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We revisit critical behavior and phase structure of charged anti–deSitter (AdS) dilaton black holes for
arbitrary values of dilaton coupling α, and realize several novel phase behavior of this system. We adopt the
viewpoint that cosmological constant (pressure) is fixed and treat the charge of the black hole as a
thermodynamical variable. We study critical behavior and phase structure by analyzing the phase diagrams
in T − S and q–T planes. We numerically derive the critical point in terms of α and observe that for α ¼ 1

and α ≥
ffiffiffi
3

p
, the system does not admit any critical point, while for 0 < α < 1, the critical quantities are not

significantly affected by α. We find that unstable behavior of the Helmholtz free energy for q < qc exhibits
a first order (discontinuous) phase transition between small and large black holes for 0 ≤ α < 1, where qc
is the value of charge at the critical point. For 1 < α <

ffiffiffi
3

p
and q > qc, however, a novel first order phase

transition occurs between small and large black hole, which has not been observed in the previous studies
on phase transition of charged AdS black holes.

DOI: 10.1103/PhysRevD.102.064021

I. INTRODUCTION

Phase transition is certainly one of the most intriguing
and interesting phenomena in the thermodynamic descrip-
tion of black holes which may shed light on the nature of
quantum gravity. In particular, the investigations on the
black hole phase structure/transition in an asymptotically
AdS spacetime have received considerable attentions in the
past years. This is mainly due to the remarkable duality
between gravity in an (nþ 1)-dimensional AdS spacetime
and the conformal field theory living on the boundary of
its n-dimensional spacetime, (AdS=CFT) correspondence.
Perhaps, one of the earliest studies in this direction was
done by Hawking and Page [1], who disclosed that there is
indeed a first order phase transition, latter named Hawking-
Page phase transition, between the thermal radiation and
the stable large Schwarzschild black hole with spherical
horizon in the background of AdS spacetime. Later, Witten
discovered [2] that this phase transition can be interpreted
in the AdS=CFT duality as the confinement/deconfinement
phase transition of the strongly coupled gauge theory.

Recently, it has been shown that for charged AdS black
hole a second and first order phase transitions occur
between small and large black holes in an extended phase
space which resembles the liquid-gas phase transition in the
usual van der Waals liquid-gas system [3,4]. In an extended
thermodynamic phase space, the cosmological constant
(AdS length) is considered as a thermodynamic pressure
which can vary, and its corresponding conjugate quantity is
the thermodynamic volume of the black hole. Taking into
account the variation of pressure in the first law, one
observes that the mass of AdS black hole is equivalent
to the enthalpy [5]. In the recent years, thermodynamic
phase transitions in an extended phase space have been
explored for various types of black holes in AdS space (see
Refs. [6–22] and references therein). Reference [23] per-
formed a stability analysis of charged AdS dilaton black
hole by considering the second derivative of mass with
respect to entropy. It was shown that the black holes are
thermodynamically stable for small α, while for large α
black hole becomes unstable [23]. The studies on phase
transition in such black hole have been carried out from
both thermal and dynamical point of view [24], where the
cosmological constant appears as a thermodynamical
variable. They found that for small dilaton coupling,
α ≈ 0.01, the system resembles the van der Waals fluid
behavior, while for α > 1, the P − v diagram of the system
deviates and new phenomena beyond the van der Waals
liquid-gas-like appears [24]. Recently, a novel phase
behavior represents a small/large black hole zeroth-order
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phase transition, in an extended phase space with varying
cosmological constant, has been observed for charged
dilaton black holes, where the geometry of spacetime is
not asymptotically AdS [25].
Another possible approach to study thermodynamic

phase structure of black hole is to consider the variation
of electric charge of the black hole, while the cosmological
constant (AdS length) is kept fixed. With regard to this
perspective, the critical behavior and phase transition of
charged AdS black holes were investigated in a fixed AdS
geometry, indicating that it exhibits the small/large black
hole phase transition of van der Waals type [26–28].
Interestingly enough, it has been realized [26] that the
phase transition of charged AdS black hole can occur in
Q2 −Ψ plane, where Ψ ¼ 1=2rþ is the conjugate of Q2,
without extending the phase space. Indeed, in this alter-
native perspective, the relevant response function clearly
signifies the stable and unstable region. Also there still exist
a deep analogy between critical phenomena and critical
exponents of the system with those of van der Waals liquid-
gas system [26]. The advantages of this new approach is
that one do not need to extend the phase space by treating
the cosmological constant as a thermodynamical variable
which may physically make no sense [26]. It has been
confirmed that this new approach also works in other
gravity theories [29,30] as well as in higher spacetime
dimensions [31]. Recently, the universality class and
critical properties of any AdS black hole, independent of
spacetime metric, via an alternative phase space has been
explored [32]. It was shown that the values of critical
exponents for generic black hole are the same as ones of
the van der Waals fluid system [32]. For Born-Infeld AdS
black holed in four dimensional spacetime, we analytically
calculated the critical point by studying the behavior of
specific heat in a fixed AdS geometry [33]. Furthermore,
the interesting reentrant phase transition of Born-Infeld
AdS black hole has been investigated in the thermodynamic
phase space [33]. The structure of charged black holes has
been explored by employing the Ruppeiner geometry [34]
in which the charge is allowed to vary.
In this paper, we study thermodynamic properties of

charged AdS dilaton black hole including the phase tran-
sition and critical behavior in (3þ 1)-dimensional space-
time. Our work differs from [24] in that we keep the
cosmological constant as a fixed quantity and treat the
charge of the black hole as a thermodynamic variable, while
the authors of [24] extended the phase space by treating
cosmological constant as a variable. Following [33], we first
identify different types of charged AdS dilaton black hole
depending on the behavior of heat capacity at constant
charge for arbitrary values of the dilaton-electromagnetic
coupling constant α and fixed AdS length (cosmological
constant). This has not been addressed in the previous
studies [23,24]. As we shall see, the behavior of black hole
temperature crucially depends on α for the small entropy,

such that black hole has different behaviors for 0 < α <
1=

ffiffiffi
3

p
and 1=

ffiffiffi
3

p
< α. Besides, we calculate the critical

point numerically for various values of α in T-S plane. When
α ¼ 1 and α ≥

ffiffiffi
3

p
, we cannot realize any critical point in the

system which has not been reported in the previous inves-
tigations on phase transition of charged AdS black holes.
Besides, for 0 ≤ α < 1, we observe a small/large first
order phase transition for q < qc, while similar behavior
is seen for 1 < α <

ffiffiffi
3

p
provided q > qc. Indeed, there is a

novel first order phase transition in the range of 1 < α <
ffiffiffi
3

p
which has not previously been observed. Finally, the phase
diagram for charged AdS dilaton black hole is constructed
in q-T plane.
This paper is structured in the following manner. In

Sec. II, a brief overview on thermodynamics of the four-
dimensional charged dilaton black hole in the AdS back-
ground is given. In Sec. III, we investigate critical behavior
of charged dilaton AdS black holes by studying the specific
heat at constant electric charge in T-S plane. In Sec. IV, we
use the Helmholtz free energy to determine the possible
phase transition in the system. Finally, we summarize the
main results Sec. V.

II. CHARGED DILATON BLACK HOLES
IN AdS SPACE

We start with a brief review on charged AdS black holes
in dilaton gravity and calculate the associated conserved
and thermodynamic quantities. Exact charged dilaton black
hole solutions in the background of (A)dS space in four
[35] and higher dimensions [36,37] have been presented
by Gao and Zhang. Thermodynamics of these solutions
has been investigated in [23,38]. The four-dimensional
action of Einstein-Maxwell gravity coupled to a dilaton
field is [23,35]

S ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ð∇φÞ2 − VðφÞ

− e−2αφFμνFμνÞ; ð1Þ

where R is the Ricci scalar curvature, φ is the dilaton field
and VðφÞ is the dilaton potential. Herein, the electromag-
netic field tensor Fμν is defined in terms of the gauge field
Aμ via Fμν ¼ ∂μAν − ∂νAμ. For an arbitrary value of the
dilaton coupling strength α in AdS space, the dilaton
potential is chosen to take the following form [35,39]

VðφÞ ¼ 2Λ
3ðα2 þ 1Þ2 ½8α

2eðα2−1Þφ=α − ðα2 − 3Þe2αφ

þ α2ð3α2 − 1Þe−2φ=α�; ð2Þ

whereΛ is the cosmological constant that relates to the AdS
radius l as Λ ¼ −3=l2. The potential given in Eq. (2) shows
that the cosmological constant Λ is coupled to the dilaton
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field φ in a nontrivial way. When the coupling constant
α ¼ �1=

ffiffiffi
3

p
;�1;� ffiffiffi

3
p

, the dilaton potential in Eq. (2) is
indeed the supersymmetry (SUSY) potential of string
theory. Note that in the absence of the dilaton field,
i.e., Vðφ ¼ 0Þ ¼ 2Λ, the action Eq. (1) reduces to the
usual Einstein-Maxwell theory with cosmological constant.
In 3þ 1 dimensions, the line element of a static spherically
symmetric spacetime is written

ds2 ¼ −fðρÞdt2 þ dρ2

fðρÞ þ ρ2R2ðρÞdΩ2; ð3Þ

where dΩ2 is the metric of the 2-dimensional unit sphere
with volume ω ¼ 4π and the metric functions fðρÞ and
RðρÞ are given by [23]

fðρÞ ¼
�
1 −

b
ρ

�
γ
��

1 −
b
ρ

�
1−2γ

�
1 −

c
ρ

�
þ ρ2

l2

�
; ð4Þ

R2ðρÞ ¼
�
1 −

b
ρ

�
γ

; ð5Þ

where b and c are integration constants and γ ¼
2α2=ðα2 þ 1Þ. Also, the dilaton field and the only non-
vanishing component of the gauge field Aμ are obtained
as [23]

φðρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γð2 − γÞp
2

ln

�
1 −

b
ρ

�
; At ¼ −

q
ρ
; ð6Þ

where q, an integration constant, is the charge parameter
which is related to b and c via the following relation

q2 ¼ bc
α2 þ 1

: ð7Þ

For α ≠ 0, these solutions become imaginary in the range of
0 < ρ < b, so this region should be excluded from the
spacetime. One may also have a close look on the
expansion of VðφÞ. Given φðρÞ at hand, it is a matter of
calculation to show that for small α,

VðφÞ¼2Λþ4Λα2
�
bðρ−7b=6Þ
ρ2ð1−b=ρÞ2þ lnð1−b=ρÞ

�
þOðα4Þ;

ð8Þ

which implies that, in the presence of dilaton field, the
leading correction term to the cosmological constant is of
order α2. The black hole event horizon is located at ρ ¼ ρþ
which is determined by the largest real root of fðρþÞ ¼ 0.
The mass and electric charge of the dilaton AdS black hole
per unit volume ω are [23]

M ¼ 1

8π

�
c − b

α2 − 1

α2 þ 1

�
; Q ¼ q

4π
; ð9Þ

where the expression of M is derived in the Appendix.
Also, the other associated thermodynamic quantities, such

as the Hawking temperature T, entropy S, and electric
potential U, are

T ¼ 1

4πρþ

�
1 −

b
ρþ

�
1−γ

�
1þ ρþ

l2
½3ρþ þ 2bðγ − 2Þ�

×

�
1 −

b
ρþ

�
2ðγ−1Þ�

; ð10Þ

S ¼ ρ2þ
4

�
1 −

b
ρþ

�
γ

; U ¼ q
ρþ

; ð11Þ

where entropy S is written per unit volume ω. It is easy to
verify that the first law of black hole thermodynamics

dM ¼ TdSþ UdQ; ð12Þ

is satisfied on the event horizon [23].
It is worthwhile to mention that in the absence of the

dilaton filed (α ¼ 0), the solutions reduce to the well-known
four-dimensional Reissner-Nordstrom (RN)-AdS black hole.
It is also notable to mention that these solutions are even
functions in α. In the next section, we study the critical
behavior of dilaton AdS black hole in the phase space.

III. CRITICAL BEHAVIOR OF CHARGED
DILATON AdS BLACK HOLE

In this section we are going to investigate the effects of
the dilaton field on the critical behavior of charged dilaton
AdS black hole. To end this, we analyze behavior of the
specific heat at constant charge

Cq ¼ T

�
dS
dT

�
q
; ð13Þ

where l and α are also fixed. The sign of this quantity
determines the local thermodynamic stability, i.e., the
stability (instability) is accompanied by Cq>0 (Cq < 0).
To see the influence of the dilaton field (α) on Cq, we plot
the behavior of the temperature as a function of entropy in
Fig. 1 for different values of α and q ¼ 1. It is obvious from
Fig. 1, that the behavior of the black hole temperature
significantly depends on α for small S. Accordingly, we
expand the temperature of the charged dilaton AdS black
hole for small entropy as follows:

(i) For 0 < α < 1=
ffiffiffi
3

p
≈ 0.58,

T ¼ ð3α2 − 1Þðα2 þ 1Þ1=ðα2þ1Þ−1q2=ðα2þ1Þ

π24=ðα2þ1Þþ1l2−2=ðα2þ1ÞS2=ðα2þ1Þ−1=2

þOðS2=ðα2þ1Þ−5=2Þ; ð14Þ

the black hole is “Reissner-Nordstrom-AdS” (RN)
type in which with decreasing entropy, the temper-
ature goes over zero.
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(ii) For α ¼ 1=
ffiffiffi
3

p
,

T ¼
3
	
3l2 þ 12q2 − l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48q2 þ 9l2

p 

2πl4q2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 48q2=l2

p
− 3



3=2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l2 þ 8q2 þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48q2 þ 9l2

qr
SþOðS3Þ;

ð15Þ

where the dilaton black hole has zero temperature at
the vanishing entropy limit. This αmay be called the
“marginal coupling constant” (αm).

(iii) For 1=
ffiffiffi
3

p
< α < 1,

T ¼ ð3α2 − 1Þðα2 þ 1Þ1=ð2α2Þ−1
π21=α

2þ1l2q−1=α
2

S1=ð2α2Þ−1=2
þOðS1=ð2α2Þ−1=2Þ;

ð16Þ

black hole is “Schwarzschild-AdS” (Schw)-type. In
this case, black hole solution does not exist in the
low-temperature regime.

(iv) For α ¼ 1,

T ¼ l2 þ 2q2

4
ffiffiffi
2

p
l2πq

þOðSÞ; ð17Þ

which is the “spatial” case where the dilaton black
hole has finite temperature at S ¼ 0.

(v) For α > 1,

T¼21=α
2−3ðα2þ1Þ−1=ð2α2Þ

πq1=ðα2ÞS1=2−1=ð2α2Þ
þOðS1=2−1=ð2α2ÞÞ; ð18Þ

black hole is Schw-type again. As can be seen from
Fig. 1, the right branch of isocharge for Schw-type
black hole is locally stable, i.e., the specific heat at

constant charge is positive. On the other hand, the
large entropy limit of the temperature is

T ≈ 3

ffiffiffi
S

p

2πl2
⇒ Cq ¼ 2S > 0; ð19Þ

which is independent of the charge and dilaton
coupling constant and always yields a thermal stable
system.
The thermal stability of a charged AdS dilaton

black hole was analyzed by means of ð∂2M=∂S2Þq
for higher dimensional spacetimes at the fixed l
and b in Ref. [23]. By fixing l and b, the charge of
black hole is determined as a function of ρþ and α
using the black hole horizon relation fðρþÞ ¼ 0
and Eq. (7),

q ¼ qðρþ;αÞ: ð20Þ

Indeed, charge (q) is not fixed in the corresponding
figures of Ref. [23]. Here, we classify the four
dimensional charge AdS dilaton black holes by
examining the behavior of the specific heat,
Eq. (13), at fixed l (i.e., cosmological constant)
and q, for various values of α. Such classification
was not performed in previous studies [23,24].

In what follows, we are going to obtain the critical
point, which corresponds to a second order phase
transition, for various type of charged dilaton AdS
black holes. For fixed q and l, the value of the critical
point is characterized by the inflection point

∂T
∂S

����
qc

¼ 0;
∂2T
∂S2

����
qc

¼ 0: ð21Þ

To calculate the above expressions from Eq. (10)
and (11), the following relation is used

∂T
∂S

����
q
¼

∂T
∂ρþ

���
b;q

þ ∂T
∂b
���
ρþ;q

∂b
∂ρþ

���
q

∂S
∂ρþ

���
b
þ ∂S

∂b
���
ρþ

∂b
∂ρþ

���
q

;

where

∂b
∂ρþ

����
q
¼ −

∂fðρþÞ∂ρþ
���
b;q

∂fðρþÞ∂b
���
ρþ;q

:

Due to the complicated form of Eqs. (10) and (21), it
is almost impossible to obtain the critical values,
analytically. Hence, we numerically solve the set
of Eq. (21) for a given value of α. The calculated
values of the critical quantities, such as qc, Tc, ρþc,
and Sc, for various α are illustrated in Figs. 2 and 3.

0

0 1 3

1 3

1 3 1
1
1

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S

T

FIG. 1. T-S diagram of charged dilaton AdS black hole. This
figure shows the remarkable influence of the coupling constant α
on the temperature. Here, we have set l ¼ 1 and q ¼ 1.
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We observe that there is no critical point for charged
dilaton AdS black hole in cases where α ¼ 1 and
α ≥

ffiffiffi
3

p
≈ 1.73. As one can see from Figs. 2 and 3,

for 0 < α < 1, the dilaton coupling parameter (α)
does not significantly affect the critical quantities,
except entropy which abruptly decreases close to 1.
Figure 2(b) shows that the critical point occurs in the
RN-type of black hole when 0 ≤ α < 1=

ffiffiffi
3

p
, whereas

for 1=
ffiffiffi
3

p
< α < 1 it occurs in Schw-type where

there is a lower bound on temperature of the black
hole. As expected from Figs. 2 and 3, in the absence
of dilaton field (α ¼ 0), the critical quantities reduce
to those of charged AdS black hole [4]. In case of
1 < α <

ffiffiffi
3

p
, with increasing α, the values of critical

quantities increase and diverge for α →
ffiffiffi
3

p
. It should

also be pointed out that in the range 1 < α <
ffiffiffi
3

p
, the

critical behavior happens in Schw-type region.

In order to fully obtain phase transition and
examine phase structure of charged dilaton AdS
black holes, we shall study the behavior of Helmholtz
free energy in the next section.

IV. HELMHOLTZ FREE ENERGY

The general thermodynamic description of charged
dilaton AdS black hole is provided by studying the
Helmholtz free energy which exhibits the global stable
state. Indeed, the Helmholtz free energy is an appro-
priate thermodynamic potential to characterize equilib-
rium processes at constant temperature and charge in
the canonical ensemble [28]. The Helmholtz free
energy for a fixed AdS radius regime can be obtained
through the Legendre transformation of the mass M.
Thus, the Helmholtz free energy per unit volume ω is
given

(a) (b)

FIG. 2. The behaviors of the critical electric charge (qc) and critical temperature (Tc) versus α. The no BH region corresponds to no
BH solution. The vertical dashed lines mark the values of α ¼ 1=

ffiffiffi
3

p
, α ¼ 1, and α ¼ ffiffiffi

3
p

. We use the logarithmic scales on the vertical
axis and set l ¼ 1.

(a) (b)

FIG. 3. The behaviors of the critical event horizon radius (ρþc) and critical entropy (Sc) versus α. The vertical dashed lines mark the
values of α ¼ 1=

ffiffiffi
3

p
, α ¼ 1 and α ¼ ffiffiffi

3
p

. We use the logarithmic scales on the vertical axis and set l ¼ 1.
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HðT;qÞ¼M−TS

¼ lðϒ½3−4Γ−α2�þ2ðα2−1Þþα2þ5Þ
32

ffiffiffi
2

p
πðα2þ1ÞΓ3=2−2=ðα2þ1Þðϒ−1Þ−1=2 ; ð22Þ

where

ϒ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2ðα2 þ 1ÞΓ3−4=ðα2þ1Þ

l2ð1 − ΓÞ

s
;

and Γ ¼ 1 − b=ρþ, thus we have Γ ¼ ΓðT; qÞ. Notice that
the reality condition of the black hole solutions (ρ > b)
leads to the constraint 0 < Γ < 1.
The behavior of Helmholtz free energy in terms of the

temperature T for α ¼ 0.5, 0.7, and 1.3 are depicted in
Figs. 4 and 5, for different values of charge q. From these

figures, it can be seen that the charge dependence of
Helmholtz free energy is strongly affected by the dilaton
coupling parameter α. In case of α ¼ 0.5 ∈ ½0; 1= ffiffiffi

3
p �,

where charged dilaton AdS black hole is RN-type, the
Helmholtz free energy is single value in temperature for
q > qc [see Fig. 4(a)]. In this case, back hole is locally
stable (Cq > 0) which is indicated by the solid blue line in
Fig. 4(a). On the other hand, when q < qc, black hole
becomes thermodynamically unstable where the Helmholtz
free energy is multi-valued in the certain range of temper-
ature. This corresponds to Cq < 0 which is shown by
dashed-red line in Fig. 4(a). A close up of such a curve is
illustrated in the inset of Fig. 4(a), where the arrows
indicate the direction of the decreasing black hole event
horizon (ρþ). Decreasing the temperature of the system
follows the lower solid blue curve, which corresponds to
the lowest Helmholtz free energy, until it crosses the upper
solid blue curve. In this position, system enters to the
left solid blue curve with a first order large black hole
(LBH)/small black hole (SBH) phase transition which is
accompanied by a discontinuity in the slop of Helmholtz
free energy.1 The small (large) is referred to the size of
horizon radius ρþ. For α ¼ 0.7 ∈ ð1= ffiffiffi

3
p

; 1Þ case, as
illustrated in Fig. 4(b), charged dilaton AdS black hole
is Schw-type where the lower (upper) branch of the
Helmholtz free energy is thermodynamically stable (unsta-
ble) with Cq > 0 (Cq < 0) for q > qc. At q ¼ qc, there is a
critical point in the lower branch of H. For q < qc,
Helmholtz energy becomes multivalued with negative Cq

in the lower branch. For such a case, the direction of de-
creasing ρþ is marked with arrows in the inset of Fig. 4(b).
As temperature of black hole decreases, the horizon (ρþ)

0.24 0.25 0.26 0.27 0.28
0.008

0.009

0.010

0.011

0.012

0.013

0.05 0.10 0.15 0.20 0.25 0.30

0.006

0.008

0.010

0.012

0.014

(a) (b)

FIG. 4. Helmholtz free energy as a function of temperature for l ¼ 1 and various values of q. For q < qc, the system undergoes a first
order phase transition between SBH and LBH. The positive (negative) sign of Cq is identified by the blue solid (dashed red) line. Insets:
Black arrows show the direction of the decreasing ρþ. The curves are shifted for clarity.

0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

T

H 0.5 1 1.5 2

1

2

1.5

q qc

q qc

q qc

FIG. 5. Helmholtz free energy as a function of temperature for
l ¼ 1, α ¼ 1.3 ∈ ð1; ffiffiffi

3
p Þ and various values of q. For q > qc, the

system undergoes a first order phase transition between SBH and
LBH. The positive (negative) sign of Cq is identified by the blue
solid (dashed red) line. Inset: Black arrows show the direction of
the decreasing ρþ. The curves are shifted for clarity.

1A first order phase transition occurs when there exist a
discontinuity in the first derivative of Helmholtz free energy
with respect to temperature which is entropy, i.e., ð∂H=∂TÞ ¼ S.
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decreases along the lowest stable (solid blue) branch of the
curve until two stable branches cross each other. At this
point, black hole enters to the solid blue branch with the
discontinuous change in the slope of Helmholtz free
energy, indicating a first order phase transition which
occurs between the LBH and SBH. Further decreasing
T, black hole follows the left solid blue branch until the
end. For α ¼ 1.3 ∈ ð1; ffiffiffi

3
p Þ, a novel behavior happens in

for Schw-type black hole (see Fig. 5). Indeed, in contrast to
what occurs in Fig. 4(b), in this case a first order phase
transition takes place between SBH and LBH for q > qc. In
the inset of Fig. 5, the decrease in ρþ is denoted by the
arrows, which is opposite to the previous case, i.e., the inset
in Fig. 4(b). This behavior has not been observed in
previous studies on phase transition of charged AdS black
holes [26,33]. It is notable to mention that we do not find
any other phase transition for charged dilaton AdS
black hole.
The corresponding SBH/LBH phase diagram of dilaton

AdS black hole for different values of the dilaton
parameter α is sketched in Fig. 6. It is clear from
Fig. 6 that the critical points are denoted by black spots
at the end of the first order phase transition curves
(orange). In Fig. 6(a), the first order phase transition
curves separate the SBH from LBH for q < qc, while in
Fig. 6(b), these curves distinguish the SBH from LBH
for q > qc. Also, no BH regions implies that no BH
solutions exist at the low temperature.

V. SUMMARY

To sum up, we have revisited critical behavior and phase
structure of charged dilaton black holes in the background
of AdS spaces. The motivation for study phase behavior of
dilaton black holes in AdS spacetime is mainly inspired by
AdS=CFT correspondence and is expected to shed light on
the microscopic structure of black holes. We adopted the
view point that cosmological constant can be regarded as a
fixed parameter, while the charge of the black hole varies.
To understand the impact of the dilaton field on the heat

capacity, Cq, which determines the local thermodynamic
stability of the system, we have studied the behavior of the
temperature T as a function of entropy S for different values
of α. By expanding T for small values of S, we have
distinguished several black hole systems, with thermal
stability/instability, depending on the values of α. In order
to obtain the coordinates of the critical point, we numerically
solved the system of equations and plotted the quantities at
the critical point in terms of α. We observed that there is no
critical point in cases with α ¼ 1 and α ≥

ffiffiffi
3

p
, while for

0 < α < 1, the critical quantities are not significantly
affected by α, except entropy which abruptly decreases
close to 1. In the absence of dilaton field (α ¼ 0), the critical
quantities reduce to those of charged AdS black hole.
We have also studied the Gibss free energy, which

exhibits the global stable state of the system, for different
values of α and q. We have realized several cases, depend-
ing on α, including whether or not the Helmholtz free

FIG. 6. SBH/LBH phase diagram for l ¼ 1 and various values of α. The critical points and first order phase transition curves are
highlighted by the black solid circle and solid orange line, respectively. At low temperature, no BH regions correspond to no black hole
solution. We use the logarithmic scale on q axis in Fig. (b).
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energy is single/multi-valued and whether or not the system
is thermally stable/unstable. Interestingly enough, we
observed that unstable behavior of the Helmholtz free
energy for q < qc exhibits a first order (discontinuous)
phase transition between SBH and LBH for 0 ≤ α < 1. For
1 < α <

ffiffiffi
3

p
, however, a novel first order phase transition

happens between SBH and LBH provided q > qc. The later
has not been observed in the previous studies on phase
transition of charged AdS black holes and is one of the new
result of the present work.
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APPENDIX: MASS OF DILATON BLACK HOLE
IN AdS SPACE

To obtain the mass of a charged dilaton AdS black hole
in four dimensions, we use the background subtraction
method of the Brown-York which is based on quasilocal
concept [23,38]. Within this formalism, the line element
should be written in the form

ds2 ¼ −WðRÞdt2 þ dR2

VðRÞ þR2dΩ2: ðA1Þ

In order to obtain the metric Eq. (A1) from Eq. (3), we
perform the following transformation

R ¼ ρ

�
1 −

b
ρ

�
γ=2

;

such that, the metric functions W and V are written as

WðRÞ ¼ fðρðRÞÞ;

VðRÞ ¼ fðρðRÞÞ
�
dR
dρ

�
2

¼
�
1þ bðγ − 2Þ

2ρ

�
2
�
1 −

b
ρ

�
γ−2

fðρðRÞÞ;

where f is given by Eq. (4). According to the metric
Eq. (4), the background metric is chosen to be of the form

W0ðRÞ ¼ V0ðRÞ ¼ f0ðρðRÞÞ

¼ 1þ ρ2

l2
−

2α2bρ
l2ðα2 þ 1Þ þ

α4b2

l2ðα2 þ 1Þ2 :

To compute the mass of the space time, one should choose a
timelike Killing vector ξ on the boundary surface B of the
space time Eq. (A1). Then, the quasilocal mass can be
calculated via

M ¼ 1

8π

Z
B
d2φ

ffiffiffi
σ

p fðKab − KhabÞ − ðK0
ab − K0h0abÞgnaξb;

ðA2Þ

where σ is the determinant of the metric σab of the
boundary B, na is the timelike unit normal vector to the
boundary and K0

ab is the extrinsic curvature of the back-
ground metric. In the context of the counterterm method,
the limit in which the boundary becomes infinity, B∞, is
taken, and the counterterm prescription ensures that the
action and mass are finite. By using the above modified
Brown-York formalism, one can obtain the mass of the AdS
dilaton black hole per unit volume as

M ¼ 1

8π

�
c − b

α2 − 1

α2 þ 1

�
: ðA3Þ

In the absence of the dilaton (α ¼ 0), this expression reduces
to the mass of the AdS black hole in four dimensions.
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