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Abstract

How does time pressure influence attitudes towards uncer-
tainty? When time is limited, do people engage in different
exploration strategies? We study human exploration in a range
of four-armed bandit tasks with different reward distributions
and manipulate the available time for each decision (limited
vs. unlimited). Through multiple behavioral and model-based
analyses, we show that reactions towards uncertainty are influ-
enced by time pressure. Specifically, participants seek out un-
certain options when time is unlimited, but avoid uncertainty
under time pressure. Moreover, larger relative differences in
uncertainty between options slowed down reaction times and
dampened the drift rate of a linear ballistic accumulator model.
These results shed new light on the differential effect of uncer-
tainty and time pressure on human exploration.

Keywords: Exploration-exploitation; Uncertainty; Time Pres-
sure; Directed Exploration; Multi-armed Bandits

Introduction

Searching for rewards requires navigating the exploration-
exploitation dilemma: Should one exploit options known to
produce high rewards, or explore lesser known options to
gain information that could potentially lead to even higher
rewards? Because optimal solutions (Gittins, 1979) are gen-
erally intractable in realistic settings, practical solutions usu-
ally rely on heuristics (Auer, Cesa-Bianchi, & Fischer, 2002),
which can be classified as directed exploration, random ex-
ploration, or both.

Directed exploration is often implemented using an explo-
ration bonus that inflates the expected value of an option pro-
portional to the estimated uncertainty, to encourage the explo-
ration of uncertain options. Whereas earlier studies produced
mixed evidence for the use of exploration bonuses in human
reinforcement learning (Daw, O’doherty, Dayan, Seymour, &
Dolan, 2006), there is now an increasing amount of evidence
for directed exploration in vast problem spaces (Wu, Schulz,
Speekenbrink, Nelson, & Meder, 2018), planning (Wilson,
Geana, White, Ludvig, & Cohen, 2014), dynamic decision
making (Knox, Otto, Stone, & Love, 2012), and simple two-
armed bandit tasks (Gershman, 2018).

Unlike directed exploration, random exploration increases
choice stochasticity in accordance to the agent’s uncertainty
about the value of available actions (Speekenbrink & Kon-
stantinidis, 2015). One recent theory proposed that random
and directed exploration can be dissociated, where the bal-
ance is influenced by the total and relative uncertainty of
available options (Gershman, in press). If there are multiple
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options with similar expected rewards, directed exploration
makes an option more likely to be sampled when its uncer-
tainty is higher relative to the other options (Schulz & Ger-
shman, 2019). We make use of this effect by studying how
patterns of decision making and exploration are affected by
both uncertainty and expected reward in a four-armed ban-
dit task. Compared to previously studied two-armed bandit
tasks, the richer set of options makes exploration more perti-
nent and observable over more trials. Crucially, we manipu-
late the presence or absence of time pressure to gain insights
into the cognitive processes underlying exploration. If di-
rected exploration is a reasoned and controlled process, which
requires taking the uncertainties of each options into account,
then time pressure may limit the capacity for directed explo-
ration.

As predicted, we find that participants are more likely to
sample options with high relative uncertainty in the absence
of time pressure. However, when we impose time pressure by
limiting the allowed decision time to under 400 milliseconds,
we find that relative uncertainty reduces the probability that
an option is chosen. Additionally, relative uncertainty slows
down reaction times more strongly and dampens the evidence
accumulation process more heavily under time pressure. In
other words, time pressure moderates the effect of environ-
mental uncertainty, such that risk-seeking behavior arising
through directed exploration transforms into risk-aversion un-
der time pressure. These results enrich our understanding of
human exploration strategies under changing task demands.

Experiment

Participants and Design. We recruited 99 participants (36
female, aged between 21 and 69 years; M=34.82; SD=10.1)
on Amazon Mechanical Turk (requiring 95% approval rate
and 100 previously approved HITs). Participants were paid
$3.00 for taking part in the experiment and a performance
contingent bonus of up to $4.00 (calculated based on the per-
formance of one randomly selected round). Participants spent
13.0 4 5.6 minutes on the task and earned $5.87 £+ $0.91 in
total. The study was approved by the Ethics Committee of
the Max Planck Institute for Human Development.

We used a 2 x 4 within-subject design to examine how the
presence or absence of time pressure and the payoff structure
of the task (see Fig. 1b and Tab. 1) influenced choices and
reaction times. In total, the experiment consisted of 40 rounds
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Figure 1: Experimental design. We used a four-armed bandit task
where each option was randomly mapped to the Q, W, O, and P keys
on the keyboard. a) In unlimited time rounds, participants could take
as long as they wanted to make each selection and received positive
feedback (happy face) and were shown the value of the acquired
payoff. b) In limited time rounds, participants were only given 400
ms to make each selection. If they exceeded the time limit, they
would forgo earning any rewards, and received negative feedback
(sad face) along with the value of the payoff they could have earned
(crossed out).

with 20 trials each. In each round, a condition was sampled
(without replacement) from a pre-randomized list, such that
each combination of time pressure and payoff structure was
repeated five times, with a total of 100 trials in each.

Materials and Procedure. Participants were required to
complete three comprehension questions and two practice
rounds (one with unlimited time and one with limited time)
consisting of 5 trials each before starting the experiment.
Each of the 40 rounds was presented as a four-armed ban-
dit task, where the four options were randomly mapped to the
[0, W, 0, P] keys on the keyboard (Fig. 1). Selecting an option
by pressing the corresponding key yielded a reward sampled
from a normal distribution, where the mean and variance was
defined by the round’s payoff structure (Fig. 2a and Tab. 1).
Participants completed 20 trials in each round and were told
to acquire as many points as possible.

Before starting a round, participants were informed
whether it was an unlimited or a limited time round. In un-
limited time rounds, participants could spend as much time as
they needed to reach a decision, upon which they were given
feedback about the obtained reward (displayed for 400 ms)
before continuing to the next trial (Fig. 1a). In limited time
rounds, participants were instructed to decide as fast as pos-
sible. If a decision took longer than 400 ms, they forfeited
the reward they would have earned (presented to them as a
crossed-out number with an additional sad smiley; Fig. 1b).
We used the same inter-trial period of 400 ms to display feed-
back about obtained rewards in both limited and unlimited
time rounds.

We applied a random shifting of rewards across rounds
(i.e., different maximum reward) to prevent participants from
immediately recognizing when they had chosen the optimal
option. For each round, we sampled a value from a uni-
form distribution 7(30,60), which was then added to the
rewards. Together with random shifting, we also truncated
rewards such that they were always larger than zero. In or-
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Table 1: Payoff Conditions

Payoff Conds Means (u) Variances (62)
IGT [—10,-10,10,10] [10,100,10,100]
Low Var [—10,—%, % 10] [10,10,10, 10
High Var [-10,—3, 5,10] [100, 100, 100, 100]
Equal Means [0,0,0,0] [10,40,70,100]

der to convey intuitions about the random shift of rewards,
payoffs were presented using a different fictional currency in
each round (e.g., B, P, ¥), such that the absolute value was
unknown, but higher were always better.

At the end of each round, participants were given feedback
about their performance in terms of the bonus they would gain
(in USD) if this was the round selected for determining the
bonus. The bonus was calculated as a percentage of the total
possible performance, raised to the power of 4 to accentuate
differences in the upper range of performance:

total reward gained

4
Bonus = ( ) x $4.00

mean reward of best option x 20 trials

Payoff conditions We used four different payoff conditions
as a within-participant manipulation (Tab. 1 and Fig. 2a).
Each payoff condition specified the mean y; and variance 67
of the reward distribution R; ~ N\(u;,6?) for each option i.
Each distribution was randomly mapped to one of the four
[Q,W,0, P] keys of the keyboard in each round. The Iowa
Gambling Task (IGT) is a classic design that has been re-
lated to a variety of clinical and neurological factors affecting
decision-making (Yechiam, Busemeyer, Stout, & Bechara,
2005; Bechara, Damasio, Damasio, & Anderson, 1994). We
implemented a reward condition inspired by the IGT such that
there are two high and two low reward options, with a low
and high variance version of each. We also constructed two
conditions with equally spaced means, but with either uni-
formly low variance or uniformly high variance. Lastly, the
equal means condition had identical means and gradually in-
creasing variance, such that we can observe the influence of
uncertainty independent of mean reward.

Behavioral Results

Participants acquired higher rewards in the unlimited than in
the limited time condition (Fig. 2b; #(98) = 3.1, p = .002,
d = 0.3, BF = 10). Participants also improved over trials,
signified by an average correlation between trial and rewards
(Spearman’s p(98) = 0.16, p < .001, BF > 100). This cor-
relation did not differ between limited and unlimited time
rounds (#(98) = —1.3, p=.196,d = 0.1, BF = .25).

We also compared performance across payoff conditions.
This is possible, since all games had the same expected re-
ward under the assumption of a random sampling strategy.
We found that participants performed better in the IGT-like
condition than in the low variance condition (¢(98) = 3.2,
p =.002, d =0.3, BF = 14). We see an even larger dif-
ference when comparing the low variance and high variance
conditions, which had the same means but different levels of
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Figure 2: Payoff conditions and behavioral results. a) Four different payoff conditions were combined with either limited or unlimited
time rounds to create 8 different scenarios. Each condition specifies a normal payoff distribution for each option; the means and variances
are shown in Table 1. Each dot represents a randomly drawn payoff, while the Tukey boxplots and half violin plots show the distribution for
100 simulated draws. Note that rewards were randomly shifted in each round by adding a constant ~ (30,60) to all payoffs. b) Learning
curves of average participant performance (using unshifted rewards) over trials by payoff condition. Ribbons indicate standard error. c)
Choice proportions (normalized for chance) for each option, mapped to the canonical ordering shown in panel a). d) The entropy of choices
in each round, where higher entropy corresponds to more diverse choices and the dotted line indicates random chance (i.e., playing each arm
with equal probability). Each dot represents a participant, and overlaid are Tukey boxplots with the diamond indicating the group mean. e)

Distributions of reaction times in milliseconds (ms) and shown on a log s
limited time condition

risk and uncertainty. Participants performed substantially bet-
ter in the low variance condition than the high variance condi-
tion (¢(98) = 6.2, p < .001, d = 0.6, BF > 100). Thus, higher
variance increased the difficulty of the task. Lastly, partici-
pants performed better in the high variance than in the equal
means task (#(98) = 25.5, p < .001, d = 2.6, BF > 100),
which is intuitive since improvement is not possible if all
arms have the same mean reward.

Choice proportions. Figure 2c shows the proportion of
choices, which illustrates differences across time conditions.
We used a Bayesian mixed-effects logistic regression and
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cale. The vertical dotted line indicates the time limit (400 ms) of the

found that in the IGT condition, participants chose the high
reward-low variance option (indicated as ‘O’ in Fig. 2c) less
frequently in the unlimited time than in the limited time con-
dition (B = —.22, 95% Highest Posterior Density (HPD) in-
terval: [—.28,—.15], BF > 100)'.

Additionally, we also find differences across time-pressure
conditions in the Equal Means task, where participants se-
lected the highest variance option (‘P’) more frequently in
the unlimited time condition 3 = .11, 95% HPD: [.05,.17],

IWe use Bridge sampling (Gronau, Singmann, & Wagenmak-
ers, 2017) to approximate the Bayes Factor by comparing against an
intercept-only null model (i.e., without time pressure as a predictor).



BF = 15). This illustrates a shift in preferences away from
uncertain options when time pressure is introduced. Whereas
participants tend to be risk-seeking and choose highly uncer-
tain options under unlimited time, they become more risk-
averse and choose them less often under time pressure.

We also calculated the Shannon entropy of participants’
choices in each round (Fig. 2d), where higher entropy corre-
sponds to higher diversity of choices and the maximal entropy
strategy would be to choose each option an equal number of
times (indicated by the dotted line). Averaged across partic-
ipants, we find higher choice entropy (i.e. more diversity in
choice) under unlimited time than limited time (#(98) = 4.1,
p < .001, d =0.4, BF > 100). This further strengthens the
evidence for reduced exploration under time pressure, since
we find a lower diversity of choices.

Reaction times. Figure 2d shows reaction times. Unsur-
prisingly, participants responded faster in the limited time
than in the unlimited time conditions (comparing RTs in log-
ms: 1(98) =9.7, p < .001, d = 1.0, BF > 100). There were
no differences across payoff conditions (F(3,95) = 0.12,
p =951, BF =0.01).

Model-Based Analyses

In order to model learning and decision making in our task,
we use a Bayesian mean tracker (BMT) as a reinforce-
ment learning model for estimating rewards and uncertainties,
which are then updated based on prediction error. The BMT
is a variant of a Kalman filter, but assumes a time-invariant
reward distribution (as is the case in our experiment) instead
of a dynamically changing one. Both models use an updating
rule based on prediction error, and have been described as a
Bayesian extension of the classic Rescorla-Wagner model of
associative learning (Gershman, 2015). Variants of the BMT
have been used to describe human behavior in a variety of
multi-armed bandit and decision-making tasks (Gershman,
2018, in press; Yu & Dayan, 2003; Schulz, Konstantinidis,
& Speekenbrink, 2015; Dayan, Kakade, & Montague, 2000;
Speekenbrink & Konstantinidis, 2015).

The BMT learns a posterior distribution over the mean re-
ward u; for each option j. Rewards are assumed to be nor-
mally distributed with a known variance but unknown mean.
The prior distribution of the mean is also a normal distribu-
tion. This implies that the posterior distribution for each mean
is also a normal distribution:

P Di—1) = N(mj,vjs) 1)

where D;_; denotes the previously observed rewards for all
options. For a given option j, the posterior mean m;; and
variance v;, are only updated when it has been selected at
trial ¢:

mj; =mj;_1+ 8j,th,t v — mj,t—l] 2)
Vig=[1-08;:Gjslvji1 3

where §;, = 1 if option j is chosen on trial 7, and O otherwise.
Additionally, y; is the observed reward at trial 7, and G;, is
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defined as:
Vji—1
=

Covj—1 62

4)

where 63, referred to as the error variance, is the variance of
the rewards around the mean. For our model-based analysis,
we set the error variance to 1 (which led to competitive task
performance in prior simulations).

Intuitively, the estimated mean of the chosen option m;; is
updated based on prediction error, which is the difference be-
tween the observed reward y, and the prior expectationm;, 1,
multiplied by learning rate G;, € [0, 1]. At the same time, the
estimated variance v;; of the chosen option is reduced by a
factor 1 — G;,. The error variance (Gg) can be interpreted
as an inverse sensitivity, where smaller values result in more
substantial updates to the mean m;;, and larger reductions of
uncertainty v;,. We set the prior mean to m;y = 45 and the
prior variance to v;o = 55 based on the expectation across
payoff conditions.?

Results

We followed Gershman (in press) and generated predictions
from the BMT by feeding in a participant’s observations on
a particular round until time ¢, and then predicting the mean
and standard deviation for each option at time point 7 + 1.
We used the resulting predictions of rewards and uncertainties
to conduct three model-based analyses of choices, reaction
times, and evidence accumulation.

Choices. In our first analysis, we assessed how the pre-
dicted mean and uncertainty of an option affected the like-
lihood of it being chosen on each trial (estimated separately
for limited and unlimited time conditions). We applied hierar-
chical Bayesian inference to estimate the parameters of a soft-
max policy, under the assumption that a participant’s choice
on each trial is influenced by both the predicted mean and
uncertainty of an option, where each participant’s parameters
are assumed to be jointly normally distributed. The probabil-
ity of choosing option j on trial ¢ is a softmax function of its
decision value Q; ;:

PG = j) = %) 5)

Yi—1€xp(Qks)

The decision value Q;, is a linear function of the estimated
mean m;, and uncertainty ,/v;, (estimated as a standard de-
viation) of each option according to the BMT:

Qs =PBimjs +PBoy/Vis. (6)

Formally, we assume that the B-coefficients for each partici-
pant 3; = (B1,P2,) are drawn from a normal distribution

Bi ~ N(yﬁrcé)7 (7N

ZWe use the shifted reward values that were observed by partic-
ipants, where the means in each condition were centered on 0 and
shifted by 71(30,60).
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Figure 3: Posterior parameter estimates. a) Effects of BMT predicted mean rewards ([31) and uncertainties (]32) on an optlon s probability of
being chosen, estimated by a hierarchical Bayesian softmax regression. b) Influence of BMT means ([51) and uncertainties ([32) on participant

response times, estimated by a hierarchical Bayesian linear regression. ¢) Influence of BMT means ([31) and uncertainties ([32) on drift rates
in a Bayesian Linear Ballistic Accumulator model. In all plots, the vertical dashed line indicates an effect of 0, while the black dot indicates
the mean effect and confidence intervals show the 95% highest posterior density (HPD).

and we estimate the group-level mean pg and variance over
participants 6[23. We used the following priors on the group-
level parameters:

45 ~ (0, 100) ®)
6 ~ Half-Cauchy(0, 100) )

In each time condition, we arrive at group-level parameter es-
timates describing how expected rewards (B;) and uncertainty
(B2) influence choice probability under the softmax policy.

We estimated the hierarchical model using Hamiltonian
Markov chain Monte Carlo sampling with PyMC3 (Salvatier,
Wiecki, & Fonnesbeck, 2016). The results (Fig 3a) show that
the expected value of an option increased choice probability
for both the limited time (B; = .11, 95% HPD: [.10,.13]) and
the unlimited time conditions (B; = .19, 95% HPD: [.17,.2]).
Options estimated to have higher expected rewards were more
likely to be chosen in both conditions, with a stronger effect
in the unlimited time conditions.

Notably, we found contrasting effects of uncertainty on
choice probability. In the unlimited time conditions, un-
certainty had a positive effect on choice probability (B, =
.26, 95% HPD: [.16,.36]). This replicates previous find-
ings reported in two-armed bandit tasks without time pressure
(Gershman, 2018, in press). However, uncertainty had a neg-
ative effect on choice probability in the limited time condition
(ﬁz = —.10, 95% HPD: [—.18,—.02]). Thus, whereas par-
ticipants sought out uncertain options in the unlimited time
condition, they shunned uncertain options in the limited time
condition.

Reaction Time. Our second analysis looked at how the es-
timated means and uncertainties of options influenced reac-
tion times. We normalized the BMT predictions of mean re-
ward and uncertainty by calculating the difference between
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the chosen option and the average of the unchosen options
on each trial. Thus, positive values indicate that expected
reward/uncertainty are relatively larger than those of the un-
chosen options. We regressed these normalized means and
uncertainties onto participant log reaction times? in a hierar-
chical Bayesian linear regression, using the same priors over
the B-coefficients as before (Eq. 9).

The resulting posterior parameter estimates (Fig. 3b) show
that participants were faster at choosing options with rela-
tively higher expected reward in both conditions, but with
a stronger effect in the unlimited (§ = —.01, 95% HPD:
[—.013,—.008]) than in the the limited time condition (p =
—.004, 95% HPD: [—.005,—.002]). Furthermore, partic-
ipants were slower at choosing options with higher rela-
tive uncertainty in both the limited (f = .02, 95% HPD:
[.01,.03]) and the unlimited conditions (B = .03, 95% HPD:
[.02,.04]). Thus, whereas higher relative value made par-
ticipants act faster, higher relative uncertainty slowed them
down. This differs from previous findings using two-armed
bandits (Gershman, in press), which showed higher relative
uncertainty makes participants choose faster.

Evidence Accumulation. In our third analysis, we used
the Linear Ballistic Accumulator (LBA; Brown & Heathcote,
2008) to model choices and reaction times simultaneously.
This model assumes that choices are the result of a process in
which evidence for each option is accumulated continuously
over time, and that option is chosen for which the accumu-
lated evidence first exceeds a set decision threshold.
Formally, the LBA assumes that, after an initial period of
non-decision time 7, evidence for an option j on trial ¢ ac-
cumulates at a rate of v;,, starting from an initial evidence

31 ms was added to each RT to avoid log(0). Additionally, RTs
were truncated at 5000 ms.



level p;, ~ U(0,A). Evidence accumulates for each option j
until a threshold b is reached. We follow the Bayesian imple-
mentation proposed by Annis, Miller, and Palmeri (2017) and
assume that the priors for the drift rates stem from truncated
normal distributions

Vie~N(2,1) € (0,00). (10)

Additionally, we assume a uniform prior on non-decision
time
T ~ Uniform(0, 1), (11)

and a truncated normal prior on the maximum starting evi-
dence

A~ N(0.5,1) € (0,00). (12)

Finally, we reparameterized the model by shifting b by k units
away from A, and put a truncated normal distribution as the
prior on the resulting relative threshold k:

k~N(0.5,1) € (0,00). 13)

We estimated the LBA parameters for each participant in
every round using No-U-Turn Hamiltonian MCMC (Hoffman
& Gelman, 2014), with reaction times truncated at 5000
ms. Participants had higher mean drift rates under limited
time compared to unlimited time (#(98) = 7.1, p < .001,
d = 0.7, BF > 100), consistent with the need to arrive at de-
cisions more quickly. Participants in the limited time con-
ditions also had shorter non-decision times T (#(98) = —4.6,
p < .001, d = 0.5, BF > 100), less maximum starting evi-
dence A (1(98) = —7.8, p < .001, d = 0.8, BF > 100), and
lower relative thresholds & (#(98) = —5.2, p < .001,d = 0.5,
BF > 100), compared to participants in the unlimited time
conditions. Thus, our LBA results confirm the intuition that
participants thought more carefully about different options
given unlimited time.

We then regressed the BMT predictions of relative ex-
pected reward and relative uncertainty for each option onto
its estimated drift rate using a Bayesian linear regression. The
result of this analysis revealed that the relative expected value
of an option had a positive effect on drift rate for both the
limited (B = .43, 95% HPD: [.41,.44]; see Fig. 3c) and un-
limited time conditions (B = .48, 95% HPD: [.46,.49]), with
a stronger effect in the latter. Conversely, relative uncertainty
had a negative effect on drift rate, which was larger in mag-
nitude for the limited (B = —.59, 95% HPD: [—.61,—.58))
than for the unlimited time conditions (B = —.38,95% HPD:
[—.39,—.36]). Thus, the behavioral patterns in Figure 2b sug-
gest that uncertainty reduced the rate of evidence accumula-
tion, with a stronger effect under time pressure than in the
unlimited time conditions.

Discussion and Conclusion

How do people explore uncertain options under time pres-
sure? We investigated this question using several variants of

a four-armed bandit task with continuous rewards, while ma-
nipulating the available decision time to be either unlimited
or limited to less than 400 ms.

Our models showed that higher relative uncertainty made
an option more likely to be chosen in the absence of time
pressure. This matches previous findings showing evidence
for an exploration bonus consistent with directed exploration
(Gershman, in press). However, putting participants under
time pressure inverted this relationship, and caused uncer-
tainty to reduce the probability that an option was chosen.
Thus, the uncertainty bonus found in standard multi-armed
bandit tasks can turn into an uncertainty penalty when peo-
ple are under time pressure. This is similar to findings from
description-based gambles, where time pressure increased
risk aversion (Nursimulu & Bossaerts, 2013).

We also found that relative uncertainty slowed down
choices and dampened evidence accumulation. These results
suggest that uncertainty can have reversible effects on pref-
erence: sometimes people seek out uncertainty, and some-
times they actively avoid it. Both of these cases suggest peo-
ple track uncertainty in their expectations, and that uncer-
tainty feeds into the decision-making process. This is similar
to what has been observed in tasks that directly elicit confi-
dence judgments (Boldt, Blundell, & De Martino, 2017; Sto-
jic, Schulz, Analytis, & Speekenbrink, 2018; Schulz, Wu,
Ruggeri, & Meder, 2018; Wu, Schulz, Garvert, Meder, &
Schuck, 2018), while previous work has shown that changing
the context from only gains to adding risky options can also
cause a shift from actively seeking uncertainty to avoiding it
(Schulz, Wu, Huys, Krause, & Speekenbrink, 2018).

Our results provide a richer understanding of the cogni-
tive processes underlying human learning and exploration.
While we found evidence that time pressure reduces di-
rected exploration—consistent with directed exploration be-
ing a controlled and reasoned process—we did not pre-
dict uncertainty avoidance under time pressure. Together
with the finding that relative uncertainty slowed down re-
action times and dampened evidence accumulation, our re-
sults suggest that time pressure does not eliminate the
ability to track uncertainty. Rather, it alters attitudes
towards it, from seeking out uncertainty to avoiding it.
Future studies should therefore investigate the conditions
that cause uncertainty-seeking or uncertainty-avoidance and
test whether uncertainty-avoidance is a deliberate behavior
(Schulz, Klenske, Bramley, & Speekenbrink, 2017).
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