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Abstract. A benchmark exercise for the modeling of vertical displacement events

(VDEs) is presented and applied to the 3D nonlinear magneto-hydrodynamic codes

M3D-C1, JOREK and NIMROD. The simulations are based on a vertically unstable

NSTX equilibrium enclosed by an axisymmetric resistive wall with rectangular cross

section. A linear dependence of the linear VDE growth rates on the resistivity of

the wall is recovered for sufficiently large wall conductivity and small temperatures in

the open field line region. The benchmark results show good agreement between the

VDE growth rates obtained from linear NIMROD and M3D-C1 simulations as well

as from the linear phase of axisymmetric nonlinear JOREK, NIMROD and M3D-C1

simulations. Axisymmetric nonlinear simulations of a full VDE performed with the

three codes are compared and excellent agreement is found regarding plasma location

and plasma currents as well as eddy and halo currents in the wall.
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1. Introduction

A vertical displacement event (VDE) denotes the vertical movement of a tokamak plasma

toward the vessel walls, generally leading to a complete loss of the plasma confinement.

In case of a cold VDE, the loss of the control of the plasma position is caused by

a rapid change of the plasma pressure and current density profile due to a thermal

quench. In a hot VDE, the plasma initially maintains most of its thermal energy and

the loss of control occurs for different reasons, for example when a stability threshold

in elongation is exceeded. The vessel wall currents produced by the VDE can lead

to large transient forces on the vessel including sideways forces which can challenge

the mechanical supports of the vessel. Also, those forces have the potential to create

significant mechanical stresses in the vacuum vessel, especially in tokamaks with large

magnetic fields and large plasma currents. Therefore, comprehensive analysis, including

large-scale simulations seeking to identify the worst case VDEs, are necessary as part

of the design process.

Although a hot VDE is initially an axisymmetric instability, 3D instabilities develop

during the course of the event. In particular, when the edge safety factor drops below

some critical value due to scraping-off by the wall or by impurity cooling of the edge,

the plasma becomes unstable to an external kink or resistive wall mode (RWM). These

asymmetries can lead to asymmetric forces on the vessel walls. Since asymmetric forces

will lead to asymmetric stresses, and might even rotate in mechanical resonance with

the vessel structures [1], they can lead to large local stresses in the vacuum vessel.

Employing 3D nonlinear magneto-hydrodynamic (MHD) codes to understand and

predict the consequences of different types of VDEs for tokamak operation has become

an active field of study. Recently, 3D VDE simulations have been performed by Strauss

[2, 3] with the M3D code, Pfefferlé et al. [4] with M3D-C1, Artola [5] with JOREK and

Sovinec et al. [6] using NIMROD.

Combining a global 3D MHD model for the plasma evolution with implicit time

stepping and a model for a resistive wall, NIMROD [7], JOREK [8, 9] and M3D-C1

[10, 11] are among a small set of codes possessing the necessary capabilities for 3D

VDE simulations. Nevertheless, a benchmark between any of the three codes involving

VDE calculations had not been performed, and code-to-code comparison is an essential

tool in this context. As discussed in the following sections, the codes use significantly

different numerical models, in particular for the resistive wall (discretizing vacuum vs.

Green’s function method). Except for idealized problems there are no analytic solutions

to verify the codes’ correctness, and experimental data is not available in enough detail

to perform true validation. Code-to-code comparison is thus the only way to verify

non-trivial calculations in detail.

In the following, we present the set up and results of a benchmark exercise

between M3D-C1, NIMROD, and JOREK which is based on a vertically unstable NSTX

equilibrium. Note that although an experimental equilibrium is used, this work is solely

intended to be an inter-code benchmark exercise with the purpose of code verification
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focused on VDE relevant physics. An experimental validation of the physics models

implemented is a separate, but equally important and ongoing endeavor.

The goal of this work is to provide the fusion community with a useful set of

validated standard benchmark cases to be used to test MHD codes with a resistive wall

model which are to be applied to study VDEs. The benchmark calculations presented in

this paper are strictly 2D (axisymmetric) even though the three codes involved are fully

3D. These 2D benchmark simulations represent a crucial first step towards a realistic

3D nonlinear VDE benchmark which is ongoing.

The 2D VDE problem discussed in this work could, of course, also be solved by

evolutionary equilibrium codes such as DINA [12]. However, this does not make it less

important to validate 3D nonlinear MHD codes on this problem, in particular since the

formalism and numerical representation that these use is quite different than in DINA.

Moreover, DINA makes some assumptions regarding the halo current and the neglect

of the plasma inertia that are not made in the calculations presented here. Our results

show that, for the 2D problem, these assumptions are justified.

In Section 2, a brief description of the M3D-C1 model used for VDE calculations is

given. In addition, it is discussed how response currents in the open field line region can

cause a deviation from the linear dependence of the VDE growth rate on the resistivity

of the vessel wall. The set up of the benchmark case is described in Section 3. The

differences between the three codes are discussed and the results of the benchmark

are presented in Sections 4 - 6, where the three sections are concerned with a linear

benchmark, a benchmark of the linear phase of nonlinear simulations, and a benchmark

of the axisymmetric, nonlinear evolution of a full VDE, respectively. Good agreement is

found between the linear VDE growth rates as well as between the nonlinear evolution

of the VDE calculated with the three codes. In particular, the evolution of currents in

the plasma and in the vessel wall are compared. In Section 6, we also analyze why the

reduced MHD model used for the JOREK simulations is able to reproduce the results

of the full MHD models used in the other two codes. A summary and outlook on future

work is given in Section 7.

2. VDE simulations with M3D-C1

The M3D-C1 code is a high-order finite element code that solves the nonlinear time-

dependent extended MHD equations. It uses a split-implicit time advance in order to

enable simulations over transport time scales. For the spatial discretization, triangular

wedge finite elements are used [13].

For simulations of VDEs a three region model (as illustrated in Fig. 1) is used:

Within the central region, the nonlinear extended MHD equations as described in [10]

are solved. It is enclosed by a resistive wall region of arbitrary thickness. Between the

resistive wall and the outer domain boundary, there is a vacuum region. The mesh

resolution can be locally increased where needed, e.g. in the vicinity of the resistive

wall.
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At the boundary between the plasma domain and the resistive wall domain, no-

slip boundary conditions are employed, and the temperature and density are kept at

fixed values. Inside the resistive wall domain, the magnetic field is evolved according to

∂tB = −∇ × (ηwallj) where ηwall is the wall resistivity and the current density is given

by j = (∇×B)/µ0. In the vacuum region j = 0. There are no boundary conditions on

the magnetic field at the resistive wall. Halo currents can flow into and out of the wall.

R [m]

Z
 [

m
]

Figure 1. Mesh used for VDE

benchmark case with M3D-C1

(black). Shown are the ideal wall

domain boundary (purple), the

coils (orange), the thick resistive

wall (between green and blue line)

and the separatrix (red). The mesh

has approximately 35000 elements.

Ideal wall boundary conditions are used

at the outer domain boundary. The

sensitivity of the VDE growth rates to the

location of the ideal wall has been tested

and the influence of the ideal wall has been

estimated to result in a deviation below

10% relative to no-outer-wall conditions.

The resistive wall model has been

successfully benchmarked against analytic

solutions for RWMs [11]. The model

has recently been extended to provide an

option for a spatially varying resistivity

which can be used to model conducting

and non-conducting structures around the

plasma. Furthermore, impurity and pellet

models have been recently added to the

plasma model for disruption mitigation

studies [14]. These options however

have not been used for the calculations

presented here.

M3D-C1 can be used for 2D and 3D

linear as well as for 2D axisymmetric

nonlinear and 3D nonlinear simulations.

2D nonlinear simulations can also be

restarted in both linear or 3D nonlinear

mode.

In some axisymmetric codes that are

used for VDE calculations such as DINA

[12] and TSC [15], the width of the halo

region is an input parameter. Note that

this is not the case in M3D-C1, NIMROD

and JOREK, where the width of the

halo region is not artificially set, but is

determined by the heat transport model and can be adjusted via the heat diffusion

anisotropy. Fig. 2 shows the resulting temperature profiles on the midplane for 2D

nonlinear VDE simulations performed with M3D-C1 with different values of the heat
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Figure 2. Electron temperature at the outboard midplane versus the distance from

the separatrix in a set of 2D nonlinear VDE simulations with different values of

κ‖/κ⊥. VDE growth rates (γ) during the early drift phase have been obtained via an

exponential fit to the time traces of Zaxis (during the initial 0.1 m of the displacement).

Simulations are based on a DIII-D like equilibrium and have been performed with

M3D-C1.

diffusion anisotropy, i.e. the ratio of the parallel heat diffusion coefficient κ‖ to the

perpendicular heat diffusion coefficient κ⊥. (Here, the value of κ‖ has been varied

while keeping the value of κ⊥ fixed.) Since response currents in the halo region slow

down the VDE, smaller values of the heat diffusion anisotropy leading to higher edge

temperatures cause reduced VDE growth rates (γ). Note that a detailed study in which

the thermal conductivity in 2D nonlinear M3D-C1 simulations is used as a parameter

to scan a wide range of cases and identify worst case scenarios for ITER is described in

[16]. A separate study examines the effects of plasma thermal conduction modeling and

boundary conditions in axisymmetric VDE evolution [17].

The temperatures in the open field line region, affected by both the edge

temperature boundary condition and by the ratio of thermal conductivities as shown in

Fig. 2, can play an important role in VDE simulations. In the initial phase of hot VDEs,

the vertical movement of the plasma is inhibited by response currents in the conducting

vessel structures. Due to the finite resistivity of these structures, the response currents

decay, and thus the linear VDE growth rate is determined by the resistive time of the

vessel in this initial phase. However, if the electron temperatures in the open field line

region are large in a simulation, its resistance can become sufficiently small to compete

with the vessel resistance leading to response currents forming in the open field line

region.

Fig. 3(a) shows the linear VDE growth rates for different values of the wall resistivity

and different values of the edge temperature in linear M3D-C1 simulations. By edge

temperature we mean the value of the electron temperature at the boundary between

the plasma domain and the resistive wall domain. This value is changed by changing

the value of the equilibrium edge pressure while keeping the same edge density. Note

that details on the set up and parameters of these simulations are given in Section 3

and Table 1(a).
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Figure 3. a) Linear VDE growth rates obtained from M3D-C1 simulations for different

values of the wall resistivity (ηw) and of the resistivity in the open field line region

(ηedge). Contour plots show the toroidal current density eigenfunctions of a case with

ηedge = 3.1× 10−5 Ω m, ηw = 3.0× 10−7 Ω m where response currents form in the

wall (b) and a case with ηedge = 3.1× 10−5 Ω m, ηw = 1.0× 10−1 Ω m where response

currents form in the open field line region (c). (Red is positive, blue is negative, the

separatrix is shown in black.)

In the limit of small wall resistivities and small edge temperatures for which the

edge plasma resistivity is very large, the expected linear dependence of the growth rate

on ηwall is recovered. For larger edge temperatures (i.e. lower ηedge) or larger values of

ηwall, the resistance of the wall becomes comparable to the resistance of the open field

line region. In this regime, the VDE growth is slowed down by response currents in

the open field line region as illustrated in Figs. 3(b) and (c). In the limit where the

wall resistance is much larger than the resistance of the open field line region, the VDE

growth rate is only determined by the plasma edge resistivity and becomes independent

of the wall resistivity.

3. Benchmark set up

The equilibrium used for this benchmark case is a reconstructed EFIT equilibrium from

the NSTX discharge #139536 at t = 309 ms. It is illustrated in Fig. 4. Instead of

using the complicated shape of the NSTX vacuum vessel, an axisymmetric rectangular

resistive wall is used to simplify the geometry. The corners of the inner boundary of the

resistive wall domain are at (R = 0.24 m, Z = ±1.4 m) and (R = 1.6 m, Z = ±1.4 m).

The thickness of the resistive wall is set to ∆w = 0.015 m.

The equilibrium position of the magnetic axis is (Raxis = 1.07 m, Zaxis = −0.015 m).

The toroidal magnetic field on axis is Btor = 0.37 T, the total toroidal plasma current

is Itot = 5.7 · 105 A. The difference between the poloidal magnetic flux at the boundary

and at the magnetic axis is Ψbnd −Ψaxis = −0.059 V s, where Ψ = −
∫
Bpol dA/2π. The

temperature profile is given by Te(Ψ) = 1keV · (p(Ψ)/paxis)
0.6. The pressure and current

density profiles are defined in the geqdsk equilibrium file. Note that the geqdsk file, and

files containing the coil positions and currents are available as supplementary material
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Figure 4. Equilibrium poloidal magnetic flux of the VDE benchmark case (M3D-C1).

Also shown are the separatrix (red line) and the resistive wall (green and blue lines).

a) Section 2

ν = 5.16 · 10−6 kg(ms)−1

κ⊥ = 7.7 · 1019 (ms)−1

κ‖ = κ⊥

Dn = 1.54m2s−1

Te,edge = 0.338 eV, 2.25 eV, 14.65 eV ..............................

b) Sections 4,5,6

ν = 5.16 · 10−7 kg(ms)−1

κ⊥ = 1.54 · 1018 (ms)−1

Section 4: κ‖ = κ⊥; Section 5&6: κ‖ = κ⊥ · 105

Dn = 1.54 · 10−1m2s−1

Section 4&6: Te,edge = 14.65 eV; Section 5: Te,eff = 1. eV

Table 1. Dynamic viscosity ν, perpendicular and parallel heat diffusion coefficients,

κ⊥ and κ‖, particle diffusion coefficients Dn and electron temperatures at the boundary

to the wall Te,edge used for the different sets of simulations. Te,eff is defined as

Te,edge − Te,off where Te,off is an offset temperature (see Section 5).

to this article.

Dynamic viscosity, perpendicular and parallel heat diffusion coefficients and the

particle diffusion coefficient are constant in space and time. Their values are given in

Table 1(a) for the simulations discussed in Section 2 and Table 1(b) for Sections 4, 5

and 6. The isotropic plasma resistivity is given by the (perpendicular) Spitzer resistivity

(i.e. η(Te) = 1.03 · 10−4 · Z · ln Λ · (Te[eV])−3/2 Ω m, where Z = 1, ln Λ = 17). The ion

mass is set to twice the proton mass. A loop voltage is not applied.
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Figure 5. Comparison of VDE growth rates from linear M3D-C1 and NIMROD

simulations. The growth rates deviate by between 4% and 13%.

4. NIMROD & M3D-C1 - linear simulations

While NIMROD and M3D-C1 have similar physics models, the numerical methods differ,

which makes benchmarks between these two codes particularly valuable. In contrast to

M3D-C1, NIMROD uses high-order C0 quadrilateral finite elements in theR-Z plane and

a Fourier spectral representation for the toroidal discretization. When testing resolution

for these computations, bicubic and biquartic elements have been applied. As described

in Ref. [6], the NIMROD computations presented here use a thin-wall model that couples

dynamics in the plasma subdomain with numerically computed magnetic responses in

an outer vacuum subdomain. This differs from M3D-C1, which represents a thick wall

within a single mesh that spans all domains.

The geometry of the outer subdomain used in the NIMROD benchmark

computations matches the shape shown in Fig. 1, except that the top and bottom

corners at R = 0.02 m are not rounded. The computations also used fixed viscosity and

thermal conductivity coefficients (same as M3D-C1) without the dependence on plasma

density that is shown in Refs. [6, 7].

Fig. 5 shows a comparison of the linear VDE growth rates obtained from linear

M3D-C1 and NIMROD simulations (using the parameters listed in Table 1(b)). The

growth rates agree well over a wide range of wall resistivities. The largest deviation

between the growth rates is 13% and it occurs at the largest values of the wall resistivity,

where the results are most sensitive to the representation of the equilibrium and halo

responses.

5. JOREK, NIMROD & M3D-C1 - linear phase of axisymmetric nonlinear

simulations

For simulations with JOREK that include a resistive wall, the JOREK-STARWALL

coupling is used [9, 18]. Similar to NIMROD and in contrast to M3D-C1, JOREK uses
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Figure 6. Comparison of VDE growth rates from the linear phase of 2D nonlinear

M3D-C1, NIMROD and JOREK simulations. They deviate between 0.3% and 15%.

Also shown are the results of linear M3D-C1 calculations.

a spectral representation for the toroidal discretization. Cubic Bézier finite elements

are used for the discretization in the R-Z plane. There are a few differences between

the model that JOREK uses for the benchmark simulations and the models that M3D-

C1 and NIMROD use: (i) Although JOREK has a full MHD model, it uses a reduced

MHD model [19] for the VDE calculations presented here since the JOREK-STARWALL

coupling is not yet available for the full MHD model. (ii) In JOREK-STARWALL, the

vacuum contribution is implemented by using a Green’s function method. Therefore, it

is not necessary to discretize the vacuum region and apply ideal wall boundary conditions

in an outer boundary. This property comes from the fact that the full vacuum response

can be expressed as a function of the magnetic field at the plasma boundary. (iii) At

the resistive wall, instead of no-slip boundary conditions, only the normal component

of the velocity vanishes.

For the JOREK simulations presented here, a polar grid is used with increased

resolution in the region surrounding the point of contact between plasma and wall. The

number of Bézier elements used is 22000 and the number of linear triangular elements

used for the representation of the wall is 48000.

Since JOREK does not have an option that allows linear simulations with toroidal

mode number n = 0, we compare the VDE growth rates in the early, linear phase of the

evolution obtained in 2D axisymmetric nonlinear simulations.

In order to be able to run benchmark cases in the regime where the VDE growth

rate is not influenced by response currents in the open field line region, the value

of the edge temperature has to be sufficiently small. Since in nonlinear simulations

too small values of the edge temperature can lead to numerical problems, we use

a small temperature offset only within the calculation of the Spitzer resistivity such

that η(Te) = ηSpitzer(Te − Te,off) in all three codes. Here, the edge temperature is

Te,edge = 14.65 eV and the offset is Te,off = 13.65 eV which results in an effective edge

resistivity corresponding to a temperature of Te,eff = 1 eV. For simplicity, the Ohmic
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heating term in the temperature equation is switched off.

Figure 6 shows a comparison of the resulting VDE growth rates. They have been

obtained from the 2D nonlinear simulations by fitting Zaxis = a + b · exp(γt) to the

time trace of the vertical position of the magnetic axis where γ is the growth rate.

Only the early, linear phase of the evolution (vertical position of magnetic axis between

Zaxis = −1.64 cm and Zaxis = −3.04 cm) has been taken into account.

All three codes find the expected linear relation between VDE growth rate and wall

resistivity and the results agree well. The deviation between the obtained growth rates is

around 3% or less for most wall resistivities and does not exceed 12% in the other cases,

except for a deviation of 15% between the M3D-C1 and the NIMROD result for the

smallest wall resistivity. We also show the growth rates obtained from linear M3D-C1

simulations and they agree well with the results of the nonlinear calculations. However,

it should be noted that such good agreement between linear M3D-C1 results and the

nonlinear results is only achieved if the linear M3D-C1 simulation is not directly started

from the original equilibrium. First, the simulation is run in nonlinear mode for a few

time steps (in this case until the plasma has drifted by ∼ 2 mm), and then it is restarted

as a linear simulation. There are several possible reasons for this to be necessary.

First, we find that the geqdsk equilibrium has a layer of reversed current density that

increases in magnitude when approaching the inboard side of the separatrix. When the

equilibrium is re-solved on the meshes of the respective codes, the treatment of the sharp

termination of current density at the separatrix involves mesh-scale numerics leading to

discrepancies among the codes. A second possibility is that this might be due to a slight

difference between the initial, ideal equilibrium and the stationary state the system

goes into in the presence of non-ideal terms. In either case, the small difference relaxes

quickly when run in nonlinear mode, i.e. when the transport equations are applied to

the equilibrium in the time advance.

6. JOREK, NIMROD & M3D-C1 - axisymmetric nonlinear simulation

In the following, the results obtained by JOREK, NIMROD and M3D-C1 on the further

axisymmetric nonlinear evolution of a VDE are compared. The set up and parameters

of these simulations are the same as for the simulations discussed in Section 5, except

that Te,off = 0 such that the edge resistivity corresponds to an edge electron temperature

of Te,edge = 14.65 eV. The resistivity of the wall has been set to ηw = 3.·10−6 Ω m. While

it should be emphasized that a comparison with experimental measurement results is

out of the scope of this work, we note that VDE growth times in NSTX are 10s of

milliseconds [4] and the chosen wall resistivity leads to a growth time of the same order

of magnitude.

In addition, a thermal quench has been artificially initiated during the course of the

evolution. In 3D nonlinear MHD simulations, e.g. [4], the decrease of the edge safety

factor during the course of a VDE causes non-axisymmetric instabilities to develop.

These 3D instabilities cause the magnetic flux surfaces to break up which leads to greatly
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Figure 7. Contour plots show the poloidal magnetic flux in the 2D nonlinear M3D-

C1 simulation at the point in time when the plasma first becomes limited by the wall

(a) and close to the end of the VDE (b). The time traces of the thermal energy (c)

in the M3D-C1, NIMROD and JOREK simulation show the artificial thermal quench

initiated when the plasma touches the wall (t = 0.0915 s for M3D-C1; JOREK and

NIMROD traces have been shifted in time such that the points in time of the first

plasma-wall contact coincide).
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Figure 8. Comparison of time traces from a 2D nonlinear simulation performed

with JOREK, NIMROD and M3D-C1: a) vertical position of magnetic axis, b) radial

position of magnetic axis, c) toroidal current inside the LCFS and the open field line

region, d) toroidal current inside the LCFS, e) net toroidal wall current. JOREK and

NIMROD time traces are shifted so that the points in time of the first plasma-wall

contact coincide. f) shows the component of the current density that is normal to the

wall traced along the length along the wall at the point in time when Zaxis = −1.23 m.

The trace starts at the low-field side midplane and continues counterclockwise.
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increased thermal transport. Since this effect cannot occur in axisymmetric simulations,

an artificial thermal quench is initiated by increasing the perpendicular heat diffusion

coefficient by a factor of 500 when the plasma becomes limited by the wall. Also, the

particle diffusion coefficient is multiplied by a factor of 20. The coefficients for the post-

thermal quench phase are chosen to help match experimental disruption times in NSTX

(∼ 10 ms).

The poloidal magnetic flux at the point in time when the plasma becomes limited

by the wall in the M3D-C1 simulation and the time traces of the thermal energy in the

M3D-C1, JOREK and NIMROD simulation are shown in Fig. 7.

In order to enable a meaningful comparison of the results, the signals are slightly

shifted in time such that the points in time of the first plasma-wall contact, e.g. the

start of the thermal quench, coincide. This compensates for differences caused by the

exponential dependency on the initial conditions. (The plasma first touches the wall

at t ≈ 126 ms in the JOREK simulation, at t ≈ 87.4 ms in the NIMROD simulation

and at t ≈ 91.5 ms in the M3D-C1 simulation.) Fig. 8 compares the time traces of the

vertical and radial positions of the magnetic axis, the toroidal current enclosed by the

last closed flux surface (LCFS), the total toroidal current inside the LCFS and in the

open field line region and the net toroidal current in the resistive wall. (The NIMROD

time traces in Figs. 8 d) and e) are missing because NIMROD does not currently have

the corresponding diagnostics.)

In addition, the halo current at the plasma-wall interface, i.e. the component of

the current density perpendicular to the wall at the wall, is shown for a point in time

during the late evolution (when Zaxis ≈ −1.23 m). The halo current is plotted against

the distance along the wall, measured counter-clockwise, starting at the low-field side

midplane. For the JOREK simulation, the halo current is calculated from j×B = ∇p,
assuming that the plasma is in equilibrium. Note that the location of the halo current

spikes resulting from the M3D-C1 simulation appears to be slightly shifted with respect

to the other two traces. This is an artefact caused by the M3D-C1 resistive wall having

a slightly larger circumference since its corners are less rounded then the ones of the

resistive walls used for the JOREK and NIMROD simulations.

As expected, the halo current flows into and out of the wall in a narrow region

surrounding the contact point of the last closed flux surface and the wall. Despite the

differences in physics models and numerical implementation between the three codes,

the results agree well. This implies that the reduced MHD model that JOREK uses

reproduces the results of the full MHD models in M3D-C1 and NIMROD.

The good agreement between the reduced MHD model and the full MHD models

originates from the presence of a large vacuum toroidal field [20]. The formulation of

the energy principle for n = 0 reveals that important stabilizing terms involving the

large toroidal magnetic field (Bφ) can be minimized by choosing the following form of

the plasma velocity v (or plasma displacement ξ):

v = ξγ = −R2∇u×∇φ (1)
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where γ is the growth rate, φ is the toroidal angle and u is the velocity stream function.

This condition is called “Slip Motion Condition” [21], in which the plasma moves across

the large toroidal field without doing work against it.

The velocity representation of the “Slip Motion Condition” is the main assumption

used in reduced MHD, which is equivalently justified whenever F ≡ RBφ ≈ Fvacuum and

explains the excellent agreement with the full MHD models. The nature of the problem

makes the full velocity to be well represented by the reduced MHD velocity. In the

presented simulations the total toroidal field differed from the vacuum toroidal field by

a maximum of 5% despite the small aspect ratio of the configuration.

7. Summary & Outlook

A VDE benchmark case for nonlinear MHD codes has been presented. It is based on

a vertically unstable NSTX equilibrium and uses an axisymmetric rectangular model

for the resistive wall. The 3D nonlinear MHD codes M3D-C1, NIMROD and JOREK

are applied to the benchmark case, but run in a linear as well as a 2D (axisymmetric)

nonlinear mode. Linear simulations show that the expected linear dependence of the

VDE growth rate on the resistivity of the vessel wall (ηw) is recovered for small values

of ηw and a sufficiently large resistivity in the open field line region. If the temperature

in the open field line region becomes too large, response currents build in this region

and slow down the VDE growth.

Agreement within approximately 10% is found between the results of the linear

benchmark simulations obtained by NIMROD and M3D-C1, as well as between the VDE

growth rates in the linear phase of axisymmetric nonlinear simulations performed with

NIMROD, M3D-C1 and JOREK. Where the plasma response is most important, the

agreement of growth rates based on fits from the early nonlinear computations (Fig. 6)

is better than the agreement of growth rates from the true linear computations (Fig. 5).

We checked a number of possible sources for the discrepancy in the linear computations,

including normalizations, outer-wall geometry, thermal conductivity modeling, and

electrical resistivity. By process of elimination, and by noting the improved agreement

after short nonlinear evolution, we infer that a likely cause is the sharp layer of edge

current density in the equilibrium. The equilibrium is not smoothed in the true linear

computations, and the NIMROD and M3D-C1 representations differ. This will affect

the linear computations, particularly when meshes are not aligned with flux surfaces,

and such alignment is not suited to the nonlinear VDE computations that are the focus

of this benchmarking.

The further axisymmetric nonlinear evolution of a selected case has been calculated

using the three codes and the time traces of the position of the magnetic axis, the toroidal

plasma current and the toroidal current in the resistive wall as well as the resulting halo

current have been compared. Despite the differences in physics models and numerical

methods, the results agree well. This implies that for the benchmark cases presented here

the reduced MHD model that JOREK employs reproduces the results of the full MHD



Krebs et al. – VDE benchmark of nonlinear MHD codes 14

models of NIMROD and M3D-C1. In particular, it is shown that in 2D calculations, the

reduced MHD model can calculate the halo currents correctly which has been an open

question in the past. Whether the reduced MHD model is still reproducing the results

of the full MHD model in 3D simulations will need to be investigated.

The linear and 2D nonlinear benchmarks described in this work are a necessary

step to form a solid basis and serve as a starting point for a 3D benchmark. They

demonstrate that the codes maintain force balance, where profiles are determined by

rudimentary transport models, over times that are far longer than Alfvenic propagation

times. In addition, features relevant for VDEs that are already important in 2D, such as

the different resistive wall models and the use of reduced MHD for the calculation of halo

currents, have been tested. Future work will include the extension of this benchmark

towards fully 3D nonlinear simulations with the three codes. Furthermore, we hope that

other linear, axisymmetric nonlinear, or 3D nonlinear codes used for VDE calculations

might be applied to the benchmark case presented here as well.

Supplementary Material

See supplementary material for the geqdsk file defining the equilibrium, and files

containing the coil positions and currents for the discussed benchmark cases.
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