768i 777.7542i 0.53219 −0.4768i 777.7542i 0.53219

Fig. 9 Singular values divided by
the largest singular value of the
POD Snapshot Matrix of the
differential part using the
decoupled system

0 10 20 30 40 5010−18

10−14

10−10

10−6

10−2

equations. We also generated an index reduced ODE (37) of dimension ñ = 10, 000. We
reduced the decoupled system using POD on both the differential and algebraic parts.

Then, we obtained an I-POD model with rp = 2 and rq = 4 leading to a total reduction
of r = rp + rq = 6 � 15, 001. The first singular values of the differential part are shown in
Fig. 9.
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Table 3 Comparison of the ROMs, output error as in (48)

ROMs Red. Size (r ) % Red. Output error Speed-ups

DAE-POD 2 99.99 3.3 × 10−5 52.9

ODE-POD 1 99.99 2.1 × 10−5 49.4

I-POD 6 99.96 1.1 × 10−5 27.0
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Fig. 10 Comparison of the pressure at demand nodes and mass flow at supply node

We also used POD to reduce both the nonlinear DAE and ODE directly. For comparison,
the size of ROMs for different MOR methods is determined by making sure that the output
error is below 10−4 and the results are presented in Table 3. All numerical integration was
done using the backwards Euler method with a fixed time step h = 250 and the LU-based
numerical solver implemented in the backslashMATLAB commandwas used for solving
the resulting linear systems of equations in each time step. We note that using the backslash
operator with a sparse matrix [30] in MATLAB, the LU-decomposition is done by UMF-
PACK, i.e., row and column permutations are not only applied for numerical stability but
also to reduce the number of fill-ins significantly. We can observe that I-POD leads to the
largest ROM and lowest speed-ups. This is due to the fact that its ROM is a DAE while the
other ROMs are ODEs. The comparison of the mass flow at the supply node and the pressure
at the demand node of all ROMs are shown in Figs. 10 and 11, where the training and the test
scenarios are different in Fig. 11. In Fig. 12, we compare the output relative error for pressure
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Fig. 11 Comparison of the pressure at demand nodes and mass flow at supply node for a different scenario in
the test versus the training

and mass flow for different sizes of the ROMs for Fig. 10. We can observe that I-POD is
the most accurate while ODE-POD is the least accurate. However, I-POD leads to a slightly
bigger ROM.

7 Conclusions

We have proposed a new automatically decoupling strategy and an IMOR method for non-
linear DAEs with a special nonlinear term. This approach eliminates the index problem
during simulation andMORwhich allows the use of standard numerical integration methods
and MOR techniques. We have derived both the implicit (12) and explicit (23) decoupled
systems for arbitrary index nonlinear DAEs. We have demonstrated the accuracy of this
approach by applying it to nonlinear DAEs arising from the gas transportation networks.
The computational cost of this approach can be improved by applying reordering algorithms
after decoupling. However, we have restricted ourselves to nonlinear DAEs arising from gas
transportation networks. Future research will deal with nonlinear DAEs arising from other
applications.
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Fig. 12 Comparison of the relative error of the ROMs

Acknowledgements Thiswork is supported by theGermanFederalMinistry forEconomicAffairs andEnergy,
in the joint project: “MathEnergy – Mathematical Key Technologies for Evolving Energy Grids”, sub-project:
Model Order Reduction (Grant number: 0324019B).

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


2488 Journal of Dynamics and Differential Equations (2022) 34:2465–2489

References

1. Grundel, S., Hornung, N., Roggendorf, S.: Numerical aspects of model order reduction for gas trans-
portation networks. In: Koziel, S., Leifsson, L., Yang, X.-S. (eds.) Simulation-Driven Modeling and
Optimization, pp. 1–28. Springer, Berlin (2016)

2. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM Publications, Philadelphia
(2005)

3. Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic
perspective. Arch. Comput. Methods Eng. 21(4), 331–358 (2014)

4. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to
efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339(9),
667–672 (2004)

5. Chaturantabut, S., Sorensen, C.D.: Nonlinear model reduction via discrete empirical interpolation. SIAM
J. Sci. Comput. 32(5), 2737–2764 (2010)

6. Banagaaya, N., Alì, G., Schilders, W.H.A.: Index-aware Model Order Reduction Methods: Applications
to Differential-Algebraic Equations, volume 2 of Atlantis Studies in Scientific Computing in Electromag-
netics. Atlantis Press (2016)

7. Banagaaya, N.: Index-aware model order reduction methods. Eindhoven University of Technology, Eind-
hoven, Netherlands, PhD thesis (2014)

8. Lamour, R., März, R., Tischendorf, C.: Differential Algebraic Equations: A Projector Based Analysis.
Differential-Algebraic Equations Forum. Springer-Verlag, Berlin (2013)

9. Kalogeropoulos, G., Mitrouli, M., Pantelous, A., Triantafyllou, D.: The Weierstraß canonical form of a
regular matrix pencil: numerical issues and computational techniques. In: Margenov, S., Vulkov, L.G.,
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