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ABSTRACT

This work focuses on the model order reduction problem for bilinear control systems with nonzero initial
conditions. Based on the Volterra series analysis, the system response can be decomposed into three parts.
The first two parts are the zero input response and zero initial condition response of the system. The third
part describes the response which couples the effect of the nonzero initial condition and the nonzero input.
The system corresponding to the third part is a bilinear control system with a special time-varying input
coefficient matrix. We show that such a system is equivalent to a time-invariant bilinear control system,
and conventional model reduction methods can be applied to reduce it. We propose to reduce each of the
component responses independently and then combine them to approximate the full system response.

This method is of high flexibility and shows promising results.

1. Introduction

In this paper, we focus on model order reduction for bilin-
ear control systems with nonzero initial conditions. Firstly, we
address the problem for single-input single-output (SISO) sys-
tems. Later, we generalise the ideas to multiple-input multiple-
output (MIMO) systems. A SISO bilinear control system with
nonzero initial conditions is represented in the state-space form
as

x(t) = Ax(t) + Nx(t)u(t) + Bu(t),

: (1)
y(t) = Cx(t), x(0) = xo,

where A € R™", N € R™", B € R", and C € R*". The sig-
nals x(¢) € R", u(t) € Rand y(¢) € R are the state vector, input
and output of the system, respectively. The initial condition is
denoted as xp € R". Throughout the paper, the system (1) is
assumed to be bounded-input bounded-output (BIBO) stable.
A sufficient condition for this to happen is the matrix A to be
Hurwitz (the spectrum of A, A(A) € C™) and the matrix N to
be sufficiently bounded. We refer to Zhang and Lam (2002) for
detailed explanations on BIBO stability.

The goal is to find a reduced-order bilinear control system
having the state-space representation

. X (t) = Arxe(t) + Nexe(Hu(t) + Bru(t), )
' yr(t) = Crxc(t), x:(0) = xr0,
where A, € R™", N; € R™", B, € R” and C; € R'*" with a
considerably smaller dimension r < n, such that the reduced-
order system output y,(¢) provides a good approximation of y(t)
without specifying the input () and the initial condition x.
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For bilinear control systems with zero initial condition, i.e.
xp = 0, a wide range of methods has been developed to con-
struct accurate reduced-order models. There are singular value
decomposition (SVD) based methods such as balanced trun-
cation (Benner & Damm, 2011; Condon & Ivanov, 2004),
truncated-Gramian balanced truncation (Al-Baiyat & Bet-
tayeb, 1993; Benner et al.,, 2017) which extend the balanced
truncation method (Moore, 1981) from linear time-invariant
(LTI) systems to bilinear control systems. Interpolation-based
methods also exist, for example Krylov subspace methods
(Bai & Skoogh, 2006; Breiten & Damm, 2010; Feng & Ben-
ner, 2007; Phillips, 2003), interpolation of Volterra series (Flagg
& Gugercin, 2015) and the bilinear iterative rational Krylov
algorithm (BIRKA) (Benner & Breiten, 2012). Another category
of the methods solves the bilinear H, optimal model reduc-
tion problem by using Riemannian optimisation methods, for
example the pioneering work of Zhang and Lam (2002) and the
follow-up works in Benner et al. (2019) and Bruns (2015), which
take advantage of the Grassmann manifold and develop several
algorithms to construct the reduced-order models.

However, as long as the initial condition is nonzero, reduced-
order models constructed by the aforementioned methods may
cause large deviations in the transient simulation and some-
times even in the steady state. A natural idea to solve such
a problem is to translate the state vector from x(¢) to z(¢) =
x(t) — xo (Baur et al,, 2014). The resulting bilinear system has
the state-space representation

' t
5. |20 = A=) + Ne(u(n) + (3+N%0 4x) (u(l )>,

y(t) = Cz(t) + Cx,2(0) = 0.
(3)
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Then, model order reduction can be applied to ¥ in (3) rather
than the original bilinear control system in (1). Such a method is
quite restrictive since it requires the exact knowledge of the ini-
tial condition. When the initial condition changes, this method
is not expected to provide a good approximation of the system
anymore. Thus a new reduction is necessary. For multi-query
applications, repetitively reducing the system can result in a
large amount of computational effort. Simulation-based meth-
ods such as proper orthogonal decomposition (POD) (see e.g.
Antoulas, 2005; Gubisch & Volkwein, 2017) suffer from the
same problem.

To improve the approximation accuracy, a novel approach
was proposed by Heinkenschloss et al. (2011) for LTT systems,
which is based on the superposition principle. Instead of assum-
ing the exact knowledge of xp, the authors of Heinkenschloss
et al. (2011) assumed that the initial condition lies in a certain
no-dimensional subspace Ap := span{Xp} with ny < n. The
initial condition hence can be expressed as xp = Xoup. As a
result, one only needs to augment the input coefficient matrix of
the LTT system to (B, Xp) and the input signal to col(u(?), up).!
Nevertheless, the augmentation of the input may increase the
Hankel singular values significantly. Indeed, as shown in Beattie
etal. (2017), if the initial condition contributes to a large amount
of energy in the augmented system, the system can become
very difficult to reduce as the Hankel singular values decay too
slow. In this case, a reduced-order model with a higher order
is usually required. Also, from the system theoretic perspective,
the augmented input ug is not an £, function as long as it is
nonzero. To tackle these problems, Beattie et al. (2017) takes
the full advantage of the superposition principle and decom-
poses the system into two systems, which correspond to the zero
input response and the zero initial condition response, respec-
tively. By reducing each of them independently and combin-
ing the reduced-order responses, the approximation accuracy
can be improved, meanwhile the reduced orders can be con-
trolled independently. Furthermore, independent reduction of
each system offers great flexibility. The method can be easily
implemented in a parallel computing fashion.

In this paper, we follow the strategy of Beattie et al. (2017).
The main difficulty to extend the method to bilinear control
systems is that the superposition principle is no longer appli-
cable. However, one can still decompose the system by applying
Volterra series analysis. We observed that the response of sys-
tem (1) can be decomposed into three parts. The first and the
second correspond to the responses of system (1) to u(t) =0
and xp = 0, respectively. The third part describes the coupling
effects of the nonzero initial condition and the input, which can
be modelled by a bilinear control system with a time-varying
input coefficient matrix. The existing model order reduction
methods for bilinear control systems cannot be applied to this
system because of its time-varying behaviour. We propose a
novel method, which considers the averaged or total reacha-
bility and observability energy. Then the reduction of this part
amounts to the reduction of a time-invariant bilinear control
system and an LTT system independently. Hence, the reduction
of the full system requires reduction of two LTI systems and
reduction of two bilinear control systems. The reduction of each
system is totally independent of the others. Hence the method
offers a great flexibility, similar to the LTT context. It is worth
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mentioning that a similar notion of averaging in model reduc-
tion was also proposed in Nilsson and Rantzer (2009), but its
application is not straightforward here.

The remaining parts of the paper are organised as follows.
Section 2 first presents the preliminary results on the response
decomposition and then discusses how to transform a bilin-
ear control system with a particular time-varying input coefhi-
cient matrix into a time-invariant bilinear control system in the
Volterra kernel energy sense. In Section 3 we discuss the model
reduction strategies using balanced truncation and BIRKA, as
well as the generalisation from SISO systems to MIMO systems.
Numerical examples are shown in Section 4. Section 5 concludes
the paper.

2. Preliminary results
2.1 System response decomposition

Consider the bilinear control system X in (1). The system is
assumed to be BIBO stable, hence the Volterra series converges
(see e.g. Siu & Schetzen, 1991; Zhang & Lam, 2002). The sys-
tem output y(t) can be explicitly expressed as (D’Alessandro
etal., 1974)

)/(t) = yx(t) +)’u(t) +)’xu(t))
where
y(t) = Cetlxg = Ce'Xoug (4)

is the zero input response,

Sl t T (23
=Y / f / A=t NAT—T-D
= Jo Jo 0

x NeA® "™ By (1)) - - - u(tiu(ti) dry - - - dri_1d7i
(5)

is the zero initial condition response, and

x t pt 19

IOEDY / / / CeAUMINeAT—T-D N . .. NeA2—™)
: 0J0 0
i=1

x B(ryu(ry)- - -u(zi-)u(z) dr - -~ iy dr,

(6)
with B(t) = NeA'Xyug, describes the coupling effects of input
and the nonzero initial condition. A schematic plot of this
decomposition is depicted in Figure 1.

x9 = Xouo

|

b1

u(t)

Yu(t)

0 Yxu (1)

Figure 1. Schematic plot of system decomposition for bilinear control systems.
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First, we notice that the response yx(¢) in (4) is the output of
the following LTT system

_ {wxa) = Aw() + Xoux (D), -

yx(t) = Cwx(t), wx(0) =0,

with the input uy(t) = uod(t), i.e. the scaled Dirac function.
Second, the response yy(t) is the response of system X in (1)
with xg = 0, i.e. it is given by the bilinear control system having
the state-space representation

. {%(t) = Awa(®) + Nwa(Outt) +Bu(t,

yu(t) = Cwy (1), wu(0) = 0.

Finally, the response yyx,(f) is the output of a time-varying
bilinear control system with the state-space representation

s Wy (1) = Awgy (£) + Nwyy (D u(t) + Byu () uou(t),
A )’xu(t) = Cwxu(t), wxu(0) =0,

9)
where By, (t) = NeAtX,.

Remark 2.1: There exists another method to decompose the
system response, which does not require to carry out the
Volterra series analysis of the system (1). Clearly we know that
the input-to-state response of the system contains the zero input
response wy(t) = eA'Xqup, which is the response of the differ-
ential equation wy(f) = Awy(t) with wy(0) = xo and the zero
initial condition response wy (t) which can be obtained from the
state equation of (8). Then defining the remaining of the system
state as €(t) = x(t) — wx(t) — wy(t), one can derive that

€(t) = x(t) — wx(t) — wyu (D)
= Ae(t) + Ne(H)u(t) + Nwy(D)u(t)
= Ae(t) + Ne(H)u(t) + Ne Xouou(t).

It is immediate that € (¢) solves the state equation in (9). Hence,
€(t) = wxu(2).

As a consequence, a bilinear system ¥ with nonzero ini-
tial conditions as in (1) can be decomposed into three differ-
ent systems Xy, ¥, and Xy, given by the equations (7), (8),
and (9), respectively. Reduced-order models for systems ¥y and
X, can be obtained by the conventional methods introduced in
Section 1. However, due to its time-varying behaviour, model
reduction of system Xy, (9) is not straightforward. In what fol-
lows, we propose the notion of kernel energy averaging, which
will lead to a new procedure based on averaged Gramians to
reduce systems of the form (9).

2.2 Kernel energy averaging

Although the system Xy, in (9) is time-varying, the reachability
and observability concepts still follow the conventional defi-
nitions for bilinear control systems. We refer to D’Alessandro

et al. (1974) and Dorissen (1989) for details. Let
Pi(t,1y) = A" By (1),

,7i) = AN NA®TB (1), i > 2.

(10)
Upon existence, for any t > 0 the time-varying reachability
Gramian is defined as

S t Ti (%)
R(t) = Z/ / .- / PiPlT dry - - drj—ydr. (11)
i=1 Ti Ti—1 —00

Similarly, let t;_; denote t; — 7;_1, i > 2, but the final one ¢; is
defined as t — 7; and let

Pi(t, Ty, ..

01(ty) = Ce',
(12)
Oj(ty, ..., t;) = CeMN- .. NeAt, i>2.
Upon existence, the observability Gramian is defined as
o 9] 9]
Q:Z/ / 0] 0;dt; -- - dt;. (13)
i=1"0 0

Notice that only the reachability Gramian is time-dependent
because only the matrix By, (¢) defining system (9) is time-
varying. Both of the Gramians R(f) and Q are symmetric and
positive semi-definite. The sufficient conditions for existence
of the Gramians can be found in Zhang and Lam (2002) and
Benner et al. (2019).

Theorem 2.1: The time-varying reachability Gramian R(t)
given by (11), if it exists, is the solution of the generalised differ-
ential Lyapunov equation:

R(f) = AR(t) + R(HAT + NR(HNT

+ Bw (DB, (5, R(0) = 0. (14)

Similarly, the observability Gramian given by (13), if it exists, is
the solution of the generalised Lyapunov equation:

ATQ+QA+N'QN+CTC=0. (15)
Proof: Differentiating R(t) in (11), applying the Leibniz integral
rule and using the fact of asymptotic stability (A is a Hur-
witz matrix), the differential Lyapunov equation (14) can be
obtained. The condition R(0) = 0 is a consequence of the fact
that if t = 0 in (11), we steer the system from zero state to
zero state (initial state is always zero), hence no input energy
is required. The observability part is a standard result from
Al-Baiyat and Bettayeb (1993). |

Noticing that if the time-varying matrix By, (¢) is only slowly
time-varying, one may treat it as the constant matrix By, (0) =
NXjp. Then Xy is not considered as a time-varying system any-
more, which means its reachability Gramian satisfies R(t) = R
with R the solution of the generalised Lyapunov equation

AR+RAT + NRNT + By, (0)B], (0) = 0.

Then the conventional model order reduction methods devel-
oped for bilinear dynamical systems such as balanced trunca-
tion (Benner et al., 2017), interpolation-based model reduction



(Benner & Breiten, 2012) and Riemannian optimisation based
methods (Benner et al., 2019; Xu et al., 2017) can be applied to
reduce it.

Recalling the system response yx, () in (6), the system Xy,
in (9) has the Volterra kernels:

hyu1 (t,71) = CeAU"™ B (11),

hxi(t, 71,5 ) = CAUTIN ... NeARTB (1), i> 2.
(16)
We define the energy of the Volterra kernels as
o oo pt 153
Exu = Z/ / cee / hxu,ih;l(:l’idfl coodrdt,  (17)
= Jo Jo 0

which can be seen as the averaged (or total) kernel energy for
t € [0,00). Also, let us denote R to be the averaged reachability
Gramian, satisfying R = fooo R(t) dt. The following proposition
holds.

Proposition 2.2: Suppose that the matrix
M=AQI+I®A+N®N (18)

is Hurwitz. Then, the solution R(t) of (14) is integrable in [0, 00)
and satisfies lim;_, oo R(t) = 0.

Proof: By vectorising Equation (14), one obtains
r(t) = Mr(t) + b(t), r(0) =0,

where r(t) = vec (R(t)) and b(t) = vec (Bxu(t)B;l(t)) and
Byu(t) = Ne'X,. Since M is Hurwitz and b(t) has an exponen-
tially deceasing behaviour, there exist constants Ce, C;, > 0 and
e, o, < 0 such that [|eM!|| < Cee®! and ||b(1)| < Cpe®! for
t > 0. Hence, using the variation of constant method, one has

t
r(t) = / MED (1) dr.
0
As a consequence,

t
I < / 1M b)) de
0

CeGy
ap — e

(eotbt _ e(xet)‘

t
< Cer/ ee(t=1) T 7 —
0

From the above inequality, one obtains that ||(f)|| is integrable
and ||r(t)|| — 0, if t — oo, which proves the result. |

From Proposition 2.2, one can conclude that the averaged
reachability Gramian R is finite if M in (18) is Hurwitz. From
now on, we assume that the matrix M is Hurwitz. In fact, a
BIBO stable bilinear control system requires the matrix N to
be sufficiently small in norm. Therefore, the assumption often
holds for BIBO stable bilinear systems. The following theorem
provides a computational framework of the averaged Volterra
kernel energy and its connection with the averaged reachability
Gramian.
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Theorem 2.3: The Volterra kernel energy given by (17) satisfies

Exu = \/ﬁ = ,/trace (XJQXO), (19)
where R is the solution of
AR+RAT + NRNT + NPNT =0, (20)
with
AP+ PAT + XoX] =0, (21)
and Q is the solution of
ATQ+QA+NTQN =0, (22)

with Q the solution of (15).

Proof: The kernel energy &, defined by (17) can be written as

Equ = \/C/OO R dtCT = \/trace </<>° Bl (H QB (1) dt)-
0 0

Hence, by integrating (14), we have

0 = R(c0) — R(0)

o
:AR+RAT+NRNT+f
0

Bxu(£)By, (1) dt,

u

since R(co) = 0 = R(0). The integral term fooo Bxu(t)B;;(t) dt
is computed as

o0 o0
/ Bw (OB (Hdt =N f A XoX] e T dINT = NPNT,
0 0

where P is the solution of (21). Similarly, another integral term
o Biu(H)QByy(t) dt is computed as

o0 o0
/ B () QB () dt = X / ATINTQNE deXy = X! QXo,
0 0

where Q is certainly the solution of (22). ]

Corollary 2.4: The Volterra kernel energy Exy in (17) can also

be computed from
Exu = /trace (NPNTQ),

where P and Q are solutions of (21) and (15), respectively.

(23)

Proof: The kernel energy £y, can be computed as

Exu = \/trace </°° B, (HQBxu(1) dt)
0

= \/trace (/00 Bxu(H)BJ, (1) dtQ) = ,/trace (NPNTQ).
0

The Gramians R and Q quantify the averaged reachability
and observability for t € [0, 00), respectively. Another merit of
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considering the averaged kernel energy rather than the time-
varying one is that the time-varying bilinear control system X,
given by (9) can be transformed into a time-invariant bilinear
control system assuming that Xy is reachable.

Theorem 2.5: Let the solution of (21) be P = LL" positive def-
inite and L € R"™" be the corresponding Cholesky factor. The
Volterra kernel energy of the system

5 | Wx(® = Al () + Nivxa(Ou(®) + NLi (0),
T xu(® = Civa (D), wxa(0) =0,

(24)
with g (t) = w(t)uou(t) for an unknown matrix function
w(t) € R"™, equals Exy in (17). That is, the two systems Xy
and Ty, are equivalent in the sense of the averaged Volterra kernel
energy.

Proof: It can be checked that the Volterra kernel energy of
system Xy, is

Eu = \/trace (LTNTQNL) = \/trace (CRCT),
where R is the solution of
AR+ RAT + NRNT + NLL'NT = 0.

Noting that P = LLT and applying the properties of the trace
operation, we have R = R and & = Exy. [ |

When considering H, norm based model reduction meth-
ods for system Xy, one can construct the projection matrices
for system Xy, completely avoiding the time-varying matrix
Byu(t). Another advantage is that if a Lyapunov-type approxi-
mation method is applied to system Xy in (7), the matrix P or its
Cholesky factor L is immediately available. Since the Cholesky
factor L often has low numerical rank, one can approximate P
by P~ LLT with L € R and g, < 7.

3. Model order reduction

In Section 2, we showed that the response of a bilinear control
system with inhomogeneous initial conditions can be decom-
posed as the responses of three different systems with zero initial
condition. As a result, model order reduction can be applied to
those three systems independently.

The reduction of systems Xy in (7) and %, in (8) follows
the conventional model reduction methods for LTI systems
and bilinear control systems, respectively. To reduce system Xy,
one can apply the balanced truncation method, which pro-
vides an error bound in terms of energy-to-energy gain (Huo
norm) or the iterative rational Krylov algorithm (IRKA) for
an H, norm (energy-to-peak gain) optimal approximation, for
example see Antoulas (2005) and Gugercin et al. (2008). If bal-
anced truncation is applied, the reachability Gramian P can
also be used in the transformation as well as reduction of sys-
tem X,,. IRKA seems a better choice here because only the
impulse response of Xy in (7) is of interest. The H; opti-
mal approximation minimises the impulse response energy
(Gugercin et al., 2008). To reduce the bilinear control system

Y, in (8), balanced truncation, truncated-Gramian balanced
truncation, BIRKA and truncated-BIRKA (Flagg & Gugercin,
2015) can be applied. Again, if balanced truncation is applied,
the observability Gramian Q can be used to reduce system X,
as well. In the remaining part of this section, we concentrate on
the reduction of system Xyy,.

3.1 Model order reduction of system X,

Consider system Xy, given by (9). After applying the projection-
based model reduction, one obtains the system matrices

Axu = W)LAqua qu = W)LNqu, (25)
Exu(t) = W;Bxu(t)a éxu = CVyu.

The matrices Vi, and Wy, are the bi-orthogonal projection
matrices and hence, they satisfy W;qu = I,. The matrix
Byu (1) is

By (t) = W, B () = W] NeV' X, (26)

where the full-order matrix exponential application e!Xj still
needs to be evaluated in the simulation of the reduced-order
model. To overcome such a difficulty, we propose to reduce the
computational complexity of By, (¢) by reducing an LTT system,
which has the state-space representation
wa(t) = Awg () + Xoug(1),
B: (27)
Bxu () = Nwg(t), wp(0) =0,

where ug(t) = I,,,6(¢). The reachability Gramian of system Xp
is again P, i.e. the solution of (21). Hence, if balanced truncation
is applied to reduce system Xg, one only needs to compute the
observability Gramian by solving

ATQp+ QA+ N'N =0,

which saves half of the computational effort. The difference
between By, (f) and its balanced truncation approximation
By (t) is Antoulas (2005)

n

IBxw = Buall, < |2 ) o | llusllLy
i=rg+1

whereopj, i = 1,2,...,n are the Hankel singular values of sys-
tem Xp. In applications, rp is usually much smaller than n,
specially in the case where N has low rank.

One may notice that again we are only interested in the
impulse responses of system Xp. Hence, IRKA can be more
effective than balanced truncation. Although there is no prior
knowledge of the approximation error, IRKA provides an opti-
mal approximation of system Xp in the sense of impulse
response energy. The second advantage of IRKA is that the
reduced-order system only depends on the subspace spanned
by the projection matrices. Hence, whenever N is low rank,
then one can first construct a full rank matrix Ly € R™*" with
span{LIE } = span{N "} and then use Ly as the output coefficient
matrix to construct the projection matrices.

To reduce the system Xy, given by (9), two methods are
proposed. The first one is a balanced truncation type method.



Instead of considering the original time-varying reachability
Gramian R(#) in (11) and the observability Gramian Q in (13),
we consider the averaged Gramians R and Q. Although two
more Lyapunov equations need to be solved, we avoid solving
the generalised differential Lyapunov equation (14), which is a
far more complicated and numerically expensive task. By bal-
ancing the averaged Gramians R and Q, the projection matrices
can be obtained by using the conventional algorithms which are
designed for LTI systems, e.g. the square-root method (see for
example Antoulas, 2005).

The second method is a BIRKA-type method (Benner & Bre-
iten, 2012). As it is only applicable to time-invariant bilinear
control systems, we propose to reduce the system in (24) rather
than system X, itself. Notice that in (24), the system has two
types of inputs, the first is the original input u(¢) and the second
is Uy, (t). To apply BIRKA, we treat them as two independent
inputs and augment the state equation as

14-7itxy
Wya() = A (t) + Y Niwuihi(t) + Byaii(0),
k=1

where Ny = N and Ny = 0y, k=2,3,...,0040 + 1, Byy =
(0,51, NL) and # = col(u, Uxy). In the augmentation, we use the
low rank factor L of P. The Volterra kernel energy is expected
to be quite close to the averaged kernel energy . And a tall
matrix By, may reduce the computational time of BIRKA.

In conclusion, the model reduction problem for the bilinear
control system ¥ in (1) with inhomogeneous initial conditions
can be recast as reducing systems Xy, X,,, X4, (or Ye) and T3
independently. Up to now, all the discussions were carried out
for SISO bilinear control systems. In fact, all results can be easily
generalised to MIMO systems. In the following subsection, we
briefly explain this generalisation.

3.2 Generalisation to MIMO systems

In the MIMO context, a bilinear control system with nonzero
initial conditions is represented in state-space form as

q(8) = Ax(t) + ) Nix(t)u(t) + Bu(t),
k=1
y(t) = Cx(1), x(0) = xo,

where A € R"™" B ¢ R"™™ C c RP*" x(t) € R", u(t) € R™,
y(t) € RP, xg = Xoup € R" and Ny e R for k=1,...,m.
By similar reasoning, the output y(f) from (28) can also be
decomposed as the sum y(t) = yx(t) + yu(t) + yxu(f), where
yx(t) is the response of the same LTI system Xy in (7). The
response yy () comes from the system X, given by

(28)

Y MIMO :

wu(t) = Awy (1) + Y 1L Niewu (D ug(t) + Bu(t),
" pu® = Cwa(®), wa(0) =0,

u

(29)
The response yx,(t) again is the solution of a time-varying
bilinear control system with the state-space representation

Wya () = Awxu () + DL | Niewsu () uge(t)

+ 2kl Bk (Duouk(t),
J’xu(t) = Cwxy (1), wxu(0) =0,

Yxu: (30)
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where By, k(t) = NiedtXy for k=1,...,m. Hence, one can
reduce the homogeneous systems Xy, X, and Xy, instead of
reducing the bilinear system with nonzero initial consition (28).
In this context, all of the results derived in Section 2 can be eas-
ily generalised to MIMO systems. Moreover, if P = LL" is the
solution of (21) and L € R"*", the system

Wy (1) = AW (£) + 1L Niiwu (£ (1)
+ Y5y NieLitgu (1),
)_/XU(t) = Cﬁ’xu(t)’ 1’_V)(u(O) = 0

S (31)

with sy k(1) = w(t)uoui(t) for an unknown matrix function
w(t) € R"™™, is equivalent to Xy, in the sense of the averaged
Volterra kernel energy. Hence, the MIMO system (28) will be
associated to the averaged Gramians R and Q satisfying

m
AR+RAT + ) N(RN, + NPNT =0,
k=1

m
ATQ+QA+ ) N/ Qi =0,
k=1

where P and Q are the solutions of

AP+ PAT 4 XoX, =0,

m
ATQ+Qa+ > NJQNi+CTCc=0.
k=1

Finally, the reduction of systems Xy and ¥, can be done
by conventional model reduction methods for LTI systems and
bilinear control systems, respectively. The reduction of sys-
tem Xy, can be done in two different ways: (i) by a balanced
truncation-type method using the averaged Gramians R and Q;
(ii) by a BIRKA-type method using the time-invariant bilinear
system ¥ instead of Tyy.

4. Numerical examples

The methods suggested in this paper is demonstrated by two
numerical examples, a nonlinear RC circuit and a 2D heat trans-
fer model. The full-order model is denoted by ‘FOM’. For each
system, we apply

e reduction without considering the initial condition effect,
denoted by ‘ROM-BT” and ‘ROM-H2’ for balanced trunca-
tion and (B)IRKA, respectively;

e balanced truncation by assuming the exact knowledge of
the initial condition and applying the method of Baur
etal. (2014), denoted by ‘ROM-AugBT’;

e reduction by applying balanced truncation to all the decom-
posed systems as proposed in this paper, denoted by
‘InhROM-BT’;

e reduction by applying (B)IRKA to all the decomposed sys-
tems as proposed in this paper, denoted by InhROM-H2’.

4.1 RCcircuit

The first example considered is a nonlinear RC circuit. The cir-
cuit has nonlinear resistors (or diodes) which show exponential
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behaviour. In Bai and Skoogh (2006), the Carleman bilinearisa-
tion is applied to the nonlinear model to approximate the system
by a bilinear control system. The system has a current source at
the first node as the input and the output is the voltage of the first
node. The system tested has 10 nodes, which means the state
space has dimension n = 110 after bilinearisation. The detailed
model can be found in Bai and Skoogh (2006).

For testing purposes, we choose Xy as Xo = (ei0, €110), i.e.
the 10th and 110th unit vectors in R!!%. Physically, it means
that the 10th node has nonzero initial voltage and its squared
value should be nonzero as well. Hence, the vector 1y must be
chosen as col(a, ) for some @ € R. Here we assume that ini-
tially we know that the value of « can be 1, so the method in
Baur et al. (2014) is applicable. We investigate the Hankel sin-
gular values® of ¥y and ¥y and generalised/averaged Hankel
singular values of ¥ and Xy, and set the truncation threshold
as 107 uniformly for all the systems. The resulting reduced-
order models thus have dimensions ry =8, rg =17, r =ry, =
17 and ryy, = 20. For H, optimal approximations, we use the
same reduced-order dimensions and set the maximal iteration
number as 200 and the convergence tolerance as 1075, It turns
out both IRKA and BIRKA converge within 70 iterations.

o
o
>

Time-domain responses
T T T

After reduction, the input is fixed as a sinusoidal func-
tion u(t) = 5cos(mwr/5¢t) + 5. We first fix the initial condition
by fixing « = 1. The time domain responses and the absolute
response errors are shown in Figures 2 and 3. It can be seen that
all the reduced-order models can capture the steady state of the
full-order model very well. However, without considering the
effect of the initial condition, the reduced-order models ROM-
BT and ROM-H2 cannot approximate the full-order model well
in the transient process. In this case, the augmented method
also performs well because the initial condition is fixed. How-
ever, the generalised Hankel singular values of the augmented
system show that if we set the truncation threshold at 1076,
the required dimension is rayg = 31, which is larger than the
reduced dimensions of the decomposed systems.

To show that the augmented method may over emphasise the
effect of the initial condition, we change the initial condition by
setting o = 2. The absolute response errors in Figure 4 show
that in the transient simulation, the augmented method results
in even larger deviations than the method assuming zero ini-
tial condition. Since the initial condition is still in the subspace
spanned by Xo, the approximation accuracy of the proposed
method is higher than the others.

o
o
[&)]
yaL.
7

It
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Exx
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o
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Figure 2. Time domain responses of full-order and reduced-order models of the nonlinear RC circuit with a fixed initial condition (& = 1).
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Figure 3. Absolute response errors of the reduced-order models of the nonlinear RC circuit with a fixed initial condition (¢ = 1).
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Absolute response errors
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Figure 4. Absolute response errors of the reduced-order models of the nonlinear RC circuit with a possible inhomogeneous initial condition (¢ = 2).
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Figure 5. Absolute response errors of the reduced-order models of the 2D heat transfer system with a fixed initial condition (initial temperature is 1).
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Figure 6. Time-domain responses of full-order and reduced-order models of the 2D heat transfer system with a random initial condition.
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Figure 7. Absolute response errors of the reduced-order models of the 2D heat transfer system with a random initial condition.

4.2 2D heat transfer model

The second example that we study is a boundary controlled
heat transfer model, which is modified from the one in Ben-
ner and Breiten (2012). The system is described by a 2D heat
equation with Dirichlet and Robin boundary conditions as

ax = Ax, in (0,1) x (0,1),
x=0: on FI)FZaF?))
n-Vx =025u(x—1), onlly,

where I'1234 are the left, top, right and bottom boundaries,
respectively. The source term is u, which in this case is only
applied at the bottom boundary. A spatial discretisation using
k = 10 grid points results in a bilinear control system of dimen-
sion 1 = k%. As stated, the system has only 1 input u and the
output we considered is the sum of the temperature of all the
grid points. Hence, matrix Cis C = 1;x,.

Assuming that the initial temperature profile is homoge-
neously distributed, but nonzero, then we have Xo = C'. The
input is selected as u(t) = 10e~%%. To apply the augmented
method, we assume that the initial temperature is 1. By trun-
cating the tails of the (generalised/averaged) Hankel singular
values of the systems in (1), (7), (9) and (27), the reduced-order
dimensionsarery = 6,rg = 14,7 = ry = ryy = 15. The trunca-
tion thresholds are selected independently and they are all less
than 10~%. However, the generalised Hankel singular values of
the augmented system flatten out after r,yg = 17 and the value
isaround 6 x 1077. As a consequence, we expect that balanced
truncation of the augmented system will not perform well even
for the fixed initial condition. For H, optimal approximations,
we select the same reduced-order dimensions and set the max-
imal iteration number as 200 and the convergence tolerance as
10~% again. In the test, only the system Ty does not converge
in 200 iterations, but the tolerance reaches 10~3. The absolute
response errors are depicted in Figure 5. In this case, although
balanced truncation models considering the initial condition
effects are not as accurate as the 7, optimal approximations,
they still outperform the method without considering the effect
of initial conditions. In addition, the augmented method results
in a lager deviation than the other methods at the steady state
because of the relatively large truncation error. This problem

cannot be fixed by increasing the reduced-order dimension
because the generalised Hankel singular values flatten out after
faug = 17.

Now suppose that we only know the initial temperature
profile is homogeneously distributed but the exact value is
unknown. To demonstrate the performance of the proposed
method, the initial temperature is randomly taken as 8.1681.
Figures 6 and 7 show the time domain responses and the abso-
lute response errors, respectively.

Clearly in this example, the augmented method over empha-
sises the effect of the initial condition and even cannot approx-
imate the steady state of the system. Balanced truncation for
this example is slightly worse than the M, optimal approx-
imation in the transient, but the proposed method certainly
outperforms the method without considering the initial con-
dition and also the augmented method. In addition, from
the selection of the reduced-order dimensions, one can set
the truncation threshold for each of the decomposed systems
independently. We should also note that the balanced trun-
cation variant does not suffer from the BIRKA convergence
problems. Though it worked here, it cannot be guaranteed
that one gets a good approximation when (B)IRKA does not
converge.

5. Conclusions and outlook

In this work, we studied the model order reduction problem
for bilinear control systems with inhomogeneous initial con-
ditions. Based on the Volterra series analysis, we showed that
the response of a bilinear control system with nonzero initial
conditions can be decomposed as responses of an LTI sys-
tem and two bilinear control systems and one of which is
time-varying. By considering the time-averaged Volterra kernel
energy, one can either use the averaged Gramians to perform
balanced truncation or transform the time-varying bilinear con-
trol system into a time-invariant one and then perform the H;
optimal approximation techniques. We also proposed to reduce
another LTT system to reduce the computational complexity of
a matrix exponential function application. The resulting model
reduction technique yields reductions of four independent sys-
tems, which are easily parallelizable. Numerical examples show



that the proposed method always outperforms the conventional
methods assuming zero initial condition.

Bilinearisation of a nonlinear dynamical system is only a pre-
liminary step of simplifying nonlinear systems. In recent years,
other nonlinear systems such as quadratic-bilinear and poly-
nomial systems attracted lots of attention. These systems can
often be used formally to decrease the complexity of a non-
linear system, meanwhile providing the exact solution of the
original system. Therefore, a future topic of the authors’ interest
is to extend the proposed method to other nonlinear dynami-
cal systems such as quadratic-bilinear systems and polynomial
systems. This extension would be beneficial for the simulation
and control of complex nonlinear dynamical systems with non-
homogeneous initial conditions as well as other multi-query
applications of these systems, such as design optimisation.

Notes

1. col(-,-,+...) stands for column concatenation of scalars, vectors or
matrices.

2. Note that in this paper when we refer to Hankel singular values, it
means relative Hankel singular values. That is, all the Hankel singular
values are divided by the largest Hankel singular value.
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