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Abstract 

How should tests (or queries, questions, or experiments) be selected? Does it matter if only a 

single test is allowed, or if a sequential test strategy can be planned in advance? This article 

contributes two sets of theoretical results bearing on these questions. First, for selecting a 

single test, several Optimal Experimental Design (OED) ideas have been proposed in 

statistics and other disciplines. The OED models are mathematically nontrivial. How is it that 

they often predict human behavior well? One possibility is that simple heuristics can 

approximate or exactly implement OED models. We prove that heuristics can identify the 

highest information value queries (as quantified by OED models) in several situations, thus 

providing a possible algorithmic-level theory of human behavior. Second, we address whether 

OED models are optimal for sequential search, as is frequently presumed. We consider the 

Person Game, a 20-questions scenario, as well as a two-category, binary feature scenario, 

both of which have been widely used in psychological research. In each task, we demonstrate 

via specific examples and extended computational simulations that neither the OED models 

nor the heuristics considered in the literature are optimal. Little research addresses human 

behavior in such situations. We call for experimental research into how people approach the 

sequential planning of tests, and theoretical research on what sequential planning procedures 

are most successful, and we offer a number of testable predictions for discriminating among 

candidate models. 

 

 

Keywords: Sequential information search, optimal experimental design (OED) models, 

heuristics and optimality, split-half heuristic, maximum-entropy question heuristic, stepwise 

and multi-step question strategies 
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1. Introduction 

A doctor cannot conduct every available medical test when diagnosing a patient. A 

scientist cannot conduct all potentially relevant experiments. A child cannot point at every 

object to inquire whether it is consistent with the meaning of a new word. But carefully 

chosen queries can greatly assist learning and decision making in all of these situations. (We 

use the term query in a general sense: it could be a scientific experiment, a question, an eye 

movement, etc.) Given that queries are costly (e.g., in terms of money, time, or potential harm 

to a patient), an important issue is which strategy for selecting queries is most efficient, to 

obtain a maximum amount of information with as few tests as possible.  

Can the informativeness of different queries be precisely quantified? Some ideas for 

addressing this question began to develop in statistics in the 1950s (Good, 1950; Lindley, 

1956); the general approach falls within Savage’s (1954) Bayesian decision-theoretic 

framework. Several so-called Optimal Experimental Design (OED) models have been 

proposed to quantify the informational value of queries in this framework. OED models 

measure things like how much uncertainty has been reduced (information gain; Lindley, 

1956), classification accuracy has been improved (probability gain; Baron, 1985), or beliefs 

have changed (e.g., impact; Wells & Lindsay, 1980). Related terms include epistemic utility 

and quasi utility, sampling norm, value-of-information model, and Optimal Data Selection. 

How do people select queries? There has recently been an explosion of work in this 

area, including in the study of causal learning, development, machine learning, eye 

movements in visual perception, and medical decision making (reviewed by Coenen, Nelson 

& Gureckis, 2018). Although OED models were initially designed as normative benchmarks 

in statistics, and their calculation is mathematically nontrivial, they predict human 

information acquisition well in a variety of tasks (Nelson, 2005a). However, there are two 

reasons to suspect this is not the full story, and these are the two foci of the present paper.  
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First, it is not clear how people select queries that align with the predictions of 

particular OED models. One possibility is that the brain, without the person’s awareness, does 

implement sophisticated query-selection strategies. This might be the most plausible for tasks 

such as selecting eye movements, which rely on evolutionarily old oculomotor neural circuits. 

But it seems less plausible in higher-level cognitive tasks. Consider the 20 questions game, an 

important task in cognitive and developmental research, in which the goal is to identify an 

unknown target item by asking yes-no questions about its features. This task presumably 

draws heavily on explicit reasoning, and thus limitations in working memory (and other 

cognitive constraints) make it unlikely that people are explicitly computing entropy and 

related quantities used by OED models. In this case, a promising avenue for reconciling 

statistical OED theory and psychology lies in exploring whether heuristic algorithms exist that 

people could use to make smart test-selection choices. In fact, particular heuristics for 

information acquisition have been shown to approximate (Klayman & Ha, 1987; Markant, 

Settles, & Gureckis, 2015; Slowiaczek, Klayman, Sherman, & Skov, 1992) or even exactly 

implement (Navarro & Perfors, 2011; Nelson, 2005a, 2005b) specific OED models. We 

extend these results by providing several new mathematical proofs on the relationships 

between heuristics and OED models. 

A second issue pertaining to most extant OED models in psychology, and the second 

focus of this paper, is that these models are typically implemented in a stepwise-optimal 

fashion, meaning that they aim to achieve a maximum amount of information in the current 

time step. Such stepwise methods (also known as greedy or myopic) strongly reduce the 

computational complexity of the models, but because they do not plan ahead, they can be 

distinctly suboptimal in sequential search scenarios in which more than one query can be 

conducted in succession. The psychological literature on information search typically treats 

the criterion of maximizing stepwise information gain (which we formally define later on) as 

a normative benchmark for human information acquisition (e.g., Navarro & Perfors, 2011; 
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Ruggeri, Lombrozo, Griffiths & Xu, 2015), but seldom addresses whether in fact it generally 

leads to maximum efficiency in sequential search. The key problem, as we see it, is that 

researchers have either failed to consider multistep settings, or they have implicitly assumed 

such settings are governed by the same normative principles as one-shot tasks. Also 

contributing to the confusion is inadequate characterization of the particular task environment 

that is considered, in particular whether questions pertaining to arbitrary subsets are allowed, 

and whether hypotheses are equally likely a priori or not. For many tasks of interest, the 

“optimal” query as quantified with a stepwise-OED method is not necessarily the best first 

query if more than one piece of information can be acquired. Thus, prior confusion in the 

literature notwithstanding, a critical theoretical and empirical issue is when stepwise methods 

fail, and what multistep procedures make it possible to plan more than one query at a time in a 

way that yields an efficient sequence of questions.  

2. Goals and Scope 

What is known about people's ability to identify efficient sequential question strategies, 

in circumstances where the best first query in a sequence would not be the most useful 

standalone query? Very little is known about this. We suggest that this blind spot in the 

literature exists because the long-run suboptimality of stepwise-optimal methods is not widely 

appreciated in the hypothesis-testing literature in which OED models are used. This situation 

with research on pure information-gathering contrasts with research in reward-based tasks, 

where the tension between immediate outcomes and multistep considerations has long been 

appreciated (Bellman, 1957; Newell & Simon, 1959). We thus suggest that determining 

which stepwise method is used (a highly studied issue) may be much less important than 

identifying the circumstances in which people plan ahead in sequential information 

acquisition, the algorithms they use to plan, and the time horizon of their planning. Although 

the present paper is theoretically focused, for each problem considered we highlight how our 
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theoretical results open up new important areas for future research on the psychology of 

human information acquisition, including specific predictions that differentiate between 

potential models. 

The rest of this paper is structured as follows. First, we briefly introduce the theoretical 

foundations of information search from the perspective of inductive inference, focusing on 

key OED models and how they have been used to investigate human information acquisition. 

Second, we show that simple heuristics can correspond exactly to particular OED models on 

two prominent tasks from research on human information acquisition. However, we show in 

the subsequent sections that neither stepwise OED models nor simple heuristics can be relied 

on to identify the most efficient strategy in sequential search contexts.  

The first task we consider is the Person Game, a variant of the 20 questions game in 

which the goal is to identify an unknown target hypothesis with as few binary and 

deterministic (yes-no) questions as possible. This task was a focus of early developmental 

psychological research on human information acquisition (e.g., Mosher & Hornsby, 1966) 

and is an active area of current empirical research. It is also an important problem in applied 

and theoretical computer science. For instance, Hyafil and Rivest (1976) proved that the 

problem of finding the most efficient search strategy in this task is NP-complete. Our 

contributions include (i) new proofs on the relationship of heuristics and stepwise OED 

models; (ii) precise mathematical characterization of the implications of different question 

types central to the developmental literature; (iii) demonstration that stepwise-optimal 

procedures can be distinctly suboptimal with respect to long-run efficiency; (iv) new results 

on stepwise and multistep probability gain (accuracy maximization) on generalized versions 

of the Person Game; and (v) characterization of possible heuristic procedures for calculating 

multistep probability gain. We further show via simulations (vi) that the suboptimality of 

stepwise procedures occurs in many different kinds of Person Game environments.  
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We then consider a second task, the Planet Vuma scenario, which has been used in 

several social and cognitive psychology experiments on human information acquisition (e.g., 

Skov & Sherman, 1986). This task is defined by two categories and two or more probabilistic 

binary features; searchers’ job is to identify which feature is most informative for 

classification. This task has been used to differentiate which of several OED models best 

predicts human information acquisition behavior (Nelson, 2005a). Results suggested that 

human behavior is best described by maximizing probability gain, at least when only a single 

query can be conducted (Nelson et al., 2010). The psychological centrality of probability gain 

is consistent with learning models’ focus on error reduction for driving attention (Kruschke, 

2001). We provide new results showing (i) that if two queries can be made, rather than a 

single query as in past research, which query is the best first query for maximizing accuracy 

(i.e., maximizing probability gain) can actually switch, and (ii) that this divergence occurs in a 

wide range of circumstances.  

The Person Game and Planet Vuma are complex in different ways: the Person Game 

includes many hypotheses; Planet Vuma includes nondeterministic feature likelihoods, such 

that figuring out the true hypothesis with certainty may not be possible. Real world tasks tend 

to include both of these kinds of complexities. For instance, medical diagnosis is 

characterized by many possible diseases (hypotheses) and nondeterministic tests (with some 

false positive and false negative results). The fact that stepwise methods fail in both the 

Person Game and in Planet Vuma suggests that stepwise methods may be suboptimal in a 

wide variety of tasks important to the psychological literature. We conclude by discussing 

how ideas from computer science, statistics, and psychology are critical for thinking about 

theory and experiments to best characterize and investigate human sequential search.  
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3. Human information acquisition: History and heuristics  

Early work on human information search took a logico-deductive perspective, inspired 

by Popper's (1959) falsificationist philosophy of science. A prominent example is Wason's 

(1966, 1968) card selection task, in which participants are asked to find out whether a 

conditional rule holds; and Wason’s (1960) rule-learning (2-4-6) task, in which the goal is to 

identify an unknown rule by generating triplets of numbers and inquiring whether they are 

consistent with the rule. Wason and others concluded (before and then in parallel with the 

heuristics-and-biases tradition in psychology; Tversky & Kahneman, 1974; Gilovich & 

Griffin, 2002) that human intuitions about question selection were fraught with 

suboptimalities, such as various forms of “confirmation bias” (Klayman, 1995; Klayman & 

Ha, 1987; Nickerson, 1996). 

In the 1980s, psychologists started using OED principles as normative models for 

question selection (Baron, 1985; Skov & Sherman, 1986; Slowiaczek, Klayman, Sherman & 

Skov, 1992; Trope & Bassok, 1982). Baron, Beattie and Hershey (1988) analyzed information 

acquisition in a medical diagnosis task from this perspective. Oaksford and Chater (1994, 

1996, 2003) analyzed the Wason selection task from the perspective of inductive inference, 

positing that subjects have the goal of finding out whether it is more likely that a rule holds or 

not, rather than trying to falsify the rule. Oaksford and Chater used expected reduction in 

Shannon (1948) entropy to quantify cards’ information value. Nelson (2005a) showed that 

similar results are obtained if probability gain or impact, instead of information gain, is used.  

4. Optimal Experimental Design (OED) models 

Each OED model quantifies the expected usefulness of a possible query for 

discriminating among the hypotheses under consideration. The OED models are defined only 

in terms of the relevant probability model, i.e., the set of priors and likelihoods for the task at 

hand. Thus, the OED approach is appropriate for situations in which the goal is pure 
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knowledge, or in which the actual external payoffs unknown. However, the mathematical 

framework can be extended to incorporate situation-specific utilities, such as the costs and 

benefits of alternative treatment decisions in medical scenarios, for quantifying queries’ 

usefulness (Baron & Hershey, 1988; Markant & Guereckis, 2012; Meder & Nelson, 2012; 

Pauker & Kassirer, 1980; Raiffa & Schlaifer, 1961.)  

We use the following notation: Q denotes a query, which can yield a finite number s of 

possible outcomes (answers), q1, …, qs. In a categorization task, a query Q could be to view a 

physical feature of an object, with the various qj denoting the possible values of that feature. 

In a medical diagnosis task, Q could be a medical test, with the various qj denoting the 

possible test outcomes (e.g., a positive or negative result). H = {h1, …, hn} refers to the 

hypothesis space under consideration, with h1, …, hn denoting the n individual hypotheses, 

e.g., the n possible object categories or disease diagnoses. P(hi) is the prior probability of a 

hypothesis; P(qj | hi) is the likelihood of a datum given a hypothesis (e.g., the true or false 

positive rate of a medical test). The marginal probability of each datum is given by 

P(qj) = Σi P(hi) ⋅ P(qj | hi). Finally, P(hi | qj) is the posterior probability of a particular 

hypothesis given a particular piece of evidence (e.g., the probability that the patient has a 

particular disease given a positive test result), which can be calculated using Bayes’ (1763 / 

1958) theorem. 

A query Q’s expected usefulness, eu(Q), is computed by averaging the usefulness of 

each of its possible outcomes, u(qj), weighted according to each outcome’s probability of 

occurrence:  

 

𝑒𝑢 𝑄 = 𝑃 𝑞!  𝑢 𝑞!

!

!!!

 . (1) 
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The key distinction between different OED models is how the usefulness of a particular 

outcome, u(qj), is quantified. Various models from statistics, philosophy of science, medical 

decision making, and psychology offer different solutions to this question (Benish, 1999; 

Crupi & Tentori, 2014; Crupi, Nelson, Meder, Cevolani, & Tentori, 2018; Good, 1950; 

Lindley, 1956; Oaksford & Chater, 1994, 1996, 2003). Importantly, the various OED models 

are not equivalent (Nelson, 2005a), and they rank the usefulness of available questions 

differently in important cases. We here focus on three prominent models, namely impact, 

information gain, and probability gain, because of their centrality in psychological literature. 

4.1 Probability gain  

Probability gain (PG; Baron, 1985) is defined as the improvement in the probability of 

making a correct guess, assuming that one always guesses the most probable hypothesis given 

all knowledge to date. An answer's probability gain, which can be positive or negative, is the 

accuracy after asking the question minus the accuracy that could have been obtained without 

asking the question:1  

 

 

Probability gain maximization successfully predicts subjects’ questions on experience-

based probabilistic categorization tasks (Nelson et al., 2010) and has been used as a normative 

benchmark in medical diagnosis test selection (Baron, Beattie & Hershey, 1988); to predict 

human eye movements on visual search tasks (Najemnik & Geisler, 2005; but see Morvan & 

Maloney, 2012); to describe a learner's goals in a Bayesian formulation of active associative 

                                                
1 We follow standard order of operations, in which Sigma summation symbols extend up to, but do not include, 
the next plus or minus symbol. We give max and min operators the same precedence level as Sigma summation 
symbols. Thus in Equation 2, max P(hi | qj) – max P(hi) is read as (max P(hi | q)) – (max P(hi)). When indexing 
max or min operators, the shorthand 1 ≤ 𝑖 ≤ 𝑛 means i ∈ {1, 2, …, n}. 

𝑢!" 𝑞! = max
!!!!!

𝑃 ℎ! 𝑞! − max
!!!!!

𝑃 ℎ!  . (2) 
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learning (Kruschke, 2008); and as a rational benchmark in a Bayesian analysis of the 

pseudodiagnosticity paradigm (Crupi, Tentori, & Lombardi, 2009).  

4.2 Impact  

Impact (Imp; Wells & Lindsay, 1980; Nelson, 2005a) uses the absolute change (i.e., 

difference) between prior and posterior probabilities as the measure of how much information 

is provided about each hypothesis. The impact of an answer is thus given by  

 

Nelson (2005a) proved in the case of binary hypotheses and queries that a simple 

strategy, the likelihood difference heuristic (described below in Section 9), can be used to 

identify the highest-impact query, demonstrating how simple heuristics can exactly 

implement OED models. The likelihood difference heuristic has been reported to have been 

used by some subjects in two-category, binary-feature tasks (Planet Vuma and variant tasks; 

e.g., Skov & Sherman, 1986; Nelson, 2005a). People seem most apt to use the likelihood 

difference heuristic when the relevant probabilities are presented using the words-and-

numeric standard probability format (as defined by Gigerenzer & Hoffrage, 1995). 

4.3 Information gain  

Information gain (IG; Lindley, 1956) quantifies the value of an answer as the reduction 

in uncertainty over the hypotheses under consideration, where uncertainty is measured with 

Shannon (1948) entropy. Accordingly, the usefulness of a datum is the entropy before asking 

a question, minus the entropy after obtaining the answer: 

𝑢!"# 𝑞! = 𝑃 ℎ! 𝑞! − 𝑃 ℎ!

!

!!!

. 

 

(3) 

𝑢!" 𝑞! = ent 𝐻 − ent 𝐻 𝑞! = 𝑃 ℎ! log!
1

𝑃 ℎ!

!

!!!

− 𝑃 ℎ! 𝑞!

!

!!!

log!
1

𝑃 ℎ! 𝑞!
 (5) 
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where ent(H) denotes the (Shannon) entropy of the prior distribution and ent(H | qj) denotes 

the entropy of the posterior distribution given outcome qj. (Note that the base of the logarithm 

is arbitrary; we here use log2 such that the unit is the bit.) 

Information gain has been used to predict human question selection (e.g., Austerweil & 

Griffiths, 2011; Bramley, Lagnado & Speekenbrink, 2015; Nelson, Divjak, Gudmundsdottir, 

Martignon & Meder, 2014; Nelson, Tenenbaum & Movellan, 2001; Oaksford & Chater, 1994, 

1996, 2003; Steyvers, Tenenbaum, Wagenmakers & Blum, 2003), to guide a robot’s eye 

movements (Denzler & Brown, 2002), to predict human eye movements (Legge, Klitz, & 

Tjan, 1997; Najemnik & Geisler, 2005; Renninger, Coughlan, Verghese & Malik, 2005), and 

to predict firing of individual neurons (Bromberg-Martin & Hikosaka, 2009; Nakamura, 

2006). Information gain and related measures have also been used in machine learning 

approaches to classification tree induction (Breiman, Friedman, & Olshen, 1984; Quinlan, 

1986). The Adaptive Design Optimization (ADO) approach to the design of psychological 

experiments (Myung, Cavagnaro, & Pitt, 2013) is also based on optimizing the information 

gain of each manipulation (mini experiment), in the next time step.  

4.4 The maximum entropy question heuristic and information gain  

The maximum entropy question heuristic (also called uncertainty sampling) is the 

strategy of asking the question with the highest question entropy, 

ent 𝑄 = − 𝑃 𝑞!!
!!! log! 𝑃 𝑞! . There is a close relationship between the uncertainty in a 

question’s outcome and that question’s information value with respect to the hypotheses of 

interest. This connection has been explored previously in machine learning (Garey & Graham, 

1972) and more recently in psychology (Nelson, 2005b; Markant, Settles, & Gureckis, 2015). 

For completeness we restate the formal relationship, using the terminology of the present 

manuscript: 
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Theorem 1: If likelihoods are deterministic, then a query’s entropy is the same as its 

expected information gain; i.e., if 𝑒𝑛𝑡 𝑄|𝐻 = 0, then 𝑒𝑢!" 𝑄 = 𝑒𝑛𝑡 𝑄 . The proof is given 

in Appendix A.  

Theorem 1 states that the maximum entropy query corresponds to the maximum 

information gain query in every domain in which each hypothesis makes deterministic 

predictions for the outcomes of all queries. Intuitively, the condition of deterministic 

likelihoods, i.e. ent(Q|H) = 0, is equivalent to the condition that all uncertainty in Q is due to 

uncertainty in H (rather than to noise or other extraneous factors), and therefore all 

information carried by Q is information that is relevant to inferring H. This relationship holds 

if priors are uniform or not, and irrespective of whether questions are binary or many-valued.  

Examples of tasks covered by Theorem 1 include Wason's (1960) rule learning task, 

Klayman and Ha's (1989) number and geography concept tasks, 20 questions-type games 

(Kachergis, Rhodes & Gureckis, 2016; Nelson et al., 2014; Ruggeri & Lombrozo, 2015), and 

Markant, Settles and Gureckis’s (2015) three-category-learning task. On these tasks, a learner 

who wishes to maximize stepwise information gain only has to identify which query’s 

outcomes he or she is maximally uncertain about, given his or her current beliefs. For 

instance, Nelson, Tenenbaum and Movellan’s (2001) active number concept learning task 

includes tens of thousands of hypotheses and unequal priors, but only 100 binary queries. If a 

learner can identify the maximum entropy question among the 100 available queries, he or 

she will necessarily select the highest information gain question. Tasks that do not fall under 

the umbrella of Theorem 1 include Meier and Blair’s (2013) scenario, one of the scenarios 

considered by Navarro and Perfors (2011), and the Planet Vuma scenario (Skov & Sherman, 

1986). Navarro and Perfors’ results also demonstrate that there are cases in which uncertainty 

sampling maximizes information gain, even if the hypotheses’ predictions are not 

deterministic.  
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5. From one-shot search decisions to sequential search 

In psychology, the various OED models have mostly been used to determine only the 

single next query, even in tasks in which multiple queries can be conducted before a decision 

must be made. How, from a normative standpoint, should a sequence of queries be selected? 

Is it adequate to use OED principles in a stepwise way, namely to consider just the next time 

step when deciding which query to conduct? The answer to the latter question is negative: 

Identifying the maximally efficient series of queries in general requires consideration of all 

future time steps at once. Planning a sequence of tests is interesting mathematically as well as 

psychologically, because the number of possible question trees grows super-exponentially 

with the number of available questions (see Appendix B), rendering the problem of finding 

the globally optimal (most efficient) tree NP-complete (Hyafil & Rivest, 1976). The computer 

science literature includes numerous articles on sequential search tasks (e.g., Berghman, 

Goossens, & Leus, 2009; Garey, 1972; Geman & Jedynak, 2001; Golovin & Krause, 2011; 

Hyafil & Rivest, 1976).  

Some scenarios in the psychological literature on information search have demonstrated 

from a theoretical standpoint the suboptimality of stepwise methods. These tasks have 

typically been fairly complex, with nondeterministic likelihoods and dozens of possible 

hypotheses (Bramley et al., 2015; Najemnik & Geisler, 2005). Moreover, these tasks were not 

designed to establish whether people can plan sequential information search optimally. In 

other domains, the importance of sequential planning is well appreciated, including problem 

solving (Newell & Simon, 1959), sequential decision making (e.g., Hotaling & Busemeyer, 

2012; Gureckis & Love, 2009; Naw, Niv, & Dayan, 2005), and bandit tasks with exploration-

exploitation tradeoffs (e.g., Navarro, Newell & Schulze, 2016; Wu, Schulz, Speekenbrink, 

Nelson & Meder, 2018; Zhang & Yu, 2013). By contrast, papers on pure information-

gathering tasks, without external payoffs (e.g., Navarro & Perfors, 2011; Ruggeri & 
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Lombrozo, 2015), have tended to presume that stepwise methods are also optimal in 

sequential search scenarios.  

We demonstrate that stepwise OED methods can be suboptimal in two paradigmatic 

human information acquisition tasks. Our analyses provide a foundation for future empirical 

research on human sequential planning in information search tasks. We highlight a number of 

specific issues that are ripe for experimentation as we go along. 

6. The Person Game 

The Person Game is a 20 questions-type sequential search task in which the goal is to 

identify an unknown target object from among a specified set, asking as few yes-no questions 

about its features as possible. Variants of this paradigm were used to investigate children and 

adults’ information search behavior in the 1970s and 1980s (e.g., Denney & Denney, 1973; 

Eimas 1970; Siegler, 1977; Thornton, 1982). These tasks are undergoing a renaissance, as 

recent papers have connected them to stepwise-OED models of the value of information, 

especially stepwise information gain (Kachergis, Rhodes & Gureckis, 2016; Meder, Nelson, 

Jones & Ruggeri, 2018; Navarro & Perfors, 2011; Nelson, Divjak, Gudmundsdottir, 

Martignon & Meder, 2014; Ruggeri & Lombrozo, 2015; Ruggeri, Lombrozo, Griffiths, & Xu, 

2016). Importantly, the Person Game task also offers rich opportunities to explore what is 

optimal for sequential search.  

The Person Game, as we define it, is a non-strategic, single-player task. In the Person 

Game, there are n items (persons: hypotheses h1 through hn) and m binary features (queries Q1 

through Qm), as in the example in Table 1 and Figure 1. (Novel monsters, rather than persons, 

are used as example stimuli in Figure 1, so that arbitrary relationships among features and 

items can be conveyed.) Each item is uniquely characterized by whether or not it has each of 

the m features (i.e., by a binary vector of length m). A target item is selected at random with 

equal probability (1/n for each item), and the player’s task is to identify the true hypothesis 
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with the minimum number of questions. Importantly, questions can only be about binary 

features from a prespecified list, each pertaining to whether some feature is present or absent 

in the target. It is not possible to ask questions pertaining to arbitrary subsets, such as “Is it 

Maria, Frank, or Ana?". This limitation on the set of available queries corresponds to the 

characteristics of real-world situations (for example in medicine or science) where there is not 

always an available query with exactly the desired characteristics. As will be seen below, it is 

because of this limitation that planning an efficient sequence of questions in this task is not 

reducible to stepwise methods. Our definition of the Person Game exactly corresponds to 

Hyafil and Rivest’s (1976) scenario, and thus their (and subsequent) computer science results 

are directly relevant. We further stipulate that the set of features includes one feature that is 

unique for each of the n items, ensuring that it is always possible to identify the true item after 

enough questions have been asked. 

Early papers on the Person Game and related tasks categorized questions according to 

different question types: constraint questions and hypothesis-scanning (or name) questions 

(Mosher & Hornsby, 1966). Constraint questions split the items so that no matter which 

answer is obtained, at least two items will be eliminated. (Constraint questions are possible 

only if there are at least four persons.  If there are three or fewer persons, then all non-

redundant questions are equally useful.) Hypothesis-scanning questions, which we will also 

refer to as name questions, isolate a single item (e.g., “Is it Maria?”). Constraint questions are 

presumed in the literature to be superior to hypothesis-scanning questions. Whether this 

presumption is correct is an issue that we address later on. An additional type of question, the 

pseudoconstraint question (which queries a feature present or absent in just a single item), is 

mathematically equivalent to the name question, so we do not discuss it here.  
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6.1 Stepwise-OED Strategies, and the split-half heuristic, in the Person Game 

Before addressing whether stepwise strategies are optimal, we first address the question 

of how people could do something like maximize stepwise information gain—which is based 

on differences of probability-weighted expectations of averages of logarithms—in the first 

place.  Are there simple heuristic strategies that people could use to identify the questions 

prescribed by one or more OED models? 

6.1.1 The split-half heuristic  

Of special interest in psychological research on the Person Game and related tasks is the 

split-half heuristic (Navarro & Perfors, 2011; Nelson et al., 2014). If half of the persons in the 

current set have a hat, and all other features are less equally distributed, this strategy would 

ask about the hat feature. If no feature splits the items exactly in half, the heuristic chooses a 

feature that comes as close as possible to a 50:50 split. Suppose that Q1 splits the current 

items more evenly than does Q2. We will say that Q1 is more splithalfy than Q2. Thus, the 

split-half heuristic asks the question with the greatest splithalfiness. In the example Person 

Game environment shown in Table 1, Q1 is unique in giving exactly a 4:4 split and thus is the 

question that the split-half strategy asks first. We also refer to the splithalfiness of a question 

at a non-initial step of the game (i.e., after one or more questions have been asked), based on 

how it splits the remaining hypotheses. Many experimental papers have reported that people 

(especially adults; this behavior tends to increase with age) often behave in accordance with 

the split-half heuristic (e.g., Eimas, 1970; Nelson et al., 2014; Siegler, 1977; Thornton, 1982). 

In the next subsection, we provide new mathematical results on the relationship of 

splithalfiness to the usefulness of questions as evaluated by stepwise OED models. 
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6.1.2 The split-half heuristic selects the maximum impact question, and the maximum 

information gain question, in the Person Game 

We provide a new result showing that the expected impact (absolute change in beliefs) 

of a question in the Person Game is monotonically related to how close the probability of a 

yes answer is to .5, irrespective of the total number of persons (hypotheses) n.  

Theorem 2: In the Person Game, a question’s expected impact, euImp(Q), is equal 

to 4P(qyes) P(qno) = 4P(qyes) [1-P(qyes)]. Consequently, the split-half strategy invariably 

selects the highest-impact question. The proof is given in Appendix A.  

Note that the expected impact of a question does not depend on the number of items (n) 

per se, but only on P(qyes), where P(qyes) = nyes/n and P(qno) = 1 – P(qyes). Importantly, the 

expression for euImp(Q) given in Theorem 2 is a two-degree polynomial function of P(qyes). 

The function is continuously differentiable; it has its maximum at P(qyes) = .5 and decreases 

symmetrically and monotonically from that point in both directions (Figure 2). Thus, the split-

half heuristic invariably selects the highest-impact question in the Person Game, even if the 

searcher does not make any explicit reference to the equations for calculating impact. This 

result implies that stepwise impact considers Q1 to be the most useful first query in the 

environment shown in Table 1, as Q1 is the only question that splits the items exactly 50:50. 

A similar result relates the split-half heuristic and stepwise information gain: 

Theorem 3: In the Person Game, the split-half heuristic maximizes stepwise expected 

information gain. This result was previously given by Navarro and Perfors (2011). We derive 

it more concisely, by application of Theorem 1, in Appendix A. 

The key point in the proof of Theorem 3 is that the split-half heuristic invariably queries 

the maximum entropy question: Likelihoods are deterministic in the Person Game, i.e., each 

person (hypothesis) possesses each feature with probability 1 or 0. Thus, Theorem 1 applies 

and the split-half heuristic identifies the maximum information gain question.  
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Theorems 2 and 3 provide a path for addressing the prima facie implausibility of the 

idea that people would explicitly carry out the calculations entailed by an OED model. 

Irrespective of whether a learner’s goal is to maximize stepwise impact or stepwise 

information gain, it is not necessary to explicitly calculate weighted averages of logarithms or 

anything else; at least in the Person Game, a simple heuristic does the job.  

6.2 Stepwise probability gain is indifferent among questions in the Person Game 

Probability gain quantifies the value of a query as a function of the improvement in 

classification accuracy. We show here that if questions are selected in a stepwise manner, then 

all questions have the same probability gain (provided they are non-redundant, i.e. that 0 < 

P(qyes) < 1 and hence the answer will induce at least some change in our beliefs). 

Surprisingly, this invariance holds irrespective of how splithalfy the question is, for instance 

whether the question gives a 50:50 split, a 40:60 split, or even a highly unequal 1:99 split. 

Theorem 4: In the Person Game, where there are n items in the current set, all 

informative questions have expected probability gain 1/n: 

𝑒𝑢!" 𝑄 = 1/𝑛 0 < P(𝑞yes) < 1 
0 otherwise.

 

The proof is given in Appendix A. Every informative (non-redundant) question has the 

same probability gain, specifically 1/n, irrespective of the proportion of objects with the 

feature. For instance, in the environment in Table 1, probability gain considers the initial 

question “Is Feature Q1 present?” (4:4 split) equally useful as the initial question “Is Feature 

Q7 present?” (1:7 split), whereas both information gain and impact consider Q1 as most useful 

and Q7 as tied for least useful. Note also that this property holds at any point in the game (i.e., 

after any number of questions have been asked). This can easily be seen by defining n' as the 

number of hypotheses consistent with the answers received thus far, and 𝑛!"#!  and 𝑛!"!  as the 

numbers of these remaining persons (hypotheses) that do and do not have the feature. 

Mirroring the proof of Theorem 4, all informative questions will have probability gain of 1/n'. 
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Does this result imply that probability gain (classification accuracy) is a “bad” goal to 

have, or a bad OED model? To the contrary: if your goal is classification accuracy and you 

can only ask one question before making a guess, Theorem 4 shows that you don’t need to 

look for a question with maximum splithalfiness. As soon as you find a question whose 

answer is not already known, even if that question produces a lopsided 1:99 split, you should 

stop searching and ask that question, because all informative questions increase your expected 

probability of correctly guessing the target by exactly 1/n.  

Why is Theorem 4 counterintuitive? One possible explanation is that people’s intuitions 

about the value of information in this task are closer to information gain than to probability 

gain (notwithstanding Nelson et al.’s 2010 results, from a different task). Another possible 

explanation is that people’s intuitions are adapted somewhat to sequential-search scenarios, 

even in nominally one-shot tasks. As we show below, probability gain does differentiate 

among questions when it is adapted for sequential search, to take into account two or more 

steps in advance. These contrary possible explanations lead to interesting issues to explore in 

sequential-search tasks with human subjects, as we elaborate later on. 

6.3 Stepwise methods can be suboptimal in the Person Game 

In light of the results above, showing that the split-half heuristic, maximal stepwise 

impact, and maximal stepwise information gain are all equivalent in the Person Game, we 

henceforth refer to these collectively as the stepwise methods. (Stepwise probability gain is 

indifferent among the questions, which is why we exclude it from our definition of the 

stepwise methods.) How do the stepwise methods behave when applied iteratively in a 

sequential task? Table 1 gives the stepwise-OED models’ values of each possible first 

question for the environment in Table 1, showing that stepwise impact and stepwise 

information gain agree with the split-half heuristic in preferring Q1.  
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Is Q1 indeed the best first query? Here we address this issue, with respect to the goal of 

identifying the unknown target hypothesis with as few questions as possible, on average. 

(Expected value seems the simplest way to implement a preference for reaching certainty 

more quickly, but other goals, such as exponential temporal discounting, could also be 

considered.) To formalize this question, we first define the expected path length of a binary 

decision (question) tree. The expected path length is the number of queries the tree takes to 

identify the target item, averaged over all targets. Under this measure, the optimal strategy is 

to use a tree (not necessarily unique) that has the lowest expected path length, and the best 

first question is the first question (the root node) in that tree. The stepwise-optimal-strategy 

tree (Figure 3a, top) has an expected path length of 3.25 questions. The globally optimal 

(most efficient) tree (Figure 3b, top), however, starts with Q2 and needs only 3.125 questions 

on average. (As discussed below, two trees tie for globally optimal; the other starts with Q3.) 

 This example shows that the presumption in the psychological information search 

literature that maximizing stepwise information gain minimizes the expected number of 

questions in the Person Game is incorrect. Information gain and other OED models were 

envisioned in statistics (e.g., Good, 1950; Lindley, 1956) as reasonable quasi-utility functions 

to use for selection of individual experiments. Since then, research in computer science has 

investigated how well these and other greedy algorithms perform in multistep tasks. Formal 

results based on the mathematical concept of submodular functions (Nemhauser, Wolsey, & 

Fisher, 1978) have proven lower bounds for the performance of greedy query-selection 

algorithms (Golovin & Krause, 2011). In the case of the Person Game, these results imply the 

expected path length for the stepwise methods can be no greater than ln 𝑛 + 1 times the 

expected path length of the globally optimal tree. Similar results hold for tasks with 

nondeterministic likelihoods (Golovin, Krause, & Ray, 2010), although under different 

technical assumptions than are made here (e.g., in the Planet Vuma task below). However, a 

factor of ln 𝑛 + 1 can be a large difference; even for relatively small environments it means 
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stepwise methods could require several times more queries than necessary. Moreover, it has 

also been proven that, for general search tasks with deterministic likelihoods, it is intractable 

(NP-hard) to produce decision trees with expected path length guaranteed to be less than 

ln 𝑛  times the optimal (Chakaravarthy, Pandit, Roy, Awasthi, & Mohania, 2007). 

To understand why this result conflicts with intuition and with previous claims in the 

psychological literature, one must be careful about the precise nature of the task. In the Person 

Game, the list of available features (and hence allowable questions) is typically a small subset 

of the set of possible bipartite partitions of the items—in our example, 11 (the seven features 

shown in Table 1 plus the four other hypothesis-scanning questions) versus 127 (all nontrivial 

splittings of the 8 items). If arbitrary questions can be asked, or equivalently if there is a 

feature corresponding to every possible bipartite partition of the items, then the stepwise 

methods are globally optimal. In this case, the Huffman (1952) limit describes the expected 

number of questions required by the optimal strategy. We refer to this special case of the 

Person Game as the Number Game (Nelson et al., 2014). In the Number Game, the goal is to 

identify an unknown integer between, say, 1 and 16 (inclusive). Arbitrary questions are 

allowed, such as “Is the number equal to 2, 3, 5, 6, or 13?”, which enables a searcher to 

always partition the remaining hypotheses (i.e., numbers not yet eliminated) at each step into 

maximally equal subsets. Note that, as a special case of the Person Game, the Number Game 

also satisfies the conditions of Theorems 2, 3, and 4. Figure 4 illustrates the relationship 

between the Person Game, the Number Game, and other possible 20 questions-game tasks. 

Some of these relationships, for instance the implications if priors are unequal as in the 

Generalized Person Game, will be discussed later on. 

In the Person Game, because it will not always be possible to ask a question that splits 

the remaining hypotheses close to 50:50, one needs to plan ahead and choose queries that not 

only will provide useful immediate information, but will also allow for useful queries at later 

steps. In our example (Table 1), question Q1 is maximally splithalfy, but suboptimal because 
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it leaves no highly splithalfy options for the second query, where the best one can do is a 3:1 

split. By contrast, if starting with Q2 or Q3 and ending up in the bigger (more likely) set, one 

can still ask a 2:3 question. 

6.3.1 Relation to Markov Decision Processes 

Another perspective on sequential information search comes from the formalism of 

Markov decision processes (MDPs; Howard, 1960). MDPs are the basis for modern discrete-

time control theory as well as computational models of reinforcement learning in psychology 

and machine learning (Sutton & Barto, 1998). An MDP is a formal task environment 

comprising a set of states, available actions within each state, transition probabilities for the 

next state given the current state and action, and a reward function that can depend on the 

current state, action, and next state. The agent’s goal is to learn a policy, meaning a rule for 

selecting an action in each state, that maximizes reward accumulated across time steps.  

Information search can be cast as a partially observable MDP (POMDP), an extension 

wherein the agent does not know the true state and must infer it from generally stochastic 

observations (Aström, 1965). Optimal solution of a POMDP involves maintaining a belief 

state, which is the posterior distribution over the identity of the true state conditioned on all 

past actions and observations (Kaelbling, Littman, & Cassandra, 1998). The belief state itself 

behaves according to a standard MDP, in that it contains all the information available to the 

agent for predicting the reward and the next belief state that would result from any candidate 

action. In a task of pure information search, one can treat the target as the true state (which is 

constant within each episode), the available queries as the actions the agent can perform, and 

the results of queries as the observations (Butko & Movellan, 2010). The belief state is the 

posterior over target hypotheses, updated after each new observation according to Bayes’ rule. 

Note that the agent can determine the outcome probabilities for any candidate query (e.g., 

probabilities of positive and negative answers) by marginalizing over the belief state, and thus 

the transition probabilities for the subsequent belief state are known in advance. In other 



TOWARDS A THEORY OF PLANNING FOR SEQUENTIAL SEARCH  

 

24 

words, the agent can plan ahead in the space of belief states to evaluate different possible 

question trees. This is true in nondeterministic search tasks, such as the Planet Vuma task 

considered later in this paper, as well as in deterministic tasks like the Person Game. In the 

remainder of this section, we use “state” to refer to belief state. 

This picture is particularly simple in environments with deterministic likelihoods, such 

as the Person Game. There, a state can be identified with the set of remaining hypotheses or 

targets that are consistent with all answers received thus far (known as the version space in 

the machine learning literature; Mitchell, 1982). The transition probabilities following any 

candidate query are the probabilities of positive and negative answers (𝑛!"#! /𝑛! and 𝑛!"! /𝑛!, 

the superscript indicating items remaining at the current step, 𝑡). After a new query is 

answered, the state is updated by intersection, removing all items inconsistent with that 

answer. If we define reward as –1 on every step, then the agent’s goal is to identify the target 

with the fewest number of queries. Other interesting reward functions are possible as well, as 

discussed later in this section. 

The optimal policy in an MDP satisfies Bellman’s optimality equation (Bellman, 1957), 

which specifies a recursive relationship between the policy and the value it induces for each 

state. The value of a state is defined as the total future reward expected following that state, 

assuming the agent acts according to the policy in question. A policy is globally optimal if 

and only if it is optimal with respect to the values it induces; that is, the action it chooses in 

any state maximizes the expectation of the immediate reward plus the value of the subsequent 

state. In a search task with constant –1 reward, the value of any state is the negative expected 

path length from that state. In tasks like the Person Game, where each episode is guaranteed 

to end in finite time, the optimal policy and state values—that is, the globally optimal tree and 

path lengths—can be determined by backward induction, as detailed in Appendix B. In brief, 

once values have been determined for all states with fewer than m items remaining (for any 

m), the optimal query and value can be determined for all states with exactly m items. This 
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process shows how looking ahead matters: The value of a query depends on the values of 

states it might lead to, which in turn depend on the queries available in those states (and so 

on). It also shows why stepwise methods are adequate in the Number Game, where arbitrary 

subsets of items can be queried. A symmetry argument implies that the value of any state 

depends only on the number of items in that state, and therefore the value of a query depends 

only on how it splits the items currently remaining. 

The MDP or POMDP perspective on multistep information search offers avenues for 

more sophisticated models and algorithms, by bridging to the computational reinforcement 

learning literature. For example, one can define reward functions to match the OED models 

considered here: Information gain corresponds to negative entropy, probability gain 

corresponds to the max operator (i.e., the greatest probability among all hypotheses), and 

impact corresponds to total absolute change in probabilities of the hypotheses. The stepwise 

OED models can be obtained by valuing only immediate reward, which in the MDP 

framework corresponds to setting the temporal discount parameter to zero. However, positive 

values of this parameter, corresponding to valuing later steps, can yield sophisticated 

multistep methods. For example, Butko and Movellan (2010) used this approach to train an 

algorithm to optimize long-run information gain. They tested it on the visual search task of 

Najemnik and Geisler (2005) and found that it yielded better performance than Najemnik and 

Geisler’s stepwise probability gain model. Although Butko and Movellan's work was cast as 

machine learning, it might offer a bridge to development of new psychological theories. 

6.3.2 Experimental questions: suboptimality of the stepwise methods 

Figure 1 illustrates how the statistical structure of Table 1 could be presented to 

experiment participants in a “Monster Game”. The task would be to identify a single monster, 

chosen at random with equal probability from among the 8 monsters in Figure 1.  

The shape question (Q1 in Table 1) gives a 4:4 split; it is selected by the stepwise 

methods. However, the color question (Q2) and the eye question (Q3), despite giving less 
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splithalfy 3:5 splits, tie for optimal in terms of expected path length. An environment like this 

would be useful for exploring whether, and the circumstances under which, people can 

identify the global usefulness of questions, separate from their immediate splifhalfiness. 

Specifically, when do people start with a globally optimal question (Q2 or Q3) as opposed to 

the stepwise-optimal question (Q1)? Although this has not been extensively explored in the 

literature, a first set of experiments (Meder et al., 2018) suggests that people may have a hard 

time planning beyond the next timestep in standard Person Game experimental manipulations.  

Would people be more sensitive to long-run efficiency if they were explicitly encouraged to 

look ahead? This latter question could be tested by manipulations that encourage people to 

consider what subsequent questions will be available, given possible answers to candidate 

first questions. Assuming people focus on splithalfiness, they could be asked to rate the 

splithalfiness of the questions that would remain available, given the possible answers to their 

first question.  

A further issue is whether recognizing the conflict between stepwise and global 

optimality depends on perceiving the dependencies among features. A feature can be highly 

splithalfy but poor as a first question if it is highly correlated with other available features (see 

Table 1: Q1 has strong correlations with both Q2 and Q3). Thus, the query leaves no good 

follow-up questions that could give substantial additional information. The dependence of 

people’s planning ability upon their familiarity with the statistical structure among the 

features could be tested using preliminary tasks such as having subjects arrange cards on a 

table in a way that their spatial layout corresponds to the partitions in an available question 

tree. 

6.4 Performance of the stepwise methods in different environments 

We have shown for one specific example that the stepwise methods are suboptimal. Is 

our example pathological or otherwise unusual? Or do the stepwise methods fail across a wide 
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range of Person Game environments? What happens if the environments are more complex? 

In the following, we address these issues via analytic and simulation results. 

6.4.1 Analytic results 

It can be shown analytically that in particular situations the stepwise methods invariably 

identify the best first question. 

Theorem 5:  If there are fewer than eight items in a Person Game environment, then the 

stepwise methods invariably select a first question with minimal expected path length. The 

proof is in Appendix A. 

Theorem 6: If a Person Game environment has only two constraint questions, then the 

stepwise methods invariably select a first question with minimal expected path length. The 

proof is in Appendix A. 

Theorems 5 and 6 hold for relatively simple Person Game environments, specifically 

those with fewer than eight items or fewer than three constraint questions.  For more complex 

scenarios, we used computer simulations to estimate how frequently environments occur in 

which the stepwise methods fail to identify the best first question. Because adding a single 

additional item roughly doubles the computation time for determining the objectively best 

first question through dynamic programming (Appendix B), we simulated environments of up 

to 18 items. 

6.4.2 Computer simulations 

It is implausible, to say the least, that people would explicitly use dynamic 

programming to identify the very best question tree in medium or large environments. 

However, what if perceptible environmental characteristics could give a clue to the tendency 

of the stepwise methods to be suboptimal? To explore this, we tested about 1 million 

randomly generated Person Game environments, manipulating several environmental 

characteristics (see Appendix C). The environments that we generated went from the simplest 

and least plausible (e.g., independent and identically distributed features) to environments 
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with more complexity, such as inter-feature dependencies that might be found in natural 

environments. The specific environment characteristics manipulated included the number of 

items, the number of constraint features, and the average density for constraint features (i.e., 

the expected number of items possessing a particular feature). In addition, features were 

generated in four different ways that crossed two binary factors. First, features either were 

generated independently or tended to be correlated with each other. Second, the generating 

density was either the same for all features or variable. In each randomly generated 

environment, the simulation checked whether the stepwise methods would select the globally 

optimal (i.e., most efficient) first question.  

6.4.3 Simulation results 

We discuss highlights here; see Appendix C and Figures C1-C4 for full methods and 

results. Figure 5 shows the proportion of environments in which the stepwise methods failed 

to identify the best first question, under each of the four methods for generating features. 

Figure 5a plots this proportion as a function of the number of items (varied from 6 to 18, in 

steps of 2), and Figure 5b plots it as a function of the number of constraint questions in the 

game (all values from 2 to 10, and 20). The results provide several insights. First, the 

simulations illustrate Theorems 5 and 6: if there were fewer than three constraint questions, or 

fewer than eight items, the stepwise methods invariably identified the best first question. 

Moreover, the tendency of the stepwise methods to be suboptimal decreased again when there 

were a large number of constraint questions (Figure 5b). Second, when considering somewhat 

more complex environments, the suboptimality of the stepwise strategies is not limited to the 

specific example of Table 1: across all conditions with 8 to 18 items (persons), the stepwise 

methods failed to identify the best first question in multiple environments. Third, the 

simulations provide clues about which environmental characteristics promote or impede the 

success of the stepwise methods. Suboptimality of the stepwise methods was the most 

frequent when features tended to be correlated with each other, and when they were diverse in 
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their densities. In the most difficult condition for the stepwise methods, viz. with 18 items and 

features that are correlated and diverse in their density, these methods led to selecting a 

suboptimal first question in 10% of random Person Game environments generated. Fourth, 

although the stepwise methods might be deemed to achieve “reasonable” performance, their 

tendency to be suboptimal increased markedly with the number of items. Thus, it seems likely 

that in task environments with larger numbers of items (e.g., n = 100), the stepwise methods 

would be suboptimal much more frequently than in the present simulations.  

6.4.4 Pathways for empirical research 

 Our simulations demonstrate that the tendency of the stepwise methods to be 

suboptimal varies systematically with specific environmental characteristics. The stepwise 

methods did better if features were generated independently of each other, if features had 

about the same density, and if there were a large number of constraint questions. These 

observations lead to several testable hypotheses regarding human search behavior. First, there 

is the question of whether people have second-order knowledge of when the stepwise 

methods are likely to be effective. If so, then the environmental characteristics identified in 

the simulations here should be predictive of people’s tendencies to follow stepwise methods. 

For example, one could create two environments in which stepwise methods identify a 

suboptimal first question, one with a small number of items and a large number of 

independent features of homogenous density, and the other with a large number of items and a 

small number of correlated features with diverse densities. To the extent that people utilize 

these environmental meta-features to guide strategy selection, they should be more likely to 

follow stepwise methods, and hence less likely to select the optimal first question, in the 

former environment than the latter. Second, there is the related question of whether people 

have explicit (verbal) knowledge of when stepwise methods are likely to be adequate. This 

question could be addressed by asking people to report their beliefs about which kinds of 

environments (or environmental characteristics) predict good performance of the split-half 
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strategy. Third, there is the question of whether this sort of second-order knowledge is 

learnable. That is, can people learn through repeated experience when they can rely on 

stepwise methods and when they should plan ahead? This question could be addressed in 

longer-term learning studies, wherein subjects are exposed to many environments varying in 

their characteristics and given feedback regarding the outcomes of their choices. 

7. Planning ahead in the Person Game: Multi-step OED models 

Although OED models are traditionally defined for single queries (i.e. implemented in a 

stepwise fashion), they can be adapted for planning k steps ahead (where k > 1). In the case of 

planning two steps ahead, a searcher may consider simultaneously which feature to query 

first, and which feature will be queried next, contingent on the outcome of the first query. The 

resulting 2-step tree could be evaluated using the same OED procedures that are applied to 

single queries, for example by calculating the expected information gain that would result 

once one reaches the end of the tree. Put differently, any multistep decision tree is formally 

equivalent to a single many-valued query, with possible outcomes corresponding to the leaf 

nodes of the tree. The informational utility of any tree (e.g., its expected information gain or 

probability gain) is equal to that of the corresponding many-valued query. We refer to such a 

tree evaluation procedure as a multi-step OED model. Such an approach is less myopic than 

one that evaluates only the immediate next query, but the planning horizon for 2-step OED is 

still limited because only the next 2 queries are considered. In general, k-step strategies can be 

defined as strategies that evaluate trees of depth k with respect to some OED criterion, with 

the criterion being calculated for the tree as a whole rather than for each question individually.  

For convenience, we also refer to k-step OED strategies applied to an arbitrary question 

tree (of depth greater than k), by evaluating the first k steps of the tree. In Figure 3, the top 

row shows several complete trees for the example Person Game environment of Table 1 

(including the stepwise-optimal and globally optimal trees discussed in the previous section). 
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The middle row shows the corresponding subtrees for depth k = 2, and the bottom row shows 

the subtrees for depth k = 3. For example, 3-step probability gain applied to the stepwise 

optimal tree (Figure 3a, top) is defined as the probability gain of the subtree obtained by 

removing all queries beyond step 3 (i.e., of the tree in Figure 3a, bottom). 

Multistep OED strategies can lead to superior performance as compared to the 

corresponding stepwise OED strategies. Table 2 compares k-step impact, information gain, 

and probability gain across the four main trees in Figure 3 for different values of k. Stepwise 

information gain and stepwise impact (k = 1) both prefer query Q1, which forms the root of 

the stepwise-optimal tree (Figure 3a, top row) over Q2, which forms the root of the globally 

optimal tree (Figure 3b, top row). However, when planning two (k = 2) or three (k = 3) steps 

ahead, information gain and impact both follow the globally optimal tree; that is, considering 

two or more steps at once allows these strategies to identify the optimal first query. Planning k 

= 3 steps ahead is required, in this example, for probability gain to uniquely identify the 

globally optimal first query.  

7.1 Multistep probability gain  

The next three subsections focus on multistep probability gain. Multistep probability 

gain is interesting because (i) stepwise probability gain is indifferent among informative 

questions; but (ii) two-step (k = 2) probability gain differentiates among informative questions 

(Table 2) in a way that corresponds to intuitive distinctions in early literature on the Person 

Game (explained below); and (iii) as we show here, there are simple strategies for evaluating 

trees’ k-step (multistep) probability gain, which may provide the basis for developing 

candidate psychological models. 

In any Person Game environment, there always exist exhaustive question trees, meaning 

trees that will identify the true hypothesis (item or person) with certainty, if there is no limit 

on the number of questions that can be asked. (Recall that in the Person Game, every item has 

a unique identifying name feature.) Indeed, the stated goal of the game is to continue until the 
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target is known. All exhaustive trees have the same probability gain, 1−1/n, which equals .875 

for our example environment (see Table 2 and Figure 3). 

From a psychological standpoint, cognitive (for example, working memory) constraints 

may sharply limit the planning time horizon. What probability gain can be achieved on the 

Person Game if only a limited number of questions can be asked, or if a searcher plans only a 

small number of questions in advance, such that the decision trees under consideration are 

non-exhaustive (i.e., have leaf nodes containing more than one hypothesis)? To illustrate, the 

2-step tree obtained from the globally optimal tree (Figure 3b, middle row) has four leaf 

nodes respectively containing 1, 2, 2, and 3 hypotheses. One-step probability gain, which 

considers only the first question in each tree, does not distinguish among the trees in Figure 3; 

however, 2- and 3-step probability gain do make distinctions among these trees (Table 2). 

Specifically, the trees that begin with questions that leave multiple hypotheses consistent with 

each answer yield greater 2-step probability gain than do the trees that start with a hypothesis-

scanning question (i.e., that isolate a single hypothesis from the rest). Thus at depth k = 2 

(middle row of Figure 3), probability gain prefers a tree that does not start with a name 

(hypothesis-scanning) question, although it does not differentiate between the stepwise- and 

globally optimal trees. However, when the trees are evaluated to a depth of k = 3 (bottom row 

of Figure 3), the globally optimal tree has higher probability gain than the stepwise-optimal 

tree. Thus, when planning three queries ahead, probability gain correctly recognizes the most 

efficient first query. 

Why do the trees differ in their probability gains when planning multiple steps ahead? It 

turns out that a tree’s probability gain is a function of the number of its (nonempty) leaf 

nodes: 

Theorem 7: In the Person Game, the expected probability gain of any question strategy 

(tree T) is given by euPG(T) = (r−1)/n, where r is the number of (nonempty) leaf nodes of the 

tree, and there are n persons (items). The proof is given in Appendix A.  
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When evaluating the k-step probability gain for a tree of depth greater than k, r is taken 

to be the number of leaf nodes of the subtree defined by the tree’s first k steps. For example, 

3-step probability gain for the stepwise-optimal tree (Figure 3a, top) equals (6-1)/8 = .625, 

because the tree’s 3-step subtree (Figure 3a, bottom) has 6 leaf nodes.  

The intuitive explanation for Theorem 7 is that, regardless of which leaf node is 

reached, the player can select one target as his or her guess, from among the targets at that 

leaf node. Imagine these r candidate guesses are designated in advance (the timing has no 

impact on expected performance). Then a priori, the player’s guess will be correct if and only 

if the selected target is among this set, meaning the guess will end up being correct with 

probability r/n. 

Therefore, multistep probability gain embodies the goal of avoiding “dead ends” on a 

question tree. Consider the two-step question tree beginning with a name question in Figure 

3c, middle row. The possibility of uniquely identifying the target after only one question (if 

the target is h1) is actually a disadvantage of this tree, because it squanders the opportunity to 

ask another question at Step 2. That is, this path is a premature dead end, and it leads to the 

tree having only three leaf nodes at depth 2, rather than four as the trees in Figures 3a and 3b 

do. 

In general, the maximum number of leaves for a tree of depth k is 2k. If this maximum is 

achieved, we refer to the tree as nondegenerate or complete. Likewise, we refer to an arbitrary 

tree as complete at depth k if it has 2k nodes at depth k, i.e., if the subtree defined by its first k 

steps is nondegenerate. If a tree is complete at depth k, then it necessarily has maximal k-step 

probability gain. A tree can be complete at depth k only if 2k ≤ n, and complete exhaustive 

trees can exist only if the number of persons n is a power of 2. However, even at shallower 

depths k where 2k < n, complete trees might not exist in any particular Person Game. For 

example, it is possible when constructing a tree to reach a node at which all informative 

questions differentiate only a single member from the remaining hypothesis set. The child 



TOWARDS A THEORY OF PLANNING FOR SEQUENTIAL SEARCH  

 

34 

node containing that single hypothesis will necessarily be a leaf node that cannot be further 

split. The goal of maximizing k-step probability gain is thus equivalent to that of minimizing 

the number of degeneracies. In the Table 1 environment, trees starting with name questions 

(Figures 3c & 3d) are degenerate at step 2. The stepwise-optimal tree (Figure 3a), as well as 

any other tree starting with query Q1, is doubly degenerate at step 3, because only name 

questions remain after Q1 is answered. The globally optimal tree (Figure 3b) has only a single 

degeneracy at step 3 making it optimal for 3-step probability gain.  

7.2 Pathways for empirical research  

The extensions derived here raise a number of new empirical issues. The first issue is 

which, if any, of the multistep OED models describe people’s preferences in such a task. 

Multistep probability gain, taken as a predictive model for human behavior, makes the strong 

prediction that a question tree’s utility is determined fully by its number of nonempty leaf 

nodes. Multistep information gain and impact, however, predict that the distribution of 

hypotheses among these nodes also matters. For example, 2-step information gain prefers the 

tree in Figure 3b to that in Figure 3a, because the former has a more even distribution of 

hypotheses among the nodes at Depth 2 (1,2,2,3 vs. 1,1,3,3), whereas 2-step probability is 

indifferent because both trees have four nodes at that depth.  

Second, do people spontaneously notice, or can people learn through experience, that on 

Person Game tasks, nondegenerate trees (e.g., at depth k=2 or k=3) have higher probability 

gain than degenerate trees? That is, do people recognize that dead ends on a tree waste the 

opportunity for further questions? Would explicit visualization of the tree structure help 

people notice this property of multistep question strategies? What kind of visualizations 

would people spontaneously employ, and could people be trained to create helpful tree-like 

visualizations on these tasks? 

Third, do preferences differ depending on how the task is carried out? As noted above, 

any multistep decision tree is formally equivalent to a single many-valued query. However, it 
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is not known whether equivalent empirical results would be obtained if a task were framed in 

terms of selecting a decision tree, as opposed to the traditional sequential question asking 

framing. 

7.3 Mathematical implications of the constraint vs. name question distinction  

The developmental psychological literature on the 20-Questions game (e.g., Mosher & 

Hornsby, 1966; Denney & Denney, 1973) deems constraint questions to be more useful than 

hypothesis-scanning (name) questions. Theorem 7 shows how the constraint-versus-name 

question distinction has precise mathematical implications, in the context of two-step 

probability gain. Consider Person Games with four or more items, which is necessary for 

constraint questions to exist, and suppose that the goal is to achieve the highest classification 

accuracy possible, given that up to two questions can be asked. Thus, 2-step probability gain 

exactly captures the player’s objective. If a tree starts with a name question (e.g., Figure 3c, 

d), then it cannot include a follow-up question on one of its branches in the second step 

(because in the case of an affirmative answer only the target item remains). Therefore, 

regardless of the question chosen for Step 2 on the other branch, the tree will have exactly 3 

leaf nodes and hence yield accuracy 3/n and probability gain 2/n. In contrast, if a tree starts 

with a constraint question, then follow-up questions are possible on both branches, and thus 

the tree can have 4 leaf nodes and hence yield accuracy 4/n and probability gain 3/n. Thus, the 

intuitive distinction between constraint questions and name questions has a precise 

mathematical implication, in the context of the goal of classification accuracy in the two-step 

Person Game. If you start with a constraint question, you are guaranteed to have at least one 

further informative question to ask, no matter the answer to your first question, and therefore 

your expected accuracy after two steps is greater than if you start with a name question. 

7.4 Constraint questions can be inferior to name questions  

Although the results of the previous subsection provide one formal understanding of the 

value of constraint questions, this result is particular to the goal of expected accuracy after 
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two queries. Under the goal of uniquely identifying the target with the minimal number of 

questions, constraint questions are not in general better than name questions on the Person 

Game. Consider the Person Game environment of Table 3 and Figure 6, with 10 items, 3 

constraint features, and the 10 individuating ("name") features. If you start with constraint 

question Q3, and choose optimally thereafter, a total of 4.7 questions will be required on 

average. Most of the name questions (Q4 through Q9), however, will require only 4.4 

questions on average. As before, the difference arises from the kinds of follow-up questions 

available: After asking Q3, all remaining questions are (effectively) name questions, but after 

asking any of Q4–Q9 there are two more constraint questions that can be asked. Whether 

people would be sensitive to these distinctions is not known, and would be another way to 

address whether people focus on stepwise properties of queries (here, the name vs. constraint 

distinction) or are sensitive to multistep considerations. 

7.5 Summary and implications  

Suppose the goal is to maximize accuracy after many questions have been asked, but at 

each point in the game, it is possible to plan only a small number of steps in advance. That is, 

the objective is m-step probability gain, but the agent has access only to k-step methods (k < 

m). Our results show, somewhat paradoxically, that probability gain is not the most effective 

method in this case. If one’s goal is to maximize long-run accuracy, it does not follow that 

stepwise probability gain is necessarily the best stepwise strategy (k = 1). Unlike stepwise 

impact and information gain, stepwise probability gain does not distinguish among 

informative questions (Theorem 4). Two-step probability gain (k = 2) is a more reasonable 

strategy, corresponding to the constraint- vs. name- question distinction in the developmental 

literature, but it still is less sensitive than impact and information gain, which differentiate 

among constraint questions according to their splithalfiness. Moreover, it is also possible for a 

name question to be better than a constraint question: in the example of Table 3, starting with 

any of Q4-Q9 yields greater m-step probability gain than starting with Q3, for 5 ≤ m ≤ 8. On 
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the other hand, as the depth of lookahead (k) increases, probability gain becomes more fine-

grained in its distinctions among available queries' values. Furthermore, a tree’s k-step 

probability gain can be calculated in a straightforward way, simply by counting its leaf nodes 

(Theorem 7). This operation is potentially much simpler, psychologically, than calculating 

other multistep OED metrics, which depend on quantities like expected posterior entropy. As 

discussed in Section 7.2, these opposing considerations suggest paths for empirical research. 

8. The Generalized Person Game: Unequal priors 

In this section we discuss the implications of unequal priors in what we call the 

Generalized Person Game. This game is identical to the Person Game, except that the prior 

over the hypotheses (items or people) is not necessarily uniform (i.e. the prior probability of 

each hypothesis P(hj) is not necessarily 1/n). The other characteristics of the Person Game, for 

instance that questions are binary and likelihoods are deterministic, still hold. We first give a 

theoretical result on how to calculate the classification accuracy (and probability gain) of a k-

step question tree in the Generalized Person Game. We then use a simple example to illustrate 

two points: (1) the split-half heuristic does not in general correspond to maximizing stepwise 

information gain, and (2) the split-half heuristic can lead to better performance than stepwise 

information gain in the Generalized Person Game. 

8.1 Maximizing accuracy in a k-step Generalized Person Game  

What if the goal is to maximize accuracy, given that up to k questions can be asked, in 

the Generalized Person Game? Here we generalize the result from Theorem 7 on the 

probability gain of a regular Person Game tree at depth k, to the Generalized Person Game, 

with arbitrary priors.  

Theorem 8: in the Generalized Person Game, the probability gain of any question 

strategy (tree T) is given by 𝑒𝑢!" 𝑇 = 𝑃 ℎ!∗ − 𝑚𝑎𝑥!!!!! 𝑃 ℎ!∗!
!!! , where the terminal 
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nodes of the tree are indexed by j=1, 2, … r, and ℎ!∗ is a hypothesis in node j that has highest 

prior probability. The proof is given in Appendix A.   

Extending the reasoning given after Theorem 7, for each leaf node (j) the searcher can 

choose one hypothesis ( ) as his or her guess if the query process terminates at that node. 

When the prior is heterogeneous, the chosen hypothesis will (optimally) have the greatest 

prior probability among the hypotheses at that node. A priori, if the sampled target is any of 

the , then the guess will end up being correct. Therefore, to calculate the classification 

accuracy of a tree, one needs only to sum the prior probabilities of all the ℎ!∗. Furthermore, the 

classification accuracy prior to asking any questions is determined by the hypothesis with the 

greatest prior probability, which is necessarily one of the . Therefore the probability gain of 

the tree is 𝑒𝑢!" 𝑇 = 𝑃 ℎ!∗ − max!!!:! 𝑃 ℎ!∗!
!!!  . In the special case of uniform priors, 

 is arbitrary at each leaf node and 𝑃 ℎ!∗ = 1/𝑛. Thus expected accuracy is !
!

!
!!! = !

!
, and 

the expected probability gain is r/n – 1/n = (r–1)/n. Thus, Theorem 7 can easily be seen to be 

a special case of Theorem 8. 

8.2 In the Generalized Person Game, the split-half heuristic corresponds neither to 

maximum question entropy, nor to information gain, nor to impact 

Consider a Generalized Person Game in which Mickey Mouse is one among a total of 

eight items, Mickey is chosen with probability ½, and the other seven items each with 

probability 1/14. Suppose that the only constraint question is gender (male or female), and 

that there are three other male faces and four female faces. The probability of a positive 

answer to the “Is it Mickey?” question is ½. That question is the maximum entropy question, 

and therefore also the maximum information gain question, because likelihoods are 

deterministic in the Generalized Person Game (i.e., Theorem 1 applies). The split-half 

heuristic asks about gender, which has lower information gain. Thus, the correspondence of 

hj
*

hj
*

hj
*

hj
*
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the split-half heuristic to maximum stepwise information gain (Theorem 3) does not hold in 

the Generalized Person Game.  

The fact that the split-half heuristic begins with a question that has less than maximal 

information gain does not, however, entail that the split-half heuristic is inferior to 

information gain. Consider the depth k=2 trees, in the Mickey Mouse example, that would be 

selected by stepwise information gain and by the split-half heuristic (see Figure 7). The 

stepwise information gain tree (Figure 7a) starts with the maximum information gain question 

(“Is it Mickey?”). If yes, the true face is known to be Mickey, so no further questions are 

asked. If the answer is no, the next question is gender. The split-half heuristic starts by 

querying gender. Regardless of the answer, the next question is a name question chosen at 

random among the four remaining items. Note that if the gender is male, the split-half 

heuristic might query Mickey on Step 2 (Figure 7b), or it might query a different male face 

(Figure 7c), because the heuristic is insensitive to base rates. Either way, the two-step 

probability gain of the resulting split-half tree is 3/14, as compared to 2/14 for the stepwise 

information gain tree. This result follows immediately from Theorem 8; intuitively it holds 

because only the split-half tree guarantees the possibility of an informative second question. 

8.3 Empirical tests in the Generalized Person Game 

The results of the previous two subsections suggest a number of possible experimental 

manipulations. Theorem 8 entails that 1-step probability gain is maximized by any question 

that splits (i.e., yields opposing answers for) the top two hypotheses. Imagine a Generalized 

Person Game with a single most-probable hypothesis (Mickey, with probability 0.3), a 

second-most-probable hypothesis (Minnie, with probability 0.2), and several additional 

hypotheses with equal probability (the seven dwarves, each with probability 1/14). People 

could be incentivized to maximize one-step probability gain by being allowed to ask a single 

question for free, and then given a prize if they correctly guess the true item. Under these 

conditions, “Is it Mickey?” and "Is it Minnie?" both yield maximal expected accuracy of .5 
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(in either case, ℎ!∗ = Mickey,Minnie ). In contrast, "Is it a Mouse?" yields maximum 

stepwise information gain (1 bit), and a question that divides four of the dwarves from the 

other items would be maximally splithalfy, but both of these are suboptimal according to 

stepwise probability gain (expected accuracy .37). Therefore it would be of interest to see 

whether people can adapt to the demands of the task and select a question maximizing one-

step probability gain over those maximizing information gain or splithalfiness, and further 

whether people would recognize that “Is it Minnie?” is as effective a query as “Is it Mickey?”, 

even though Minnie has lower prior probability than Mickey. Further manipulations would be 

to use payoff structures that explicitly relate to multistep probability gain, for instance by 

allowing up to two questions to be asked for free, and then offering a prize just in case the 

correct item is guessed after the second question. In this case, an optimal two-step tree is any 

that splits the top four hypotheses, and it would be of interest to test whether people would 

choose accordingly. 

Ruggeri, Sim and Xu (2017) found evidence that children ages 3-5 years were sensitive 

to the prior probabilities of hypotheses, asking questions to maximize information gain in 

instances in which it contradicted the split-half heuristic. Although Ruggeri et al. did not use a 

multistep procedure and did not attempt to differentiate stepwise versus global optimality, 

their results provide a tantalizing foundation for future empirical research.  

9. Stepwise procedures can be suboptimal given only two hypotheses 

How general is the finding that what is optimal for one-shot tasks may be suboptimal in 

the long run? How simple can an environment be and still exhibit this conflict? Theorem 6 

shows that, if there are only two constraint questions in a Person Game, stepwise and global 

optimality necessarily agree. However, we show here that this restriction does not hold in 

every task. In particular, if likelihoods are allowed to be nondeterministic, then stepwise and 

global optimality can diverge even in scenarios with just two features and two hypotheses.  
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In this section we consider a two-category, binary-feature scenario (“Planet Vuma”) that 

is one of the most frequently used tasks in psychological research on human information 

selection (Meder & Nelson, 2012; Nelson, 2005a; Nelson et al., 2010; Rusconi et al., 2014; 

Skov & Sherman, 1986; Slowiaczek et al., 1992; Wu et al., 2017). In the Planet Vuma 

scenario, the task is to categorize a fictitious alien into one of two species (hypotheses h1 and 

h2) by querying their (binary) features. In versions of the task used to date, a single question 

can be asked before making a classification decision (e.g., “Does the alien wear a hula 

hoop?”), although here we extend the task to cases where multiple questions can be asked. In 

addition, this scenario differs from the Person Game by having arbitrary (nondeterministic) 

likelihoods and arbitrary priors. In other words, knowledge of the species of creature would 

not in general make it possible to know whether or not the creature has a particular feature, 

and hence ent(Q|H) > 0. One consequence is that on Planet Vuma, the maximum entropy 

question strategy does not necessarily correspond to maximum information gain, and 

Theorem 1 does not apply. Furthermore, it is not in general possible (no matter how many 

questions are asked) to achieve certainty about the true category. Therefore, we focus on the 

goal of achieving maximum possible classification accuracy, given a fixed number of queries 

(i.e., k-step probability gain).  

The research question in these papers is which properties of a query cause people to 

consider it informative for discriminating among the hypotheses (categories). In relatively 

simple scenarios, people typically have good intuitions about what makes features useful 

(Nelson, 2005a; Skov & Sherman, 1986; Slowiaczek et al., 1992). However, the way in which 

information about the statistical structure of the environment is conveyed strongly matters, 

with human search behavior systematically varying as a function of presentation format. Most 

experiments using the Planet Vuma scenario have presented prior probabilities and feature 

likelihoods with words and numbers; under these conditions behavior is often 

indistinguishable from chance. In contrast, Nelson et al. (2010) found that if people learn 
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environmental probabilities through many trials of experience, with feedback, they are very 

sensitive to the probability gain of each question and preferentially select questions with high 

expected probability gain (see Crupi et al., 2018, for a discussion of alternate models). 

In parallel to our discussion of the split-half heuristic on the Person Game, it is 

interesting that a heuristic strategy has also been reported on the Planet Vuma task, when 

probability information is presented with numeric prior probabilities and feature likelihoods 

(Nelson, 2005a; Slowiaczek et al., 1992). The likelihood difference heuristic selects queries 

by evaluating the absolute difference in feature likelihoods between the hypotheses. Consider 

a binary feature A = {a1, a2}. Its likelihood difference, LikDiff(A), is equal to 

P(a1 | h1) − P(a1 | h2). (Note that P(a1 | h1) − P(a1 | h2) = P(a2 | h1) − P(a2 | h2), so it does not 

matter whether the likelihood difference is defined in terms of feature value a1 or a2.)  If there 

are multiple features, the heuristic queries the feature with highest likelihood difference. It 

turns out that the question (feature) with highest likelihood difference is also the question with 

highest expected impact (proof in Nelson, 2005a, Footnote 2). This example provides another 

case in which a simple heuristic implements an OED model. In the special case where P(h1) = 

P(h2) = .5, impact and probability gain are also identical, and the likelihood difference 

heuristic also selects the question with highest probability gain. 

9.1 Stepwise vs. multistep strategies given binary hypotheses  

Here we consider an extended version of the Planet Vuma task that allows for multiple 

queries on each trial. In this extended variant of the task, a sample with one or more 

biological specimens—all from the same, but unknown, location—has been obtained, and the 

task is to infer whether the sample is from location h1 or location h2. There are two genes, 

each of which can take one of two forms: gene A takes value a1 or a2, and gene E takes value 

e1 or e2 (the organisms are haploid). The distribution of the two forms of each gene at each 

location is known. Neither gene perfectly predicts the location of origin of the specimens. 

From a mathematical standpoint, the genes are class-conditionally-independent (Domingos & 
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Pazzani, 1997; Jarecki, Meder & Nelson, 2018) and identically distributed across specimens. 

Each specimen can be given only a single test, due to their small size and limited amount of 

genetic material. Thus each query is a measurement of either gene A or gene E, and the total 

number of possible queries equals the number of specimens in the sample. 

Suppose it is known that for any particular specimen, P(h1) = .70, P(h2) = .30, 

P(a1 | h1) = .04, P(a1 | h2) = .38, P(e1 | h1) = .57, and P(e1 | h2) = 0 (Figure 8a). These 

environmental probabilities are from Nelson et al. (2010, Supplemental Material) and were 

designed to maximally differentiate the predictions of stepwise information gain and stepwise 

probability gain. Suppose that there is just one specimen in the sample, so only a single test 

can be conducted. Which test is more useful if the goal is to classify the specimen’s location 

of origin? Figure 8b illustrates the search problem. If only a single test can be conducted, Test 

A has probability gain of .086, information gain of .132, and impact of .286. Test E has zero 

probability gain, information gain .280, and impact .479. Thus, if the goal is to maximize 

classification accuracy, Test A is better. If the goal is to maximize information gain or impact, 

Test E is better. LikDiff(A)=.34, whereas LikDiff(E)=.57, so the likelihood difference 

heuristic would select Test E.  

What if the sample contains not one but two specimens, from the same location, and it 

is possible to conduct one test on the first specimen, and contingent on the result of that test, 

to decide which test to conduct on the second specimen? Should Test A be conducted on both 

specimens? Should Test E be conducted under some circumstances, even if the goal is to 

maximize accuracy? There are 23 = 8 possible binary decision trees (question strategies) that 

can be formed, according to the choice of first test and the choice of the second test 

conditional on the two possible outcomes of the first test. However, if Test E is conducted on 

the first specimen, and the result is e1, the true hypothesis is known to be h1 (Figure 8b). Thus 

we can prune the trees where the first result is e1, leaving six trees (Table 4).   
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What happens if tests are chosen by using probability gain in a stepwise manner? In this 

case, Test A is used for the first specimen. If the result is a1, Test E is used on the second 

specimen; if the result is a2, the A test is repeated on the second specimen. The stepwise 

probability gain tree (Figure 8c) uses exactly two questions; it has two-step probability gain of 

.146, two-step information gain of .274, and two-step impact of .470. 

What happens if information gain is used in a stepwise manner? In this case, Test E is 

used for the first specimen. If the result is e1, the true hypothesis is known to be h1, and no 

further tests are conducted; if the result is e2, another E test is conducted. This tree is depicted 

in Figure 8d; the same tree results if impact is used in a stepwise manner. It may not be 

surprising that the stepwise information gain tree has higher two-step information gain (.502) 

than the stepwise probability gain tree (.274). Interestingly, the stepwise information gain tree 

also has higher two-step probability gain than the stepwise probability gain tree (.171 vs. 

.146)!  

Consideration of all six possible trees (Table 4) shows that the stepwise information 

gain tree is in fact globally optimal with respect to the goals of maximizing classification 

accuracy, minimizing posterior entropy, and maximizing impact. This tree also ties for 

requiring the fewest expected number of tests. The likelihood difference heuristic, which 

always chooses the test with highest stepwise impact, also selects this globally optimal tree.  

In summary, in a paradigmatic case from the psychological literature, if you plan just 

two steps ahead (rather than one), the relative usefulness of the two questions as a first query 

can actually reverse. Furthermore, for this example scenario, stepwise strategies of 

maximizing impact or information gain identified the tree that maximizes multistep 

probability gain, whereas stepwise probability gain did not. Are people sensitive to this 

discrepancy between stepwise and multistep considerations in this context? Is the better 

multistep performance of information gain responsible for the "information bias" observed in 
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a related task (Baron, Beattie & Hershey, 1988)? These are important issues for future 

empirical research.  

9.2 Simulation of performance of stepwise OED strategies in two-step, two-category, 

binary-feature tasks 

Is the above example unusual? To address this, we tested the tendency of stepwise 

probability gain, impact, and information gain to choose as a first question the feature that the 

highest 2-step probability gain tree begins with. The simulation looped through prior 

probability P(h1) values of [.01, .05, .10, ..., .95, .99] and likelihood P(a1|h1) values of [0, .05, 

... 1.0]. For each of the combinations of P(h1) and P(a1|h1) values, 10000 random scenarios 

were generated, with the other likelihoods, namely P(a1|h2), P(e1|h1), and P(e1|h2) chosen 

independently from a uniform(0,1) distribution. The globally optimal tree for each scenario 

was defined as the tree with highest expected two-step probability gain. The simulation 

checked, for each scenario, whether stepwise probability gain, impact, and information gain 

identified the globally optimal tree (i.e., the 2-step tree with maximal 2-step probability gain).  

Across the approximately 4.4 million random scenarios that were simulated, stepwise 

information gain failed to identify a unique best query in 3.1% of the scenarios, stepwise 

impact in 5.1% of the scenarios, and stepwise probability gain in 7.0% of the scenarios. The 

fact that stepwise probability gain is not the best stepwise strategy with respect to longer-run 

probability gain is interesting, and parallels the results from the Person Game simulations. 

9.3 Experimental tests  

In future work, it will be important to establish the circumstances under which people 

can identify the best first question in sequential versions of the Planet Vuma task. The 

example discussed in Section 9.1 (Figure 8 and Table 4) is one specific environment in which 

stepwise probability gain conflicts with stepwise information gain and impact as well as 

global optimality. Environments that arose in the simulations in Section 9.2 also exhibit other 

patterns of agreement and conflict among these four measures. Systematic investigation of 
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human behavior in these environments should be able to determine what factors drive 

information selection in multistep tasks using nondeterministic queries. Moderation by the 

format of presentation could also be investigated: In addition to the standard probability 

format, methods for presenting the probabilistic information could involve experience-based 

learning (e.g., Nelson et al., 2010), or helpful numeric or graphical formats (Wu, Meder, 

Filimon & Nelson, 2017). 

10. General Discussion 

Much work on active information gathering is based on the idea that stepwise OED 

models should be used to determine which test to conduct. Our results challenge the 

preeminence of stepwise OED models in two complementary ways.  

First, simple heuristics can exactly implement stepwise OED models, without directly 

computing the informational utility functions on which the OED models are based, in many 

situations. Thus, rather than there being a fine line between "optimal" and "heuristic" models, 

there may in some cases be no dividing line at all. In the Person Game, the split-half heuristic 

identifies the question with maximum stepwise impact (Theorem 2) and information gain 

(Theorem 3). In the two-category, binary-feature (“Planet Vuma”; Skov & Sherman, 1986) 

scenarios, the likelihood difference heuristic corresponds to the OED model of impact 

maximization (Nelson, 2005a). These results provide pathways for developing psychological 

theory that integrates normative and descriptive considerations.  

Second, much work using OED models is based on the incorrect idea that stepwise 

strategies—in particular, stepwise information gain—are maximally efficient for sequential 

search. Stepwise OED models, which are often considered rational benchmarks for 

information search in one-shot tasks, are not necessarily optimal for planning a sequence of 

queries. We have shown via a simple example (Table 1 and Figure 1) and extensive 

simulations that maximizing stepwise information gain does not in general maximize long-run 
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efficiency in the Person Game. Surprisingly, although the goal in this task is to achieve 

perfect accuracy in the most efficient way, stepwise probability gain (which maximizes 

stepwise increase in accuracy) is indifferent among non-redundant questions in the Person 

Game (Theorem 4). We showed via examples and simulations that stepwise probability gain 

does not maximize two-step probability gain in the popular two-category, binary-feature 

(Planet Vuma) information-acquisition scenario either. (Further simulations show that 

stepwise information gain does not always maximize two-step information gain, either.) 

Remarkably, which initial question is the best from the perspective of probability gain can 

actually reverse if two questions, rather than a single question, can be asked.  

The Person Game and Planet Vuma are key tasks in psychological information 

acquisition literature. Moreover, they are simple in complementary ways: the Person Game 

has many hypotheses but binary, deterministic features, whereas Planet Vuma has arbitrary 

likelihoods (i.e., nondeterministic features) but only two hypotheses and, in the scenarios 

considered here, only two features. Stepwise OED methods can fail in both of these tasks. 

Moreover, Person Game simulations show that the stepwise methods fail more frequently as 

the toy games get larger (with 18 items, rather than 8 items), or the feature construction 

methods get more naturalistically plausible (e.g., with some simple inter-feature dependencies 

and heterogeneity in feature densities). It is therefore plausible that stepwise methods are 

suboptimal in many or even most realistic scenarios. 

Our final contribution is the analysis of multistep models for question selection. We 

showed that probability gain, which is indifferent among informative questions when applied 

in a stepwise way, is not indifferent when planning more than one step ahead in the Person 

Game (Theorems 7 and 8). Two-step probability gain gives a mathematical characterization 

of how constraint and name questions differ in their information value: Trees that start with a 

name question have two-step probability gain 2/n, whereas trees that start with a constraint 

question have two-step probability gain 3/n, in any Person Game with n items. Surprisingly, 
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however, constraint questions are not always better from the perspective of long-run 

efficiency (Table 3). For any fixed number of persons (hypotheses), a Person Game tree’s 

probability gain is a linear function of that tree’s number of leaf nodes (Theorem 7). Theorem 

8 shows that even in the Generalized Person Game, with arbitrary prior probabilities, a fairly 

straightforward strategy can be used to calculate a tree’s probability gain. In fact, Theorem 8 

also applies to other 20 questions tasks (Figure 4), including the Person Game, the Number 

Game, and the Generalized Number Game.  

10.1 Stepwise strategies to see the future   

Given that maximizing expected accuracy seems to approximate people’s goals on 

classification tasks in which just one query can be conducted before a decision can be made 

(Nelson et al., 2010), it is especially interesting that stepwise probability gain is not even the 

best stepwise strategy to efficiently achieve high accuracy over multiple steps, in the Person 

Game and Planet Vuma. Similar theoretical results have been found in at least two other tasks 

that are highly relevant to cognitive science, as we discuss next. 

Planning active interventions in causal learning is one domain in which the 

combinatorics of planning in advance strongly suggest looking for reasonable myopic 

strategies. Bramley et al. (2015) explored the use of stepwise OED strategies in a causal 

learning task with dozens of possible hypotheses, possible interventions in the causal system, 

and possible outcomes of each intervention. The learner’s task was to figure out which of 25 

acyclic graph structures connected three nodes. For instance, the nodes could be connected by 

a chain (e.g., A → B → C), or could have a common-cause structure (e.g., B ← A → C), or 

could have one or more nodes unconnected, and so on. Interventions included all possible 

combinations of clamping individual nodes on or off, and observing the activations or lack 

thereof of the other nodes (Bramley et al., 2015, Fig. 4). Human subjects’ queries had high 

information content. Of particular theoretical interest, however, is the relationship among the 

different stepwise methods, independent of the human data, in a simulation study (Bramley et 
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al., 2015, Figure 9). Stepwise probability gain, stepwise information gain, and stepwise utility 

gain were tested. Utility gain was based on the actual payoff structure of the task, namely 

earning one point per correctly identified link among the three nodes in each problem. 

Assuming that a stepwise strategy must be used, is it better to select queries according to 

stepwise improvement in utility gain, probability gain, or information gain? Remarkably, after 

approximately six queries had been selected with each stepwise method, stepwise information 

gain obtained the highest utility score on the task, even better than stepwise expected utility 

gain. 

 Najemnik and Geisler (2005) obtained similar findings, in a very different domain 

involving eye movements for perceptual visual object detection. In Najemnik and Geisler’s 

task, a visual object must be located in a field of noise and many distractor objects. The object 

being searched for is placed at one of several dozen different possible locations. Thus, the 

task is formally similar to a probabilistic classification task (the target is at exactly one 

location, just like an object is exactly one category), where eye movements are analogous to 

explicit questions on cognitive tasks. Both the stepwise information gain and stepwise 

probability gain models are in good agreement with human subjects’ eye movements on these 

tasks. In simulations, Najemnik and Geisler also found that if one’s goal is to maximize 

classification accuracy (i.e., long-run probability gain), then under some circumstances, it is 

more efficient to use stepwise information gain than stepwise probability gain when choosing 

which location to view (fixate) in the next time step. 

A related theoretical point is that even when a test is useless in a one-shot task, that does 

not mean that the test is useless as the first test in a multistep question strategy. For instance, 

it could be that the posterior probability of a disease is low enough (and the cost of treatment 

is high enough) that even if Test E is positive, it would not make sense to treat the patient; 

according to Pauker and Kassirer’s influential (1980) analysis of medical diagnosis, such a 

test should not be conducted. But suppose that up to two tests can be conducted. Consider a 
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second test, F, that is also useless, according to the same analysis. It could be that if both tests 

are positive, the posterior probability of disease is above the threshold at which the patient 

should be treated. This example shows that a test can be useful if considered in conjunction 

with another test, even if both are useless on their own. A helpful experiment would 

investigate human test selection in a situation in which tests E and F are useless (relative to 

the objective utilities), considered on their own, and another test G is somewhat useful if 

considered on its own, but in which the combination of tests E and F is more useful than test 

G.   

The above examples show the dangers of relying on stepwise strategies to quantify 

tests’ usefulness. They also demonstrate surprising results wherein the best stepwise method 

can use an objective function that is different from the actual goal (see Singh, Lewis, Barto & 

Sorg, 2010, for investigation of a similar issue within the reinforcement-learning framework). 

The general issue of when and why particular stepwise strategies can “see the future” better 

than other strategies should be vigorously explored.   

Such a theoretical investigation might also shed light on some strange findings in 

human test-selection behavior in the presence of asymmetric reward. There has not been 

much research in this area to date, but three papers have found that it is difficult for human 

subjects to choose tests that maximize utility, in the sense of overt reward, rather than pure 

information (like information gain or probability gain), on one-shot information acquisition 

tasks (Baron & Hershey, 1988; Markant & Gureckis, 2012; Meder & Nelson, 2012). 

Information about the structure of the world may be valuable in its own right (Filimon et al., 

2016; Gottlieb et al., 2013), but information that is connected to reward (food, mating, 

predation, social status) is also important (Bromberg-Martin & Hikosaka, 2009).  

It would be surprisingly maladaptive if people were unable to take situation-specific 

utilities into account when searching for information. One possibility is that people’s 

apparently maladaptive behavior on these tasks could be an artifact of adaptation to finding 
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queries with high situation-specific utility in sequential search tasks. In other words, perhaps 

people conduct queries that, while not maximizing stepwise utility gain, somehow lead to 

high long run utility gain. At the moment, that is pure speculation, but it suggests avenues for 

future theoretical, behavioral, and cognitive neuroscience research. For instance, sequential 

search could be studied in real-world medical diagnosis tasks, to address whether apparently 

maladaptive preferences in one-shot tasks are adapted to sequential scenarios with external 

payoffs.  

10.2 Need for empirical research on sequential planning of tests 

In statistics and computer science, consideration of stepwise approaches to question 

selection (e.g., Good, 1950; Lindley, 1956) came before consideration of efficiency in 

multistep question selection scenarios (e.g. Hyafil & Rivest, 1976). It is thus understandable 

that psychological research to date has focused on stepwise OED approaches. Future work on 

human information acquisition should explore the circumstances under which people can 

identify efficient long-run strategies. The body of relevant research to date is small: Meier and 

Blair (2013) found that people tended to first query a feature that led to higher efficiency, 

even though it was not the feature with highest stepwise probability gain or information gain; 

Meder et al. (2018) obtained much less promising results. What are the circumstances under 

which people can discover effective multistep strategies? As we highlight throughout this 

paper, there are a wealth of experiments that could be conducted to address this issue. 

Although there is little research on sequential information search, there is research on 

whether and how people plan in other sequential decision tasks. For instance, Huys et al. 

(2012) studied a behavioral task in which people could transition between states, learning via 

experience the payoff or penalty associated with each state transition. Huys et al. modeled this 

in a reinforcement-learning framework (Sutton & Barto, 1998). Several models of human 

behavior were considered. One model used temporal discounting together with consideration 

of all possible future states. Such a model is feasible in small tasks, but faces a combinatorial 
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explosion in its computation when applied to larger tasks. Another model chose at random 

which states to prune and exclude from further consideration. A third model pruned only 

states that involved a large negative outcome; this model best accounted for human behavior.  

These results could be used to help generate hypotheses for human behavior in 

sequential search tasks. For instance, people might not even consider Person Game question 

trees that begin with a highly unsplithalfy first question. Alternatively, the value of questions 

could be defined in terms of the quality of questions available at the next time step (e.g., as 

the expected splithalfiness of the questions available at the next timestep), as in hybrid model-

based–model-free approaches to reinforcement learning. As a research strategy, the goal 

could be to make these ideas computationally explicit, and in turn, to identify scenarios in 

which different models make strongly different predictions for behavioral experiments.  

10.3 The quest for optimality: from rational models to heuristics and back  

In the literature on human information search, there has been little research on the ways 

in which the human cognitive system influences which algorithms are feasible. Historically, 

this may follow from Anderson's (1990) methodological suggestion to derive an optimal 

strategy solely from the task structure and the goals of the agent, making as few assumptions 

as possible about computational limitations. However, as we have illustrated in the case of 

sequential search, what is in fact optimal for human cognition is seldom clear (see also Jones 

& Love, 2011; Meder, Mayrhofer, & Waldmann, 2014). Heuristic strategies, as discussed in 

this manuscript, and boundedly rational models (Griffiths, Leider & Goodman, 2015), offer 

complementary avenues for developing predictive models. 

What are the implications of our analyses and the juxtaposition of one-shot vs. 

sequential search scenarios?  First, cognitive science should take seriously the fact that 

deriving the globally optimal solution is not computationally feasible for many problems. 

Importantly, as Person Game and Planet Vuma scenarios exemplify, this does not necessarily 
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result from limited knowledge of the structure of the environment. Even in situations in which 

all required information is available (hypotheses and features, the probabilistic structure of the 

environment, inter-feature dependencies, noiseless feedback, etc.), such as the full set of faces 

and features in a Person Game, the computational complexity can make it infeasible to 

calculate the globally optimal solution. For these problems, the question arises of what role 

the notion of optimality plays in providing guidance in model development and psychological 

theorizing. It is clear that some heuristic strategies are needed (see Hyafil & Rivest, 1976). 

But what kind of heuristic strategies? From a computer science standpoint, any algorithm that 

approximates a globally optimal algorithm yet has lower computational cost is a heuristic. In 

psychology there are varying definitions of, and views on, heuristics (e.g., Gigerenzer, 1996; 

Gigerenzer, Todd, & the ABC Research Group, 1999; Gilovich & Griffin, 2002; Kahneman 

& Tversky, 1974, 1996).  

We suggest that which behavior should be considered optimal depends strongly on the 

cognitive and perceptual system of the agent. In the case of perception, this is readily taken 

into account. For instance, Butko and Movellan (2010) showed that depending on the foveal 

acuity curve (how rapidly peak resolution decreases as a function of distance from the center 

of gaze), one's eye movements to find a target object should be directed either to the most 

likely center of the target object, or slightly to the side of the target object. This implies that 

humans, who have a flat acuity curve within the fovea in the center of gaze (Duncan & 

Boynton, 2003; Sereno et al., 1995), should look slightly to the side of the most likely object 

location. However, an animal or computer vision system with a narrow point of peak acuity in 

the center of gaze should try to look at the center of the target object. We would not say that it 

is “biased” or “suboptimal” for eye movements to take the structure of the visual system into 

account. If beauty is in the eye of the beholder, then the rationality of an eye movement 

strategy is in the shape of the retinal acuity curve. 
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Some heuristics may not be optimal in the sense of always identifying the very most 

efficient strategies; rather, the heuristics may help people identify reasonable strategies more 

efficiently. Just as the properties of the visual system suggest which eye movement strategies 

are most efficient, properties of the cognitive system—for instance, the resources available in 

working memory, and how much a person intrinsically values his or her time—are relevant to 

cognitive psychological sequential search tasks. People’s use of information-search heuristics 

varies according to the information value of the heuristic and other task constraints (Coenen, 

Rehder & Gureckis, 2015; Klayman & Ha, 1989; Langsford, Hendrickson, Perfors & 

Navarro, 2014; Markant, Settles & Gureckis, 2015). Is a Person Game learner “suboptimal” 

or “biased” if he or she selects questions in a stepwise manner by using the split-half 

heuristic? Is it “optimal” for a learner to spend an extra 30 seconds, or an extra 30 minutes, to 

identify the highest two-step probability gain (or information gain) strategy? The answer 

depends on how much a person intrinsically values their time. Psychological models of 

question selection should take factors like the psychological cost of time into account in a 

meaningful quantitative way.  

We suggest that OED models of information search, heuristics (and “biases”) reported 

in psychological literature, and the computer science literature on sequential search and other 

sequential planning tasks (e.g. using reinforcement learning) are equally valuable sources of 

inspiration for candidate descriptive cognitive models of human information acquisition. 

Whether a model was initially conceived as normative, adaptive, boundedly rational 

(Griffiths, Lieder, & Goodman, 2015), or even as a silly heuristic strategy, could almost be 

deemed irrelevant at this stage of research (also see Cohen, 1981; McKenzie, 1996; Tauber, 

Navarro, Perfors & Steyvers, 2017). From a methodological standpoint, for the goal of 

developing a descriptive model of human behavior, what is most important is that the models 

under consideration make precise predictions that can be differentiated from other models’ 

predictions via simulations, mathematical analyses, and behavioral experiments.  
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Tables 

Table 1  

Illustration of a Person Game Environment, with Eight Hypotheses (Persons), h1,…, h8, and 

Seven Binary Features that can be Queried, Q1, …, Q7 , as well as the Stepwise Information 

Values of Each First Question 

Person Q1 Q2 Q3 Q4 Q5 Q6 Q7 

h1 1 0 1 0 0 0 1 

h2 1 0 1 0 0 0 0 

h3 1 0 1 0 0 1 0 

h4 1 0 0 0 0 0 0 

h5 0 0 0 0 0 0 0 

h6 0 1 0 0 0 0 0 

h7 0 1 0 0 1 0 0 

h8 0 1 0 1 0 0 0 

Utility function        

Probability gain   .125   .125   .125   .125   .125   .125   .125 

Information gain  1.000   .954   .954   .544   .544   .544   .544 

Impact 1.000   .938   .938   .438   .438   .438   .438 

 

Note. Figure 1 gives example stimuli instantiating this structure. Figure 3 shows different 

question trees that might be used on this task. In the Person Game, all name questions are 

allowed (e.g., “Is it h1?”). We do not explicitly include the name questions for h2, h4, h5, or h6 

in this table, because they are not needed for constructing the example trees in Figure 3. For 

the expected value of querying each feature as a first question, within a row (a particular OED 

model), larger values correspond to higher usefulness. Information gain is measured in bits. 
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Table 2   

Information Value of Four Selected Person Game Trees (from Figure 3, Based on the 

Environment in Table 1), According to Several Multistep OED Models  

 
 Stepwise-

optimal 
tree 

Globally 
optimal 

tree 

Start with 
name 

question tree 

Name 
questions 
only tree 

Expected path length     
Full tree 3.250 3.125 3.625 4.375 

Expected impact     
1-step 1.000 0.938 0.438 0.438 
2-step 1.375 1.438 1.188 0.813 
3-step 1.625 1.688 1.500 1.125 
Full tree 1.750 1.750 1.750 1.750 

Expected information gain     
1-step 1.000 0.954 0.544 0.544 
2-step 1.811 1.906 1.406 1.061 
3-step 2.500 2.750 2.156 1.545 
Full tree 3.000 3.000 3.000 3.000 

Expected probability gain     
1-step 0.125 0.125 0.125 0.125 
2-step 0.375 0.375 0.250 0.250 
3-step 0.625 0.750 0.500 0.375 
Full tree 0.875 0.875 0.875 0.875 

 
 
Note. Figure 3, top row, depicts the full trees. Figure 3, middle row, depicts the subtrees that 

are defined by the first 2 steps of the corresponding full trees. Figure 3, bottom row, depicts 

the subtrees that are defined by the first 3 steps of the corresponding full trees. Path length = 

number of queries to reach certainty. Information gain = expected reduction in (Shannon) 

entropy, in bits. Probability gain = expected improvement in classification accuracy. Impact = 

absolute change in beliefs. 
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Table 3 

Constraint Questions are not Always Better than Hypothesis-Scanning Questions 

  Constraint questions  Name questions 

  Q1 Q2 Q3  Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 

h1  0 0 0  1 0 0 0 0 0 0 0 0 0 

h2  0 0 0  0 1 0 0 0 0 0 0 0 0 

h3  0 0 0  0 0 1 0 0 0 0 0 0 0 

h4  0 0 0  0 0 0 1 0 0 0 0 0 0 

h5  0 0 0  0 0 0 0 1 0 0 0 0 0 

h6  0 0 0  0 0 0 0 0 1 0 0 0 0 

h7  0 1 1  0 0 0 0 0 0 1 0 0 0 

h8  1 0 0  0 0 0 0 0 0 0 1 0 0 

h9  0 1 0  0 0 0 0 0 0 0 0 1 0 

h10  1 0 1  0 0 0 0 0 0 0 0 0 1 

Mean path length  4.2 4.2 4.7  4.4 4.4 4.4 4.4 4.4 4.4 4.8 4.8 4.8 4.8 

 

Note. Figure 6 instantiates this environment graphically. In the developmental psychology 

literature, constraint questions are deemed superior to hypothesis-scanning questions. This 

example environment shows that not even that basic ordering holds in general. The bottom 

row shows the expected number of questions required to identify the target if the 

corresponding question is asked first, provided that subsequent questions are chosen 

according to the optimal strategy. The remaining rows indicate which hypotheses (persons) 

have each feature. Most hypothesis-scanning questions, namely Q4 through Q9, are superior to 

the constraint question Q3.  
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Table 4 

Trees of Depth Two in the Two-Category Binary-Feature (Planet Vuma) Example 

Tree First 
test 

Second test  
if first test 
e1 or a1 

Second test  
if first test 
e2 or a2 

Tree  
path  
length 

Tree  
prob.  
gain 

Tree  
info.  
gain 

Tree 
impact 

Globally Optimal E -- E 1.601   .171 0.502 0.685 
Stepwise Probability Gain A E A 2.000   .146 0.274 0.470 
Other trees: A A A 2.000   .130 0.241 0.451 

E -- A 1.601   .102 0.365 0.479 
A E E 2.000   .102 0.365 0.479 
A A E 2.000   .086 0.332 0.460 

 

Note. This example shows how stepwise procedures for choosing queries can be suboptimal, 

even in situations with just two hypotheses. Each of the six possible trees is described, 

together with its expected path length and its value according to (expected) probability gain, 

information gain, and impact. The globally optimal tree (Figure 8d) is optimal with respect to 

all three two-step OED criteria and also ties for requiring the fewest questions. Applying 

information gain, impact, or the likelihood difference heuristic in a stepwise manner all result 

in this tree. The stepwise probability gain tree (Figure 8c) results from applying probability 

gain in a stepwise manner. The other four possible trees are also included for comparison 

purposes. The trees are ordered from highest to lowest probability gain, with the shorter path 

length tree listed first in the case of a tie. 
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Figures 

Figure 1. Stimuli to illustrate the Person Game environment in Table 1. The goal is to use the 

strategy that identifies the correct monster with the fewest expected queries. Allowable 

questions are about the physical features of those monsters, including the features that 

individuate single monsters, such as “Does the monster have a bow tie?”. The shape question 

gives a perfect 4:4 split. Although the color question and the eye question each give only a 3:5 

initial split, they are superior questions from the perspective of long-run efficiency.  
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Figure 2. Usefulness of questions in the Person Game, according to stepwise probability gain, 

information gain and impact, assuming a uniform prior over the hypotheses. The curves are 

formed by taking possible probabilities of a feature being present, P(qyes), and calculating the 

usefulness of asking about that feature, according to each OED model. Each curve is scaled to 

a maximum of 1.  The information gain and impact curves are symmetric, with maxima at 

P(qyes) = .5, implying that the split-half heuristic can be used to identify the highest impact 

and highest information gain questions, irrespective of the number of items being guessed 

among. The probability gain curve is flat and maximal for all values of P(qyes), 

0 < P(qyes) < 1, and zero if P(qyes) = 0 or P(qyes) = 1. 
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Figure 3. Four possible question strategies (trees) for the Person Game environment in 

Table 1, which is instantiated graphically in Figure 1. If the answer to a query is negative, 

the left branch is taken; in case of a positive answer the right branch is taken. The “stepwise 

optimal” tree (a) results from applying the stepwise methods (split-half heuristic, maximal 

stepwise expected impact, or maximal stepwise expected information gain). The “globally 

optimal” tree (b) achieves certainty in the smallest expected number of questions. (Note that 

two trees—starting with either Q2 or Q3—tie for globally optimal, so we arbitrarily depict 

one of them here.) The “start with name question” tree (c) and the “name questions only” 

tree (d) illustrate different possible trees that start by asking a hypothesis-scanning or 

“name” question (querying a feature unique to one hypothesis). The middle row depicts the 

subtrees of depth 2, used for evaluating 2-step OED models; the bottom row depicts the 

subtrees of depth 3, for evaluating 3-step OED models.  Table 2 gives results on the 

efficiency of each tree, as well as the expected impact, information gain, and probability gain 

that can be achieved from the first one, two, or three steps of each tree. 
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Figure 4. Illustration of how different kinds of Generalized Person Game relate to each other. 

In each type of game, the task is to identify an individual person (or item). Each item is 

uniquely characterized by a set of binary attributes. Each variant of the game is characterized 

by what kind of questions are available to ask, and by the prior probability distribution of the 

items. Every version of the game is a Generalized Person Game. If the prior probabilities of 

all items are equal, then the game is a Person Game. If every possible question can be asked 

(e.g., if the questioner can ask whether the target item is part of any arbitrary subset), then the 

game is a Generalized Number Game (which we do not specifically discuss). If all of the 

above conditions hold, then the game is a Number Game. Theorems 1 and 8 apply to the 

Generalized Person Game, and therefore also the Person Game, Generalized Number Game, 

and Number Game. 
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Figure 5. Highlights of results from Person Game simulations. (a) Probability that the 

stepwise methods (split-half heuristic, maximal stepwise impact, and maximal stepwise 

information gain) would select a suboptimal first question as the first question of various 

Person Game environments. Results are based on taking the mean value of the % Suboptimal 

Choices column in Figures C1 through C4, for each size Person Game.  Performance of the 

stepwise methods is the worst when features tend to be correlated with each other and are 

diverse in their densities. (b) Probability that the stepwise methods select a suboptimal first 

question as a function of number of constraint questions (averaged over environment sizes). 

Performance is worst in environments with a small number of constraint features. If there 

were 20 constraint features, it was rare for the stepwise methods to select a suboptimal first 

query (within the range of environment sizes tested). Figures C1 through C4 give a more 

detailed breakdown of the performance of the stepwise methods as a function of the number 

of constraint questions and average feature density, for each size Person Game. Features were 

generated by four methods: reg. features = regular features (independent and identically 

distributed); div. features = diverse features (independent with varying densities); corr. 

features = correlated features (with equal density); corr. div. features = correlated diverse 

features. 
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Figure 6. Experimental stimuli to illustrate that constraint questions are not always better than 

name questions, instantiating the Person Game environment in Table 3.  
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Figure 7. Two-step trees for the Mickey Mouse example Generalized Person Game, in which 

prior probability is ½ for one hypothesis (ℎ!: Mickey) and 1/14 for the others. The split-half 

trees yield greater two-step probability gain than does the stepwise information gain tree. In 

each tree, the player’s best guess at each leaf node, meaning the hypothesis with greatest 

probability, is shown in boldface (chosen arbitrarily in cases of ties). These highlighted 

hypotheses correspond to the ℎ!∗  defined in Theorem 8. According to that theorem, the 

expected accuracy afforded by each tree equals the sum of prior probabilities of these best 

guesses. Thus the stepwise information gain tree has accuracy 𝑝 ℎ! + 𝑝 ℎ! + 𝑝 ℎ! =

9/14, whereas both split-half trees have accuracy 𝑝 ℎ! + 𝑝 ℎ! + 𝑝 ℎ! + 𝑝 ℎ! = 10/14. 

Because initial accuracy is 1/2 (guessing Mickey without any queries), the respective 

probability gains are 2/14 and 3/14. 
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Figure 8. Stepwise versus two-step approaches in a two-category information-acquisition 

paradigm.  (a) Statistical structure of the example environment: P(h1) = .70 and P(h2) = .30, 

and likelihoods P(a1 | h1) = .04, P(a1 | h2) = .38, P(e1 | h1) = .57, and P(e1 | h2) = 0. The A and E 

tests are class-conditionally independent (see text for full description and intuitive 

explanation).  (b) In the typical (“Planet Vuma”) task, just a single test (Test A or Test E) can 

be conducted. Test A leads to higher accuracy (and hence probability gain) for this 

environment, but Test E has higher information gain and impact.  (c) If two tests can be 

conducted, stepwise probability gain first conducts Test A. If the result is a1, the second test is 

Test E; if the result is a2, Test A is used a second time.  (d) If two tests can be conducted, the 

optimal tree starts with Test E. If the first test’s result is e1, the category is known to be h1; if 

the first test’s result is e2, Test E is repeated. This tree has highest overall accuracy, 

information gain, and impact. Moreover, among all six trees with up to two tests (Table 4), 

this tree ties for requiring the fewest queries, on average. Stepwise information gain, stepwise 

impact, and the likelihood difference heuristic each follow this tree.  
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Figure C1. Detailed simulation results for many Person Game environment simulations, with 
regular features. “Regular features” means that features are generated independently of each 
other, all with the same generating density. The left column is a baseline and gives the 
number of questions required by the optimal strategy. The next column gives the percentage 
of instances in which the stepwise methods select a suboptimal first question. The right 
column gives the average cost, in expected number of questions, of using the stepwise 
methods (averaged over cases in which it is optimal and in which it is not). Each pixel 
represents the mean across 100 different random Person Game environments. 
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Figure C2. Detailed simulation results for many Person Game environment simulations, with 
diverse features. “Diverse features” means that each feature has a generating feature density 
that is sampled independently of the other features, from a Beta distribution with specified 
mean feature density. Other details of the plot are the same as explained in Figure C1. 
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Figure C3. Detailed simulation results for many Person Game environment simulations, with 
correlated features. “Correlated features” means that the first constraint feature is generated 
with the average feature density specified, and each subsequent constraint feature has a .5 
probability of also being generated in this way (i.e., of being generated independently of all 
previous features) and a .5 probability of being generated by randomly changing the feature 
vector of the previous feature, flipping each bit in that vector with probability .2. Other details 
of the plot are the same as explained in Figure C1. 
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Figure C4. Detailed simulation results for many Person Game environment simulations, with 
correlated diverse features. “Correlated diverse features” denotes a combination of the diverse 
feature and correlated feature methods. Other details of the plot are the same as explained in 
Figure C1. This feature generation method, which we believe is the most naturalistically 
plausible among the four methods, led to the worst performance of the stepwise methods. 
 

 
 

Correlated diverse features

# persons

6

8

10

12

14

16

18

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20

Fe
at

ur
e 

de
ns

ity

3

4

5

6

# queries

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0%

5%

10%

15%

% suboptimal choices

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0.000

0.005

0.010

0.015

Cost

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20

Fe
at

ur
e 

de
ns

ity

3

4

5

6

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0%

5%

10%

15%

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0.000

0.005

0.010

0.015

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20

Fe
at

ur
e 

de
ns

ity

3

4

5

6

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0%

5%

10%

15%

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0.000

0.005

0.010

0.015

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20

Fe
at

ur
e 

de
ns

ity

3

4

5

6

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0%

5%

10%

15%

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0.000

0.005

0.010

0.015

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20

Fe
at

ur
e 

de
ns

ity

3

4

5

6

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0%

5%

10%

15%

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0.000

0.005

0.010

0.015

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20

Fe
at

ur
e 

de
ns

ity

3

4

5

6

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0%

5%

10%

15%

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20
0.000

0.005

0.010

0.015

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20

# constraint questions

Fe
at

ur
e 

de
ns

ity

3

4

5

6

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20

# constraint questions
0%

5%

10%

15%

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

2 3 4 5 6 7 8 9 10 20

# constraint questions
0.000

0.005

0.010

0.015



TOWARDS A THEORY OF PLANNING FOR SEQUENTIAL SEARCH  

 

85 

Appendix A 

Theorem 1: If likelihoods are deterministic, then a query’s entropy is the same as its 

expected information gain; i.e., if 𝑒𝑛𝑡 𝑄|𝐻 = 0, then 𝑒𝑢!" 𝑄 = 𝑒𝑛𝑡 𝑄 .  

Proof. Let I(H; Q) denote the mutual information (Cover & Thomas, 1991) between the 

unknown hypothesis and the question (query) which has not yet been answered,  

𝐼 𝐻; 𝑄 = ent 𝐻 − ent 𝐻 𝑄 , (B1) 

where ent(H) denotes the prior entropy of the hypotheses, and 

ent 𝐻|𝑄 = 𝑃 𝑞!!
!!! ent 𝐻|𝑞!  is  the conditional entropy of H given Q. Thus I(H; Q) is 

the expected information gain of the question Q. By symmetry of mutual information (Cover 

& Thomas, 1991),  

𝐼 𝐻; 𝑄 = 𝐼 𝑄;𝐻 = ent 𝑄 − ent 𝑄 𝐻  (B2) 

where ent(Q) denotes the prior entropy of the question and ent(Q | H) denotes the conditional 

entropy of Q given H, ent 𝑄|𝐻 = 𝑃 ℎ!!
!!! ent 𝑄|ℎ! . Now, in any domain with 

deterministic likelihoods, if the hypothesis hi is known, then the answer to every question (the 

result of every query) is known with certainty. Therefore, in any search task wherein the 

likelihoods are deterministic, it holds that ent(Q | hi) = 0 for all hi and all questions Q, and 

therefore ent 𝑄|𝐻 = 𝑃 ℎ!!
!!! ∙ 0 = 0. Thus, if feature likelihoods are deterministic,  

 

𝑒𝑢!" 𝑄 = 𝐼 𝑄;𝐻 = ent 𝑄 − ent 𝑄 𝐻 = ent 𝑄 ,  (B3) 

 

and the maximum entropy question is also the maximum information gain question. 
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Theorem 2: In the Person Game, a question’s expected impact, euImp(Q), is equal 

to 4P(qyes) P(qno) = 4P(qyes) [1-P(qyes)]. Consequently, the split-half strategy invariably 

selects the highest impact question in the Person Game. 

Proof. Impact quantifies the usefulness of a datum as the absolute change in belief from 

the prior to the posterior probability, summed over all hypotheses (Equation 2). In the Person 

Game with n persons, the prior probability before asking a question is 1/n for all hypotheses 

(persons in the current set), the posterior probability for all remaining items after a positive 

answer is 1/nyes, and the posterior probability for all items eliminated by the question is 0. 

Accordingly, for each person remaining in the set the change in belief is 1/nyes – 1/n and for 

each person eliminated the change is 1/n. The impact of a positive answer is then given by 

 

𝑢!"# 𝑞!"# = 𝑃 ℎ! 𝑞!"# − 𝑃 ℎ!

!

!!!
 (B4) 

 

= 𝑛!"#
1
𝑛!"#

−
1
𝑛 + 𝑛!"

1
𝑛 

= 1− 𝑃 𝑞!"# + 𝑃 𝑞!"  

= 2𝑃 𝑞!"  

 

 

and similarly the impact of a negative answer is given by 

 

𝑢!"# 𝑞!" = 𝑃 ℎ! 𝑞!" − 𝑃 ℎ!

!

!!!

 

 

(B5) 

 = 𝑛!"
1
𝑛!"

−
1
𝑛 + 𝑛!"#

1
𝑛 

= 1− 𝑃 𝑞!" + 𝑃 𝑞!"#  

= 2𝑃 𝑞!"# . 

 

 
 
The expected impact of a question, euImp(Q), in the Person Game is therefore  

𝑒𝑢!"# 𝑄 = 𝑃 𝑞!"# 𝑢!"# 𝑞!"# + 𝑃 𝑞!" 𝑢!"# 𝑞!"  

                 = 4𝑃 𝑞!"# 𝑃 𝑞!"  

(B6) 
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                 = 4𝑃 𝑞!"# − 4𝑃 𝑞!"#
! . 

 
Note that the expected impact of a question in the person game does not depend on the 

number of items n, but only on P(qyes), where P(qyes) = nyes/n and P(qno) = 1 – P(qyes). 

Importantly, this function is a two-degree polynomial and therefore continuous and 

continuously differentiable; it has its maximum at P(qyes) = .5 and decreases monotonically 

from that point in both directions  (Figure 2).  

Theorem 3: In the Person Game, the split-half heuristic maximizes stepwise expected 

information gain.  

Proof. A binary question has maximum entropy if P(qyes) = P(qno) = .5; the closer 

P(qyes) is to .5, the higher the entropy in that binary question. Moreover, the entropy of a 

binary question decreases monotonically and symmetrically as P(qyes) moves away from .5. 

Therefore, the most splithalfy question is also the maximum entropy question. In the Person 

Game, likelihoods are deterministic, and all items are equally probable. (The fact that 

likelihoods are deterministic means that once the target is known, there is no uncertainty 

about any of the features. For instance, each person either has glasses or does not have 

glasses. In other words, ent(Q|H) = 0.) Therefore Theorem 1 applies, and the maximum 

entropy question is also the highest information gain question. Thus the split-half heuristic 

identifies the maximum information gain question.  

 
Theorem 4: In the Person Game, where there are n items (hypotheses) remaining, all 

informative questions have expected probability gain 1/n.  

Proof. The n items are equally probable a priori, so the probability of guessing correctly 

before asking a question is 1/n. The probability of guessing correctly after obtaining a positive 

answer is 1/nyes, and the probability of guessing correctly after obtaining a negative answer is 

1/nno. Accordingly, for any question Q the usefulness of positive and negative answers, 

respectively, is given by:  
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𝑢!" 𝑞!"# = max
!!!!!

𝑃 ℎ! 𝑞!"# − max
!!!!!

𝑃 ℎ! =
1
𝑛!"#

−
1
𝑛 

𝑢!" 𝑞!" = max
!!!!!

𝑃 ℎ! 𝑞!" − max
!!!!!

𝑃 ℎ! =
1
𝑛!"

−
1
𝑛 

(B7) 

 

(B8) 

 
For computing the expected probability gain of a query Q, the usefulness of each 

possible outcome is weighted by its probability of occurrence, yielding2 

 

𝑒𝑢!" 𝑄  = 𝑃 𝑞!"# 𝑢!" 𝑞!"# + 𝑃 𝑞!" 𝑢!" 𝑞!"  (B9) 

 
=
𝑛!"#
𝑛

1
𝑛!"#

−
1
𝑛 +

𝑛!"
𝑛

1
𝑛!"

−
1
𝑛  

 

 =
1
𝑛  

 
The result of this analysis is that every informative question has the same probability 

gain, specifically 1/n, irrespective of the proportion of objects with the feature. 

Theorem 5:  If there are fewer than eight items in a Person Game environment, then the 

stepwise methods (i.e., the split-half heuristic, maximum expected information gain, and 

maximum expected impact) invariably select the first question with minimal expected path 

length, up to a possible tie. 

Proof. To prove the theorem, it suffices to show, for any number of items n ≤ 7 and for 

any two questions Q1 and Q2 where Q1 is more splithalfy than Q2, that the least efficient tree 

starting with Q1 is as efficient (i.e., has as short an expected path length) as the most efficient 

tree starting with Q2. To be thorough, we do this systematically, considering person games of 

size 3 through 7 in order. 

If there are three items, every question is a name question, and there is just one possible 

tree (up to isomorphism), so the split-half heuristic and all other strategies are optimal and 

equivalent.  
                                                

2 We are indebted to Gudny Gudmundsdottir for this result. 
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If there are four items, there are two possible trees: a tree with a 1:3 initial question, and 

a tree with a 2:2 initial question. The tree with the 1:3 initial split requires 2.25 questions on 

average, whereas the tree with a 2:2 initial split requires 2 questions on average. Thus the 

split-half heuristic is optimal in the case of four items.  

If there are five items, there are two possible initial splits, 1:4 and 2:3. Just one tree 

starts with the 2:3 split; it requires 2.4 questions on average. The most efficient possible tree 

that starts with a 1:4 split follows with a 2:2 split in case the first answer leaves 4 hypotheses; 

this tree requires 2.6 questions on average. Thus the split-half heuristic is optimal in the case 

of five items. 

If there are six items, there are three possible initial splits, 1:5, 2:4, and 3:3. Three 

question trees begin with a 1:5 split; the most efficient among them has a 2:3 split of the 

group of 5 with the second question and requires 3 questions on average. Two question trees 

begin with a 2:4 split (according to whether the group of 4 is split 2:2 or 1:3 with the second 

question), and they require 2.67 and 2.83 questions on average. Only one question tree begins 

with a 3:3 split; it requires 2.67 questions on average. Thus it is not possible, in a Person 

Game with six items, for a tree that starts with a less splithalfy question to be more efficient 

than a tree that starts with a more splithalfy question. 

If there are seven items, there are three possible initial splits, 1:6, 2:5, and 3:4. The most 

efficient tree that starts with a 1:6 split divides the group of 6 as 3:3 with the second question 

and requires 3.29 questions on average. The least efficient tree that starts with a 3:4 split has 

1:2 and 1:3 splits at the second step and requires 3 questions on average. There are three trees 

that begin with a 2:5 split (according to whether the second question splits the group of 5 as 

2:3 or 1:4, and in the latter case whether the third question splits the group of 4 as 2:2 or 1:3), 

and they require 3, 3.14, and 3.29 questions on average. Thus again it is not possible, in a 

Person Game with seven items, for a tree that starts with a less splithalfy question to be more 

efficient than a tree that starts with a more splithalfy question. 
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Theorem 6: If a Person Game environment has only two constraint questions, then the 

stepwise methods invariably select the first question with minimal expected path length. 

Proof. Label the two constraint questions Q1 and Q2. If these questions are equally 

splithalfy (have equal entropy) then the split-half heuristic has no preference between them, 

and likewise starting with either will lead to the same expected path length. Therefore assume 

that Q1 is more splithalfy than Q2, and hence that the split-half heuristic starts with Q1. 

Case 1: Assume that Q1 and Q2 are logically independent, meaning the four logical cells 

of hypotheses they jointly define are all nonempty. Let T1 be any tree that asks Q1 first, Q2 

second, and informative name questions thereafter. This tree is stepwise optimal. Now let T2 

be a tree that asks Q2 first, Q1 second, and informative name questions thereafter. Because Q1 

is informative regardless of the answer to Q2, it is at least as effective as any name question, 

and therefore T2 has minimal expected path length among all trees starting with Q2. Now 

observe that T1 and T2 must have the same expected path length, because for any value of the 

target, these two trees put the player in the same state after two questions. In other words, 

asking Q1 first and Q2 second yields the same result as the other way around. Similar 

arguments show that T1 has expected path length less than or equal to any tree starting with a 

name question. Therefore T1 is globally optimal. 

Case 2: If instead Q1 and Q2 are not logically independent, then one of their four logical 

cells is empty. (If two or more cells are empty, then one question is uninformative or the 

questions are equivalent.) Without loss of generality, assume there are no targets with both 

questions negative. Let T1 be any tree that asks Q1 first, Q2 second if Q1 is positive, and 

informative name questions in all other situations. This tree is stepwise optimal. Let T2 be a 

tree that asks Q2 first, Q1 second if Q2 is positive, and informative name questions in all other 

situations. The rest of the argument proceeds as in Case 1: T2 has minimal expected path 

length among all trees starting with Q2, and T1 has the same expected path length. Therefore 

T1 is globally optimal. 
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In both of the above cases, we have proven that there exists a stepwise-optimal tree that 

is globally optimal. In fact, one can use the same approach to prove that all stepwise-optimal 

trees are globally optimal. The full proof involves cases where the stepwise approach 

considers asking a name question on the second step to be as good as asking Q2, because one 

or more of the four logical cells mentioned above has only one member. We omit these details 

for sake of space and because they follow similar arguments to the ones above. 

Finally, note that this proof (or a simple extension thereof) yields a stronger result than 

stated in the theorem: If there are only two constraint questions, then expected path length can 

be minimized by asking either of them as the first question. 

Theorem 7: In the Person Game, the expected probability gain of any question strategy 

(tree T) is given by 𝑒𝑢!" 𝑇 = 𝑟 − 1 𝑛, where the (nonempty) leaf nodes of the tree are 

indexed by j=1, 2, … r, and there are n persons (items).  

Proof. From Theorem 8 (see below) we have that the probability gain of any 

Generalized Person Game tree is 𝑒𝑢!" 𝑇 = 𝑃 ℎ!∗ − 𝑚𝑎𝑥!!!!! 𝑃 ℎ!∗!
!!! . In the 

(standard) Person Game, all properties of the Generalized Person Game also hold, but there is 

the additional constraint that the prior probability of each hypothesis is 1/n. Thus 𝑒𝑢!" 𝑇 =

!
!
− !

!
!
!!! = !!!

!
.  

Theorem 8: In the Generalized Person Game, the probability gain of any question 

strategy (tree T) is given by 𝑒𝑢!" 𝑇 = 𝑃 ℎ!∗ − 𝑚𝑎𝑥!!!!! 𝑃 ℎ!∗!
!!! , where the terminal 

nodes of the tree are indexed by j=1, 2, … r, and ℎ!∗ is the hypothesis in node j that has 

highest prior probability.   

Proof. First, consider the probability gain of asking a single question Q, which is 

equivalent to a tree of depth k = 1. Let  denote the hypothesis with the highest prior 

probability among those that will yield a positive answer to the question, and let  denote 

the hypothesis with the highest prior probability among those that will yield a negative 

hY
*

hN
*
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answer. In each case, if two or more hypotheses tie for the highest probability, then the player 

can choose arbitrarily among those hypotheses. Therefore the searcher will guess correctly if 

the target is either  or , implying the ex ante expected accuracy equals the sum of their 

prior probabilities, . Furthermore, the expected accuracy without asking the 

question equals the probability of whichever hypothesis has the largest prior probability, 

which is necessarily  or . Therefore the expected probability gain of the question is 

𝑒𝑢!" 𝑄 = 𝑃 ℎ!∗ + 𝑃 ℎ!∗ −max 𝑃 ℎ!∗ , 𝑃 ℎ!∗  
 
                = min 𝑃 ℎ!∗ , 𝑃 ℎ!∗  . 

(B10) 

 
Now consider an arbitrary tree T, with depth k and with r leaf nodes labeled t1, t2, … tr. 

For the purpose of guessing the target hypothesis, the process of following this question tree 

is equivalent to asking a single r-valued question, with the leaf node that results from the tree 

corresponding to the answer to that question. Thus, t1, t2, … tr can be thought of as answers to 

the question T, paralleling the terminology elsewhere in this paper of a single question Q with 

answers qyes and qno. The analysis above for the probability gain of a single question can 

easily be extended, by defining  to be a hypothesis with maximal prior probability among 

those that will lead to answer (i.e., leaf node) tj. This hypothesis will be the searcher’s guess if 

tj is the observed outcome, and therefore the guess will be correct iff the target is  for some 

j. Thus the expected accuracy from using the tree is 𝑃 ℎ!∗!
!!! , and the expected probability 

gain of the tree is 

𝑒𝑢!" 𝑇 = 𝑃 ℎ!∗
!

!!!

− max
!!!!!

𝑃 ℎ!∗  . 
(B11) 

 
To demonstrate this result more rigorously, let Lj denote the set of hypotheses at leaf 

node tj, i.e., all hypotheses that are not eliminated by the sequence of question(s) and 

answer(s) that lead to that node. For instance, if h3 and h5 remain as the only possible 

hY
* hN

*

P hY
*( )+P hN

*( )

hY
* hN

*

hj
*

hj
*
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hypotheses at leaf node t1, then L1 = {h3, h5}. The classification accuracy that will be obtained 

at leaf node tj is the maximum posterior probability at that point, max!!!:! 𝑃 ℎ! 𝑡! . Thus, the 

expected classification accuracy from the tree is  

𝑃 correct 𝑇 = 𝑃 𝑡!

!

!!!

max
!!!!!

𝑃 ℎ! 𝑡!  . 
(B12) 

The posterior probability P(hi | tj) can be derived via Bayes’ rule, i.e. 

P(hi | tj) = P(tj | hi) P(hi) / P(tj). In the Person Game, likelihoods are deterministic, so 

P(tj | hi) = 1 for all hi ∈ Lj and P(tj | hi) = 0 for all hi ∉ Lj. Accordingly, Bayes’ rule simplifies 

and Equation 19 can be rewritten as  

 

𝑃 correct 𝑇 = 𝑃 𝑡!

!

!!!

max
!! ∈ !!

𝑃 ℎ!
𝑃 𝑡!

 

 

(B13) 

 
= max

!! ∈ !!
𝑃(ℎ!)

!

!!!

 . 
 

 
In other words, to calculate the classification accuracy of a tree, one needs only to sum 

the highest-prior-probability hypothesis (person) at each possible leaf node. The probability 

gain of the tree is its classification accuracy minus the classification accuracy that could be 

achieved based on the prior probabilities alone: 

𝑒𝑢!" 𝑇 = 𝑃 ℎ!∗ − max
!!!!!

𝑃 ℎ!

!

!!!

 
(B14) 

         

 
= 𝑃 ℎ!∗ − max

!!!!!
𝑃 ℎ!∗

!

!!!

 . 
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Appendix B 

The Number of Search Trees 

Let m denote the total number of (binary) queries (Q1 through Qm) in a binary 

sequential-search task, and let k index the time step starting at zero for the first query (so that 

0 ≤ k < m). We derive here the number Nm of full question trees for such a task.3,4 Note first 

that the number of branches at each step in a tree (i.e., decision points at which a question 

must be selected for the next step) grows exponentially with the number of questions already 

asked. After the first question there are 2 branches (one for each possible outcome of that 

question), after the second question there are 4 branches (one for each of the 4 possible 

combinations of outcomes of the first and second questions), and in general there are 2k 

branches at step k (after k questions have been asked). At each branch, at each time step k, 

there are m−k questions available. Because questions can be assigned independently to the 

different branches, the total number of joint assignments of questions to branches at step k, 

conditioned on the questions assigned at all previous steps, is equal to 𝑚 − 𝑘 !!. 

For instance, if m = 3, there are 3 possible root nodes (initial questions) at step 0. In 

each case, the first question may result in one of two outcomes (2 branches). On step 1, there 

are 2 remaining queries to choose from on each branch, so there are 22 = 4 possible question 

assignments. After this, there is only one question left on each branch. So, for m = 3 queries, 

there are N3 = 3 × 4 = 12 full question trees. If m = 4, there are 4 possible root nodes (initial 

questions) at step 0. At step 1 there are 3 queries left to choose from on each of the two 

branches, so there are 32 = 9 possible question assignments. On step 2, there are 4 branches, 

                                                
3 By full question tree, we mean a tree that exhausts all available questions even if the target hypothesis has been 
identified in fewer than n queries. The number of practically distinct question trees (i.e., ones that produce 
different outcomes for the set of hypotheses under consideration) will be less than the number of full question 
trees in many realistic tasks. 
4 Binary question trees should not be confused with the concept of binary search trees in computer science, a 
class of data structures (e.g., Knuth, 1971). 
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each with 2 possible queries to choose from, and thus 24 = 16 possible question assignments. 

After this, there is no degree of freedom, since only one question is left at each branch. So, in 

total there are N4 = 4 × 9 × 16 = 576 full question trees.  

In general, the number of full question trees in a task with m available questions is equal 

to the product over time steps of the number of joint question assignments at each step 

(conditioned on the assignments at the previous steps): 

𝑁! = 𝑚 − 𝑘 !!
!!!

!!!

 . 
(A1) 

 
For m equal to 1 through 6, this formula yields 1, 2, 12, 576, 1658880, and 16511297126400 

unique question trees. Algebraic rearrangement allows the number of trees to be re-expressed 

as 

𝑁! = 2 !!!!!
!!! !"#! !!!  (A2) 

 = 2 !!!!!
!!! !"#! ! 

= 2!
! !"#! !

!!
!
!!!  

= 2! !!!!  

 

 
where 
 

𝑐! = log!
log! 𝑗
2!

!

!!!

 . 
(A3) 

 
The series in Equation A3 converges, and numerically one finds that limm→∞(cm) ≈ -.449. 

Therefore the number of trees behaves asymptotically as 

 
𝑁! ≈ 2! !!.!!"  (A4) 
 
which grows faster than any exponential function of m. 

Finding the Most Efficient Tree 

Given a set of m possible binary queries that are jointly sufficient to uniquely identify 

any of the hypotheses, the most efficient binary question tree is defined as the tree with the 
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shortest expected path length (alternate definitions are possible, of course). Because the 

number of possible trees grows super-exponentially in the number of possible queries, 

exhaustive search is not feasible except for very small m. For moderate values of m, dynamic 

programming can be used to identify the optimal tree. Specifically, one can start at step m – 2 

and determine the optimal question (from the two remaining questions) for all m(m-1)2m-3 

possible states of the game at that step, which are defined by choices for the first m – 2 

queries (ignoring order) together with the possible answers to those questions. (Note that 

many of these combinations are impossible, because they do not correspond to any 

hypothesis, and thus the actual memory requirements of this algorithm are in general 

considerably smaller.) Then one can do the same for step m – 3, determining the optimal 

subtree for all possible game states at that step, based on the results for step m – 2. In general, 

for each game state at step k, one can use the conditional probabilities for the answers to all 

unasked questions, together with the optimal subtrees rooted at step k + 1 and their expected 

path lengths, to determine the optimal subtree and expected path length for the state in 

question. Proceeding by backward induction yields the optimal tree for the whole task (i.e., 

rooted at step 0). For instance, applying this method to our example Person Game 

environment (Table 1) yields the globally optimal tree (Figure 3b, top row). 
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Appendix C 

This appendix describes the simulations of the performance of the split-half heuristic in 

greater detail than the text. (Recall that a searcher who selects questions so as to maximize 

stepwise expected impact (Theorem 2) or information gain (Theorem 3) always asks the same 

questions as the split-half heuristic.) The simulations were designed to check whether our 

example scenario (Table 1) is unusual, or whether the split-half strategy is suboptimal in a 

wide range of Person Game environments. These simulations explore various parameters of 

interest, such as how features are generated, and the number of features (e.g., of possible 

questions) in the environment.  

In the simulations, random Person Game environments were constructed as a function 

of four parameters: type of features (explained below), number of persons (hypotheses), 

number of constraint questions, and average feature density. For each randomly generated 

Person Game environment, we checked the following: the expected number of questions 

required if the optimal strategy, including the best first question, is used; whether the split-

half heuristic selects the best first question; and the cost (if any, in terms of average total 

number of questions required) of using the split-half heuristic.  If more than one question ties 

for being most splithalfy, we assume that the split-half heuristic will select among those 

questions with equal probability. In case the most splithalfy first question(s) do not 

correspond to the optimal first questions, we calculate the cost of using the split-half heuristic 

as the average additional number of questions required, if the first question is selected at 

random among the maximally splithalfy first questions, as opposed to the optimal first 

question. For the second and subsequent questions, the simulation code presumes that the 

optimal question will be asked given what has been learned so far. (This means that 

simulation results could understate the cost of using the split-half heuristic, especially for 

environments with large numbers of items.)  
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We illustrate the environment-generating procedure with an example with 10 persons, 3 

constraint questions, and feature density .4. This specifies construction of a random Person 

Game environment with 10 items, a name feature for each item (a feature possessed by only 

that item), and 3 additional constraint features. For the baseline (“regular features”) type of 

features, the procedure to construct a constraint feature is as follows: for each of the 10 items, 

with IID (independent and identically distributed) probability .4, the person has that particular 

feature. Keep the resulting feature if it is informative (i.e., it is possessed by at least one of the 

persons, and not by all of the persons), and is not a name feature (or the complement of a 

name feature). Otherwise repeat this generation process until a suitable feature is found. 

Repeat this process until all three constraint features (questions) have been generated.  

Whereas most of the above parameters are self-explanatory, the type of feature 

parameter should be explained on its own.  Each feature is described by a binary vector with 

length n, where there are n items (faces) in the game. In each case, a name feature was created 

for each of the items. Additional constraint features were created, as described below. The 

types of constraint feature generation methods were: 

--  regular features: set each item in the feature vector to present (value 1) with the 

specified target feature density probability, independent of each other item in the feature 

vector. Repeat this process, independently, for all constraint features. 

--  diverse features: for each feature, obtain a target feature density by taking a sample 

from a Beta distribution with mean target feature density, and parameters 

α=s*targetFeatureDensity, β=s*(1-targetFeatureDensity), where s=2. 5   Generate a 

candidate constraint feature by setting each item in the feature vector to present (value 

                                                
5  When setting the α and β parameters, use of s=2 in the equation α=s*targetFeatureDensity, β=s*(1-
targetFeatureDensity) is somewhat arbitrary. Our choice of s=2 entails that if targetFeatureDensity=.5, each 
feature’s target density will be selected from a uniform distribution.  Larger s would reduce the variability in the 
density of features generated.  (In the limiting case, where s is unboundedly large, the diverse feature generation 
method reduces to the regular features generation method.) Smaller s will result in a tendency to select features 
with extreme (e.g. 1 or 0) density values.   
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1) with that sampled probability. Repeat this process (with different samples from the 

beta distribution) independently for each constraint feature. 

--  correlated features: obtain the first constraint feature as specified in the “regular 

features” feature construction method. For each subsequent constraint feature, flip a fair 

coin; if the coin comes up heads, use the same method as for the initial feature. If the 

coin comes up tails, take the most recently generated constraint feature, and flip each 

value in it with independent probability .2. 

--  correlated diverse features: for the first constraint feature, use the “diverse features” 

construction method. For each subsequent constraint feature, flip a fair coin. If the coin 

comes up heads, repeat the “diverse features” construction method. If the coin comes up 

tails, take the most recently generated constraint feature, and flip each value in it with 

independent probability .2. 

Note that the feature density parameter refers to the generating probability, and will 

differ to some extent from the resulting sampled mean feature density, especially in the case 

of very small size Person Game environments and low feature densities, due to the 

requirement that each constraint question be an informative non-name question. There are 

some differences according to feature generation method, as well; for instance, with the 

correlated features method, the flipping procedure has the effect of moving the expected 

resulting feature density towards .5. Although generation of duplicate constraint features 

(questions) is infrequent, the code did not require that each constraint question be unique. 

Each combination of the following parameters was simulated: 4 types of features 

{regular features, diverse features, correlated features, diverse correlated features}, number of 

persons {6, 8, 10, 12, 14, 16, 18}, number of constraint questions {2, 3, 4, 5, 6, 7, 8, 9, 10, 

20}, and target feature density {.05, .10, …, .50}. Each combination of parameter values was 

used to create 100 random Person Game environments.  
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Figure 5 reports the average proportion of instances in which the split-half strategy 

selects a suboptimal first question, as a function of the type of feature generation method and 

the number of items (faces) in the random Person Game environments. This figure averages 

across all of the different numbers of constraint questions and all different feature density 

values. For every feature construction method, the probability of the split-half heuristic 

choosing a suboptimal first question increases with the number of faces in the game. 

Correlated features and heterogenous density both make split-half more likely to be 

suboptimal.  

Figure C1 explains the axes of each of the main figures. Figures C1 through C4 show 

detailed results, with the performance of the split-half strategy by feature construction 

method, number of items (faces), number of constraint questions, and feature density. Figure 

C1 is for the regular feature method; Figure C2, diverse features; Figure C3, correlated 

features; Figure C4, diverse correlated features. Figures 5a and 5b (in the main text) show 

aggregate results for the frequency that the split-half strategy was suboptimal, according to 

the number of items (Figure 5a) and the number of constraint questions (Figure 5b), 

aggregating across other simulation parameters. Performance of the split-half heuristic was 

typically worse to the extent that there were many items, and/or only a small number of 

constraint features.  


