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Abstract
From social networks to public transportation, graph structures
are a ubiquitous feature of life. How do humans learn functions
on graphs, where relationships are defined by the connectiv-
ity structure? We adapt a Bayesian framework for function
learning to graph structures, and propose that people perform
generalization by assuming that the observed function values
diffuse across the graph. We evaluate this model by asking
participants to make predictions about passenger volume in a
virtual subway network. The model captures both generaliza-
tion and confidence judgments, and provides a quantitatively
superior account relative to several heuristic models. Our work
suggests that people exploit graph structure to make general-
izations about functions in complex discrete spaces.
Keywords: Function Learning, Graph structures, Gaussian
Process, Generalization, Successor Representation

Introduction
Most of function learning research has focused on how peo-
ple learn a relationship between two continuous variables
(Mcdaniel & Busemeyer, 2005; Lucas, Griffiths, Williams,
& Kalish, 2015; DeLosh, Busemeyer, & McDaniel, 1997).
How much hot sauce should I add to enhance my meal? How
hard should I push a child on a swing? While function learn-
ing on continuous spaces is ubiquitous, many other relation-
ships in the world are defined by functions on discrete spaces.
For example, navigating a subway network and constructing
a bookshelf both require representation of functions mapping
discrete inputs (subway stops and configurations of compo-
nents) to continuous outputs (passenger volume and proba-
bility of success). Likewise, language, commerce, and social
networks are all defined partly by discrete relationships. How
do people learn functions on discrete graph structures?

We propose that a diffusion kernel provides a suitable sim-
ilarity metric based on the transition structure of a graph.
When combined with the Gaussian Process (GP) regression
framework, we arrive at a model of how humans learn func-
tions and perform inference on graph structures. Using a
virtual subway network prediction task, we pit this model
against heuristic alternatives, which perform inference with
lower computation demands, but are unable to capture human
inference and confidence judgments. We also show that the
diffusion kernel can be related to prominent models in contin-
uous function learning and models of structure learning. This
opens up a rich set of theoretical connections across theories
of human learning and generalization.

Computational Models of Function Learning
Based on a limited set of observations, how can you inter-
polate or extrapolate to predict unobserved data? This ques-

tion has been the focus of human function learning research,
which has traditionally studied predictions in continuous
spaces (e.g., the relationship between two variables; Buse-
meyer, Byun, DeLosh, & McDaniel, 1997). Function learn-
ing research has revealed how inductive biases guide learning
(Kwantes & Neal, 2006; Kalish, Griffiths, & Lewandowsky,
2007; Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Ger-
shman, 2017) and which types of functions are easier or
harder to learn (Schulz, Tenenbaum, Reshef, Speekenbrink,
& Gershman, 2015).

Several theories have been proposed to account for how
humans learn functions. Earlier approaches used rule-based
models that assumed a specific parametric family of functions
(e.g., linear or exponential; Brehmer, 1974; Carroll, 1963;
Koh & Meyer, 1991). However, the rigidity of rule-based
learning struggled to account for order-of-difficulty effects
in interpolation tasks (Mcdaniel & Busemeyer, 2005), and
could not capture the biases displayed in extrapolation tasks
(DeLosh et al., 1997).

An alternative approach relied on similarity-based learn-
ing, using connectionist networks to associate observed in-
puts and outputs (DeLosh et al., 1997; Kalish, Lewandowsky,
& Kruschke, 2004; Mcdaniel & Busemeyer, 2005). The
similarity-based approach is able to capture how people in-
terpolate, but fails to account for some of the inductive biases
displayed in extrapolation and in the partitioning of the input
space. In some cases, hybrid architectures were developed to
incorporate rule-based functions in a associative framework
(e.g., Kalish et al., 2004; Mcdaniel & Busemeyer, 2005) in an
attempt to gain the best of both worlds.

More recently, a theory of function learning based on GP
regression was proposed to unite both accounts (Lucas et al.,
2015), because of its inherent duality as both a rule-based and
a similarity-based model. GP regression is a non-parametric
method for performing Bayesian function learning (Schulz,
Speekenbrink, & Krause, 2018), has successfully described
human behavior across a range of traditional function learn-
ing paradigms (Lucas et al., 2015), and can account for com-
positional inductive biases (e.g., combining periodic and long
range trends; Schulz et al., 2017).

While the majority of function learning research has stud-
ied continuous spaces, many real-world problems are discrete
(Kemp & Tenenbaum, 2008). In a completely unstructured
discrete space, the task of function learning is basically hope-
less, because there is no basis for generalization across in-
puts. Fortunately, most real-world problems have structure
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(Tenenbaum, Kemp, Griffiths, & Goodman, 2011), which
we can often represent as a connectivity graph that encodes
how inputs (nodes) relate to each other (see Kemp & Tenen-
baum, 2008, for a similar argument). By assuming that func-
tions vary smoothly across the graph (a notion we formalize
below), functions can be generalized to unobserved inputs.
Although this idea has been studied extensively in machine
learning, it has not yet fully permeated into studies of human
function learning.

Goals and Scope
We describe a model of learning graph-structured functions
using a diffusion kernel. The diffusion kernel specifies the
covariance between function values at different nodes of a
graph based on its connectivity structure. When combined
with the GP framework, it allows us to make Bayesian pre-
dictions about unobserved nodes. Even though previous work
has investigated how people learn the relational structure of a
graph (Kemp & Tenenbaum, 2008; Kemp, Tenenbaum, Grif-
fiths, Yamada, & Ueda, 2006; Tomov, Yagati, Kumar, Yang,
& Gershman, 2018), or infer properties of unobserved inputs
(Kemp & Tenenbaum, 2009; Kemp, Shafto, & Tenenbaum,
2012), less is known about how people learn functions in dis-
crete spaces with real-valued outputs.

We present an experiment where participants are shown a
series of randomly generated subway maps and asked to pre-
dict the number of passengers at unobserved stations to test
our model of function learning on graphs. In addition, we col-
lected confidence judgments from participants. We compared
the GP diffusion kernel model to heuristic models based on
nearest-neighbor interpolation.

Function Learning on Graphs
We can specify a graph G = (N ,E) with nodes ni ∈ N and
edges ei ∈ E to represent a structured state space (Fig. 1a).
Nodes represent states and edges represent connections. For
now, we assume that all edges are undirected (i.e., if x→ y
then y→ x).

The diffusion kernel (Kondor & Lafferty, 2002) defines a
similarity metric k(s,s′) between any two nodes on a graph
based on the matrix exponentiation of the graph Laplacian:

k(s,s′) = eαL, (1)

where L is the graph Laplacian:

L = D−A, (2)

with the adjacency matrix A and the degree matrix D. Each
element ai j is 1 when nodes i and j are connected, and 0 oth-
erwise, while the diagonals of D describe the number of con-
nections of each node. The graph Laplacian can also describe
graphs with weighted edges, where D becomes the weighted
degree matrix and A becomes the weighted adjacency matrix.

Intuitively, the diffusion kernel assumes that function val-
ues diffuse along the edges similar to a heat diffusion pro-
cess (i.e., the continuous limit of a random walk). The free

b) Diffusion Kernel Generalization a) Graph Structure

c) Observations d) Diffusion Kernel Predictions (α = 2)

1

40

22
37

30

49

8

1

40

22

10

37

30

9

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6
Distance

Pe
ar

so
n 

C
or

re
la

tio
n

α
0.5
1
2
4

Figure 1: Graph-structured function learning. a) An example
of a graph structure, where nodes represent states and edges
indicate the transition structure. b) A diffusion kernel is a
similarity metric between nodes on a graph, allowing us to
generalize to unobserved nodes based on the assumption that
the correlation between function values decays as an expo-
nential function of the distance between two nodes. The dif-
fusion parameter (α) governs the rate of decay. c) Given some
observations on the graph (colored nodes), we can use the dif-
fusion kernel combined with the Gaussian Process framework
to make predictions (d) about expected rewards (numbers in
grey nodes) and the underlying uncertainty (size of halo) for
each unobserved node.

parameter α governs the rate of diffusion, where α→ 0 as-
sumes complete independence between nodes, while α→ ∞

assumes all nodes are perfectly correlated.
From the similarity metric defined by the diffusion ker-

nel, we can use the GP regression framework (Rasmussen &
Williams, 2006) to perform Bayesian inference over graph-
structured functions. A GP defines a distribution over func-
tions f : S → Rn that map the input space S to real-valued
scalar outputs:

f ∼ GP (m,k) , (3)

where m(s) is a mean function specifying the expected out-
put of s, and k(s,s′) is the covariance function (kernel) that
encodes prior assumptions about the smoothness of underly-
ing function. Any finite set of function values drawn from a
GP is multivariate Gaussian distributed.

We use the diffusion kernel (Eq. 1) to represent the co-
variance k(s,s′) based on the connectivity structure of the
graph, and follow the convention of setting the mean func-
tion to zero, such that the GP prior is fully defined by the

3123



kernel.
Given some observations Dt = {yt ,st} of observed out-

puts yt at states st , we can compute the posterior distribution
p( f (s∗)|Dt) for any target state s∗. The posterior is a normal
distribution with mean and variance defined as:

m(s∗|Dt) = k>∗ (K+σ
2
εI)−1yt (4)

v(s∗|Dt) = k(s∗,s∗)−k>? (K+σ
2
εI)−1k∗ (5)

where K is the t× t covariance matrix evaluated at each pair
of observed inputs, and k∗ = [k(s1,s∗), . . . ,k(st ,s∗)] is the co-
variance between each observed input and the target input
s∗, and σ2

ε is the noise variance. Thus, for any node in the
graph, we can make Bayesian predictions (Fig. 1e) about the
expected function value m(s∗|Dt) and also the level of uncer-
tainty v(s∗|Dt).

The posterior mean function of a GP can be rewritten as:

m(s) =
t

∑
i=1

wik(si,s) (6)

where each si is a previously observed state and the weights
are collected in the vector w =

[
k(St ,St)+σ2

εI
]−1 yt . In-

tuitively, this means that GP regression is equivalent to a
linearly-weighted sum using basis functions k(si,s) to project
observed states onto a feature space (Schulz, Speekenbrink,
& Krause, 2018). To generate new predictions for an unob-
served state s, each output yt is weighted by the similarity
between observed states st and the target state s.

Connections to Function Learning On Continuous
Domains
The GP framework allows us to relate similarity-based func-
tion learning on graphs to theories of function learning in con-
tinuous domains. Consider the case of an infinitely fine lat-
tice graph (i.e., a grid-like graph with equal connections for
every node and with the number of nodes and connections ap-
proaching continuity). Following Kondor and Lafferty (2002)
and using the diffusion kernel defined by Eq. 1, this limit can
be expressed as

k(s,s′) =
1√
(4πα)

exp
(
−|s− s′|

4α

)
, (7)

which is equivalent to a Radial Basis Function (RBF) kernel.
Models similar to the RBF kernel are prominent in the litera-
ture on function learning in continuous domains (Busemeyer
et al., 1997; Lucas et al., 2015). The RBF kernel has also been
used to model how humans generalize about unobserved re-
wards in exploration tasks (Wu, Schulz, Speekenbrink, Nel-
son, & Meder, 2018). Thus, the RBF kernel can be under-
stood as a special case of the diffusion kernel, when the un-
derlying structure is symmetric and infinitely fine.

More broadly, both the RBF and diffusion kernel can be
understood as instantiations of Shepard’s (1987) “universal

law of generalization” in a function learning domain, by ex-
pressing generalization as an exponentially decaying function
of the distance between two stimuli. Shepard famously pro-
posed that the law of generalization should be the first law
of psychology, while recent work has further entrenched it in
fundamental properties of efficient coding (Sims, 2018) and
measurement invariance (Frank, 2018).

Heuristic Models
We compare the GP model to two heuristic strategies for
function learning on graphs, which make predictions about
the rewards of a target state s∗ based on a simple nearest
neighbors averaging rule. The k-Nearest Neighbors (kNN)
strategy averages the function values of the k closest states
(including all states with same shortest path distance as the
k-th closest), while the d-Nearest Neighbors (dNN) strategy
averages the function values of all states within path distance
d. Both kNN and dNN default to a prediction of 25 when
the set of neighbors are empty (i.e., the median value in the
experiment).

Both the dNN and kNN heuristics approximate the local
structure of a correlated graph structure with the intuition that
nearby states have similar function values. While they some-
times make the same predictions as the GP model and have
lower computational demands, they fail to capture the con-
nectivity structure of the graph and are unable to learn direc-
tional trends. Additionally, they only provide point-estimate
predictions, and thus do not capture the underlying uncer-
tainty of a prediction (which we use to model confidence
judgments).

Experiment: Subway Prediction Task
We used a “Subway Prediction Task” to study how people
perform function learning in graph-structured state spaces.
Participants were shown a series of graphs described as sub-
way maps, where nodes corresponded to stations and edges
indicated connections (Fig. 2). Participants were asked to pre-
dict the number of passengers (in a randomly selected train
car) at a target station, based on observations from other sta-
tions.

Methods and procedure
We recruited 100 participants (Mage = 32.7; SD = 8.4; 28 fe-
male) on Amazon MTurk to perform 30 rounds of a graph
prediction task. On each graph, numerical information was
provided about the number of passengers at 3, 5, or 7 other
stations (along with a color aid), from which participants
were asked to predict the number of passengers at a tar-
get station and provide a confidence judgment (Likert scale
from 1-11). The subway passenger cover story was used
to provide intuitions about graph correlated functions. Ad-
ditionally, participants observed 10 fully revealed graphs to
familiarize themselves with the task and completed a com-
prehension check before starting the task. Participants were
paid a base fee of $2.00 USD for participation with an addi-
tional performance contingent bonus of up to $3.00 USD. The
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Figure 2: Screenshot from the Subway Prediction Experi-
ment. Observed nodes (3, 5, or 7 randomly sampled nodes
depending on the information condition) are shown with a nu-
merical value and a corresponding color aid (darker indicates
larger values). The target node is indicated by the dashed
line, and dynamically changes color and displays a numeri-
cal value when participants move the top slider. Confidence
judgments were used to compute a weighted error (i.e., more
confident answers having a larger contribution), which was
used to determine the performance contingent bonus.

bonus payment was based on the mean absolute judgment
error weighted by confidence judgments: Rbonus = $3.00×
(25−∑i c̃iεi)/25 where c̃i is the normalized confidence judg-
ment c̃i =

ci
∑c j

and εi is the absolute error for judgment i.
On average, participants completed the task in 8.09 minutes
(SD = 3.7) and earned $3.87 USD (SD = $0.33).

In each of the 30 rounds, a different graph was sampled
without replacement. We used three different information
conditions (observations ∈ [3,5,7]; each used in 10 rounds
in randomly shuffled order) as a within-subject manipulation
determining the number of randomly sampled nodes with re-
vealed information. In each round, participants were asked to
predict the value of a target node, which was randomly sam-
pled from the remaining unobserved nodes.

All participants observed the same set of 40 graphs that
were sampled without replacement for the 10 fully revealed
examples in the familiarization phase and for the 30 graphs
in the prediction task. We generated the set of 40 graphs by
iteratively building 3× 3 lattice graphs (also known as mesh
or grid graphs), and then randomly pruning 2 out of the 12
edges. In order to generate the functions (i.e., number of pas-
sengers), we fit a diffusion kernel to the graph and then sam-
pled a single function from a GP prior, where the diffusion
parameter was set to α = 2.

Results
Figure 3 shows the behavioral and model-based results of
the experiment. We applied linear mixed-effects regression
to estimate the effect of the number of observed nodes on
participant prediction errors, with participants as a random
effect. Participants made systematically lower error predic-
tions as the number of observable nodes increased (β =−.11,
t(99) =−6.28, p < .001, BF > 1001; Fig. 3a). Repeating the
same analysis but using participant confidence judgments as
the dependent variable, we found that confidence increased
with the number of observable nodes (β = .16, t(99) = 11.3,
p < .001, BF > 100; Fig. 3b). Finally, participants were
also able to calibrate confidence judgments to the accuracy
of their predictions, with higher confidence predictions hav-
ing consistently lower error (β = −.19, t(99) = −9.0, p <
.001, BF > 100; Fig. 3c). There were no substantial effects
of learning over rounds (β = .01, t(99) = 0.47, p = .642,
BF = 0.2), suggesting the familiarization phase and cover
story were sufficient for providing intuitions about graph cor-
related structures.

Model comparison
We compare the predictive performance of the GP with the
dNN and kNN heuristic models. Using participant-wise
leave-one-out cross-validation, we estimate model parame-
ters for all but one judgment, and then make out-of-sample
predictions for the left-out judgment. We repeat this proce-
dure for all trials and compare predictive performance using
Root Mean Squared Error (RMSE) over all left-out trials.

Figure 3d shows that the GP made better predictions than
both the dNN (t(99) = −4.06, p < .001, d = 0.41, BF >
100) and kNN models (t(99) = −7.19, p < .001, d = 0.72,
BF > 100). Overall, 58 out of 100 participants were best pre-
dicted by the GP, 31 by the dNN, and 11 by the kNN. Figure
3e shows individual parameter estimates of each model. The
estimated diffusion parameter α was not substantially differ-
ent from the ground truth of α = 2 (t(99) = −0.66, p = .51,
d = 0.07, BF = 0.14), although the distribution appeared to
be bimodal, with participants often underestimating or over-
estimating the correlational structure. Estimates for d and k
were highly clustered around the lower limit of 1, suggest-
ing that averaging over larger portions of the graph were not
consistent with participant predictions.

Finally, an advantage of the GP is that it produces Bayesian
uncertainty estimates for each prediction. While the dNN and
kNN models make no predictions about confidence, the GP
uncertainty estimates correspond to participant confidence
judgments (β = −.10, t(99) = −3.39, p < .001, BF > 100;
linear mixed-effects model with participant as a random ef-
fect).

1β is the standardized effect size ∈ [−1,1] and we approximate
the Bayes Factor using bridge sampling (Gronau, Singmann, & Wa-
genmakers, 2017) to compare our model to an alternative intercept
only null model, where both models were hierarchical regressions
but only the alternative model contained the variable of interest as a
regressor.
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Figure 3: Results. a-b) Participant judgment errors and confidence estimates. Each dot is a single participant (averaged over
each number of observed nodes), with Tukey boxplots and diamonds indicating group means. The dotted line in a) is a random
baseline. c) Judgment error and confidence. Each colored dot is a participant (averaged over each confidence level), dashed line
is a linear regression, with black dots and error bars indicating group means and 95% CI. We report the mixed-effects regression
coefficient and Bayes Factor above. d) Cross-validated model comparison between the Gaussian Process with diffusion kernel
(GP), d-nearest neighbors (dNN), and k-nearest neighbors (kNN). Each point is a single participant with a Tukey boxplot
overlaid and diamonds indicating group means. Comparisons are for a Bayesian one-sample t-test, where the null hypothesis
posits no difference between models and assumes a Cauchy prior with the scale set to

√
2/2. e) Parameter estimates, where each

dot is the mean cross-validated estimate for each participant, with Tukey boxplots and diamonds indicating group means. f)
GP uncertainty estimates (rank ordered within participant) and participant confidence judgments (Likert scale). Dotted line is a
linear regression, with black dots and error bars indicating mean and 95% CI. We report the mixed-effects regression coefficient
and Bayes factor (see text for details).

Discussion
How do people learn about functions on structured discrete
spaces like graphs? We show how a GP with a diffusion ker-
nel can be used as a model of function learning that produces
Bayesian predictions about unobserved nodes. Our model in-
tegrates existing theories of human function learning in con-
tinuous spaces, where the RBF kernel (commonly used in
continuous domains) can be seen as a special limiting case
of the diffusion kernel. Using a virtual subway task, we show
that the GP was able to capture how people make judgments
about unobserved nodes and is also able to generate uncer-
tainty estimates that correspond to participant confidence rat-
ings.

Related work
Previous work has also investigated how people perform
inference over graphs (Kemp & Tenenbaum, 2009, 2008;
Shafto, Kemp, Baraff, Coley, & Tenenbaum, 2005; Tomov
et al., 2018). Whereas these studies were geared towards
probing how people inferred underlying structure (Kemp &
Tenenbaum, 2008) and how (implicit or explicit) represen-

tations of structure influenced causal property judgments
(Kemp & Tenenbaum, 2009; Shafto et al., 2005), the goal of
our Subway Prediction Task was to study how people perform
functional inference given explicit knowledge of a relational
structure. Thus, our study can be seen as a real-valued exten-
sion of the experiments presented in Kemp and Tenenbaum
(2009) and Shafto et al. (2005), where we explicitly present
the underlying structure and modeled both participants pre-
dictions and their confidence judgments simultaneously.

Our approach also has formal similarities to Kemp and
Tenenbaum (2008, 2009), who used a kernel defined as
k(s,s′) = (L+ I

σ2 )
−1 to generate feature vectors over struc-

tured representations, in order to approximate a prior over
properties distributed across the graph. This kernel is a re-
formulation of the regularized Laplacian kernel2 (Zhu, Laf-
ferty, & Ghahramani, 2003), which belongs to the same
broad framework of regularization operators (Smola & Kon-
dor, 2003) as the diffusion kernel (Eq. 1), with both providing
similar inductive biases of smoothness over the graph struc-

2k(s,s′) = (I +σ2L)−1
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ture.

Future Work and Limitations
Currently, we have only studied how people learn functions
on spatial representations of graph structures, where all nodes
and edges are visible simultaneously. However, people can
perform inferences over discrete structures that are more con-
ceptual such as social hierarchies (Lau, Pouncy, Gershman,
& Cikara, 2018) or causal connections (Rothe, Deverett,
Mayrhofer, & Kemp, 2018). Given that the GP framework
can be used to compare how people learn functions over dif-
ferent (i.e., spatial and conceptual) domains (Wu, Schulz,
Garvert, Meder, & Schuck, 2018), comparing functional in-
ference over conceptual and spatial graphs seems like promis-
ing extension for future studies.

Additionally, one could also assess the suitability of the
diffusion kernel as a model for more complex problems, such
as multi-armed bandit tasks with structured rewards (e.g.,
Schulz, Franklin, & Gershman, 2018) and in planning prob-
lems, where exploration plays a fundamental role. One ad-
vantage of the GP diffusion kernel model is that it makes pre-
diction with estimates of the underlying uncertainty. Whereas
many models of generalization only make point-estimates
about the value of a state, the GP framework offers opportuni-
ties for using uncertainty-guided exploration strategies (e.g.,
Auer, 2002).

One limitation of the diffusion kernel is that it assumes
a priori knowledge of the graph structure. While this may
be a reasonable assumption in problems such as navigating a
subway network where one can simply look at a map, this is
not always the case. In contrast, the SR can learn the graph
structure through experience (using prediction-error updat-
ing). Thus, the connection between the SR and the diffusion
kernel presents a promising avenue for incorporating a plau-
sible process model of structure learning.

Conclusion
We show that GP regression, together with a diffusion ker-
nel, captures how participants learn functions and make con-
fidence ratings on graph structures in a virtual subway predic-
tion task. Our model opens up a rich set of theoretical connec-
tions to theories of function learning on continuous domains
and models of structure learning and property induction.
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