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Critical behavior of charged dilaton black holes in AdS space
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We revisit critical behaviour and phase structure of charged anti-deSitter (AdS) dilaton black
holes for arbitrary values of dilaton coupling α, and realize several novel phase behaviour for this
system. We adopt the viewpoint that cosmological constant (pressure) is fixed and treat the charge
of the black hole as a thermodynamical variable. We study critical behaviour and phase structure
by analyzing the phase diagrams in T −S and q−T planes. We numerically derive the critical point
in terms of α and observe that for α = 1 and α ≥

√
3, the system does not admit any critical point,

while for 0 < α < 1, the critical quantities are not significantly affected by α. We find that unstable
behavior of the Gibbs free energy for q < qc exhibits a first order (discontinuous) phase transition
between small and large black holes for 0 ≤ α < 1. For 1 < α <

√
3 and q > qc, however, a novel

first order phase transition occurs between small and large black hole, which has not been observed
in the previous studies on phase transition of charged AdS black holes.

PACS numbers:

I. INTRODUCTION

Phase transition is certainly one of the most intrigu-
ing and interesting phenomena in the thermodynamic de-
scription of black holes which may shed some light on
the nature of quantum gravity. In particular, the inves-
tigations on the black hole phase structure/transition in
an asymptotically AdS spacetime have received consid-
erable attentions in the past years. This is mainly due
to the remarkable duality between gravity in an (n+ 1)-
dimensional AdS spacetime and the conformal field the-
ory living on the boundary of its n-dimensional space-
time, (AdS/CFT) correspondence. Perhaps, one of the
earliest studies in this direction was done by Hawking
and Page [1], who disclosed that there is indeed a first
order phase transition, latter named Hawking-Page phase
transition, between the thermal radiation and the stable
large schwarzschild black hole with spherical horizon in
the background of AdS spacetime. Later, Witten discov-
ered [2] that this phase transition can be interpreted in
the AdS/CFT duality as the confinement/deconfinement
phase transition in the strongly coupled gauge theory.
Recently, it has been shown that, for charged AdS black
hole, a second and first order phase transition occurs be-
tween small and large black holes in an extended phase
space which resembles the liquid-gas phase transition in
the usual Van der Waals liquid-gas system [3, 4]. In an
extended thermodynamic phase space, the cosmological
constant (AdS length) is considered as a thermodynamic
pressure which can vary, and its corresponding conjugate
quantity is the thermodynamic volume of the black hole.
Taking into account the variation of pressure in the first
law, one observes that the mass of AdS black hole is
equivalent to the enthalpy [5]. In the recent years, ther-
modynamic phase transitions in an extended phase space
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have been explored for various types of black holes in AdS
space (see Refs. [6–22] and references therein). The stud-
ies on phase structure of charged AdS dilaton black hole
have been carried out from both thermal and dynamical
point of view [23], where the cosmological constant ap-
pears as a thermodynamical variable. They found that
for small dilaton coupling, α ≈ 0.01, the system resem-
bles the Van der Waals fluid behaviour, while for α > 1,
the P − v diagram of the system deviates and new phe-
nomena beyond the Van der Waals liquid-gas-like ap-
pears [23]. Recently, a novel phase behaviour represents
a small/large black hole zeroth-order phase transition, in
an extended phase space with varying cosmological con-
stant, has been observed for charged dilaton black holes,
where the geometry of spacetime is not asymptotically
AdS [24].

Another possible approach to study thermodynamic
phase structure of black hole is to consider the variation
of electric charge of the black hole, while the cosmological
constant (AdS length) is kept fixed. With regard to this
perspective, the critical behavior and phase transition
of charged AdS black holes were investigated in a fixed
AdS geometry, indicating that it exhibits the small/large
black hole phase transition of Van der Waals type [25, 29].
Interestingly enough, it has been realized in [25] that the
phase transition of charged AdS black hole can occur in
Q2 − Ψ plane, where Ψ = 1/2r+ is the conjugate of Q2,
without extending the phase space. Indeed, in this alter-
native perspective, the relevant response function clearly
signifies the stable and unstable region. Also there still
exist a deep analogy between critical phenomena and crit-
ical exponents of the system with those of Van der Waals
liquid-gas system [25]. The advantages of this new ap-
proach is that one do not need to extend the phase space
by treating the cosmological constant as a thermodynam-
ical variable which may physically not make sense [25]. It
has been confirmed that this new approach also works in
other gravity theories [26, 27] as well as in higher space-
time dimensions [28]. Recently, the universality class and
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critical properties of any AdS black hole, independent of
spacetime metric, via an alternative phase space has also
been explored [30]. It was shown that the values of crit-
ical exponents for generic black hole are the same with
the Van der Waals fluid system [30]. For the Born-Infeld
AdS black holed in four dimensional spacetime, we an-
alytically calculated the critical point by studying the
behavior of specific heat in a fixed AdS geometry [31].
Furthermore, the interesting reentrant phase transition
of Born-Infeld AdS black hole has been investigated in
the thermodynamic phase space [31]. The structure of
charged black holes has been studied by employing the
Ruppeiner geometry [36], in which the charge is allowed
to vary.

In this paper, we study thermodynamic properties of
charged AdS dilaton black hole in (3 + 1)-dimensional
spacetime. Our work differs from [23], in that we keep the
cosmological constant as a fixed quantity and treat the
charge of the black hole as the thermodynamic variable,
while the authors of [23] extended the phase space by
treating cosmological constant as a variable. Besides, we
analyze the phase structure in T − S and q − T planes
and observe a novel first order phase transition, which has
not been reppored in the previous investigations on phase
transition of charged AdS black holes. As we shall see,
the behavior of black hole temperature crucially depends
on the dilaton-electromagnetic coupling constant (α) for

the small horizon radius. When α = 1 and α ≥
√
3, we

cannot realize any critical point in the system. Besides,
for 0 ≤ α < 1, we observe a small/large first order phase
transition for q < qc, while similar behaviour is seen for
1 < α <

√
3 provided q > qc, where qc is the critical

charge of the black hole.

This paper is structured in the following manner. In
Sec. II, a brief overview on thermodynamics of the four-
dimensional charged dilaton black hole in the AdS back-
ground is given. In Sec. III, we investigate critical behav-
ior of charged dilaton AdS black holes by studying the
specific heat at constant electric charge in T -S plane. In
Sec. IV, we use the Gibbs free energy to determine the
possible phase transition in the system. Finally, we sum-
marize the main results Sec. V.

II. CHARGED DILATON BLACK HOLES IN

ADS SPACE

We start with a brief review on charged AdS black
holes in dilaton gravity and calculate the associated
conserved and thermodynamic quantities. The four-
dimensional action of Einstein-Maxwell gravity coupled
to a dilaton field is [32, 33]

S = − 1

16π

∫

d4x
√
−g

(

R− 2(∇ϕ)2 − V (ϕ)

−e−2αϕFµνF
µν
)

, (1)

where R is the Ricci scalar curvature, ϕ is the dilaton
field and V (ϕ) is the dilaton potential. Herein, the elec-
tromagnetic field tensor Fµν is defined in terms of the
gauge field Aµ via Fµν = ∂µAν − ∂νAµ. For an arbitrary
value of the dilaton coupling strength α in AdS space,
the dilaton potential is chosen to take the following form
[34, 35]

V (ϕ) =
2Λ

3 (α2 + 1)
2

[

8α2e(α
2
−1)ϕ/α −

(

α2 − 3
)

e2αϕ

+α2
(

3α2 − 1
)

e−2ϕ/α
]

, (2)

where Λ is the cosmological constant that relates to the
AdS radius l as Λ = −3/l2. The potential given in Eq.
(2) shows that the cosmological constant Λ is coupled
to the dilaton field ϕ in a non-trivial way. When the
coupling constant α = ±1/

√
3,±1,±

√
3, the dilaton po-

tential in Eq.(2) is indeed the SUSY potential of string
theory. Note that in the absence of the dilaton field, i.e.
V (ϕ = 0) = 2Λ, the action Eq.(1) reduces to the usual
Einstein-Maxwell theory with cosmological constant. In
3 + 1 dimensions, the line element of a static spherically
symmetric spacetime is written

ds2 = −f(ρ)dt2 +
dρ2

f(ρ)
+ ρ2R2(ρ)dΩ2, (3)

where dΩ2 is the metric of the 2-dimensional unit sphere
with volume ω = 4π and the metric functions f(ρ) and
R(ρ) are given by [32]

f(ρ) =

(

1− b

ρ

)γ
[

(

1− b

ρ

)1−2γ (

1− c

ρ

)

+
ρ2

l2

]

, (4)

R2(ρ) =

(

1− b

ρ

)γ

, (5)

where b and c are integration constants and γ =
2α2/(α2 + 1). Also, the dilaton field and the only non-
vanishing component of the gauge field Aµ are obtained
as [32]

ϕ(ρ) =

√

γ (2− γ)

2
ln

(

1− b

ρ

)

, At = − q

ρ
, (6)

where q, an integration constant, is the charge parameter
which is related to b and c via the following relation

q2 =
bc

α2 + 1
. (7)

For α 6= 0, these solutions become imaginary in the range
of 0 < ρ < b, so this region should be excluded from
the spacetime. One may also have a close look on the
expansion of V (ϕ). Given ϕ(ρ) at hand, it is a matter of
calculation to show that for small α,

V (ϕ) = 2Λ+4Λα2

{

b(ρ− 7b/6)

ρ2(1 − b/ρ)2
+ln(1−b/ρ)

}

+O(α4),

(8)
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FIG. 1: T -S diagram of charged dilaton AdS black hole. This
figure shows the remarkable influence of the coupling constant
α on the temperature. Here, we have set l = 1 and q = 1.

which implies that, in the presence of dilaton field, the
leading correction term to the cosmological constant is
of order α2. The black hole event horizon is located at
ρ = ρ+ which is determined by the largest real root of
f(ρ+) = 0. The mass and electric charge of the dilaton
AdS black hole per unit volume ω are [32]

M =
1

8π

(

c− b
α2 − 1

α2 + 1

)

, Q =
q

4π
. (9)

Also, the other associated thermodynamic quantities,
such as the Hawking temperature T , entropy S and elec-
tric potential U , are

T =
1

4πρ+

(

1− b

ρ+

)1−γ
{

1 +
ρ+
l2

[3ρ+ + 2b (γ − 2)]

×
(

1− b

ρ+

)2(γ−1)
}

, (10)

S =
ρ2+
4

(

1− b

ρ+

)γ

, U =
q

ρ+
, (11)

where entropy S is written per unit volume ω. It is easy
to verify that the first law of black hole thermodynamics

dM = TdS + UdQ, (12)

is satisfied on the event horizon [32].

It is worthwhile to mention that in the absence of the
dilaton filed (α = 0), the solutions reduce to the well-
known four-dimensional Reissner-Nordstrom (RN)-AdS
black hole. It is also notable to mention that these so-
lutions are even functions in α. In the next section, we
study the critical behavior of dilaton AdS black hole in
the phase space.

III. CRITICAL BEHAVIOR OF CHARGED

DILATON ADS BLACK HOLE

In this section we are going to investigate the effects
of the dilaton field on the critical behavior of charged
dilaton AdS black hole. To end this, we analyze behavior
of the specific heat at constant charge

Cq = T

(

dS

dT

)

q

, (13)

where l and α are also fixed. The sign of this quantity
determines the local thermodynamic stability, i.e. the
stability (instability) is accompanied by Cq > 0 (Cq < 0).
To see the influence of the dilaton field (α) on Cq, we
plot the behavior of the temperature as a function of
entropy in Fig. 1 for different values of α and q = 1. It
is obvious from Fig. 1, that the behavior of the black
hole temperature significantly depends on α for small S.
Accordingly, we expand the temperature of the charged
dilaton AdS black hole for small entropy as follows:

• For 0 < α < 1/
√
3 ≈ 0.58,

T =

(

3α2 − 1
) (

α2 + 1
)1/(α2+1)−1

q2/(α
2+1)

π24/(α2+1)+1l2−2/(α2+1)S2/(α2+1)−1/2

+O
(

S2/(α2+1)−5/2
)

, (14)

the black hole is “Reissner-Nordstrom-AdS” (RN) type
in which with decreasing entropy, the temperature goes
over zero.

• For α = 1/
√
3,

T =
3
(

3l2 + 12q2 − l
√

48q2 + 9l2
)

2πl4q2(
√

9 + 48q2/l2 − 3)3/2

×
√

3l2 + 8q2 + l
√

48q2 + 9l2S +O
(

S3
)

, (15)

where the dilaton black hole has zero temperature at
the vanishing entropy limit. This α may be called the
“marginal coupling constant” (αm).

• For 1/
√
3 < α < 1,

T =

(

3α2 − 1
) (

α2 + 1
)1/(2α2)−1

π21/α2+1l2q−1/α2S1/(2α2)−1/2
+O

(

S1/(2α2)−1/2
)

,

(16)
black hole is “Schwarzschild-AdS” (Schw)-type. In
this case, black hole solution does not exist in the low-
temperature regime.

• For α = 1,

T =
l2 + 2q2

4
√
2l2πq

+O (S) , (17)

which is the “spacial” case where the dilaton black hole
has finite temperature at S = 0.
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FIG. 2: The behaviors of the critical electric charge (qc) and critical temperature (Tc) versus α. The no BH region corresponds
to no BH solution. The vertical dashed lines mark the values of α = 1/

√
3, α = 1 and α =
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3. We use the logarithmic scales

on the vertical axis and set l = 1.
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FIG. 3: The behaviors of the critical event horizon radius (ρ+c) and critical entropy (Sc) versus α. The vertical dashed lines
mark the values of α = 1/

√
3, α = 1 and α =

√
3. We use the logarithmic scales on the vertical axis and set l = 1.

• For α > 1,

T =
21/α

2
−3

(

α2 + 1
)

−1/(2α2)

πq1/(α2)S1/2−1/(2α2)
+O

(

S1/2−1/(2α2)
)

, (18)

black hole is Schw-type again. As can be seen from
Fig. 1, the right branch of isocharge for Schw-type
black hole is locally stable, i.e., the specific heat at
constant charge is positive. On the other hand, the
large entropy limit of the temperature is

T ≈ 3

√
S

2πl2
⇒ Cq = 2S > 0, (19)

which is independent of the charge and dilaton cou-
pling constant and always yields a thermal stable sys-
tem.

In what follows, we are going to obtain the critical
point, which corresponds to a second order phase transi-
tion, for various type of charged dilaton AdS black holes.
For fixed q and l, the value of the critical point is char-
acterized by the inflection point

∂T

∂S

∣

∣

∣

qc
= 0,

∂2T

∂S2

∣

∣

∣

qc
= 0. (20)

To calculate the above expressions from Eq. (10) and
(11), the following relation is used

∂T

∂S

∣

∣

∣

∣

q

=

∂T
∂ρ+

∣

∣

∣

b,q
+ ∂T

∂b

∣

∣

ρ+,q
∂b
∂ρ+

∣

∣

∣

q

∂S
∂ρ+

∣

∣

∣

b
+ ∂S

∂b

∣

∣

ρ+

∂b
∂ρ+

∣

∣

∣

q

,
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FIG. 4: Gibbs free energy as a function of temperature for l = 1 and various values of q. For q < qc, the system undergoes a
first order phase transition between SBH and LBH. The positive (negative) sign of Cq is identified by the blue solid (dashed
red) line. The curves are shifted for clarity.
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FIG. 5: Gibbs free energy as a function of temperature for
l = 1, α = 1.3 ∈
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)

and various values of q. For q > qc,
the system undergoes a first order phase transition between
SBH and LBH. The positive (negative) sign of Cq is identified
by the blue solid (dashed red) line. The curves are shifted for
clarity.

where

∂b

∂ρ+

∣

∣

∣

∣

q

= −
∂f(ρ+)
∂ρ+

∣

∣

∣

b,q

∂f(ρ+)
∂b

∣

∣

∣

ρ+,q

.

Due to the complicated form of Eqs. (10) and (20), it is
almost impossible to obtain the critical values, analyti-
cally. Hence, we numerically solve the set of Eq. (20) for
a given value of α. The calculated values of the critical
quantities, such as qc, Tc, ρ+c and Sc, for various α are
illustrated in Figs. 2 and 3. We observe that there is
no critical point for charged dilaton AdS black hole in
cases where α = 1 and α ≥

√
3 ≈ 1.73. As one can

see from Figs. 2 and 3, for 0 < α < 1, the dilaton cou-
pling parameter (α) does not significantly affect the crit-

ical quantities, except entropy which abruptly decreases
close to 1. Fig. 2(b) shows that the critical point oc-

curs in the RN-type of black hole when 0 ≤ α < 1/
√
3,

whereas for 1/
√
3 < α < 1 it occurs in Schw-type where

there is a lower bound on temperature of the black hole.
As expected from Figs. 2 and 3, in the absence of dilaton
field (α = 0), the critical quantities reduce to those of

charged AdS black hole [4]. In case of 1 < α <
√
3, with

increasing α, the values of critical quantities increase and
diverge for α →

√
3. It should also be pointed out that

in the range 1 < α <
√
3, the critical behavior happens

in Schw-type region.
In order to fully obtain phase transition and examine

phase structure of charged dilaton AdS black holes, we
shall study the behavior of Gibbs free energy in the next
section.

IV. GIBBS FREE ENERGY

The general thermodynamic description of charged
dilaton AdS black hole is provided by studying the Gibbs
free energy which exhibits the global stable state. The
Gibbs free energy for a fixed AdS radius regime can be ob-
tained through the Legendre transformation of the mass
M . Thus, the Gibbs free energy per unit volume ω is
given

G (T, q) = M − TS (21)

=
l
(

Υ
[

3− 4Γ− α2
]

+ 2
(

α2 − 1
)

+ α2 + 5
)

32
√
2π (α2 + 1)Γ3/2−2/(α2+1) (Υ− 1)

−1/2
,

where

Υ ≡

√

1 +
4q2 (α2 + 1)Γ3−4/(α2+1)

l2 (1− Γ)
,
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(a) (b)

FIG. 6: SBH/LBH phase diagram for l = 1 and various values of α. The critical points and first order phase transition curves
are highlighted by the black solid circle and solid orange line, respectively. At low temperature, no BH regions correspond to
no black hole solution. We use the logarithmic scale on q axis in Fig. (b).

and Γ = 1−b/ρ+, thus we have Γ = Γ (T, q). Notice that
the reality condition of the black hole solutions (ρ > b)
leads to the constraint 0 < Γ < 1.

The behavior of Gibbs free energy in terms of the tem-
perature T for α = 0.5, 0.7 and 1.3 are depicted in Figs. 4
and 5, for different values of charge q. From these figures,
it can be seen that the charge dependence of Gibbs free
energy is strongly affected by the dilaton coupling param-
eter α. In case of α = 0.5 ∈

[

0, 1/
√
3
]

, where charged
dilaton AdS black hole is RN-type, the Gibbs free en-
ergy is single value in temperature for q > qc (see Fig.
4(a)). In this case, back hole is locally stable (Cq > 0)
which is indicated by the solid blue line in Fig. 4(a). On
the other hand, when q < qc, black hole becomes ther-
modynamically unstable where the Gibbs free energy is
multi-valued in the certain range of temperature. This
corresponds to Cq < 0 which is shown by dashed-red
line in Fig. 4(a). This unstable behavior of the Gibbs
free energy for q < qc exhibits a first order (discontin-
uous) phase transition between small black hole (SBH)

and large black hole (LBH). For α = 0.7 ∈
(

1/
√
3, 1

)

case, as illustrated in Fig. 4(b), charged dilaton AdS
black hole is Schw-type where the lower (upper) branch
of the Gibbs free energy is globally stable (unstable) for
q > qc. For q < qc, a first order phase transition occurs
between SBH and LBH in the lower branch of the Gibbs
free energy which is stable. For α = 1.3 ∈

(

1,
√
3
)

, a
novel behavior happens in for Schw-type black hole (see
Fig. 5). Indeed, in contrast to what occurs in Fig. 4(b),
in this case a first order phase transition takes place be-

tween SBH and LBH for q > qc. This behavior has not
been observed in previous studies on phase transition of
charged AdS black holes [25, 31]. It is notable to men-
tion that we do not find any other phase transition for
charged dilaton AdS black hole.

The corresponding SBH/LBH phase diagram of dila-
ton AdS black hole for different values of the dilaton pa-
rameter α is sketched in Fig. 6. It is clear from Fig. 6
that the critical points are denoted by black spots at the
end of the first order phase transition curves (orange). In
Fig. 6(a), the first order phase transition curves separate
the SBH from LBH for q < qc, while in Fig. 6(b), these
curves distinguish the SBH from LBH for q > qc. Also,
no BH regions implies that no BH solutions exist at the
low temperature.

V. SUMMARY

To sum up, we have revisited critical behaviour and
phase structure of charged dilaton black holes in the
background of AdS spaces. The motivation for study
phase behaviour of dilaton black holes in AdS spacetime
is mainly inspired by AdS/CFT correspondence and is
expected to shed light on the microscopic structure of
black holes. We adopted the view point that cosmologi-
cal constant can be regarded as a fixed parameter, while
the charge of the black hole varies.
To understand the impact of the dilaton field on the

heat capacity, Cq, which determines the local thermody-
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namic stability of the system, we have studied the behav-
ior of the temperature T as a function of entropy S for
different values of α. By expanding T for small values
of S, we have distinguished several black hole systems,
with thermal stability/instability, depending on the val-
ues of α. In order to obtain the coordinates of the critical
point, we numerically solved the system of equations and
plotted the quantities at the critical point in terms of α.
We observed that there is no critical point in cases with
α = 1 and α ≥

√
3, while for 0 < α < 1, the critical

quantities are not significantly affected by α, except en-
tropy which abruptly decreases close to 1. In the absence
of dilaton field (α = 0), the critical quantities reduce to
those of charged AdS black hole.
We have also studied the Gibss free energy, which ex-

hibits the global stable state of the system, for different
values of α and q. We have realized several cases, depend-
ing on α, including whether or not the Gibbs free energy

is single/multi-valued and whether or not the system is
thermally stable/unstable. Interestingly enough, we re-
alized that unstable behavior of the Gibbs free energy
for q < qc exhibits a first order (discontinuous) phase
transition between SBH and LBH for 0 ≤ α < 1. For
1 < α <

√
3, however, a novel first order phase transi-

tion happens between SBH and LBH provided q > qc.
The later has not been observed in the previous studies
on phase transition of charged AdS black holes and is one
of the new result of the present paper.
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