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Abstract
How do people generalize and explore structured
spaces? We study human behavior on a multi-armed ban-
dit task, where rewards are influenced by the connectivity
structure of a graph. A detailed predictive model compar-
ison shows that a Gaussian Process regression model
using a diffusion kernel is able to best describe partici-
pant choices, and also predict judgments about expected
reward and confidence. This model unifies psychological
models of function learning with the Successor Repre-
sentation used in reinforcement learning, thereby build-
ing a bridge between different models of generalization.
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Introduction
From social networks to subway maps, many decision-making
environments can be described using graph structures, where
relationships are defined based on transition structure rather
than comparing features. Here, we propose the diffusion ker-
nel as a similarity metric for functions on graphs, which com-
bined with the Gaussian Process (GP) framework, allows us
to make Bayesian predictions about unobserved nodes. Using
a graph-correlated bandit task, we study how people general-
ize and search for rewards in structured spaces. We show
that the GP model best predicts choices, produces human-
like learning curves, and predicts judgments about expected
reward and confidence for unobserved nodes. Overall, these
results extend the scope of previous theories of generaliza-
tion in spatial (Wu, Schulz, Speekenbrink, Nelson, & Meder,
2018; Schulz, Wu, Ruggeri, & Meder, 2018) and conceptual
domains (Wu, Schulz, Garvert, Meder, & Schuck, 2018; Stojic,
Schulz, Analytis, & Speekenbrink, 2018) to structured spaces.

Generalization on graph structures
We can specify a graph G = (S ,E) with nodes si ∈ S and
edges ei ∈ E to represent a structured state space (Fig. 1a).
Nodes represent states and edges represent allowed transi-
tions. For now, we assume that all edges are undirected (i.e., if
x→ y then y→ x). The connectivity structure of the graph de-
termines which states are accessible from a given prior state,
and is often described using the graph Laplacian L:

L = D−A (1)
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Figure 1: Inference over graphs. a) An example of a graph struc-
ture, where nodes represent states and edges indicate the transition
structure. b) A diffusion kernel is a similarity metric between nodes
on a graph, allowing us to generalize the value of unobserved nodes
based on the assumption that correlations of rewards decays as an
exponential function of the graph-distance between two nodes. The
diffusion parameter (α) governs the rate of decay. c) Screenshot of
our graph-correlated bandit task, where each node is an arm of a
bandit with rewards correlated across the graph structure.

where A is the adjacency matrix and D is the degree matrix.
Each element ai j ∈ A is 1 when nodes i and j are connected,
and 0 otherwise, while the diagonals of D describe the num-
ber of connections of each node. The graph Laplacian can
also describe graphs with weighted edges, where D becomes
the weighted degree matrix and A becomes the weighted ad-
jacency matrix.

The diffusion kernel
The diffusion kernel (DF; Kondor & Lafferty, 2002) defines a
similarity metric k(s,s′) between any two nodes based on the
matrix exponentiation of the graph Laplacian:

k(s,s′) = exp(αL). (2)

Intuitively, the diffusion kernel assumes that rewards diffuse
along the graph similar to a heat diffusion process (i.e., by
assuming a continuous random walk), with closely connected
nodes assumed to have similar values. The parameter α mod-
els the level of diffusion, where α→ 0 assumes complete in-
dependence between nodes, while α→∞ assumes all nodes
are perfectly correlated.

Gaussian Process regression
From the similarity metric defined by the diffusion ker-
nel (Eq. 2), we use Gaussian Process (GP) regression
(Rasmussen & Williams, 2006) to perform Bayesian inference
on graph structures. A GP defines a distribution over functions
f : S → Rn that map the state space S to real-valued scalar
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outputs (e.g., rewards). Functions are modeled as a random
draw from a multivariate normal distribution:

f ∼ GP (m,k) , (3)

where m(s) is a mean function specifying the expected output
of s, and k(s,s′) encodes prior assumptions about the under-
lying function. We use the diffusion kernel (Eq. 2) to represent
covariance based on the connectivity structure of the graph
(see Smola & Kondor, 2003; Kemp & Tenenbaum, 2009, for
alternative implementations).

Given some observations Dt = {st ,yt} of observed re-
wards yt at states st , we can compute the posterior distribution
p( f (s∗)|Dt) for any target state s∗. The posterior is a normal
distribution with mean and variance defined as:

m(s∗|Dt) = k>t,∗(Kt +σ
2
εI)−1yt (4)

v(s∗|Dt) = k(s∗,s∗)−k>t,∗(Kt +σ
2
εI)−1kt,∗, (5)

where Kt is the t× t covariance matrix evaluated at each pair
of observed inputs, and kt,∗ = [k(s1,s∗), . . . ,k(st ,s∗)] is the
covariance between each observed input and the target input
s∗, and σ2

ε is the noise variance. Thus, for any node in the
graph, we can make Bayesian predictions about the expected
reward m(s∗|Dt) and the uncertainty v(s∗|Dt) attached to the
prediction.

Experiment: Graph-correlated bandit
We designed a task where rewards were defined by the con-
nectivity structure of a graph. Participants searched for re-
wards by clicking the nodes of a graph, where connections be-
tween nodes influenced rewards. This provided a correlated
reward structure allowing for similarity-based generalization to
aid in search, but where similarity was defined based on con-
nectivity structure rather than perceptual features.

Methods

Participants and design. We recruited 100 participants on
Amazon MTurk (requiring 95% approval rate and 100 previ-
ously completed HITs). Two participants were excluded be-
cause of missing data, leading to a total sample size N = 98
(Mage = 34.3; SD = 8.7; 32 female). Participants were paid
$2.00 for completing the task and earned an additional perfor-
mance contingent bonus of up to $3.00. Overall, the task took
7.2 ± 3.3 minutes and participants earned $4.32 ± $0.24 on
average.

Materials and procedure. Participants were instructed to
earn as many points as possible by clicking on the nodes of a
graph (Fig. 1c). Expected rewards were defined by a graph-
correlated structure, such that connected nodes generated
similar rewards. Along with instructions, participants were
shown four fully revealed graphs to familiarize them with the
reward structure and answered three comprehension ques-
tions before starting the task.

The task was performed over 10 rounds, each correspond-
ing to a different graph structure (8x8 lattice graphs with 40%
edges randomly pruned). In each round, participants were
initially shown a single randomly revealed node, and had 25
clicks to either explore unrevealed nodes or to reclick previ-
ously observed nodes. Each clicked node displayed the nu-
merical value (most recent observation if multiple selections)
and a color aid, where darker colors corresponded to larger
rewards. Participants were informed about their performance
after each round as a percentage of the best possible score
(w.r.t. the global optimum). The final performance bonus (up
to $3.00) was also calculated based on this percentage, aver-
aged over all rounds.

Judgments. Participants were informed that the last round
was a “bonus round”, where the goal of maximizing points
remained the same. However, after 20 clicks, participants
were shown a series of 10 unrevealed nodes and asked to
make judgments about the expected reward and their confi-
dence. After making the judgments, participants were forced
to choose one of the 10 options, and then the task was com-
pleted as normal. Behavioral and modeling results exclude
the bonus round, except for the analyses of the judgment data.

Results
Participants achieved higher rewards over successive trials
(r = .93, p < .001, BF > 100; Fig. 2a) and decisively outper-
formed a random baseline (t(97) = 29.6, p < .001, d = 3.0,
BF > 100). We found no influence of round number on per-
formance (r = .49, p = .182, BF = 1), indicating that the fully
revealed environments in the instructions and comprehension
questions were sufficient for conveying the goal of the task
and the correlational structure.

Model Comparison
We used computational modeling to make predictions about
choices and participants’ judgments in order to understand
how subjects reasoned about graph-correlated environments.
Models were fit using leave-one-round-out cross validation,
and then compared using the summed out-of-sample predic-
tion accuracy of the left-out rounds. Altogether, we compared
five different models corresponding to different strategies for
generalization and exploration (see below).

Each model computes a value for each option q(s), which is
then transformed into a probability distribution using a softmax
choice rule P(si) = exp(q(si)/τ)/∑ j exp(q(s j)/τ), where the
temperature parameter τ is a free parameter controlling the
level of random exploration. In addition, all models use a stick-
iness parameter ω that adds a bonus onto the value of the
most recently chosen option and is a common feature of rein-
forcement learning models (e.g., Gershman, Pesaran, & Daw,
2009).

Gaussian process with diffusion kernel. The Gaussian
Process (GP) model uses the diffusion kernel (Eq. 2) to make
predictive generalizations about rewards, where we fit α as
a free parameter defining the extent to which generalizations
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Figure 2: Results. a) Participant performance (pink) compared against models simulated by sampling (with replacement) from participant
parameter estimates (10k replications). The black line provides a random baseline. b) Model comparison. Y-axis shows the protected
exceedance probability (PXP), describing prevalence of each model in the population (corrected for chance) based on the out-of-sample
predictive accuracy. c) The correspondence between each bonus round judgment and GP model predictions (using median per participant
parameter estimates from other rounds). Each dot is one data point and each green line is a linear regression at the individual level. Dashed
black line shows the fixed effect of a group-level mixed effects regression (with participant as a random effect). d) The correspondence between
rank ordered (per participant) confidence judgments and model uncertainty estimates. Dots and error bars show the mean and 95% CI, while
the colored lines represent a linear regression.

diffuse along the graph structure. To model how participants
balance exploiting high value rewards with exploring highly un-
certain options, we use upper confidence bound (UCB) sam-
pling (Auer, 2002):

qUCB(s) = m(s)+β
√

v(s), (6)

where the exploration bonus β is a free parameter governing
the level of exploration directed towards uncertain options.

Bayesian mean tracker. The Bayesian mean tracker (BMT)
is a prototypical reinforcement learning model that can be in-
terpreted as a Bayesian variant of the Rescorla-Wagner model
(Rescorla & Wagner, 1972; Gershman, 2015). The BMT also
produces normally distributed predictions of reward m(s) and
v(s) for each node, but are learned independently without gen-
eralization. Predictions of unobserved nodes defaulted to a
prior of m0 = 50 and v0 = 500. The BMT has the error vari-
ance σ2

ε as a free parameter, which can be interpreted as in-
verse sensitivity. Smaller values result in larger updates to the
learned mean m(s) and larger reductions of uncertainty v(s).
The BMT also uses UCB as a sampling strategy, along with
stickiness and a softmax choice rule.

Successor representation. The successor representation
(SR; Dayan, 1993) is a reinforcement learning model that per-
forms generalization based on building a predictive map of
the connection structure. The successor representation ma-
trix M(s,s′) = (I− γT )−1 models the similarity of node s to
node s′ based on future expected state occupancy, where we
assume a random walk policy by setting the transition matrix
T to the row normalized graph Laplacian T = I−D−1L. The
extent of generalization is governed by the temporal discount
parameter γ, which we treat as a free parameter.

While the SR has theoretical equivalencies to the diffusion
kernel (Stachenfeld, Botvinick, & Gershman, 2014; Machado
et al., 2018), there are practical differences when computed
on finite graphs and also by modeling the extent of general-
ization using the temporal discount rate γ rather than the diffu-
sion parameter α. Additionally, the SR only makes predictions

about expected value

m(s) = ∑
s′

M(s,s′)R(s′), (7)

where R(s′) is the observed reward at state s′. Because there
are no uncertainty estimates, the SR does not implement any
directed sampling using UCB. Instead, we set q(s)=m(s) and
apply stickiness along with a softmax choice rule.

Nearest neighbors models. In addition to reinforcement
learning models, we also consider two simple nearest neigh-
bor averaging models. The d-nearest neighbors (dNN) model
estimates expected reward for unobserved node by averaging
the rewards of all observed nodes within a distance of d. The
k-nearest neighbors (kNN) model estimates expected reward
by averaging the observed rewards for the k nearest nodes,
including all ties. Both d and k are estimated as free param-
eters. For predictions where no observed nodes satisfied the
averaging rule (i.e., all observations were too far away), we
defaulted to an expected value of m(s) = 50. Both dNN and
kNN also apply stickiness and use a softmax choice rule.

Model results
We compared model in terms of predictive accuracy using out-
of-sample loss. Figure 2b shows the relative performance of
each model in terms of the protected exceedance probability
(PXP), which is a Bayesian model selection framework for es-
timating the probability that a given model is more prevalent in
the population than all others, corrected for chance (Rigoux,
Stephan, Friston, & Daunizeau, 2014). Overall, the GP had
the highest predictive accuracy, with an exceedance probabil-
ity of PXP=.90.

We also simulated the behavior of each model by sampling
(with replacement) from the set of participant parameter es-
timates (10k samples) and computing the average learning
curves (Fig. 2a). Although all models under-performed com-
pared to the human curves, the GP had the closest match.

Judgments. To provide additional support for our modeling
results, we predicted participant judgments in the bonus round
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using parameters estimated over all rounds except the bonus
round. Comparing participant and model predictions about
expected reward, the GP had the highest average correlation
(r = .41; Fig. 2c), which was better than the dNN (comparing
Z-transformed correlation coefficients: t(97) = 3.0, p = .004,
d = 0.2, BF = 7), and kNN models (t(97) = 3.0, p = .003,
d = 0.2, BF = 8), but equally good as the SR (t(97) = 0.1,
p= .901, d = 0.0, BF = .11). This is intuitive, because the GP
and the SR should generate close-to-equivalent mean predic-
tions in our task. Correlations are undefined for the BMT, since
it invariably makes the same prediction.

Additionally the GP uncertainty predictions were predic-
tive of participant confidence ratings (Fig. 2d; see also Wu,
Schulz, & Gershman, 2019). Using mixed effects regres-
sion to predict the raw confidence judgment (Likert scale 1-
11) using the GP uncertainty estimate as a fixed effect and
participant as a random effect, we find higher GP uncer-
tainty estimates predicted lower confidence ratings (β=−.30,
t(414) =−5.7, p < .001, BF > 100). The BMT assumes the
same level of uncertainty for all unobserved nodes (i.e., mak-
ing no predictions about confidence), while none of the other
models represent uncertainty.

Conclusion

We studied how people generalize in structured spaces,
where the transition structure rather than the singular stimuli
features define the distribution of rewards in the environment,
extending previous work (Wu, Schulz, Speekenbrink, et al.,
2018). We find that a Gaussian process (GP) model using the
diffusion kernel is able to capture how people use general-
ization to guide search in structured environments. The GP
provides the best predictive accuracy of choices, produces
similar learning curves to human performance, and can ro-
bustly predict judgments about expected reward and confi-
dence. While the SR matches the GP in terms of the cor-
respondence between participant judgments and model pre-
dictions, it performed less well in predicting choices and in
simulating human-like learning curves. Thus, while there is a
theoretical equivalency between the SR and the diffusion ker-
nel, the ability to estimate uncertainty within the GP framework
gives it a clear advantage in describing search behavior.
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