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Abstract. In this survey, we review how the global structure of the
stable homotopy category gives rise to the chromatic filtration. We then
discuss computational tools used in the study of local chromatic homo-
topy theory, leading up to recent developments in the field. Along the
way, we illustrate the key methods and results with explicit examples.
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1. Introduction

At its core, chromatic homotopy theory provides a natural approach to
the computation of the stable homotopy groups of spheres π∗S

0. Histori-
cally, the first few of these groups were computed geometrically through the
classification of stably framed manifolds, using the Pontryagin–Thom iso-
morphism π∗S

0 ∼= Ωfr
∗ . However, beginning with the work of Serre, it soon

turned out that algebraic tools were more effective, both for the computation
of specific low-degree values as well as for establishing structural results. In
particular, Serre proved that π∗S

0 is a degreewise finitely generated abelian
group with π0S

0 ∼= Z and that all higher groups are torsion.
Serre’s method was essentially inductive: starting with the knowledge of

the first n groups π0S
0, . . . , πn−1S

0, one can in principle compute πnS
0. Said

differently, Serre worked with the Postnikov filtration of π∗S
0, in which the

(n+ 1)st filtration quotient is given by πnS
0. The key insight of chromatic

homotopy theory is that π∗S
0 comes naturally equipped with a completely
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different filtration—the chromatic filtration—which systematically exhibits
the large scale symmetries hidden in the stable homotopy category.

Chromatic homotopy theory is the study of the chromatic filtration and
the structures that arise from it, both on π∗S

0 but also on the category
of spectra itself. As with many young and active fields, points of views are
evolving rapidly and there are few surveys that keep up with the develop-
ments. Our goal for this chapter is to present our perspective on the subject
and, in the process, to draw one of the possible maps of the field in its
current state.

We would like to emphasize that our exposition is in many ways revi-
sionistic and certainly far from comprehensive, but rather reflects our own
understanding of and point of view on the subject. We apologize to those
who would have preferred us to present the material from a different point
of view, or for us to include important topics we have left untouched. Hope-
fully, they will take this as a cue to write an expository piece of their own as
we feel there is a great need for more background literature in this vibrant
field.

In the rest of this short introduction, we give a brief overview of the
content of the chapter.

The goal of Section 2 is to introduce and study the chromatic filtration
and its consequences from an abstract point of view. More precisely, we will:

(1) Explain that the chromatic filtration arises canonically from the global
structure of the stable homotopy category. See Section 2.1.

(2) Describe the geometric origins of the chromatic filtration through the
relation with the stack of formal groups. See Section 2.2.

(3) Demonstrate that many geometric structures have homotopical manifes-
tations in the chromatic picture that motivate and guide the past and
recent developments in the subject. See Section 2.3 and Section 2.4.

While Section 2 focuses mostly on the global picture, in Section 3 we
zoom in on K(n)-local homotopy theory. In Section 3, we introduce Morava
E-theory En and the Morava stabilizer group Gn, which play a central
role in this story because of their relationship to the K(n)-local sphere via
the equivalence LK(n)S

0 ' EhGnn . The resulting descent spectral sequence,
whose E2-term is expressed in terms of group cohomology, is one of the most
important computational tools in the subject. For this reason, Section 3.2
is devoted to the study of Gn and its homological algebraic properties.

At this point, we go on a hiatus and give an overview of the chromatic
story at height n = 1. This is the content of Section 4, whose goal is to
provide the reader with a concrete example to keep in mind for the rest of
the chapter.

The most technical part of this overview of chromatic homotopy theory
is Section 5, which presents the theory of finite resolutions. These are finite
sequences of spectra that approximate the K(n)-local sphere by spectra of
the form EhFn for F finite subgroups of Gn. The advantage of this approach
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is that the spectra EhFn are computationally tractable. Finite resolutions
have been one of the most important tools in computations at height n = 2
and we gives detailed examples in this case in Section 5.5.

In the last part, Section 6, we provide an overview of three topics in
chromatic homotopy theory that have seen recent breakthroughs:

(1) In Section 6.1, we discuss chromatic reassembly, which describes the pas-
sage from the K(n)-local to the p-local picture. The main open problem
is the chromatic splitting conjecture and we give an overview of the cur-
rent state of affairs on this question.

(2) In Section 6.2, we turn to the problem of computing the group of invert-
ible objects in the symmetric monoidal category of K(n)-local spectra.
We also touch upon the closely related topic of K(n)-local dualities.

(3) In Section 6.3 we talk about the asymptotic behavior of local chromatic
homotopy theory when p→∞.

These developments demonstrate how chromatic homotopy theory uncovers
structures in the stable homotopy category that reveal the many interactions
between homotopy theory and other areas of mathematics.

Conventions and prerequisites. We will assume that the reader is famil-
iar with basic stable homotopy theory and category theory, as for example
contained in the appendices to Ravenel [Rav92]. Throughout this chapter,
Sp will denote a good symmetric monoidal model for the category of spectra,
as for example S-modules [EKMM97], symmetric spectra [HSS00], orthog-
onal spectra [MMSS01], or the ∞-category of spectra [Lurb]. Note that all
of these categories model the stable homotopy category, i.e., their associ-
ated homotopy categories are equivalent to the stable homotopy category,
so the homotopical constructions in this chapter will be model-independent.
In fact, Schwede’s rigidity theorem [Sch07] justifies that we may work in a
model-independent fashion.

In particular, we freely use the theory of ring spectra in Sp and module
spectra over them, formal groups, and spectral sequences. A full triangu-
lated subcategory of a triangulated category T is called thick if it is closed
under suspensions and desuspensions, fiber sequences, and retracts. If T is
cocomplete, then a thick subcategory is called localizing if it closed under
all set-indexed direct sums, and we write Loc(S) for the smallest thick sub-
category of T containing a given set S of objects in T . Further, recall that
an object C ∈ T is said to be compact (or small) if HomT (C,−) commutes
with arbitrary direct sums in T ; we will write T ω for the full subcategory
spanned by the compact objects in T . If C denotes a model (i.e., a stable
model category or stable∞-category) for T , then the corresponding notions
for C are defined analogously.

Acknowledgements. We would like to thank Paul Goerss, Hans-Werner
Henn, Mike Hopkins and Vesna Stojanoska for clarifying conversations, and
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2. A panoramic view of the chromatic landscape

The goal of this section is to give an overview of the global structure of
the stable homotopy category from the chromatic perspective. Motivated by
the analogy with abelian groups and the geometry of the moduli stack of
formal groups, we will explain how the solution of the Ravenel Conjectures
by Devinatz, Hopkins, Ravenel, and Smith leads to a canonical filtration in
stable homotopy theory. The construction as well as the coarse properties
of the resulting chromatic filtration are then summarized in the remainder
of this section, which prepares for the in-depth study of the local filtration
quotients in Section 3.

Remark 2.1. The global point of view taken in this section goes back to
Hopkins’ original account [Hop87] of his work with Devinatz and Smith
on the nilpotence conjectures. It has subsequently led to the study of the
global structure of more general tensor-triangulated categories and the sys-
tematic development of tt-geometry by Balmer and his coauthors. We refer
to Balmer’s chapter in this handbook for background and a plethora of fur-
ther examples.

2.1. From abelian groups to spectra. As expressed in Waldhausen’s
vision of brave new algebra, the category Sp of spectra should be thought of
as a homotopical enrichment of the derived category DZ of abelian groups.
Consequently, before beginning with our analysis of the global structure of
the stable homotopy category, we may consider the case of abelian groups
as a toy example. The starting point is the Hasse square for the integers,
displayed as the pullback square on the left:

(2.2) Z //

��

∏
p Zp

��

M //

��

∏
pM

∧
p

��

Q // Q⊗∏p Zp Q⊗M // Q⊗∏pM
∧
p .

This is a special case of a local-to-global principle for any chain complex
M ∈ DZ, expressed by the homotopy pullback square on the right, in which
M∧p denotes the derived p-completion of M . While the remaining terms
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in this square seem to be more complicated than M itself, they are often
easier from a structural point of view. This is the reason that problems in
arithmetic geometry—for example finding integer valued solutions to a set
of polynomial equations—can often be divided into two steps: First solve
the usually simpler question at individual primes p, and then attempt to
globalize the solutions.

This approach is tied closely to the global structure of the category DZ.
Let DQ be the derived category of Q-vector spaces and write (DZ)∧p for the
category of derived p-complete complexes of abelian groups. (Recall that
a complex C of abelian groups is derived p-complete if it is p-local and
Exti(Q, C) = 0 for i = 0, 1 or, equivalently, if C is in the image of the zeroth
left derived functor of p-completion on DZ.) We highlight three fundamental
properties of these subcategories of DZ:

(1) The category (DZ)∧p is compactly generated by Z/p. In particular, an
object X ∈ (DZ)∧p is trivial if and only if X ⊗ Z/p is trivial.

(2) The only proper localizing subcategory of (DZ)∧p is (0), i.e., if X is any
non-trivial object in (DZ)∧p , then Loc(X) = (DZ)∧p , i.e., the smallest
full triangulated subcategory of (DZ)∧p closed under shifts and colimits
which contains X is (DZ)∧p itself.

(3) Any object M ∈ DZ can be reassembled from its derived p-completions
M∧p ∈ (DZ)∧p , its rationalization Q⊗M ∈ DQ, together with the gluing
information specified in the pullback square displayed on the right of
(2.2).

Therefore, we may think of (DZ)∧p as an irreducible building block of DZ. In
fact, we can promote these observations to a natural bijection between the
residue fields of Z, which are parametrized by the points of Spec(Z), and
the irreducible subcategories of DZ they detect:
(2.3){

Prime fields
Q and Fp for p prime

}
oo
∼
//

{
Minimal localizing subcategories
DQ and (DZ)∧p for p prime

}
A convenient language and framework for describing the global struc-

ture of categories like DZ and Sp is provided by Balmer’s tensor triangular
geometry. Roughly speaking, the Balmer spectrum Spc(T ) of a tensor trian-
gulated category T has as points the thick ⊗-ideal of T ω (where T ω denotes
the subcategory of compact objects), equipped with a topology that en-
codes the inclusions among these subcategories. Whenever T is compactly
generated by its ⊗-unit, as is the case for example for Sp, thick ⊗-ideals co-
incide with thick subcategories of T ⊗. We refer to Balmer’s [Bal] for precise
definitions and many examples.

With this terminology at hand, we are now ready to make the slogan at the
beginning of this section more precise. First note that we can truncate the
homotopy groups S0 above degree 0 to obtain a ring map φ : S0 → τ≤0S

0 '
HZ, which is the Hurewicz map for integral homology. Base-change along φ
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then provides a functor

Sp ' ModS0(Sp)
φ∗
// ModHZ(Sp) ' DZ

which represents the passage from higher algebra to classical algebra; here,
the second equivalence was established by Shipley in [Shi07]. Moreover, iden-
tifying Z ∼= [S0, S0], Balmer constructs a canonical comparison map ρ from
the Balmer spectrum of Sp to the Zariski spectrum of Z. The bijection (2.3)
implies that the composite

Spc(DZ)
Spc(φ∗)

// Spc(Sp)
ρ

// Spec(Z)

is an isomorphism, so Spc(Sp) contains Spec(Z) as a retract. This leads to
the following natural question: For p ∈ Spec(Z), what is the fiber ρ−1(p) in
Spc(Sp)? We will see in Theorem 2.11 below that, for each prime ideal (p) ∈
Spec(Z), there is an infinite family of points in Spc(Sp) that interpolates
between (p) and (0) ∈ Spec(Z), the so-called chromatic primes. In other
words, the global structure of the stable homotopy category refines the global
structure of DZ; see [Bal, Theorem 1.3.3] for a picture.

Let Sp(p) be the category of p-local spectra, i.e., those spectra whose

homotopy groups are p-local abelian groups. It turns out that ρ−1(p) is
determined by Spc(Sp(p)). We will address the following two problems:

(1) Classify the thick subcategories of Spω(p).

(2) Find the analogues of prime fields of Sp(p).

As we will see, the classification of thick subcategories is a consequence of
the answer to Problem 2, but before we can get there, we will exhibit a
geometric model that serves as a good approximation to stable homotopy
theory.

Convention 2.4. From here onwards, we fix a prime p and only consider
the category of p-local spectra. We write Sp = Sp(p) and assume without
further mention that our spectra have been localized at p.

2.2. A geometric model for stable homotopy theory. In order to pre-
pare for the resolution of the questions above, we first exhibit a geometric
model for the stable homotopy category whose main structural features will
turn out to reflect that of Sp rather closely.

Recall that the mod p singular cohomology H∗(X,Fp) of any space
or spectrum X is endowed with an action of cohomology operations
π∗Hom(HFp, HFp), which form the mod p Steenrod algebra Ap. In other
words, singular cohomology naturally factors through the functor that for-
gets the Ap-module structure and only remembers the underlying Fp-vector
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space of H∗(X,Fp):

Modgraded
Ap

forget

��

Spop

H∗(−,Fp)
//

H∗(−,Fp)
55

Modgraded
Fp

The Adams spectral sequence, first introduced in [Ada58], can then be in-
terpreted as a device that attempts to go back, or at least recover partial
information about X: There is a spectral sequence

Es,t2
∼= ExtsAp(H

∗(Y ), H∗(X))t =⇒ [X,Y ∧p ]t−s,

which converges whenever X and Y are spectra of finite type with X finite,
see for a general study of the convergence properties of (generalized) Adams
spectral sequences [Bou79]. Here, finite type means that the mod p cohomol-
ogy is finitely generated in each degree, and Y ∧p denotes the p-completion of
Y . The subscript t on the Ext-indicates the internal grading, arising from
the grading of cohomology groups involved. Informally speaking, this spec-
tral sequence measures to what extent ModAp deviates from being a perfect
model for Sp.

Remark 2.5. Paraphrasing, the Mahowald uncertainty principle asserts
that any spectral sequence that computes the stable homotopy groups of
a finite spectrum with a machine computable E2-term will be infinitely far
from the actual answer. In practical terms this means that the Adams spec-
tral sequence for X = S0 and Y a finite spectrum contains many differentials
that require additional input to be determined.

Building on the work of Novikov [Nov67] and Quillen [Qui69],
Morava [Mor85] realized that replacing HFp by the Brown–Peterson spec-
trum BP gives rise to a geometric model for Sp that resembles its global
structure more closely. To describe it, recall that BP is an irreducible addi-
tive summand in the p-localized complex cobordism spectrum MU with
coefficients BP∗ = Z(p)[v1, v2, . . .] and deg(vn) = 2pn − 2. The genera-
tor vi+1 is uniquely determined only modulo the ideal (p, v1, . . . , vi) and
there are different choices available, for example the Araki or Hazewinkel
generators. See, for example, [Rav86, A2.2]. The corresponding Hopf alge-
broid (BP∗, BP∗BP ) is a presentation of the moduli stack of (p-typical)
formal groups Mfg and the category of evenly graded comodules over
(BP∗, BP∗BP ) is equivalent to the category of quasi-coherent sheaves over
Mfg, see for example [Nau07] for a general treatment. Miller [Mil] explains
how this equivalence can be extended to all graded comodules by replac-
ing Mfg by a moduli stack of spin formal groups, see also [Goe08]. Taking
BP -homology induces a functor

Sp // Comodeven
BP∗BP ' QCoh(Mfg), X 7→ BP∗(X),
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where Comodeven
BP∗BP denotes the abelian category of evenly graded BP∗BP -

comodules. The associated Adams–Novikov spectral sequence has signature

Es,t2
∼= Hs(Mfg;BP∗(X))t ∼= ExtBP∗BP (BP∗, BP∗(X)) =⇒ πt−sX.

The structure of this spectral sequence, whose computational exploitation
was a major impetus in the development of chromatic homotopy theory (see
[MRW77]), is governed by the particularly simple geometric structure of
Mfg, which we describe next:

As explained in great detail in [Goe08], the height filtration of formal
groups manifests itself in a descending filtration by closed substacks

(2.6) Mfg ⊃M(1) ⊃M(2) ⊃ · · ·
where M(n) is cut out locally by the ideal defined by the regular sequence
(p, v1, v2, . . . , vn−1). Note that this filtration is not separated, as the additive
formal group has height ∞. Write

• M≤nfg for the open complement of M(n + 1) representing formal

groups of height at most n with in : M≤nfg →Mfg the inclusion,

• H(n) =M(n)∩M≤nfg for the locally closed substack of formal groups

of height exactly n, and

• Ĥ(n) for its formal completion.

If Γ is any formal group of height n over Fp, then H(n) is equivalent as
a stack to BAutFp(Γ), so the filtration quotients of the height filtration

(2.6) contain a single geometric point. Furthermore, there is a (pro-)Galois
extension

(2.7) Def(Fp,Γ) −→ Ĥ(n)

with Galois group Gal(Fp/Fp)nAutFp(Γ), with Def(Fp,Γ) being the Lubin–

Tate deformation space. See Remark 3.9 below.
In light of (2.6), any quasi-coherent sheaf F ∈ QCoh(Mfg) can be ap-

proximated by its restrictions to the open substacksM≤nfg , so the geometric

filtration onMfg gives rise to a filtration of QCoh(Mfg). It follows that the
computation of the cohomology of a quasi-coherent sheaf F onMfg can be
restricted to the computation of the cohomology of F reduced to the strata
H(n) together with the gluing data between different strata. The insight
of Bousfield, Morava, and Ravenel was that the resulting structure on the
E2-term of the Adams–Novikov spectral sequence is in fact manifest in π∗S

0

and Sp as well, as we shall see in the next sections.

Remark 2.8. An early hint there is such a close relation between Sp and
QCoh(Mfg) is the Landweber exact functor theorem, which shows that any
flat map f : Spec(R) → Mfg can be lifted to a complex orientable ring
spectrum with formal group classified by f . We refer to [Beh19] for more
details.
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2.3. The chromatic filtration: construction. The goal of this section is
to answer the questions raised at the end of Section 2.1 and to construct
the chromatic filtration. We continue to work in the category Sp of p-local
spectra for a fixed prime p as in Convention 2.4.

In loose analogy with algebra, a ring spectrum K ∈ Sp is said to be a field
if every K-module splits into a wedge of shifted copies of K. In particular,
for any spectra X and Y , there is a Künneth isomorphism

K∗(X ∧ Y ) ∼= K∗(X)⊗K∗ K∗(Y ).

There exists a family of distinct field spectra K(n) for 0 ≤ n ≤ ∞ called
the Morava K-theories, whose construction will be reviewed in Section 3.1.

As a result of the seminal nilpotence theorem proven by Devinatz, Hop-
kins, and Smith [DHS88, HS98], we obtain a classification of fields in Sp.

Theorem 2.9 (Hopkins–Smith). Any field object in Sp splits (additively)
into a wedge of shifted copies of Morava K-theories. Moreover, if R is a ring
spectrum such that K(n)∗(R) = 0 for all 0 ≤ n ≤ ∞, then R ' 0.

For example, K(0) = HQ, K(∞) = HFp, and K(1) is an Adams summand
of mod p K-theory. Informally speaking, the spectra K(n) may be thought
of as the homotopical residue fields of the sphere spectrum.

Remark 2.10. As remarked in [HS98], this theorem can be interpreted
as providing a classification of prime fields of Sp. However, there is the
subtlety that the ring structure on K(n) is not unique at p = 2, even in
the homotopy category, see [Rav92, Theorem B.7.4] for a summary and
further references. The existence and uniqueness of A∞-structures on K(n)
is studied in Angeltveit’s paper [Ang11]. Hopkins and Mahowald have proved
that none of these multiplicative structures on K(n) refine to an E2-ring
structure (e.g., [ACB19, Corollary 5.4]).

In light of this theorem, there is a natural notion of support for a spectrum
X ∈ Sp, namely

supp(X) = {n | K(n)∗(X) 6= 0} ⊆ Z≥0 ∪ {∞}.
This notion of support turns out to be particularly well-behaved for the
category of finite spectra Spω. Since K(∞)∗F ∼= H∗(F,Fp) = 0 implies
F ' 0 for finite F , for any non-trivial F there exists an n ∈ N such that
n ∈ supp(F ). Ravenel [Rav84] further proved that n ∈ supp(F ) implies
(n + 1) ∈ supp(F ), so the only subsets of Z≥0 ∪ {∞} that can be realized
as the support of a finite spectra are the sets {n, n + 1, n + 2, . . . ,∞} with
n ∈ N. A result of Mitchell’s [Mit85] implies that all of these subsets can be
realized by a finite spectrum.

Write C0 = Spω and, for n ≥ 1, let Cn ⊆ Spω be the thick subcategory
of finite spectra F with supp(F ) ⊆ {n, n+ 1, n+ 2, . . . ,∞} for n ∈ N. The
following consequence of Theorem 2.9 is often called the thick subcategory
theorem, proven in [HS98]. It says in particular that the support function
defined above detects the thick subcategories of Spω:
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Theorem 2.11 (Hopkins–Smith). If C ⊆ Spω is a nonzero thick subcate-
gory, then there exists an n ≥ 0 such that C = Cn. Moreover, there is a
sequence of proper inclusions

Spω = C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ (0),

which completely describes Spc(Sp).

This categorical filtration gives rise to a sequence of functorial approxima-
tions of any finite spectrum F by spectra that are supported on {0, 1, . . . , n}
for varying n, where the zeroth approximation is given by the rationalization
F ∧HQ. This filtration should be understood as a homotopical incarnation
of the geometric filtration of Mfg, so that the approximations of F corre-
spond to the restriction of the associated sheaf BP∗(F ) ∈ QCoh(Mfg) to

M≤nfg .

The tool required to formulate this notion of approximation rigorously
is provided by Bousfield localization, which we briefly review here for the
convenience of the reader. Let E be a spectrum and consider the full subcat-
egory 〈E〉 ⊆ Sp of E-acyclic spectra, i.e., those spectra A with E ∧ A ' 0.
Bousfield [Bou79] proved that there exists a fiber sequence

CE // id // LE

of functors on Sp satisfying the following properties:

(1) For any X ∈ Sp, CEX is in 〈E〉.
(2) For any X ∈ Sp, LEX is E-local, i.e., it does not admit any nonzero

maps from an E-acyclic spectrum.

It follows formally that LEX is the initial E-local spectrum equipped with
a map from X, and it is called the E-localization of X. The full subcategory
of Sp on the E-local spectra will be denoted by SpE ; by construction, it is
the quotient of Sp by 〈E〉.

In order to extract the part of a spectrum X that is supported on
{0, 1, . . . , n}, i.e., the information of X that is seen by the residue fields
K(0),K(1), . . . ,K(n), it is natural to consider the following Bousfield local-
ization

X // LnX := LK(0)∨K(1)∨...∨K(n)X.

In fact, for every n there exists a spectrum E(n) with coefficients E(n)∗ =
Z(p)[v1, . . . , vn][v−1

n ] called Johnson–Wilson spectrum (of height n) which has
the property that 〈E(n)〉 = 〈K(0) ∨K(1) ∨ . . . ∨K(n)〉, hence Ln = LE(n).
We let Spn = SpE(n) denote the category of E(n)-local spectra.
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By construction, these localization functors fit into a chromtic tower un-
der X as follows
(2.12)

MnX

��

M2X

��

M1X

��

M0X ' HQ ∧X

· · · // LnX // · · · // L2X // L1X // L0S
0 ' HQ ∧X,

where the monochromatic layers MnX are defined by the fiber sequence

MnX −→ LnX −→ Ln−1X.

Specializing to the sphere spectrum and applying homotopy groups, we ar-
rive at the definition of the chromatic filtration.

Definition 2.13. The chromatic filtration on π∗S
0 is given by the descend-

ing filtration

(2.14) π∗S
0 ⊇ C0π∗S

0 ⊇ C1π∗S
0 ⊇ · · ·

defined as Cnπ∗S0 = ker(π∗S
0 → π∗LnS

0).

There is an important subtlety in the definition of the chromatic filtration,
as there is an a priori different way of constructing a filtration of Sp from the
thick subcategory theorem (Theorem 2.11). Indeed, without relying on the
Morava K-theories K(n), one may instead take the quotient of Sp by the
localizing subcategories Loc(Cn) ⊆ Sp for each n. The resulting localization

functors Lfn can then be used as above to construct a descending filtration

π∗S
0 ⊇ Cf0π∗S

0 ⊇ Cf1π∗S
0 ⊇ · · ·

with Cfnπ∗S0 = ker(π∗S
0 → π∗L

f
nS0), known as the geometric filtration, see

Ravenel [Rav92, Section 7.5]. If X is spectrum such that LfnX ' 0, then

also LnX ' 0, so there are natural comparison transformations Lfn → Ln,
leading to the following optimistic conjecture about the comparison between
the two filtrations:

Conjecture 2.15 (Telescope conjecture). The natural transformation

Lfn → Ln is an equivalence.

A number of equivalent formulations of this conjecture and the current
state of knowledge about it can be found in Mahowald–Ravenel–Schick
[MRS01] and [Bar19]. The smash product theorem of Hopkins and Ravenel
[Rav92, Section 8] states that Ln is smashing, i.e., Ln as an endofunctor

on Sp commutes with colimits, while the analogous fact for Lfn was proven
by Miller [Mil92]. It therefore suffices to show the telescope conjecture for
S0. This has been verified by explicit computations for n = 0 and n = 1
by work of Mahowald [Mah81] for p = 2 and Miller [Mil81] for odd p, but
the telescope conjecture is open in all other cases. It is known however
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that LfnM → LnM is an equivalence for many spectra M , including BP -
modules [Hov95, Corollary 1.10] and E(m)-local spectra [HS99b, Corollary
6.10] for any m ≥ 0.

2.4. The chromatic filtration: disassembly and reassembly. The goal
of this subsection is to first demonstrate how the chromatic filtration decom-
poses the stable homotopy groups of spheres into periodic families and then
to explain how these irreducible pieces reassemble into π∗S

0. The starting
point is the chromatic convergence theorem due to Hopkins and Ravenel,
proven in [Rav92], whose content is that the chromatic tower (2.12) does not
lose any information about S0. In particular, the chromatic filtration (2.14)
on π∗S

0 is exhaustive. We continue to follow Convention 2.4.

Theorem 2.16 (Hopkins–Ravenel). The canonical map X → limn LnX is
an equivalence for all finite spectra X.

Remark 2.17. For general X, this map can be far from being an equiv-
alence. For example, the chromatic tower of HFp or the Brown–Comenetz
dual IS0 of the sphere is identically zero. However, chromatic convergence
is known to hold for a class of spectra larger than just finite ones, including
CP∞. See [Bar16].

We now turn to the filtration quotients of the chromatic filtration, which
correspond homotopically to the monochromatic layers MnX. Much of the
material in this section can be found in [HS99b].

The layers MnX decompose into spectra which are periodic of periods
a multiple of 2(pn − 1), thereby resembling the decomposition of light into
waves of different frequencies. (This is the origin of the term chromatic
homotopy theory, coined by Ravenel.) More precisely, if X is any spectrum,
then its nth monochromatic layer is equivalent to a filtered colimit of spectra
Fα,

colimα Fα
∼
// MnX,

such that each Fα is periodic. That is, for each α there exists a natural

number λ(α) and a homotopy equivalence Fα ' Σ2(pn−1)pλ(α)Fα. This follows
from the fact that Mn is equivalent to the colocalization of the E(n)-local
category with respect to the E(n)-localization of a finite type n spectrum,
see for example [HS99b, Proposition 7.10], together with the periodicity
theorem of Hopkins and Smith [HS98, Theorem 9]

Having resolved S0 into its irreducible chromatic pieces MnS
0, it is now

time to consider the question of how to reassemble the pieces. For this, it is
more convenient to consider the K(n)-localizations instead of the monochro-
matic layers, as we shall explain next.

Write Mn ⊂ Sp for the essential image of the functorMn and let SpK(n) be

the category of K(n)-local spectra. For any n, the functors LK(n) and Mn re-
strict to an adjunction on the category Spn (with Mn as the left adjoint) and
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then further to a symmetric monoidal equivalence [HS99b, Theorem 6.19]

Mn : SpK(n)
//Mn :LK(n).oo

So we may equivalently work with LK(n)S
0 in place of MnS

0.

Remark 2.18. The more categorically minded reader may think of the sit-
uation as follows: The descending filtration of Spω of Theorem 2.11 extends
to two descending filtrations of Sp:

Sp = ker(0) ⊃ ker(L0) ⊃ ker(L1) ⊃ · · · ⊃ ker(id) = (0)

and
Sp = Loc(C0) ⊃ Loc(C1) ⊃ Loc(C2) ⊃ · · · ⊃ (0),

which are equivalent if the telescope conjecture holds for all n. Focusing on
the first filtration for concreteness and writing Spn for the essential image of
Ln as before, we could equivalently pass to the associated ascending filtration

(0) = im(0) ⊂ Sp0 ⊂ Sp1 ⊂ Sp2 ⊂ · · · ⊂ im(id) = Sp.

The consecutive subquotients Spn/Spn−1 can then be realized in two differ-
ent ways as subcategories of Sp, namely either as a localizing subcategory
Mn or as a colocalizing subcategory SpK(n). The resulting equivalence be-
tween Mn and SpK(n) is an instance of a phenomenon called local duality ,

see [BHV18b].

Suppose X is a spectrum for which we have determined Ln−1X and
LK(n)X, and we are interested in reassembling them to obtain LnX. Moti-
vated by the geometric model of Section 2.2, we expect this process to be
analogous to the way a sheaf on the open subset M≤n−1

fg and another sheaf

on the stratum Hn are glued together along the formal neighborhood Ĥn
of Hn inside M≤n−1

fg to produce a sheaf on M≤nfg . This picture turns out to

be faithfully reflected in stable homotopy theory: The chromatic reassembly
process for X ∈ Sp is governed by the homotopy pullback square displayed
on the left, usually called the chromatic fracture square (see for example
[Gre01]):

(2.19) LnX //

��

LK(n)X

��

Spn
LK(n)

//

X 7→ιn(X)
��

SpK(n)

Ln−1

��

Ln−1X
ιn(X)

// Ln−1LK(n)X Fun(∆1,Spn−1)
target

// Spn−1

In fact, by [AB14] the category Spn itself admits a decomposition into chro-
matically simpler pieces, see the pullback square on the right of (2.19). Here,
Fun(∆1, Spn−1) is the arrow category of Spn−1 and the pullback is taken in
a suitably derived sense. The labels of the arrows in this diagram indicate
how to translate from the chromatic fracture square of a spectrum X to the
categorical decomposition on the right of (2.19).
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Based on computations of Shimomura–Yabe [SY95], Hopkins [Hov95] con-
jectured that the chromatic reassembly process which recovers LnX from
LK(n)X and Ln−1X takes a particularly simple form:

Conjecture 2.20 (Weak Chromatic Splitting). The map

ιn(S0
p) : Ln−1S

0
p

// Ln−1LK(n)S
0
p

in (2.19) is split, i.e., it admits a section. Here, S0
p is the p-complete sphere

spectrum.

This conjecture, its variations, and its consequences are discussed in more
detail in Section 6.1. For now we note that Conjecture 2.20 is known to hold
for n ≤ 2 and all primes p, and is wide open otherwise.

We can now summarize the chromatic approach as follows:

Chromatic Approach. The chromatic approach to π∗S
0
(p) consists of three

steps:

(1) Compute π∗LK(n)S
0 for each n.

(2) Understand the gluing in the chromatic fracture square (2.19).
(3) Use chromatic convergence (Theorem 2.16) to recover S0

(p).

Finally, the p-local sphere spectrum S0
(p) determines S0

p by p-completion.

Together with HQ∧S0 ' HQ, we can thus reassemble the sphere spectrum
S0 itself via the following homotopical analogue of the Hasse square (2.2):

S0 //

��

∏
p S

0
p

��

HQ ∧ S0 // HQ ∧∏p S
0
p .

In the next section, we discuss the first two steps of the chromatic approach.

Remark 2.21. As mentioned earlier, the deconstructive analysis of the sta-
ble homotopy category based on its spectrum Spc(Sp) can be carried out
in any tensor triangulated category; many examples can be found in [Bal].
This is the subject of prismatic algebra. An especially interesting exam-
ple is the stable module category StModkG of a finite p-group G and field
k of characteristic p, whose spectrum Spc(StModkG) is homeomorphic to
Proj(H∗(G; k)), the Proj construction of the graded ring H∗(G; k). This
category is a good test case for chromatic questions: for instance, the ana-
logues of both the telescope conjecture and the weak chromatic splitting
conjecture are known to hold in StModkG, see [BIK11] and [BHV18a].

3. Local chromatic homotopy theory

We begin this section by introducing the main players of local chromatic
homotopy theory: Morava E-theory En, the Morava stabilizer group Gn
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and its action on En, and the resulting descent spectral sequence computing
π∗LK(n)S

0. We then summarize the key algebraic features of the Morava
stabilizer group, its continuous cohomology, and its action on the coefficients
of Morava E-theory. In order to have a toy case in mind for the general
constructions to follow, we study in detail the case of height 1.

3.1. Morava E-theory and the descent spectral sequence. The chro-
matic program has led us naturally and inevitably to the study of the K(n)-
local categories, which should be thought of as an analog of (DZ)∧p for abelian
groups. Formally, we note that SpK(n) is a closed symmetric monoidal sta-

ble category. Moreover, in close analogy with Section 2.1, the K(n)-local
categories have the following properties:

(1) The category SpK(n) is compactly generated by LnF (n) for any F (n) ∈
Cn \ Cn+1 for Cn as in Theorem 2.11, and an object X ∈ SpK(n) is trivial

if and only if X ∧K(n) is trivial.
(2) The only proper localizing subcategory of SpK(n) is (0).

(3) A spectrum X ∈ Spn can be reassembled from LK(n)X, Ln−1X, together
with the gluing information specified in the pullback square displayed
on the right of (2.19).

This confirms the idea that the K(n)-local categories play the role of the
irreducible pieces of Sp. With the techniques developed so far, both the finer
structural properties of SpK(n) as well as any concrete calculations would be
essentially inapproachable: Incipit Morava E-theory.

We let Γn denote the Honda formal group law of height n. It is the formal
group law classified by the map

BP∗ ∼= Z(p)[v1, v2, v3, . . .] −→ Fp

which sends vn to 1 and (p, v1, . . . , vn−1, vn+1, vn+2, . . .) to zero. In fact, it
is the unique p-typical formal group law over Fpn whose p-series satisfies
[p]Γn(x) = xp

n
. A good reference on formal group laws for homotopy theo-

rists is [Rav86, Appendix A2].
Let Wn = W (Fpn) be the ring of Witt vectors of Fpn , which is isomorphic

to the ring of integers in an unramified extension of Qp of degree n. Lubin
and Tate [LT65] showed that there exists a p-typical universal deformation
Fn of Γn to complete local rings with residue field Fpn , whose formal group
law Fn(x, y) is defined over the ring

(3.1) (En)0 = Wn[[u1, . . . , un−1]] ui ∈ (En)0.

Introducing a formal variable u in degree −2 then allows to extend Fn to a
graded formal group law Fn,gr(x, y) = uFn(u−1x, u−1y) defined over (En)∗ =
(En)0[u±1], classified by the ring homomorphism

BP∗ ∼= Z(p)[v1, v2, v3, . . .] −→ (En)∗
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which sends (vn+1, vn+2, . . .) to zero, vn to u1−pn , and vk to uku
1−pk for

k < n. Here, we are using the Araki generators for BP∗. See [Rav86, A2.2]
for more details.

In order to lift this construction to stable homotopy theory, one first shows
that the functor

X 7→ (En)∗ ⊗BP∗ BP∗(X)

is a homology theory, represented by a complex orientable ring spectrum
En = E(Fpn ,Γn), called Morava E-theory or the Lubin–Tate spectrum be-
cause of its connection to Lubin–Tate deformation theory, see Rezk [Rez98].
This is an instance of the Landweber exact functor theorem mentioned in
Remark 2.8. The spectrum En is a completed and 2-periodized version of
the Johnson–Wilson spectrum E(n) from Section 2.3 and it turns out that
LE(n) = LEn for all n; in particular, the terms E(n)-local and En-local are
synonymous.

Since (En)∗ is a regular graded commutative ring which is concentrated
in even degrees, reduction modulo the maximal ideal m = (p, u1, . . . , un−1)
can be realized by a (homotopy) ring map

En −→ En/m =: Kn

with π∗Kn
∼= Fpn [u±1], see for example Chapter V of [EKMM97]. The

spectrum Kn splits as a wedge of equivalent spectra, which are shifts
of the Morava K-theory K(n) of Theorem 2.9, with homotopy groups
K(n)∗ ∼= Fp[v±1

n ] for vn = u1−pn .

Definition 3.2. The small Morava stabilizer group Sn := AutFpn (Γn) is the
group of automorphisms of Γn with coefficients in Fpn

Sn = {f(x) ∈ Fpn [[x]] : f(Γn(x, y)) = Γn(f(x), f(y)), f ′(0) 6= 0}.
Since Γn is defined over Fp, the Galois group Gal = Gal(Fpn/Fp) acts on
Sn by acting on the coefficients of an automorphism. The big Morava Sta-
bilizer group Gn is the extension Sn o Gal. Equivalently, Gn is the group of
automorphisms of the pair (Fpn ,Γn).

The construction E(Fpn ,Γn) is natural in the formal group law Γn, so
there is an up to homotopy action of AutFpn (Γn) on E(Fpn ,Γn). This action
can be promoted to an action through E∞-ring maps in a unique way: By
Goerss–Hopkins–Miller obstruction theory [HM14, GH04], En admits an es-
sentially unique structure of an E∞-ring spectrum and Gn acts on it through
E∞-ring maps. In fact, Gn gives essentially all such automorphisms of En. A
new proof of these results from the perspective of derived algebraic geometry
has recently appeared in Lurie [Lura]. The connection between K(n)-local
homotopy theory and Morava E-theory is then illustrated in the diagram

LK(n)S
0 // En // Kn.(3.3)

The first map is a pro-Galois extension of ring spectra with Galois group
Gn in the sense of Rognes. In particular, LK(n)S

0 ' EhGnn and the extension
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LK(n)S
0 → En behaves like an unramified field extension. The second map

in (3.3) corresponds to the passage to the residue field. See [Rog08, BR08]
for precise definitions on pro-Galois extensions and [DH04] for a definition of
homotopy fixed points for profinite groups. Further results and alternative
approaches to the construction of (continuous) homotopy fixed points in the
generality needed for chromatic homotopy theory can be found in [Dav06,
Qui13, DQ16] and the references therein.

Remark 3.4. Note also that the extension LK(n)S
0 → En can be broken

into two pro-Galois extensions

LK(n)S
0 Gal

// EhSnn ' LK(n)S
0(ω)

Sn
// En,

where the arrows are labelled by the structure group of the extension. Here,
LK(n)S

0(ω) is an E∞-ring obtained by adjoining a primitive (pn− 1)th root
of unity ω to the K(n)-local sphere. See [Rog08, 5.4.6] and [BG18, Section
1.6] for details on this.

From the fact that the first map of (3.3) is a Galois extension, it follows
that

π∗LK(n)(En ∧ En) ∼= Mapc(Gn, (En)∗),(3.5)

where Mapc denotes the continuous functions as profinite sets. See for exam-
ple [Hov04, Theorem 4.11]. In fact, the functor (En)∨∗ (−) := π∗LK(n)(En∧−)
takes values in a category of Morava modules, which are (En)∗-modules
equipped with a continuous action by Gn (see Definition 3.37). Furthermore,
a map f is a K(n)-local equivalence (i.e., K(n)∗(f) is an isomorphism) if and
only if (En)∨∗ (f) is an isomorphism. The resulting relationship between the
topological category SpK(n) and the algebraic category of Morava modules

provides very powerful tools for computations in the K(n)-local category.
In particular, it gives rise to a homotopy fixed point spectral sequence, also
called the descent spectral sequence.

Theorem 3.6 (Hopkins–Ravenel [Rav92], Devinatz–Hopkins [DH04],
Rognes [Rog08]). The unit map LK(n)S

0 → En is a pro-Galois extension
with Galois group Gn. There is a convergent descent spectral sequence

(3.7) Es,t2
∼= Hs

c (Gn, (En)t) =⇒ πt−sLK(n)S
0,

which collapses with a horizontal vanishing on a finite page.

The spectral sequence (3.7) is the K(n)-local En-based Adams–Novikov
spectral sequence, which for a general X has the form

Es,t1 = πtLK(n)(En ∧ Esn ∧X) =⇒ πt−sLK(n)X.(3.8)

It is constructed in [DH04, Appendix A]. The description of the E2-page in
terms of continuous group cohomology H∗c for X = S0 uses (3.5) to identify
the E1-term with the cobar complex. More generally, if the (En)∗-module
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(En)∨∗ (X) is flat, or finitely generated, or if there exists k ≥ 1 such that
mk[(En)∨∗ (X)] = 0, then there is an isomorphism [BH16]

Es,t2
∼= Hs

c (Gn, (En)∨t (X)).

Section 3.2.3 below further discusses homological algebra over profinite
groups and properties of this spectral sequence.

In fact, as discussed in [Mat16], the Gn-action on En lifts to an action
on the ∞-category ModEn , which yields a categorical reformulation of the
theorem as a canonical equivalence

SpK(n)
∼
// ModhGnEn

,

where the right hand side denotes the homotopy fixed points taken in the∞-
category of ∞-categories. These observations demonstrate the fundamental
role of En-theory and the Morava stabilizer group Gn together with its
cohomology in chromatic homotopy theory.

Remark 3.9. Other choices for Morava E-theory are possible. For any per-
fect field k of characteristic p and formal group law Γ of height n defined
over k, there is an associated spectrum E(k,Γ) whose formal group law is
a universal deformation of Γ to complete local rings with residue field iso-
morphic to k. There is an associated Morava K-theory K(k,Γ), stabilizer
group G(k,Γ), and G(k,Γ)-Galois extension LK(k,Γ)S

0 → E(k,Γ). The lo-
calization functor L(k,Γ) is independent of the choice of formal group law
Γ and extension k of Fp, so one can make any convenient choice to study
LK(k,Γ)S

0.

Recall the Galois extension Def(Fp,Γ) −→ Ĥ(n) from (2.7). By defini-

tion, G(Fp,Γ) is the group AutFp(Γ)oGal(Fp/Fp), and the Galois extension

E(Fp,Γ) ← LK(Fp,Γ)S
0 is a homotopical lift of the pro-Galois extension

(2.7). The coefficients of the Lubin–Tate spectrum E(Fp,Γ) correspond to

the global sections of Def(Fp,Γ) (hence the reversal of the arrow direction).
A more thorough discussion of Morava E-theory is given in [Sta18]. See also
Remark 3.15 for more on this point.

The first step in the Chromatic Approach described in Section 2.4 is
to compute the homotopy groups of LK(n)S

0 ' EhGnn . As for any Galois
extension, it makes sense to first study intermediate extensions. In general,
if H and K are closed subgroups of Gn and H is normal in K, then EhKn →
EhHn is a K/H-Galois extension and there is a descent spectral sequence

(3.10) Es,t2
∼= Hs

c (K/H, (EhHn )t) =⇒ πt−sE
hK
n .

See for example Devinatz [Dev05]. It seems natural to consider the following
kinds of intermediate extensions:

(a) The Gn/K Galois extensions LK(n)S
0 → EhKn for K ⊆ Gn normal closed

subgroups.
(b) The F -Galois extensions EhFn → En for finite subgroups F of Gn.
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An important example of an intermediate extension of the form (a) is
given in Remark 3.20 below. These kinds of extensions are conceptually im-
portant, but the homotopy groups of spectra of the form EhKn are generally
out of reach at heights n ≥ 3. An exception is when K = F ⊆ Gn is finite,
which brings us to extensions of the form (b), in which case the intermediate
extensions EhFn → En and computations of the homotopy groups of EhFn are
more accessible.

In fact, there are many computations of the homotopy groups of EhFn
at various heights and the recent developments in equivariant homotopy
theory by Hill, Hopkins and Ravenel [HHR16], followed by the work on real
orientations for E-theory of Hahn and Shi [HS17] make these computations
even more accessible. A non-exhaustive list of reference related to these types
of computations is given by [Bau08, BBHS19, BO16, BG18, HS17, Hea15,
HHR17, HSWX18, Hil, MR09].

In view of this, an approach to studying the K(n)-local sphere is to ap-
proximate it by spectra of the form EhFn for finite subgroups F ⊆ Gn. These
approximations fit together to form so-called finite resolutions. This is the
philosophy established by Goerss, Henn, Mahowald, and Rezk (GHMR) in
[GHMR05]. It has proven to be very effective for organizing computations
and clarifying the structure of the K(2)-local category. In the next sections,
we will describe the study of chromatic homotopy theory using the finite
resolution perspective, starting with explicit examples at height n = 1. In
particular, finite resolutions will be discussed at length in Section 5.

3.2. The Morava stabilizer group. In this section, we give more details
on the structure of the Morava stabilizer groups Gn and Sn, which were
introduced in Definition 3.2. We also discuss homological algebra in this
context. More detail on this material can be found, for example, in [Hen17].

3.2.1. The structure of Gn. Recall that Γn denotes the Honda formal group
law of height n. We write

x+Γn y := Γn(x, y).

By definition, Sn is the group of the units in EndFpn (Γn). In fact,

EndFp(Γn) ∼= EndFpn (Γn).

That is, all endomorphisms of Γn have coefficients in Fpn . We give a brief de-
scription of the endomorphism ring here, originally due to Dieudonné [Die57]
and Lubin [Lub64]. A good reference for this material from the perspective
of homotopy theory is [Rav86, Appendix A2.2].

Recall that Wn denotes the ring of Witt vectors on Fpn . It is isomorphic
to the ring of integers Zp(ω) of the unramified extension of Qp(ω) obtained
from Qp by adjoining a primitive (pn − 1)th root of unity ω. The residue
field is Fpn and we also let ω denote its reduction in Fpn .
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The series ω(x) = ωx and ξ(x) = xp are elements of EndFpn (Γn) and, in
fact, the endomorphism ring is a Zp-module generated by these elements:

(3.11) EndFpn (Γn) ∼= Wn〈ξ〉/(ξω − ωpξ, ξn − p)
The identification of (3.11) is given explicitly as follows. An element of the
right hand side can be written uniquely as

(3.12) f =
n−1∑
j=0

fjξ
j

for fj ∈ Wn. Further, fj =
∑∞

i=0 aj+inp
i for unique elements ai ∈ Wn such

that ap
n

i − ai = 0. Using the fact that ξn = p, the element f can also be
written uniquely as

f =
∞∑
i=0

aiξ
i.

The series

[f ](x) =
∑Γn

i≥0
aix

pi = a0x+Γn a1x
p +Γn · · ·

is the endomorphism of Γn corresponding to f .
Let Dn = Q⊗ EndFpn (Γn). There is a valuation v : D×n → 1

nZ normalized
so that v(ξ) = 1/n. The ring Dn is a central division algebra algebra over
Qp of Hasse invariant 1/n. The ring of integers of ODn is defined to be those
x ∈ Dn such that v(x) ≥ 0, so that ODn

∼= EndFpn (Γn).
The element ξ is invertible in Dn and conjugation by ξ preserves ODn .

In fact, conjugation by ξ corresponds to the action of a generator of Gal =
Gal(Fpn/Fp) on Sn ∼= O×Dn . From this, we get a presentation

D×n /(ξn) ∼= Gn.

The problem of determining the isomorphism types and conjugacy classes
of maximal finite subgroups of Sn was studied by Hewett [Hew95, Hew99]
and was revisited by Bujard [Buj12]. We have listed the conjugacy classes
of maximal finite subgroups of Sn in Table 3.14. Note that the list is rather
restricted and that the groups which appear all have periodic cohomology
in characteristic p.

The kind of finite subgroups of Gn that have appeared in the construction
of finite resolutions so far are extensions of finite subgroups of Sn in the
following sense.

Definition 3.13. For F0 a finite subgroup of Sn, an extension of F0 to Gn

is a subgroup F of Gn which contains F0 as a normal subgroup and such
that the following diagram commutes:

0 // F0

��

// F //

��

Gal //

∼=
��

0

0 // Sn // Gn
// Gal // 0
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Table 3.14. The table below lists isomorphism types of
maximal finite subgroups of Sn at various heights and primes.
Each isomorphism type listed below belongs to a unique con-
jugacy class. Here, Cq denotes a cyclic group of order q and
T24
∼= Q8 o C3 is the binary tetrahedral group (the action

of C3 on Q8 permutes a choice of generators i, j and k). See
Hewett [Hew95, Hew99] and Bujard [Buj12] for more details.
In particular, see [Hew95] for the isomorphism type of the
semi-direct product on the list below.

Prime p Height n: k ≥ 1, p6 |m Isomorphism Types of Maximal
Finite Subgroups in Sn

p 6= 2 n not divisible by p− 1 Cpn−1

p 6= 2 n = (p− 1)pk−1m
Cpn−1, and
Cp` o C

(ppk−`m−1)(p−1)
, 1 ≤ ` ≤ k

p = 2 n odd C2(2n−1)

p = 2 n = 2k−1m and k 6= 2 C
2`(22k−`m−1)

, 1 ≤ ` ≤ k

p = 2 n = 2m and m 6= 1
C2(2m−1), and
T24 × C2m−1

p = 2 n = 2 T24

Here, the rows are exact, the left and middle vertical arrows are the inclu-
sions, and the induced right vertical map is an isomorphism.

The question of when a finite subgroup F0 of Sn extends to a finite sub-
group of Gn is subtle and largely addressed by Bujard in [Buj12]. We do not
give it much attention here.

Remark 3.15. For any formal group law Γ of height n defined over a perfect
field extension k of Fp, one can define the group

G(k,Γ) = {(f, i) : σ ∈ Gal(k/Fp), f ∈ k[[x]] : σ∗Γ
∼=−→ Γ}.

With this definition, Gn = G(Fpn ,Γn). This group was mentioned in Re-
mark 3.9. The group S(k,Γ) = Endk(Γ)× is the subgroup of G(k,Γ) consist-
ing of pairs for which σ = id.

In general, both S(k,Γ) and G(k,Γ) depend on the pair (k,Γ). However,
since any two formal group laws of height n are isomorphic over Fp, EndFp(Γ)

is independent of Γ, and hence so are G(Fp,Γ) and S(Fp,Γ). Since

Sn = S(Fpn ,Γn) ∼= S(Fp,Γn),

it follows that for any formal group law Γ as above, there is an isomorphism
Sn ∼= S(Fp,Γ). So, Table 3.14 is canonical in the sense that it classifies

conjugacy classes of finite subgroups of S(Fp,Γ) for any formal group law Γ

of height n defined over Fp.
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However, even if all of the automorphisms of Γ are defined over Fpn , so
that

S(Fpn ,Γ) ∼= S(Fp,Γ) ∼= Sn,
it can still be the case that G(Fpn ,Γ) and Gn are not isomorphic. If this is
the case, extensions of a finite subgroup of Sn ∼= S(Fpn ,Γ) to G(Fpn ,Γ) and
Gn can have different isomorphism types.

We now turn to the definition of a few group homomorphisms that play
a role in the rest of this paper.

Definition 3.16. The determinants

det : Gn −→ Z×p det : Sn −→ Z×p
are the homomorphisms defined as follows. The group Sn acts on ODn by
right multiplication. This action gives a representation ρ : Sn → GLn(Wn).
The composite det ◦ρ has image in the Galois invariants of W×n (see [Hen17,
Section 5.4]), so it induces a homomorphism Sn → Z×p , which we also denote
by det. We extend this homomorphism to Gn via the composite

det : Gn
∼= Sn o Gal

det× id−−−−→ Z×p ×Gal→ Z×p ,
where the second map is the projection.

Composing det : Gn → Z×p with the quotient map to Z×p /µ ∼= Zp gives a
homomorphism

(3.17) ζn : Gn −→ Zp
where µ = C2 if p = 2 and µ = Cp−1 if p is odd. This corresponds to a class

ζn ∈ H1
c (Gn,Zp) ∼= Homc(Gn,Zp),

where Homc denotes continuous group homomorphisms and H1
c the contin-

uous cohomology (see Section 3.2.3). If p = 2, the determinant also induces
a map

(3.18) χn : Gn → (Z2/4)× ∼= Z/2.
which then represents a class χn ∈ H1

c (Gn,Z/2). Let χ̃n ∈ H2
c (Gn,Z2) be

the Bockstein of χn, and note that 2χ̃n = 0.
Denote by G1

n the kernel of ζn and let S1
n = Sn ∩G1

n. The homomorphism
ζn is surjective, and necessarily split since Zp is topologically free. Therefore,

Gn
∼= G1

n o Zp, Sn ∼= S1
n o Zp.(3.19)

If n is coprime to p, then the splitting is trivial and this is a product.

Remark 3.20. As a consequence of the fact that Gn/G1
n
∼= Zp, there is

an equivalence LK(n)S
0 ' (E

hG1
n

n )hZp . If ψ ∈ Gn is such that ζn(ψ) is a
topological generator of Zp, then we get an exact triangle

LK(n)S
0 // E

hG1
n

n
ψ−1

// E
hG1

n
n

δ
// ΣLK(n)S

0.
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We also denote by ζn its image H∗c (Gn, (En)0). It is known that ζn is a
permanent cycle in the homotopy fixed point spectral sequence, see [DH04,

Section 8]. It detects the composite S0 → E
hG1

n
n

δ−→ ΣLK(n)S
0 (where the

first map is the unit), which is also denoted by ζn ∈ π−1LK(n)S
0.

3.2.2. The action of the Morava stabilizer group. We now discuss the action
of Gn on (En)∗. Most notably, this problem was first attacked in depth
by Devinatz and Hopkins in [DH95] using the Gross–Hopkins period map
(Remark 3.24). A very nice summary of this approach is given by Kohlhaase
[Koh13] and we discuss some of the consequences here.

Let Fn be the formal group law over (En)0 which is a universal defor-
mation of Γn and was defined in Section 3.1. For α ∈ Gn given by a pair
(f, σ) where σ ∈ Gal(Fpn/Fp) and f ∈ Sn, the universal property of the
deformation Fn implies that there exists a unique pair (fα, α∗) consisting of
a continuous ring isomorphism α∗ : (En)0 → (En)0 and an isomorphism of
formal group laws fα : α∗Fn → Fn such that

(fα, α∗) ≡ (f, σ) mod (p, u1, . . . , un−1).(3.21)

The isomorphism α∗ is extended to (En)∗ by defining α∗(u) = f ′(0)u. The
assignment α 7→ α∗ gives a left action of Gn on (En)∗. The action of an
element (id, σ) corresponds to the natural action of the Galois group on the
coefficients Wn in (En)∗ ∼= Wn[[u1, . . . , un−1]][u±1], and we denote it by σ∗.
Similarly, if α = (f, id), we let f∗ denote the isomorphism α∗.

Computing the action explicitly is difficult and there exists no general
formula. However, three cases are fairly simple to deduce from the general
description above:

(a) If α for σ ∈ Gal(Fpn/Fp), then σ∗ is the action of the Galois group on
the coefficients Wn. For x ∈Wn, we write xσ = σ∗(x).

(b) If ω ∈ Sn is a primitive (pn − 1)th root of unity, then ω∗(ui) = ωp
i−1ui

and ω∗(u) = ωu.
(c) If ψ ∈ Z×p ⊆ Sn is in the center, then ψ∗(ui) = ui and ψ∗(u) = ψu.

Understanding the action more generally is difficult, but we say a few words
on this here.

For f ∈ Sn, write f =
∑n−1

j=0 fjξ
j for fj ∈Wn with f0 ∈W×n as in (3.12).

The following results due to Devinatz and Hopkins [DH95] are also given in
Theorem 1.3 and Theorem 1.19 of [Koh13].

Theorem 3.22 (Devinatz–Hopkins). Let 1 ≤ i ≤ n− 1 and fj be as above.
Then, modulo (p, u1, . . . , un−1)2,

f∗(u) ≡ f0u+

n−1∑
j=1

fσ
j

n−juuj , f∗(uui) ≡
i∑

j=1

fσ
j

i−juuj +

n∑
j=i+1

pfσ
j

n+i−juuj .

Further, if f ∈ W×n ⊆ Sn, so that f = f0 then f∗(ui) ≡ fσ
i

0 f−1
0 ui modulo

(u1, . . . , un−1)2.
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An example of an immediate consequence of Theorem 3.22 is the following
result. See [BG18, Lemma 1.33] for a surprisingly simple proof.

Corollary 3.23. For all primes p and all heights n, the unit Zp → (En)∗
induces an isomorphism on Gn fixed points Zp ∼= (En)Gn∗ .

Remark 3.24 (Gross–Hopkins period map). The proof of Theorem 3.22
relies on one of the deepest results in chromatic homotopy theory, due to
Gross and Hopkins [HG94b], which points towards the mysterious interplay
between this subject and arithmetic geometry. Let K be the quotient field
of Wn and Spf((En)0)K be the generic fiber of the formal scheme associated
to (En)0. Since the division algebra Dn splits over K, i.e., Dn ⊗Qp K is
isomorphic to a matrix algebra Mn(K), there is a natural n-dimensional Gn-
representation VK . It follows that Gn acts on the corresponding projective
space P(VK) through projective linear transformations. In [HG94b, HG94a],
Gross and Hopkins construct a period mapping that linearizes the action of
Gn on Spf((En)0)K : They prove that there is an étale and Gn-equivariant
map of rigid analytic varieties

(3.25) Φ: Spf((En)0)K // P(VK).

Devinatz and Hopkins use this map to prove Theorem 3.22 and it also fea-
tures in the computations of Kohlhaase [Koh13].

One often needs more precision than that provided by Theorem 3.22.
Since fα is a morphism of formal group laws, it follows that

fα([p]α∗Fn(x)) = [p]Fn(fα(x)).

This relation contains a lot of information. In practice, it gives a recursive
formula to compute the morphism α∗ as a function of the αjs. This method is
applied explicitly in Section 4 of the paper [HKM13] by Henn–Karamanov–
Mahowald.

However, even with these methods, it is difficult to get good approxi-
mations for the action of Gn. If one restricts attention to finite subgroups
F ⊆ Gn, it is sometimes possible to do much better than these kinds of
approximations. Recent developments suggest that working with a formal
group law other than the Honda formal group law Γn may be better suited
to this task. For example, when n = 2, one can choose to work with the
formal group law of a super-singular elliptic curve. The automorphisms of
the curve embed in the associated Morava Stabilizer group and one can use
geometric information to write explicit formulas for their action on the as-
sociated E-theory. See Strickland [Str18] and [Bea17, Section 2]. In fact, the
spectra EhF2 at height 2 are the K(2)-localizations of various spectra of topo-
logical modular forms with level structures. See, for example, [Beh06] and
Remark 5.16. Elliptic curves are not available at higher heights, but there
is a hope that the theory of automorphic forms will provide a replacement.
This is the subject of [BL10], see also [Beh19]. Finally, equivariant homotopy
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theory also seems to provide better choices of formal group laws for study-
ing the action of the finite subgroups. See, for example, [HHR16, HHR17]
together with [HS17], [HSWX18], and [BBHS19].

3.2.3. Morava stabilizer group: homological algebra. Recall that the E2-term
of the descent spectral sequence in Theorem 3.6 is given by the continuous
cohomology of the Morava stabilizer group with coefficients in (En)∗. The
goal of this section is to summarize the homological algebra required to
construct these cohomology groups and to then discuss some features specific
to Gn. An important subtlety arising from the homotopical applications we
have in mind is that we have to study the continuous cohomology of Gn

with profinite coefficients, and not merely discrete ones. This theory has
been systematically developed by Lazard [Laz65]; our exposition follows the
more modern treatment of Symonds and Weigel [SW00].

Let G = limiGi be a profinite group, given as an inverse limit of a system
of finite groups (Gi) and write Cp(G) for the category of profinite modules
over

ZpJGK = lim
i,j

Z/pj [Gi]

and continuous homomorphisms. The category Cp(G) is abelian and has
enough projective objects. Moreover, the completed tensor product equips
Cp(G) with the structure of a symmetric monoidal category with unit Zp.
In order to define a well-behaved notion of continuous cohomology for G,
assume that G is a compact p-analytic Lie group in the sense of [Laz65]. A
good reference for properties of p-adic analytic groups is [DdSMS99]. Lazard
then shows that:

• G is of type p-FP∞, i.e., Zp admits a resolution by finitely generated
projective ZpJGK-modules. It follows that the continuous cohomology
of G with coefficients in M ∈ Cp(G), defined as

H∗c (G,M) = Ext∗ZpJGK(Zp,M),

is a well-behaved cohomological functor, where the (continuous)
Ext-group is computed in Cp(G). In particular, there is a Lyndon–
Hochschild–Serre spectral sequence and an Eckmann–Shapiro type
lemma for open normal subgroups [SW00, Theorem 4.2.6 and
Lemma 4.2.8]. Similarly, continuous homology is defined as

Hc
∗(G,M) = Tor

ZpJGK
∗ (Zp,M)

where the (continuous) Tor-group is computed in Cp(G).
• G is a virtual Poincaré duality group in dimension d = dim(G)

[SW00, Theorem 5.1.9], i.e., there exists an open subgroup H in G
such that

H∗c (H,ZpJHK) ∼=
{
Zp if ∗ = d,

0 otherwise,



26 TOBIAS BARTHEL AND AGNÈS BEAUDRY

and the length of a projective resolution of Zp ∈ Cp(H) can be
taken to be d. The second property is referred to by saying that the
cohomological dimension ofH is d and that the virtual cohomological
dimension of G is d; in symbols, cdp(H) = d and vcdp(G) = d. The
Poincaré duality property gives rise to a non-degenerate pairing

H∗c (H,Fp)⊗Hd−∗
c (H,Fp) −→ Hd

c (H,Fp) ∼= Fp,

thereby justifying the terminology.

The key theorem, proved by Morava [Mor85, §2.2] and relying on work by
Lazard [Laz65], allows us to apply this theory to the Morava stabilizer group:

Theorem 3.26 (Lazard, Morava). The Morava stabilizer group Sn is a
compact p-analytic virtual Poincaré duality group of dimension n2. Further,
the group Sn is p-torsion-free if and only if p− 1 does not divide n, and in
this case vcdp(G) = cdp(G) = n2.

We note an important immediate consequence of this theorem, which
is the underlying reason for the small prime vs. large prime dichotomy in
chromatic homotopy theory. See also Figure 3.30:

Corollary 3.27. If p > 2 is such that 2(p−1) > n2, then the descent spectral
sequence (3.7) for S0 collapses at the E2-page with a horizontal vanishing

line of intercept s = n2 (meaning that Es,t2 = 0 for s > n2) and there are no
non-trivial extensions.

Remark 3.28. The condition 2(p−1) > n2 can be improved to 2(p−1) ≥ n2

using Corollary 3.23.

Remark 3.29. An extremely powerful result of Devinatz–Hopkins is that,
for any prime p and any height n, there exists an integer N such that, for
all spectra X, the K(n)-local En-based Adams–Novikov spectral sequence
for X (see (3.8)) has a horizontal vanishing line on the E∞-term at s = N ,
although the minimal such N may be greater than n2. For example, when
n = 1 and p = 2, the homotopy fixed point spectral sequence (3.7) has non-
trivial elements on the s = 2 > 12 line at E∞. See [BGH17, Section 2.3] for
a proof of the existence of the vanishing line.

Note further that it follows from Corollary 3.23 and the existence of the
vanishing line that the natural map Zp → π0LK(n)S

0 is a nilpotent extension
of rings.

In order to run the descent spectral sequence computing π∗LK(n)S
0, we

have to come to grips with H∗c (Gn, (En)∗), an extremely difficult problem.
However, if one restricts attention to H∗c (Gn, (En)0), the computation ap-
pears to radically simplify in a completely unexpected way. Let ι : Wn →
(En)0 be the natural inclusion. The following has been shown to be true at all
primes when n ≤ 2, see [SY95, Beh12, Koh13, GHM14, BGH17, BDM+18]:
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t− s

s

0 2(p− 1) 4(p− 1)−2(p− 1)

n2

−n2

Figure 3.30. The E2-term of Es,t2
∼= Hs

c (Gn, (En)t) ⇒
πt−sLK(n)S

0 for p > 2 and 2(p−1) > n2. The dashed line in-

dicates the horizontal vanishing line at E2, that is, Es,t2 = 0
when s > n2. The non-zero contributions are concentrated
on the lines of slope −1 that intercept the (t − s)-axis at
multiples of 2(p− 1).

Conjecture 3.31 (Vanishing conjecture). Let p be any prime and n be any
height. The map ι induces an isomorphism

ι∗ : H∗c (Gn,Wn)
∼=
// H∗c (Gn, (En)0).

Remark 3.32. The conjecture is so named because it implies that the co-
homology of the Gn-module (En)0/Wn vanishes in all degrees. Note further
that if one proves that Wn/p → (En)0/p induces an isomorphism on coho-
mology, then Conjecture 3.31 follows formally.

As we will see in Section 6.1, this conjecture and the accompanying com-
putations informs our understanding of LK(n)S

0, the essence of which is dis-
tilled in the formulation of the chromatic splitting conjecture. In fact, what
makes Conjecture 3.31 particularly appealing is the fact that H∗c (Gn,Wn)
appears to be rather simple when p is large with respect to n.

Rationally, we have some partial understanding due to work of Lazard
[Mor85, Remark 2.2.5] and [Mor85, Rem. 2.2.5], who established an isomor-
phism for all heights and primes

(3.33) H∗c (Gn,Wn)⊗Q ∼= ΛZp(x1, . . . , xn)⊗Q,
where ΛZp(x1, . . . , xn) is the exterior algebra over Zp on n generators in
degrees deg(xi) = 2i − 1. Here, the class x1 is ζn as defined in (3.17). Fur-
thermore, when p is large with respect to n, it is believed that there is an
isomorphism (3.33) before rationalization.

Conjecture 3.34. If p� 0, then H∗c (Gn,Wn) ∼= ΛZp(x1, . . . , xn).

Remark 3.35. For our chromatic applications, we need a mild extension
of the setup presented above. Here and below, Wn = W (Fpn) denotes the
Gn-module whose action is the restriction along Gn → Gal of the natural
action of Gal on W (Fpn). We write wg = g(w) for this action. For G ⊆ Gn,
define the twisted group ring to be

Wn⟪G⟫ := lim
i,j

Wn/m
j〈Gi〉
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with G-twisted multiplication determined by the relations g · r = g(r)g for
r ∈ Wn and g ∈ G. We let ModWn⟪G⟫ be the category of profinite left
Wn⟪G⟫-modules. These are profinite abelian groups M = limkMk with a
continuous action Wn⟪G⟫ ×M → M . If H ⊆ G is a closed subgroup and
M is a left Wn⟪H⟫-module, then

M↑GH := Wn⟪G⟫⊗Wn⟪H⟫M = lim
i,j,k

(
Wn/m

j [Gi]⊗Wn⟪H⟫Mk

)
(3.36)

is a left Wn⟪G⟫-module.
One can show that the homological algebra summarized above also works

in the context of profinite modules over twisted group rings. Note that there
is a functor from ModZpJGK to ModWn⟪G⟫ which sends a ZpJGK-module M to
the Wn⟪G⟫-module Wn⊗ZpM with action given by g(w⊗m) = wg⊗g(m).
This allows us to transport constructions in ModZp⟪G⟫ to constructions in
ModWn⟪G⟫.

We now come to another important construction in chromatic homotopy
theory, namely the (En)∗-module

(En)∨∗X = π∗LK(n)(En ∧X)

associated to a spectrum X. The action of Gn on En induces an ac-
tion on (En)∨∗X compatible with the (En)∗-action. Moreover, let m =
(p, u1, . . . , un−1) be the maximal ideal of (En)0 and, for s ≥ 0, let Ls be
the sth left derived functor of m-adic completion on Mod(En)∗ . There is a
strongly convergent spectral sequence

Ls(π∗(En ∧X))t =⇒ (En)∨s+tX

which in particular implies that the canonical map (En)∨∗X → L0((En)∨∗X)
is an isomorphism. Such (En)∗-modules are called L-complete and we refer
the interested reader to [HS99b, Appendix A] for a more thorough treatment.
Taken together, this structure is called the Morava module of X:

Definition 3.37 (Morava modules). A Morava module M is an L-complete
(En)∗-module equipped with an action by Gn in L-complete modules that
is compatible with the action on (En)∗. That is, for every g ∈ Gn, e ∈
(En)∗ and m ∈M , g(em) = g(e)g(m). A morphism of Morava modules is a
continuous map of (En)∗-modules that preserves the action. We denote the

category of Morava modules by ModGn
(En)∗

.

By the discussion above, (En)∨∗X is a Morava module for any spectrum
X and we obtain a functor

(En)∨∗ (−) := π∗LK(n)(En ∧ −) : Sp −→ ModGn
(En)∗

.(3.38)

This functor detects and reflects K(n)-local equivalences, but has the ad-
vantage that (En)∨∗ (−) comes equipped with an action of Gn. This extra
structure proves to be extremely powerful for computations, and is one of
the reasons why Morava modules play a central role in the field.
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For more information on Morava modules, we refer the reader to [BG18,
Section 1.3] and [GHMR05, Section 2], noting that authors often simply
write (En)∗X = π∗LK(n)(En ∧X) as opposed to the non-completed homol-
ogy (En)∗X = π∗(En ∧X), but we will not do so here. Note also that, if X
is finite, then (En)∗X ∼= (En)∨∗X.

Remark 3.39. For F a finite subgroup of Gn, the action of Gn on (En)∗
restricts to an action of F . We can also consider the category ModF(En)∗
of L-complete (En)∗-modules equipped with an action of F . Then (En)∗ is
periodic as an object in ModF(En)∗

since the element N =
∏
g∈F g(u) for

u ∈ (En)−2 as in (3.1) is an invariant unit. Let dalg
F be the smallest integer

such that (En)∗ ∼= (En)∗+dalgF
in ModF(En)∗

. This leads to an isomorphism of

Morava modules

(En)∨∗E
hF
n
∼= Mapc(Gn/F, (En)∗) ∼= Homc

Wn
(Wn↑GnF , (En)∗)

closely related to (3.5) and it implies that

(En)∨∗E
hF
n
∼= (En)∨∗ΣdalgF EhFn .

However, EhFn need not be equivalent to ΣdalgF EhFn . Nonetheless, because of
the strong vanishing line discussed in Remark 3.29, some power of N is a
permanent cycle and gives rise to a periodicity generator for EhFn , so for

some multiple dtop
F of dalg

F , there is an equivalence EhFn ' ΣdtopF EhFn .

For example, at p = 2, E1 is 2-complete complex K-theory and EhC2
1 is

the 2-complete real K-theory spectrum KO. We have:

K∨∗KO
∼= K∨∗ Σ4KO, KO 6' Σ4KO, KO ' Σ8KO.

4. K(1)-local homotopy theory

In this section, we tell a part of the chromatic story at height n = 1 as
a warm up for the more complicated ideas needed to study higher heights.
The contents of this section are classical and can be found in various forms
throughout the literature, for example, Adams and Baird [Ada74], Bousfield
[Bou79, Bou85], Ravenel [Rav84, Theorem 8.10, 8.15]. See [Hen17, Section
6] for a more recent treatment, and [BGH17, Section 4] for more details on
the case p = 2.

4.1. Morava E-theory and the stabilizer group at n = 1. At height
n = 1, Morava E-theory is the p-completed complex K-theory spectrum,
which we simply denote by K. There is an isomorphism K∗ ∼= Zp[u±1] for a
unit u ∈ K−2 which can be chosen so that u−1 ∈ K2 is the Bott element.

In this case, G1 = S1
∼= Z×p corresponds to the p-completed Adams op-

erations. The action of S1 on K∗ is the Zp-algebra isomorphism determined
by

α∗(u) = αu(4.1)
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for α ∈ Z×p . The keen reader will notice that this is the inverse of the action

of the Adams operations, which is given by α∗(u) = α−1u. This comes from
switching a right action to a left action.

The map LK(1)S
0 → KhZ×p of (3.3) is a Z×p pro-Galois extension. We use

this extension to compute the homotopy groups of π∗LK(1)S
0. One can take

the direct approach of computing the spectral sequence of (3.7)

(4.2) Es,t2 = Hs
c (Z×p ,Kt) =⇒ πt−sLK(1)S

0.

In fact, this spectral sequence collapses at the E2-page at odd primes and
at the E4-page at the prime 2. This is not a hard computation, but we take
a different path in order to illustrate the finite resolution philosophy.

4.2. Finite resolution at height n = 1. Here, we describe our first exam-
ple of a finite resolution. Let Cm denotes a cyclic group of order m, µ = C2

if p = 2, and µ = Cp−1 if p is odd. Then, Z×p ∼= µ × Zp, where the Zp
corresponds to the subgroup of units congruent to 1 modulo p if p is odd,
and to those congruent to 1 modulo 4 is p = 2. We let ψ be a topological
generator for this factor of Zp. The notation is meant to be reminiscent of
the Adams operations. We will make a choice for ψ below in (4.12).

Remark 4.3. The spectrum KhCp−1 is the unit component in the splitting
of the p-completed complex K-theory spectrum K into Adams summands
if p is odd, and KhC2 is the 2-completed real K-theory spectrum if p = 2.

The K(1)-local sphere can be obtained by an iterated fixed points con-
struction:

LK(1)S
0 ' KhZ×p ' (Khµ)hZp .

Since ψ ∈ Zp is a topological generator, taking homotopy fixed point with
respect to Zp is equivalent to taking the homotopy fiber of the map ψ − 1.
Therefore, there is a fiber sequence

LK(1)S
0 // Khµ ψ−1

// Khµ // ΣLK(1)S
0 .(4.4)

This is a finite resolution of LK(1)S
0 as will be defined in Definition 5.1

below.
To construct finite resolutions at higher heights where the structure of the

Morava stabilizer group is more intricate, we start by attacking the problem
in algebra and then we transfer algebraic constructions to topology. We give
a quick overview of how this would happen at height 1 to give the reader
something to think of while reading Section 5.

Step 1: Algebraic resolution. The group Zp is topologically free of rank one
and there is an exact sequence of left Z×p -modules

0 // Zp↑Z
×
p
µ

ψ−1
// Zp↑Z

×
p
µ

// Zp ∼= Zp↑Z
×
p

Z×p
// 0.(4.5)
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Here, Zp[[Z×p ]] = limi,j Z/pi[(Z/pj)×] is the completed group ring, which was

discussed in Section 3.2.3, and Zp↑Z
×
p
µ
∼= Zp[[Z×p ]]⊗Zp[µ]Zp. This is a projective

resolution of Zp as a Z×p -module if and only if p > 2. See Remark 4.15 below
on this point. Applying Homc

Zp(−,K∗) to (4.5) gives a short exact sequence

of Morava modules

K∗ // Homc
Zp(Zp↑

Z×p
µ ,K∗)

Homc
Zp (ψ−1,K∗)

// Homc
Zp(Zp↑

Z×p
µ ,K∗)(4.6)

Step 2: Topological Resolution. The second step is to prove that the algebraic
resolution has a topological realization. More precisely, (4.6) is an exact

sequence in the category of Morava modules ModG1

(E1)∗
. As was described in

(3.38), there is a functor

K∨∗ (−) = (E1)∨∗ (−) : Sp −→ ModG1

(E1)∗
.

When we have an algebraic resolution of length 1, a topological realization
of (4.5) is a choice of fiber sequence in the category of K(1)-local spectra

E−1
δ−1

// E0
δ0
// E1(4.7)

where E0 and E1 are finite wedges of suspensions of spectra of the form KhF

for F ⊆ G1 a finite subgroup, such that, up to isomorphism of complexes,
(4.6) is the complex of Morava modules obtained from (4.7) by applying
K∨∗ (−). If E−1 = LK(1)S

0, then this is an example of a finite resolution of
the K(1)-local sphere.

Remark 4.8. The case when the algebraic resolution has length d ≥ 1 is
discussed in the next section. We will see in Definition 5.1 that the definition
of a finite topological resolution of length greater than 1 is more subtle. See
also Example 5.5.

There is no algorithm for finding a topological realization. A priori, one
may not exist, and if it does, it may not be unique. Without a priori knowl-
edge of the existence of (4.4), the key observations for finding a topological
realization of (4.5) are

• the isomorphism of Morava modules

K∨∗K
hµ ∼= Mapc(Z×p /µ,K∗) ∼= Homc

Zp(Zp↑
Z×p
µ ,K∗),

and
• the fact that Homc

Zp(ψ − 1,K∗) = K∨∗ (ψ − 1).

Knowing these facts, (4.6) can be identified with the short exact sequence
of Morava modules

K∗ // K∨∗K
hµ

K∨∗ (ψ−1)
// K∨∗K

hµ .(4.9)
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Given this, we let E−1 = LK(1)S
0, E0 = E1 = Khµ. We let δ−1 be the unit

and δ0 be ψ − 1. It follows that the fiber sequence

LK(1)S
0 // Khµ ψ−1

// Khµ .

is a topological realization as it gives rise to (4.6) under the functor K∨∗ (−).
This is our first example of a finite resolution of LK(1)S

0.

Remark 4.10. We did make choices here and different choices could have
given a different topological realization. For example, for p = 2, KhC2 '
KO and K∨∗KO

∼= K∨∗ Σ4KO, yet KO 6' Σ4KO. In fact, we could have
constructed a topological realization using Σ4KO instead of KO. Such a
resolution is described below in (6.17). The resolution described there is a
topological realization of the algebraic resolution (4.5), but it is not a finite
resolution of the sphere as E−1 = P1 6' LK(1)S

0.

4.3. Homotopy groups and chromatic reassembly. The long exact
sequence on homotopy groups associated to (4.4) allows one to compute
π∗LK(1)S

0 from π∗K
hµ and knowledge of the action of ψ. The homotopy

groups of Khµ are computed using the homotopy fixed point spectral se-
quence

Es,t2
∼= Hs(µ, πtK) =⇒ πt−sK

hµ.

Recall that µ = Cp−1 if p is odd and C2 if p = 2. So computing group
cohomology with coefficients in K∗ = Zp[u±1] is not so bad given the explicit
formula (4.1). We get

H∗(µ, π∗K) ∼=
{
Zp[u±(p−1)] p 6= 2

Z2[η, u±2]/(2η) p = 2,

where the (s, t) bidegree of η is (1, 2). The element η detects the Hopf map
in π1S

0. For p odd, the spectral sequence collapses for degree reasons. For
p = 2, the fact that η4 = 0 in π∗S

0 implies a differential d3(u−2) = η3, and
the spectral sequence collapses at E4 for degree reasons. So, we have

π∗K
hµ ∼=

{
Zp[β±1] p 6= 2, |β| = 2(p− 1)

Zp[η, α, β±1]/(2η, η3, α2 − 4β) p = 2, |η| = 1, |α| = 4, |β| = 8.

If p is odd, β ∈ π2(p−1) is detected by u1−p. If p = 2, η ∈ π1 is detected

by the same-named class on the E2-page, α ∈ π4 is detected by 2u−2 and
β ∈ π8 is detected by u−4.

Remark 4.11. The differential d3(u−2) = η3 can be obtained as a conse-
quence of the slice differentials theorem [HHR16, Theorem 9.9]. This is an
overkill for this particular example which follows from classical considera-
tions. However, we mention this here since the slice differentials theorem
also implies differentials at higher heights in spectral sequences computing
π∗E

hF
n for finite subgroups F ⊆ Gn.
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Now, we turn to computing the long exact sequence on homotopy groups
associated to (4.4). Choose an element ψ of Z×p which satisfies

ψ−1 =

{
(1 + p) p 6= 2

5 p = 2.
(4.12)

There are other possible choices: One could choose any element in Z×p such

that the image of ψ−1 in Z×p /µ is a topological generator. The outcome of
these calculations are independent of the choice.

From (4.1), we deduce that the action of ψ is then given by

ψ∗(β) =

{
(1 + p)p−1β p 6= 2

54β p = 2
, ψ∗(α) = 52α, ψ∗(η) = η.

Let vp(k) denote the p-adic valuation of k ∈ Z. For p odd, the long exact
sequence on homotopy groups gives

π∗LK(1)S
0 =


Zp ∗ = 0,−1

Z/pvp(k)+1 ∗ = 2k(p− 1)− 1

0 otherwise.

This is depicted in Figure 4.13 for p = 3. For p = 2, we have

π∗LK(1)S
0 =



Z2 ∗ = −1

Z2 ⊕ Z/2 ∗ = 0

Z/2 ∗ = 0, 2 mod 8, ∗ 6= 0

Z/2⊕ Z/2 ∗ = 1 mod 8

Z/8 ∗ = 3 mod 8

Z/2v2(k)+4 ∗ = −1 + 8k, k 6= 0

0 ∗ = 4, 5, 6 mod 8.

This is depicted in Figure 4.14. One has to argue that there is no additive
extension in degrees 1 mod 8 but we do not do this here.

Remark 4.15. The dichotomy between p = 2 and odd primes in the com-
putations is an instance of the general phenomena which was discussed in
Section 3.2.3 and is revisited in Section 6.3 below. That is, when p is large
with respect to n, chromatic homotopy theory becomes algebraic (see for
example Corollary 3.27). On the other hand, when p is small the stabi-
lizer group Sn might contain p-torsion and this appears to reflect interesting
topological phenomena. Here, S1

∼= Z×2 contains 2-torsion at p = 2 and there
are differentials in the spectral sequence computing the homotopy groups of
KO ' KhC2 , a much more intricate spectrum than the Adams summand
KhCp−1 at odd primes whose homotopy fixed point spectral sequence col-
lapses at the E2-page.

Remark 4.16. The Zp summand in π−1LK(1)S
0 is generated by the image

of the composite S0 → Khµ → Σ−1LK(1)S
0 where the first map is the unit
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Figure 4.13. The long exact sequence on homotopy groups associated to
(4.4) and computing π∗LK(1)S

0 at p = 3. It is drawn as a spectral sequence

in Adams grading (t− s, s) with with Es,t1
∼= πtK

hµ for s = 0, 1. The arrows

denote the d1-differentials, d1 : E0,t
1 → E1,t

1 , which is just the connecting
homomorphism. The top chart is the E1-term and the bottom chart the
E∞-term. A � is a Z3, a • a Z/3 and a • a Z/9.

− 2 0 2 4 6 8 10 12 14 16 18 20

0

1 �
�

�
��

� �
�

�
�

�
�

− 2 0 2 4 6 8 10 12 14 16 18 20

0

1 �
�

ζ1
η

ν

Figure 4.14. The long exact sequence on homotopy groups associated to
(4.4) and computing π∗LK(1)S

0 at p = 2. It is drawn using the same con-
vention as in Figure 4.13, except that a � is a Z2, a • a Z/2, a • a Z/4, etc.
Dashed arrows denote exotic multiplications by η.

and the second is the connecting homomorphism of (4.4). We call this map
and the homotopy class it represents ζ1 ∈ π−1LK(1)S

0. It is detected in (4.2)
by the same-named class

ζ1 ∈ H1
c (Z×p ,K0) ∼= Homc(Z×p ,Zp)

corresponding to the projection Z×p → Z×p /µ ∼= Zp. See (3.17) and Re-
mark 3.20 for analogues at higher heights.

Remark 4.17. An easy computation that will be relevant later is that of
π∗(LK(1)S

0/p) for p odd. The descent spectral sequence

Hs
c (Z×p ,Kt/p) =⇒ πt−s(LK(1)S

0/p).

collapses with no extensions and

π∗(LK(1)S
0/p) ∼= Fp[v±1

1 ]⊗ ΛFp(ζ1),
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where v1 = u1−p. We abuse notation by denoting the composite Z×p
ζ1−→

Z×p /µ ∼= Zp → Z/p also by ζ1 ∈ H1
c (Z×p ,K0/p).

Finally, we turn to the problem of chromatic reassembly at height n = 1.
The chromatic fracture square (2.19) in this case gives

F1
//

'
��

L1S
0 //

��

LK(1)S
0

��

F1
// L0S

0
p

// L0LK(1)S
0

where F1 is the fiber of the horizontal maps. In particular, it is the fiber of the
map L0S

0
p → L0LK(1)S

0 induced by the unit. Since L0 is rationalization,

there is an isomorphism π∗L0LK(1)S
0 ∼= p−1π∗LK(1)S

0. From the above

calculations, we see that the map 1 ∨ ζ1 : S0 ∨ S−1 → LK(1)S
0 induces an

equivalence

(4.18) L0LK(1)S
0 ' L0S

0
p ∨ L0S

−1
p .

In particular, L0S
0
p → L0LK(1)S

0 is split and ΣF1 ' L0S
−1
p . This proves

the strong chromatic splitting conjecture for n = 1, which will be stated in
general in Section 6.1.

We get the following diagram from the long exact sequence on homotopy
groups associated to the fiber sequence L1S

0
p → LK(1)S

0 → ΣF1 ' L0S
−1
p :

π−1L1S
0
p

// π−1LK(1)S
0 // π−2F1

// π−2L1S
0
p

// π−2LK(1)S
0

0 // Zp // Qp
// Qp/Zp // 0.

Piecing the rest of the long exact sequence on homotopy groups together
gives

π∗L1S
0
p
∼= Zp ⊕ Σ−2Qp/Zp ⊕ Tor(π∗LK(1)S

0),

where the Zp is in degree 0 and comes from the summand Zp ⊆ π0LK(1)S
0,

this inclusion being an isomorphism when p is odd. The summand Qp/Zp is
in degree −2 and Tor denotes the torsion subgroup.

In the next sections, we review these topics at higher heights. While we
are not able to do such an explicit analysis for n ≥ 2, the tools and ideas
described above do generalize and we give an overview of some of the tech-
niques available to study the K(n)-local category and the K(n)-local sphere.

5. Finite resolutions and their spectral sequences

We now describe a recipe for the construction of finite resolutions of the
K(n)-local sphere. We note that every step of this procedure requires hard
work specific to the height and the prime. We then illustrate the general
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formalism with many examples at height n = 2 in Section 5.5. Some appli-
cations of these finite resolutions will then be discussed in the next section
on the chromatic splitting conjecture and local Picard groups. References
for this material are [GHMR05, Hen07, Hen17].

5.1. What is a finite resolution.

Definition 5.1. A finite resolution of LK(n)S
0 of length d is a diagram

LK(n)S
0 = Xd

id
// Xd−1

id−1
// · · · i2

// X1
i1
// X0

Σ−dEd

jd

OO

Σ−(d−1)Ed−1

jd−1

OO

Σ−1E1

j1

OO

E0

j0 '

OO
(5.2)

in the K(n)-local category such that

(a) the sequences

(5.3) Σ−kEk
jk
// Xk

ik
// Xk−1

`k
// Σ−k+1Ek

are exact triangles, and
(b) the Eks are finite wedges of suspensions of spectra of the form EhFn for

finite subgroups F of Gn.

In other words, a finite resolution is a tower of fibrations resolving LK(n)S
0

by spectra of the form EhFn in a finite number of steps using a finite number
of pieces. Typically, d = n2. Note that the tower (5.2) gives a diagram

LK(n)S
0 δ0

// E0

' j0

��

δ1
// E1

δ2
//

Σj1

��

E2
// · · · δd

// Ed
Σdjd
��

X0

`1

>>

ΣX1

Σ`2

>>

ΣdLK(n)S
0

(5.4)

where δ0 is defined so that j0δ0 = i1 . . . id. We often denote the finite reso-
lution by the top line of this diagram.

We can also smash (5.2) (in the K(n)-local category) with a spectrum Y
to obtain a tower of fibrations resolving LK(n)Y .

For any X ∈ Sp, a resolution of the form (5.2) gives rise to a strongly
convergent spectral sequence

Es,t1 = [X, Es ∧ Y ]t =⇒ [X,LK(n)Y ]t−s,

with differentials dr : Es,tr → Es+r,t+r−1
r that collapses at the Ed+1-page.

There is also a similar spectral sequence computing [LK(n)Y,X].

Example 5.5. The proto-example of such a resolution is the resolution
(4.4). Recall that E1 is p-completed K-theory and let µ be as in Section 4.



CHROMATIC STRUCTURES IN STABLE HOMOTOPY THEORY 37

The fiber sequence (4.4) can be rearranged into a (very short) tower of
fibrations

LK(1)S
0 i1

// Ehµ1 = X0

Σ−1Ehµ1 = Σ−1E1.

j1

OO

Ehµ1 = E0

j0 '

OO

In this case, the associated Bousfield–Kan spectral sequence degenerates to
the long exact sequence on homotopy groups.

For the rest of this section, we give an overview of how such resolutions
are constructed. Note that the art of building finite resolutions has evolved
in the last fifteen years. For a long time, the role of the Galois group was
not as clear as it has become recently in the work of Henn in [Hen18], so we
give a revised recipe here.

5.2. Algebraic resolutions. In practice, the first step to constructing a
finite topological resolution is to construct its algebraic “reflection”. These
are the finite algebraic resolution. In practice, experts do not work from
a definition, but rather know a finite algebraic resolution when they see
one. Because of this, we give the following loose description as opposed to
definition.

Description 5.6. A finite algebraic resolution of length d is an exact se-
quence

0 // Cd
∂d
// Cd−1

∂d−1
// · · · ∂1

// C0
∂0
// C−1 = Wn

// 0,(5.7)

where the Cks are Wn⟪Gn⟫-modules that have the property that, for some Ek
as in Definition 5.2 (b), there is an isomorphism

(5.8) (En)∨∗ Ek ∼= Homc
Wn

(Ck, (En)∗).

Roughly, a topological resolution realizes an algebraic topological resolu-
tion if there is an isomorphism of exact sequences

Homc
Wn

(C•, (En)∗) ∼= (En)∨∗ (E•).
Here C• is as in (5.7) and E• is the top row of (5.4). In this sense, the
algebraic resolution is a “reflection” of the topological resolution.

Remark 5.9. Recall from (3.36) that M↑GnF = Wn⟪Gn⟫⊗Wn〈F 〉M . Typical
examples for the modules Ck are among the following:

• If Ck is a direct sum of modules of the form Wn↑GnF for F a finite
subgroup of Gn, then Ck satisfies (5.8). Indeed, it was mentioned in
(3.39) that for any m ∈ Z and F a finite subgroup of Gn, there are
isomorphisms

Homc
Wn

(Wn↑GnF , (En)∗) ∼= Mapc(Gn/F, (En)∗) ∼= (En)∨∗ΣmdalgF EhFn .
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• By a character χ of Wn〈F 〉, we will mean a Wn〈F 〉-module which
has rank one over Wn. Suppose that χ is a summand (as a Wn〈F 〉-
module) in Wn〈F 〉 and that eχ is an idempotent of Wn〈F 〉 that
picks up χ. Let Eχn be wedge summand of En associated to this
idempotent, obtained as the telescope on eχ : En → En. Then,

(En)∨∗E
χ
n
∼= Homc

Wn
(χ↑GnF , (En)∗).

In existing examples, some of the summands of the terms Cks are
built out of projective characters χ of W〈F 〉, such that Eχn is a
suspension of EhFn . See, for example, [GHMR05, Section 5] and Sec-
tion 5.5 below.

Remark 5.10. One reason for using Wn-coefficients (which don’t seem
to play a role in the topological story) rather than Zp-coefficients in these
constructions is that, if p divides n, Gn is “cohomologically larger” than Sn
over Zp, but not over Wn since the later is free over Gal. So, if one wants

to construct a resolution of length n2 for LK(n)S
0 ' EhGnn in cases when p

divides n, the right approach appears to be to work over Wn, and not over
Zp. See also Remark 5.27 below.

We now give an outline of the steps one follows to construct a finite alge-
braic resolution. In practice, to construct such a resolution, it is essential to
have some control over the homology Hc

∗(U,Wn) for an open subgroup U of
Gn of finite cohomological dimension. In fact, all the examples of finite alge-
braic resolutions which we describe below restrict to a projective resolution
of Wn as a Wn⟪U⟫-module for some choice of U . This motivates the name
of resolutions for these exact sequences. In practice, if p is large with re-
spect to n so that Sn has finite cohomological dimension, the finite algebraic
resolutions are projective resolutions of Wn as a Wn⟪Gn⟫-modules.

The process is inductive and goes as follows. Suppose that the Wn⟪Gn⟫-
modules Ci for i ≤ k−1 together with maps ∂k−1 : Ck−1 → Ck−2 of Wn⟪Gn⟫-
modules have been defined so that

Ck−1

∂k−1
// Ck−2

∂k−2
// · · · ∂0

// C−1 = Wn
// 0

is an exact sequence. Suppose further that each term restricts to a projective
Wn⟪U⟫-module. Let Nk−1 = ker(∂k−1). The projectivity assumption implies
that

Tor
Wn⟪U⟫
0 (Wn, Nk−1) = Hc

0(U,Nk−1) ∼= Hc
k(U,Wn).

This isomorphism, the knowledge of Hc
k(U,Wn) and a generalized form of

Nakayama’s Lemma [GHMR05, Lemma 4.3] allows us to identify a set of
Wn⟪Gn⟫-generators forNk−1 ⊆ Ck−1. The trick then is to choose a Wn⟪Gn⟫-
module Ck of the desired form (preferably as “small” as possible) and to
construct a map f : Ck → Nk−1 which surjects onto this set of genera-
tors. The map f is surjective by construction since it is chosen to make
Tor0

Wn⟪U⟫(f,Fpn) surjective. The map ∂k : Ck → Ck−1 is then defined to be

the composite Ck → Nk−1 → Ck−1, completing the inductive step.
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The process stops once ∂d−1 has been defined. At this point, we define
Cd = Nd−1 = ker(∂d−1) and prove that Cd is a Wn⟪Gn⟫-module of the
required type. Of course, this need not be the case and proving that this
happens for some series of choices of modules Ck and maps ∂k is usually
difficult.

Remark 5.11 (Algebraic resolution spectral sequence). If one resolves (5.7)
into a double complex P•,• where P•,k → Ck for 0 ≤ k ≤ d is a projective
resolution as Wn⟪Gn⟫-modules, then the totalization of the double complex
P•,• is a projective resolution of Wn. For a (graded) profinite Wn⟪Gn⟫-
module M = {Mt}t∈Z, let Es,k,t0 = Homc

Wn⟪Gn⟫(Pk,s,Mt) and take the ver-

tical cohomology (i.e., with k fixed). The result is the E1-term of a spectral
sequence

Es,k,t1 = ExtsWn⟪Gn⟫(Ck,Mt) =⇒ Hs+k
c (Gn,Mt)

with differentials dr : Es,k,t1 → Es+r,k+r−1,t
1 . If the Cks are direct sums of

modules of the form χ↑GnF for characters χ, then the E1-term is easy to
compute since by a version of Shapiro’s lemma, we have

ExtsWn⟪Gn⟫(χ↑
Gn
F ,Mt) ∼= ExtsWn〈F 〉(χ,Mt).

We call this an algebraic resolution spectral sequence.

Finally, applying the functors Homc
Wn

(−, (En)∗) to (5.7) gives an exact

sequence in the category of Morava modules ModGn
(En)∗

:

0 // (En)∗
∂0
// Homc

Wn
(C0, (En)∗)

∂1
// · · · ∂

d
// Homc

Wn
(Cd, (En)∗) // 0,(5.12)

where the maps ∂k are induced by ∂k.

5.3. Topological resolutions. With an algebraic resolution (5.7) in hand,
the next step is to prove that it has a topological realization which is a finite
resolution of LK(n)S

0. That is, one wants to construct a finite resolution

(5.13) E−1 = LK(n)S
0 δ0

// E0
δ1
// · · · δd−1

// Ed
in the sense of Definition 5.1 with the property that applying the functor

(En)∨∗ (−) : Sp −→ ModGn
(En)∗

to this sequence gives rise to a complex of Morava modules isomorphic to
(5.12).

By our choice of Cks (see Description 5.6), there are isomorphisms of
Morava modules (En)∨∗ Ek ∼= Homc

Wn
(Ck, (En)∗) for non-uniquely determined

spectra Ek of the form specified in part (b) of Definition 5.1. The non-
uniqueness of the Eks comes from the freedom in choosing the values of m
above. (Note that the spectrum EhFn itself is periodic with periodicity some



40 TOBIAS BARTHEL AND AGNÈS BEAUDRY

multiple dtop
F of dalg

F so there is a limited number of choices.) Fixing some
choice of Eks, we can identify (5.12) with

0 // (En)∨∗
∂0
// (En)∨∗ E0

∂1
// (En)∨∗ E1

// · · · ∂
d
// (En)∨∗ Ed // 0.

To obtain a topological realization, one must also show that the maps
∂k are of the form (En)∨∗ (δk) for maps of spectra δk : Ek−1 → Ek. Note that
this being the case can depend on the choices of Eks. The existence of δk is
established using a Hurewicz homomorphism

[Ek−1, Ek] // Hom(En)∨∗En
((En)∨∗ Ek−1, (En)∨∗ Ek).

See Proposition 2.7 [GHMR05] for more details.
Even if the δks exist, it still does not imply that any choice of Eks and δks

give a finite resolution in the sense of Definition 5.1. For this to be the case,
one must have first that the compositions δk ◦ δk−1 are null-homotopic. If
such choices exists, then we inductively define spectra Xk and maps `k so
that

Σk−1Xk−1
Σk−1`k

// Ek
Σkjk

// ΣkXk
Σkik

// ΣkXk−1

are exact triangles (see (5.3)). That is, if the map `k can be chosen so
that δk+1 ◦ Σk−1`k is null-homotopic, then Xk+1 is defined as the cofiber

of Σ−1`k : Σ−1Xk−1 → Σ−kEk and there exists a map ΣkXk
Σk`k+1−−−−→ Ek+1

which factorizes δk+1.
To prove that Xd ' LK(n)S

0, one needs to check that the map δ0 lifts
along the tower

LK(n)S
0

δ0
�� ##

**
X0 X1

i1
oo . . .oo Xd

id
oo

to a map LK(n)S
0 → Xd. If the lift exists, it will induce an isomorphism

(En)∨∗ (LK(n)S
0)
∼=−→ (En)∨∗ (Xd) so will be a K(n)-local equivalence.

Remark 5.14 (Doubling up). In (3.19) above, we defined a normal sub-
group G1

n ⊆ Gn with the property that Gn
∼= G1

n o Zp where the extension
splits whenever n is coprime to p. In practice, one first constructs a finite
resolution of Wn as a Wn⟪G1

n⟫-module and then upgrades it to a resolution
of Wn as a Wn⟪Gn⟫-module. See Corollary 4.2 of [GHMR05] for an example.

5.4. Diagram of resolution spectral sequences. The resolutions whose
construction is described above give rise to spectral sequences which fit in a
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diagram:

Es,k,t1 = ExtsWn⟪Gn⟫(Ck, (En)t)
ARSS %9

LHFPSS
��

Hs+k
c (Gn, (En)t) ∼= Es+k,t2

HFPSS

��
Ek,t−s1 = πt−sEk

TRSS
%9 πt−(s+k)LK(n)S

0.

Here ARSS stands for algebraic resolution spectral sequence, TRSS for topo-
logical resolution spectral sequence, HFPSS for homotopy fixed point spectral
sequence and in LHFPSS, the L is for level-wise. The horizontal spectral se-
quence have the advantage of being first quadrant spectral sequences which
are zero in degrees k > d and so collapse at the Ed+1-page. By Remark 3.29,
the vertical spectral sequences also collapse at some finite stage with a hor-
izontal vanishing line.

5.5. Finite resolutions at height n = 2. Now we give examples of some
of the finite resolutions at height n = 2 that exist in the literature. In
the references cited, the algebraic resolutions are usually constructed in the
category Zp[[G]] for G = G2 or G = G1

2. As is explained Remark 3.35, we can
transport the constructions to the category of ModW2⟪G⟫ and this is what
we do here. The reason for this change is explained in Remark 5.27.

Notation 5.15 (Finite subgroups and their modules). The maximal finite
subgroups of Sn were given in Table 3.14. Here, we discuss them more specif-
ically in the case n = 2. Note that in the cases p = 2, 3, S2 contains p-torsion
and so has more interesting finite subgroups (see (2) and (3) below).

(1) Let p be odd. Let σ ∈ Gal = Gal(Fp2/Fp) be the Frobenius and ω ∈ F×
p2

be a primitive (q = p2 − 1)th root of unity. The group Gal acts on F×
p2

by σ(ω) = ωσ = ωp. We define

F = F2q := F×
p2

o Gal.

For example, if p = 3, then F ∼= SD16, the semi-dihedral group of order
16. We let ω ∈ W2

∼= Zp(ω) denote the Teichmüller lift of the same
named class in Fp2 . The Teichmüller lifts then specify an embedding of

F×
p2

in Sn, and so of F in Gn.

We define W2〈F 〉-modules χ+
i and χ−i for 0 ≤ i ≤ q − 1 as follows.

The underlying W2-module of χ±i is W2. For x ∈ χ±i , define ω∗(x) = ωix
and

σ∗(x) =

{
xσ x ∈ χ+

i

−xσ x ∈ χ−i .
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Let χi = χ+
i ⊕ χ−i . The twisted group ring completely decomposes as a

W2〈F 〉-modules as

W2〈F 〉 ∼=
q−1⊕
i=0

χi =

q−1⊕
i=0

χ+
i ⊕ χ−i .

To see this isomorphism, let xi ∈W2〈F 〉 be given by

xi = [e] + ω−i[ω] + ω−2i[ω2] + · · ·+ ω−(q−2)i[ωq−2]

for 0 ≤ i ≤ q − 2. The elements xi together with the elements xi[σ]
generated W2〈F 〉 as a W2-module. Furthermore, ω∗(xi) = ωixi and
σ∗(xi) = xi[σ]. So, there are isomorphisms χ+

i
∼= W2{xi + xi[σ]} and

χ−i
∼= W2{xi − xi[σ]}.

(Note that the Zp-module λi of [Hen07] has the property that

W2 ⊗Zp λi
∼= χ+

−i ⊕ χ+
−pi

when viewed as a W2〈F 〉-module as described in Remark 3.35.)
(2) For p = 3, let G24 be an extension of C3 oC4 ⊆ S2 to G2 in the sense of

Definition 3.13. We can give an explicit choice as follows. The subgroup
of S2 generated by s = 1

2(1 + ωξ) and t = ω2 is isomorphic to C3 o C4.

Here, s is of order 3, t is of order 4, and tst−1 = s2. We let G24 be the
group generated by s, t, ψ = ωξ in D×2 /ξ2 ∼= G2. Note that ψs = sψ and
tψ = ψt3. The group G24 is an extension of C3 o C4 in G2. See Section
1.1 of [GHMR05]. Note that C3 is normal in G24. Therefore, the χ±1

i
inherit a G24-module structure via the map

G24 → G24/C3
∼= (F×9 )2 ×Gal

⊆−→ SD16,

where (F×9 )2 ∼= C4 denotes the subgroup of squares in F×9 .
(3) For p = 2, the group S2 contains a unique conjugacy class of maximal

finite subgroups isomorphic to the binary tetrahedral group T24
∼= Q8 o

F×4 . There is a choice of T24 generated by ω ∈ F×4 and an element of
order four which we denote by i ∈ Q8 with the property that i2 = −1 ∈
S2. For j = ωiω−1, the elements i and j satisfy the usual quaternion
relations. We let G48 be the extension of T24 ⊆ S2 to G2 given by
G48 = 〈ω, 1 + i〉 ⊆ D×2 /ξ2 ∼= G2. The group G48 is isomorphic to the
binary octahedral group. See [Hen18, Lemma 2.1, 2.2].

We also let C2 = (±1) ⊆ S2. Define V4 = C2 × Gal and G12 =
(C2 × F×4 ) o Gal ∼= C2 × Σ3. The group C4 = 〈i〉 ⊆ S2 also extends to
a finite subgroup of G2 which is a cyclic group of order eight given by
C8 = 〈1 + i〉 ⊆ D×2 /ξ2.

Finally, we let π = 1 + 2ω, which has the property that det(π) =
ππσ = 3 ∈ Z×2 /(±1) is a topological generator. We let G′48 = πG48π

−1.
This group is conjugate to G48 in G2, but not in G1

2.
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Remark 5.16. The spectra EhF2 for F finite are often equivalent to the
K(2)-localization of topological modular forms with level structures (see
[Beh19]). For example,

LK(2)TMF ' EhG24
2 , LK(2)TMF 0(2) ' EhQ8

2 ' EhSD16
2 ∨ Σ8EhSD16

2

at p = 3, and at p = 2,

LK(2)TMF ' EhG48
2 , LK(2)TMF 0(3) ' EhG12

2 , LK(2)TMF 0(5) ' EhC8
2 .

Note that, in [Beh06], Behrens writes LK(2)TMF 0(2) ' EhD8
2 (for p = 3).

The difference comes from the fact that he is using the formal group law ΓC
of a super-singular curve while we are using the Honda formal group law Γ2.
The groups Q8 and D8 are extensions to G(F8,Γ2) and G(F8,ΓC) respec-
tively of the subgroup C4 ⊆ AutF3

(Γ2) ∼= AutF3
(ΓC). See Remark 3.15.

Recall from Remark 5.14 that in practice, one begins by constructing a
finite resolution of the group G1

2. (The groups G1
2 and S1

2 were defined right
before (3.19).)

Example 5.17 (The Duality Resolutions). The following examples of reso-
lutions of W2 as a W2⟪G1

2⟫-module have been coined the duality resolutions.
They are self-dual in a suitable sense (see [HKM13, Section 3.4] or [Bea15,
Section 3.3]). In fact, this duality is related to the virtual Poincaré duality
of the group G1

2. They are given by exact sequences

(5.18) 0 // D3
// D2

// D1
// D0

//W2
// 0

such that each Di is isomorphic to a direct sum of modules of the form

χ↑G
1
2

H := W2⟪G1
2⟫⊗W2〈H〉 χ(5.19)

for H an extension to G1
2 of a finite subgroup of S1

2 and χ is W2〈H〉-module
which restricts to a free module of rank one over W2.

They are minimal in the sense that their associated algebraic resolution
spectral sequence

(5.20) Er,q1 = ExtqW2⟪G1
2⟫

(Dr,Fp2) =⇒ Hp+q
c (G1

2,Fp2)

collapses at the E1-term. They can be realized as finite resolutions of E
hG1

2
2

(5.21) E
hG1

2
2

// ED0 // ED1 // ED2 // ED3 .
(a) Let p ≥ 5. There is an exact sequence (5.18) with

D0
∼= D3

∼= W2↑G
1
2

F , D1
∼= D2

∼= (χ+
p−1 ⊕ χ+

1−p)↑
G1

2
F .

This can be realized as a finite resolution (5.21) with

ED0 ' ED3 ' EhF2 , ED1 ' ED2 ' Σ2(p−1)EhF2 ∨ Σ2(1−p)EhF2 .

These were constructed by Henn [Hen07, Theorem 5]. See also Lader
[Lad13].
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(b) Let p = 3. There is an exact sequence (5.18) with

D0
∼= D3

∼= W2↑G
1
2

G24
, D1

∼= D2
∼= χ−4 ↑

G1
2

SD16
.

This can be realized as a finite resolution (5.21) with

ED0 ' EhG24
2 , ED1 ' Σ8EhSD16

2 , ED2 ' Σ40EhSD16
2 , ED3 ' Σ48EhG24

2 .

These were constructed by Goerss, Henn, Mahowald and Rezk in
[GHMR05].

(c) Let p = 2. There is an exact sequence (5.18) with

D0
∼= W2↑G

1
2

G48
, D1

∼= D2
∼= W2↑G

1
2

G12
, D3

∼= W2↑G
1
2

G′48
.

This can be realized as a finite resolution (5.21) with

ED0 ' EhG48
2 , ED1 ' EhG12

2 , ED2 ' Σ48EhG12
2 , ED3 ' Σ48EhG48

2 .

These were constructed by Beaudry, Bobkova, Goerss, Henn, Mahowald,
and Rezk in [Hen07, Bea15, BG18]. In these references, the resolution

is constructed for EhS22 . However, using the ideas of [Hen18] it is now

straightforward to construct it for EhG2
2 .

Remark 5.22. If p 6= 2, the algebraic resolution can be doubled up in the
sense of Remark 5.14 and the result can be realized topologically. For p ≥ 5,
this gives a resolution

LK(2)S
0 // EhF2

δ0
// X ∨ EhF2

δ1
// X ∨X δ2

// EhF2 ∨X δ3
// EhF2

where X = Σ2(p−1)EhF2 ∨ Σ2(1−p)EhF2 , and for p = 3, we get

LK(2)S
0 // EhG24

2

δ0
// EhSD16

2 ∨ EhG24
2

δ1
// Σ48EhSD16

2 ∨ EhSD16
2

δ2
// Σ48(EhG24

2 ∨ EhSD16
2 )

δ3
// Σ48EhG24

2

However, the duality resolution at p = 2 cannot be doubled up.

Example 5.23 (The Centralizer Resolutions). The following two resolu-
tions of the trivial W2⟪G1

2⟫-modules are called centralizer resolutions be-
cause their construction has as a key input Henn’s Centralizer Approxima-
tion Theorem [Hen98, Theorem 1.4]. They are given by exact sequences

(5.24) 0 // C3
// C2

// C1
// C0

//W2
// 0,

where the Cis are of the form described in (5.19). They can be realized as
finite resolutions

(5.25) E
hG1

2
2

// EC0 // EC1 // EC2 // EC3 .
The algebraic centralizer exact sequences (5.24) described below are F-
resolutions in the sense of [Hen07, §3.5.1] and [Hen18, §1.2]. We will not
explain what this means, but a consequence of this fact is that the algebraic
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centralizer resolutions can be doubled up in the sense of Remark 5.14. The
downside of the centralizer resolutions is that they are “larger” than the
duality resolutions. For example, the analogues of (5.20) for the centralizer
resolutions do not collapse. As a consequence, the associated algebraic and
topological spectral sequences are less efficient for computations. Nonethe-
less, having different resolutions offers different perspectives and the central-
izer resolutions have been crucial in recent computations. See for example
[BG18, GH16].

(a) Let p = 3. There is an exact sequence (5.24) with

C0
∼= W2↑G

1
2

G24
, C1

∼= χ−4 ↑
G1

2
SD16

⊕ χ+
2 ↑

G1
2

G24
,

C2
∼= (χ+

2 ⊕ χ+
−2)↑G

1
2

SD16
, C3

∼= W2↑G
1
2

SD16
.

This can be realized as a finite resolution (5.25) with

EC0 ' EhG24
2 , EC1 ' Σ8EhSD16

2 ∨ Σ36EhG24
2 ,

EC2 ' Σ36EhSD16
2 ∨ Σ44EhSD16

2 , EC3 ' Σ48EhSD16
2 .

This is constructed by Henn in [Hen07]. See also [GH16, Section 4]. Since
G2
∼= G1

2×Z3, Remark 5.14 applies and we get a resolution of LK(2)S
0.

(b) Let p = 2. There is an exact sequence (5.24) with

C0
∼= W2↑G

1
2

G48
⊕W2↑G

1
2

G′48
, C1

∼= W2↑G
1
2

C8
⊕W2↑G

1
2

G12
,

C2
∼= W2↑G

1
2

V4
, C3

∼= W2↑G
1
2

G12
.

This can be realized as a finite resolution (5.25) with

EC0 ' EhG48
2 ∨ EhG

′
48

2 , EC1 ' EhC8
2 ∨ EhG12

2 , EC2 ' EhV42 , EC3 ' EhG12
2 .

This is constructed by Henn [Hen18]. Note again that, as opposed to the
duality resolution at p = 2, the algebraic centralizer resolution can be dou-
bled up and the resulting sequence can be realized topologically to give a
finite resolution of LK(2)S

0. See [Hen18, Theorem 1.1, 1.5].

Remark 5.26. The doubled up centralizer resolution at n = p = 2 is very
large compared to the duality resolution available at odd primes. However,
there is a handicraft way to glue a duality resolution with a centralizer
resolution to obtain a much smaller resolution called the hybrid resolution.
It can be realized as a resolution of LK(2)S

0

LK(2)S
0 // EhG48

2

δ0
// EhC8

2 ∨ EhG12
2

δ1
// EhV42 ∨ EhG12

2

δ2
// EhG12

2 ∨ Σ48EhG12
2

δ3
// Σ48EhG48

2 .

The construction of this resolution is not published but is due to the second
author and Henn.
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Remark 5.27. Until recently, at n = p = 2, topological and algebraic
resolutions existed only for S2 and not G2. In some loose sense, the reason
for this was our inability to average over the action of Gal. By an insight
of Hans-Werner Henn [Hen07] if one switches to Wn-coefficients, one can
form “weighted averages” in Wn and this has allowed us to upgrade our
resolutions for S2 to resolutions for G2. Note further that the description of
the duality resolution at n = 2 and p ≥ 5 is much cleaner if one works over
the Witt vectors.

6. Chromatic splitting, duality, and algebraicity

This section discusses two of the major areas of applications of the tech-
niques developed above in local chromatic homotopy theory: the chromatic
splitting conjecture and the study of duality phenomena in K(n)-local ho-
motopy theory. In both cases, we start with an outline of the general picture,
before specializing to a summary of the known results at height 2. We then
conclude with a brief outlook to the asymptotic behavior of chromatic ho-
motopy theory for primes large with respect to the height.

6.1. Chromatic splitting and reassembly. In this section, we discuss
the chromatic splitting conjecture in more detail, putting an emphasis on
new developments and points that were not discussed in [Hov95].

The chromatic splitting conjecture (CSC) gives a fairly simple prediction
of Ln−1LK(n)S

0 in the chromatic fracture square. Although the original
conjecture does not hold for the prime p = 2 and n = 2 as it was stated
in [Hov95], the fundamental idea behind the conjecture remains intact. The
philosophy behind the CSC is that chromatic reassembly is governed by
the structure of H∗c (Gn,W), via the map H∗c (Gn,W) → H∗c (Gn, (En)∗) to
the E2-term of the homotopy fixed point spectral sequence (3.7). As dis-
cussed in Conjecture 3.31, this map is expected to be an isomorphism onto
H∗c (Gn, (En)0).

The isomorphism (3.33) implies at the very least that there is an inclusion

ΛZp(x1, x2, . . . , xn) ⊆ H∗c (Gn,Wn)

for generators xi of cohomological degree 2i − 1 at all primes and heights.
Here, we always choose x1 = ζn for ζn as in (3.17) and choose the other
xis so that they do not map to zero in H∗c (Gn,Wn)/p. Conjecture 3.31 then

implies the existence of non-zero classes xi ∈ E2i−1,0
2 in

Es,t2
∼= Hs

c (Gn, (En)t) =⇒ πt−sLK(n)S
0.

Further, at heights n ≤ 2 the following phenomena have been observed.

Conjecture 6.1. If p is odd, or if p = 2 and n is odd, then

E∗,0∞
∼= ΛZp(e1, e2, . . . , en) ⊆ π∗LK(n)S

0
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for some choice of classes ei detected by a multiple of xi. If p = 2 and n is
even, then

E∗,0∞
∼= ΛZ2(f, e1, e2, . . . , en)/(2f, enf) ⊆ π∗LK(n)S

0.

for ei as above and some choice of class f detected by χ̃n (see (3.18)).

Remark 6.2. If p is large with respect to n, then there is no ambiguity about
the choice of classes ei because of the sparsity of the spectral sequence. At
n = 2 and p = 3, once can choose e2 to be detected by 3x2 and at n = p = 2,
by 4x2.

The dichotomy between odd and even heights for the prime 2 comes from
the following observations. If n is odd, then the inclusion of C2

∼= (±1) in
Gn splits the map χn and

H∗(C2,Z2) ∼= Z2[χ̃n]/(2χ̃n)→ H∗(C2,Wn)
χ∗n−→ H∗c (Gn,Wn)

is an inclusion. However, if the image of χ̃n in H2
c (Gn, (En)0) is non-trivial,

then it must support a non-trivial d3 differential since its image in the HFPSS
computing EhC2

n has this property by [HS17, Theorem 1.3]. (The image of
χ̃n would be the class u−1

2σ a
2
σ which supports a non-zero d3 differential.)

At n = 2, what we observe is that (χ̃2
2) is the kernel of χ∗2 so that the

latter induces the inclusion of Z2[χ̃2]/(2χ̃2, χ̃
2
2) into H∗c (G2,W2). We do not

know how this generalizes at even heights n > 2.
As is discussed in [Hov95], the induced maps ei : S

1−2i → Ln−1S
0 (for

some choice of ei) are conjectured to factor through Ln−iS
0. Since f has

order 2, it induces a map f : S−2/2→ LK(n)S
0, so after localizing at En−1,

we get a map f : Ln−1S
−2/2→ Ln−1LK(n)S

0. The CSC as stated in [Hov95]
did not take into account this class f . Based on what we see in the case
n = p = 2, Conjecture 6.3 below is a suggestion for a revised version of
the CSC in its strongest form which includes f . Below, for spectra Xi, we
let ΛLn−1S0

p
(X1, . . . , Xn) be the wedge of Ln−1S

0
p and of Xi1 ∧ . . . ∧Xij for

1 ≤ i1 < . . . < ij ≤ n. Let

ι : Ln−1S
0
p → ΛLn−1S0

p
(X1, . . . , Xn)

be the inclusion of the Ln−1S
0
p summand.

Conjecture 6.3 (Strong CSC). There is an equivalence in the category of
En−1-local spectra

Ln−1LK(n)S
0 ' ΛLn−1S0

p

(
Ln−iS

1−2i : 1 ≤ i ≤ n
)

if p 6= 2, or p = 2 and n odd. The map ι corresponds to the unit Ln−1S
0
p →

Ln−1LK(n)S
0
p . If p = 2 and n is even, there is an En−1-local equivalence

Ln−1LK(n)S
0 ' ΛLn−1S0

2

(
Ln−iS

1−2i : 1 ≤ i ≤ n
)
∧ ΛLn−1S0

2

(
Ln−1S

−2/2
)
.

In this case, the map ι ∧ ι corresponds to the unit Ln−1S
0
p → Ln−1LK(n)S

0
p .
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Remark 6.4. A criterion for this revision is for the conjecture at odd primes
to remain as stated in [Hov95]. We have made what we think is a minimal
modification to reflect what we see at n = p = 2. However, other refor-
mulations are possible and we concede that this is a somewhat arbitrary
choice.

Note that Conjecture 6.3 implies the weak CSC (Conjecture 2.20), saying
that Ln−1S

0 → Ln−1LK(n)S
0 splits. Further, both Conjecture 6.3 and Con-

jecture 2.20 hold if one replaces the sphere by any finite complex X. How-
ever, even Conjecture 2.20 does not hold for arbitrary spectra. In [Dev98],
Devinatz proves that it fails for the p-completion of BP .

Before giving examples we would like to point out that, among its many
consequences, the strong form of the chromatic splitting conjecture would
also imply

Conjecture 6.5. For any n ≥ 0 and any prime p, the homotopy groups
π∗LK(n)S

0 are degreewise finitely generated Zp-modules.

Example 6.6. At height n = 1, the equivalence L0LK(1)S
0 ' L0(S0

p ∨S−1
p )

holds for all primes and was discussed in Section 4.3, see (4.18).

Theorem 6.7. At height n = 2, if p is odd, then

L1LK(2)S
0 ' L1(S0

p ∨ S−1
p ) ∨ L0(S−3

p ∨ S−4
p ).

See [Beh12, GHM14]. If p = 2, there is an equivalence

L1LK(2)S
0 ' L1(S0

2 ∨ S−1
2 ∨ S−2/2 ∨ S−3/2) ∨ L0(S−3

2 ∨ S−4
2 ).

See [BGH17].

Remark 6.8. The fact that the CSC in its original form would most likely
fail at n = p = 2 was first noticed by Mark Mahowald. His intuition was
based on the computations of Shimomura and Wang [SW02], who identify
v1-torsion-free summands in the E2-term of the Adams-Novikov Spectral
Sequence for π∗LK(2)V (0) that are not predicted by the CSC. Their work,
however, did not preclude the possibility of differentials that could have
eliminated the summands not accounted for in the original statement of the
CSC.

The CSC is one of the key inputs for chromatic reassembly, which recovers
LnS

0 from LK(n)S
0 and Ln−1S

0 via the chromatic fracture square (2.19).
We discuss this a little more here.

Let Fn be the fiber of the map Ln−1S
0 → Ln−1LK(n)S

0, whose homotopy
type is predicted by the CSC. The chromatic fracture square implies that
Fn is also the fiber of LnS

0 → LK(n)S
0. The homotopy groups of LnS

0 can
be reassembled from the long exact sequence on homotopy groups

πkΣ
−1LK(n)S

0 // πkFn // πkLnS
0 // πkLK(n)S

0 // πkΣFn.

We explained chromatic reassembly at height n = 1 in Section 4.3. At
this point, we would like to at least give the reader an idea of chromatic
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reassembly at chromatic level n = 2. A description of reassembly for L2S
0
p

itself would be very technical, so instead, we describe the reassembly process
for L2S

0/p for primes p ≥ 5, which is significantly simpler. To do this, we
first give a qualitative description of the homotopy groups of π∗(LK(2)S

0/p).
For primes p ≥ 5, the homotopy fixed point spectral sequence is too sparse

for differentials or extensions, so collapses to give

πm(LK(2)S
0/p) ∼=

⊕
m=t−s

Hs
c (G2, (E2)t/p).

The groups on the right side of this isomorphism can be deduced from
the computation by Shimomura and Yabe in [SY95] and were discussed
in Sadofsky [Sad93]. They are computed directly using the finite resolution
(1) of Example 5.17 by Lader in [Lad13]. See [Lad13, Corollaire 4.4] and the
discussion before it for an explicit description. We make a few observations
about the answer:

(a) The homotopy groups π∗(LK(2)S
0/p) form a module over Fp[v1]⊗ΛFp(ζ2)

for a class v1 = u1−p ∈ π2(p−1)(LK(2)S
0/p) and ζ2 ∈ π−1(LK(2)S

0/p) as

in Remark 3.20. The group πm(LK(2)S
0/p) is zero if

2k(p− 1) < m < 2(k + 1)(p− 1)− 4.

(b) Since L0S
0/p ' ∗, the chromatic fracture square gives an equivalence

L1S
0/p ' LK(1)S

0/p and, similarly, L1LK(2)S
0/p ' LK(1)LK(2)S

0/p.
Furthermore, on homotopy groups, the effect of E1-localization on
LK(2)S

0/p is to invert v1.

(c) There is unbounded v1-torsion in π∗(LK(2)S
0/p). However, the homo-

topy groups are finite in each degree m. In fact, for any class x detected
in Hs

c (G2, (E2)t/p) for t < 0, if t+ 2k(p− 1) ≥ 0, then vk1x = 0. That is,
multiplication by v1 never “crosses” the s = t line in Hs

c (G2, (E2)t/p).
(d) The only homotopy classes in π∗LK(2)S

0 that are not v1-torsion are

given by Fp[v1]⊗ ΛFp(ζ2, h0) for a class h0 ∈ π2(p−1)−1(LK(2)S
0/p) that

is the image of the homotopy class α1 ∈ π2(p−1)−1S
0
(p). Furthermore,

π∗(L1LK(2)S
0/p) ∼= v−1

1 π∗(LK(2)S
0/p) ∼= Fp[v±1

1 ]⊗ ΛFp(ζ2, h0).

Under the canonical map π∗(L1S
0/p) → π∗(L1LK(2)S

0/p), the class

ζ1 ∈ π−1(L1S
0/p) maps to v−1

1 h0.

We use the long exact sequence on homotopy groups associated to the fiber
sequence

F2/p→ L2S
0/p→ LK(2)S

0/p

to deduce that

π∗(L2S
0/p) ∼= Torv1(π∗(LK(2)S

0/p))⊕ Fp[v1]{1, h0} ⊕ Σ−1Fp[v1]/(v∞1 ){ζ2, h0ζ2},
where Torv1(π∗(LK(2)S

0/p)) is the v1-power torsion subgroup of π∗(LK(2)S
0/p)

and Fp[v1]/(v∞1 ) is the cokernel of the canonical map in the following short
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exact sequence

0 // Fp[v1] // Fp[v±1
1 ] // Fp[v1]/(v∞1 ) // 0.

All available proofs of the CSC, even in its weakest form, have been bru-
tally computational. Short of simply computing π∗LK(2)S

0 explicitly, the
steps have been:

(a) Prove that there are non-zero homotopy classes e1 and e2, and if p = 2
an additional class f detecting a non-trivial class of order 2. This gives
the map

S0 ∨ S−1 ∨ S−3 ∨ S−4 ϕ
// LK(2)S

0,

where ϕ = 1 ∨ e1 ∨ e2 ∨ e1e2. If p = 2, there is an additional factor of

S−2/2 ∨ S−3/2
f∨e1f−−−−→ LK(2)S

0.

(b) Compute v−1
1 π∗LK(2)(ϕ ∧X) for a finite type 1 complex, usually X =

S0/p.
(c) Compute p−1π∗LK(2)S

0.
(d) Reassemble the fracture square.

Remark 6.9. Let p be an odd prime. In general, the CSC predicts that

1∨ ζn induces an equivalence LK(n−1)S
0 ∨LK(n−1)S

−1 '−→ LK(n−1)LK(n)S
0.

In particular, it implies that LK(n−1)S
0 ' LK(n−1)E

hG1
n

n .
There is another conjecture of Hopkins related to chromatic splitting

called the algebraic chromatic splitting conjecture [Pet, Section 14]. It states:

Conjecture 6.10 (Algebraic CSC). Let p be an odd prime, possibly large
with respect to n. Then

lim
i

s
(En)∗En

(En)t/(p, v1, . . . , vn−2, v
i
n−1) ∼=


(En)∗/(p, v1, . . . , vn−2) s = 0

v−1
n−1(En)∗/(p, v1, . . . , vn−2) s = 1

0 s > 1.

Here, the limit (and its derived functors) is taken in the category of (En)∗En-
comodules, where (En)∗En = π∗(En ∧ En) is the group of non-completed
En-cooperations. Provided that (En)∗ζn generates the lim1-term, Conjec-
ture 6.10 implies that 1∨ζn is an En-local equivalence, thereby verifying the
chromatic splitting conjecture at height n for finite type n− 1 complexes.

Remark 6.11. As explained above, the chromatic splitting conjecture is
a fundamentally transchromatic statement. In a series of papers, Torii uses
generalized character theory to study the relation between adjacent strata
in the chromatic filtration. In particular, he shows in [Tor11] that under the
canonical map

π−1LK(n−1)S
0 // π−1LK(n−1)LK(n)S

0

the class ζn−1 maps non-trivially.
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6.2. Invertibility and duality. In analogy with the problem of computing
the group of units of a classical ring, an important aspect of understanding a
symmetric monoidal category (C,⊗, I) with unit I is to classify its invertible
objects. An object X ∈ C is invertible if there exists another object Y ∈ C
such that X⊗Y ∼= I where I is the unit of the symmetric monoidal structure.
If the collection of invertible objects forms a set, then it is an abelian group
under ⊗ and this group is called the Picard group of C, denoted Pic(C). The
Picard group of a symmetric monoidal ∞-category C is defined to be the
Picard group of the homotopy category of C, i.e., we set Pic(C) = Pic(Ho(C)).

If C is a triangulated category, the Picard group always contains a cyclic
subgroup generated by the shift of the unit I[1]. For example, the Picard
group of the stable homotopy category contains a copy of Z generated by S1.
In fact, in this case, there is nothing else and Pic(Sp) ∼= Z〈S1〉, see [HMS94].
We can view SpE as a symmetric monoidal category with product LE(−∧−)
and unit LES

0. The objects LES
n for n ∈ Z are invertible in this category.

One of the fascinating aspects of E-local homotopy theory is that, for some
choices of E, there are invertible object in SpE which are not of the form
LES

n for some n ∈ Z. When E = K(n) for 0 < n < ∞, the Picard group
is in fact much larger; we remark that for E = K(n) and E = E(n) and
arbitrary n, the collection of isomorphism classes of invertible objects in SpE
indeed forms a set, see [HMS94, Proposition 7.6] and [HS99a, Proposition
1.4].

The Picard group of the K(n)-local category (with p fixed and suppressed
from the notation) is usually denoted by Picn. Note that, if X ∈ Picn,
its inverse is the Spanier–Whitehead dual of X in the K(n)-local category:
DnX = F (X,LK(n)S

0). By Galois descent [Mat16, Proposition 10.10], there
is an isomorphism

Picn ∼= PicK(n)(ModGn
En

),

where ModGn
En

is the K(n)-local category of Gn-twisted E-module spectra.
The right hand side has a natural algebraic analogue given by

Picalg
n := Pic(ModGn

(En)∗
)

where ModGn
(En)∗

is the category of Morava modules (see Definition 3.37).

A Morava module M is in Picalg
n if and only if it is free of rank one

over (En)∗. Since (En)∗ is two periodic, Picalg
n is naturally Z/2-graded. Let

Picalg,0
n be the subgroup of elements such that M ∼= (En)∗ as (En)∗-modules.

The latter can then be described (but not easily computed) as

Picalg,0
n
∼= H1

c (Gn, (En)×0 ).

The functor which sends X ∈ SpK(n) to (En)∨∗X induces a map, Picn →
Picalg

n , and we define κn to be the kernel:

(6.12) 0 // κn // Picn // Picalg
n
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Table 6.14. The table below contains some known values of Picn. Here, H–
M–S stands for Hopkins–Mahowald–Sadofsky, G–M–H–R stands for Goerss–
Henn–Mahowald–Rezk and K–S for Kamiya–Shimomura.

n p Picn Picalgn κn Reference

1 ≥ 3 Zp × Z/2(p− 1) Zp × Z/2(p− 1) 0 H–M–S [HMS94]
1 2 Z2 × Z/2× Z/4 Z2 × (Z/2)2 Z/2 H–M–S [HMS94]

2 ≥ 5 Z2
p × Z/2(p2 − 1) Z2

p × Z/2(p2 − 1) 0
Due to Hopkins

See Lader [Lad13]

2 3 Z2
3 × Z/16× (Z/3)2 Z2

3 × Z/16 (Z/3)2
Karamanov [Kar10]

G–H–M–R [GHMR15]
K–S [KS04]

It is called the exotic Picard group fo SpK(n). Elements of Picn which are in
κn are called exotic.

For 2(p − 1) ≥ n2, an argument that uses the sparseness of (3.7) shows
that κn = 0 so that the map (6.12) Picn → Picalg

n is an injection [HMS94,
Proposition 7.5]. However, it has been shown in many cases that κn is non-
trivial. The following is a conjecture of Hopkins.

Conjecture 6.13. The group κn is a finite p-group.

In [Hea14, Theorem 4.4.1], Heard proves that for p odd, κn is a direct
product of cyclic p-groups. Note also that a positive answer to Conjecture 6.5
would imply Conjecture 6.13.

In [Pst18b], Pstra̧gowski proves that for 2(p− 1) > n2 + n, Picn ∼= Picalg
n .

The question of whether or not Picn → Picalg
n is surjective in general is

open. Furthermore, the algebraic Picard group Picalg
n is not known for any

prime when n > 2. It is believed that Picalg
n is finitely generated over Zp.

In fact, the (folklore) expectation is that Picalg
n is of rank two over Zp, with

one summand generated by LK(n)S
1 and the other by the spectrum S〈det〉

discussed below in Example 6.16 (b). The table of Figure 6.14 summarizes
the current state of the literature on these questions. The second author,
Bobkova, Goerss and Henn have been working towards identifying Pic2 when
p = 2.

Remark 6.15. Analogously, there is a map from the Picard group Pic(Spn)
of the En-local category Spn to the category of (En)0En-comodules. In
[HS99a], Hovey and Sadofsky use a variant of Theorem 3.26 to deter-
mine these Picard groups completely for large primes: They show that for
2(p − 1) > n2 + n, there is an isomorphism Pic(Spn) ∼= Z, generated by
LnS

1.

Example 6.16. We describe a few important elements in Picn.

(a) The spheres LK(n)S
m for m ∈ Z are all invertible.

(b) The determinant sphere S〈det〉 ∈ Picn. See [BBGS18] for a construc-
tion. It has the property that (En)∨∗S〈det〉 ∼= (En)∗ as (En)∗-modules,
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but with action of Gn twisted by the determinant. Its image in Picalg,0
n
∼=

H1
c (Gn, (En)×0 ) is the homomorphism det : Gn → Z×p ⊆ (En)×0 of Defi-

nition 3.16.
(c) Given λ ∈ (π0E

hG1
n

n )×, one can define a element Sλ via the fiber sequence

Sλ // E
hG1

n
n

ψ−λ
// E

hG1
n

n .

Some variation of this construction is discussed in Section 3.6 of [Wes17].
If the Adams–Novikov filtration of λ is positive, one can show that Sλ is

exotic. At p = 3, the subgroup of (π0E
hG1

2
2 )× of positive Adams–Novikov

filtration is isomorphic to Z/3. The elements in one of the factors of Z/3
in κ2

∼= Z/3× Z/3 are of the form Sλ.
(d) Some exotic elements cannot be constructed using (c). One can instead

use finite resolutions to construct them. The first example is at p = 2 and
n = 1. Recall that K = E1 and KO ' KhC2 . Since K∨∗KO

∼= K∨∗ Σ4KO,
rather than choosing E0 = E1 = KO to topologically realize (4.9), one
can let E0 = E1 = Σ4KO to get a fiber sequence

P1
// Σ4KO

Σ452ψ−1
// Σ4KO(6.17)

where ψ ∈ G1
∼= Z×2 is as in (4.12). The fiber P1 is a generator of κ1. By

construction, P1 ∧KO ' Σ4KO. See [GHMR15, Example 5.1] for more
details.

Similarly, at p = 3, there is an element P2 ∈ κ2 with the property that
P2 ∧EhG24

2 ' Σ48EhG24
2 ; in fact,P2 is a non-trivial exotic element which

generates the other summand of Z/3 ⊆ κ2. See [GHMR15, Theorem 5.5].
It is constructed by modifying the realization of the duality resolution
of Remark 5.22.

We now discuss another element of Picn which plays an important role
in K(n)-local homotopy theory and brings us to the topic of Gross–Hopkins
duality. As an application of the period map mentioned in Remark 3.24,
Gross and Hopkins determine the dualizing complex of SpK(n), defined via
a lift of Pontryagin duality for abelian groups. More precisely, the functor

I∗n(−) = Hom(π−∗Mn(−),Qp/Zp) : Spop
K(n)

// Modgraded
Zp

is cohomological and thus representable by an object In ∈ SpK(n), the Gross–
Hopkins dual of the sphere. From an abstract point of view, it endows SpK(n)

with a Serre duality functor, see [Bar17].
By Theorem 3.6 and Corollary 3.27, In is determined by its Morava mod-

ule (En)∨∗ (In) = π∗LK(n)(En∧ In) when p is large with respect to the height
n; otherwise, one might have to twist by an exotic element of the K(n)-
local Picard group. The spectrum In turns out to be invertible in SpK(n),

and Gross and Hopkins use the period map (3.25) to show that there is an
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equivalence

In ' LK(n)(S
n2−n ∧ S〈det〉 ∧ Pn),

where Pn ∈ κn and S〈det〉 is as in Example 6.16 (b). This identification is
also known as Gross–Hopkins duality . It turns out that P1 for p = 2 and P2

for p = 3 are the elements discussed in Example 6.16 (d).
It has now been shown in many cases where Gn has p-torsion that

Pn 6' LK(n)S
0 by showing that Pn ∧ EhFn 6' EhFn for a suitable choice

of subgroup F ⊆ Gn. See [BBS17] and [HLS18]. These arguments rely on
the intimate relationship between Gross–Hopkins duality and K(n)-local
Spanier–Whitehead duality: For X ∈ SpK(n), let InX = F (X, In). The in-
vertibility of In implies that InX ' DnX ∧ In so studying InX amounts to
understanding Pn and DnX.

We end this section with a few remarks on Spanier–Whitehead duality
and, more specifically, on the problem of identifying DnEn. A first answer
to this question due to Gross and Hopkins (see [Str00, Proposition 16])

states that there is a weak equivalence Σ−n
2
En → DnEn which induces

an isomorphism of Gn-modules on homotopy groups. This does not imply

that DnEn is equivalent to Σ−n
2
En as Gn-equivariant spectra. But it does

suggest that there is a dualizing module, that is, that DnEn is self-dual up
to a twist.

In fact, the twist can be described as the K(n)-localization of a p-adic
sphere. A first description of this sphere is given as the Spanier–Whitehead
dual of

SGn :=
(
colimm,tr Σ∞+ BSmn

)∧
p
,

where Smn ⊆ Sn is the subgroup of elements congruent to 1 modulo ξnm (as in
(3.11)). Here, the colimit is taken over transfers and one can show that SGn

has the homotopy type of a p-adic sphere of dimension n2. This description
is not practical for computations as the action of Gn on SGn induced by the
conjugation actions on BSmn is mysterious. However, there is a conjectural
description of the twist analogous to the identification of the dualizing object
in the Wirthmüller isomorphism for compact Lie groups [LMSM86, Chapter
III]. Let g be the abelian group underlying ODn (as defined in Section 3.2.1)
endowed with the conjugation (or adjoint) action of Gn. Let

Sg =
(
colimm,tr Σ∞+ Bp

mg
)∧
p
.

Again, Sg has the homotopy type of a p-adic sphere of dimension n2 and
the action of Gn on Bpmg induces an action on Sg.

Linearization Hypothesis. There is a Gn-equivariant equivalence

Sg ' SGn .

Inspired by Serre’s definition of the dualizing module [Ser02, Chapter
I, §3.5], such a statement was first suggested to the experts by the strong
connections in the K(n)-local category between Spanier–Whitehead duality,
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Brown–Comenetz duality, and Poincaré duality for the group Gn (see Gross–
Hopkins [HG94b] and Devinatz–Hopkins [DH95, Section 5]). The hypothesis
is stated in work of Clausen [Cla11, Section 6.4], not only for Gn, but for
any p-adic analytic group. Clausen has recently announced a proof of the
Linearization Hypothesis in this general form.

The linearization hypothesis leads to a Gn-equivariant equivalence

DnEn ' LK(n)(En ∧ S−g),

where S−g = F (Sg, S0
p), a description that lends itself well to applications.

6.3. Compactifications and asymptotic algebraicity. We conclude
this survey with a short overview of another recent direction in chromatic
homotopy theory. As explained in Section 3.2 and demonstrated in the ex-
amples above, chromatic homotopy theory at a fixed height n simplifies
when p grows large, the essential transition occurring when p− 1 > n. This
leads to the question of how to isolate those phenomena that hold generi-
cally, i.e., for all primes p which are large with respect to the given height.
The goal of this section is to outline a result of [BSS17] that describes the
compactification of chromatic homotopy theory, which is based on the no-
tion of ultraproducts. In particular, this provides a model of the limit of
the K(n)-local categories when p → ∞ that captures the generic behavior
of these categories. A different approach using Goerss–Hopkins obstruction
theory that gives an algebraic triangulated model for suitably large primes
has recently appeared in the work of Pstra̧gowski [Pst18a].

The Stone–Čech compactification of a topological space X is the initial
compact Hausdorff space βX equipped with a continuous map ι from X. If X
is discrete, βX can be modeled by the set of ultrafilters on X endowed with
the Stone topology; recall that an ultrafilter on X is a set U of subsets of X
such that whenever X is written as a disjoint union of finitely many subsets,
then exactly one of them belongs to U . The structure map ι : X → βX sends
a point x ∈ X to the principal ultrafilter at x, i.e., the set of subsets of X
that contain x. We denote the set of non-principal ultrafilters suggestively
by ∂βX = βX \ ι(X). Assuming the axiom of choice, X is infinite if and
only if ∂βX is non-empty. (In fact, the existence of non-principal ultrafilters
is weaker than the axiom of choice, but the key point here is that there is
no constructive way to find non-principal ultrafilters.)

Moreover, one can show that an open subset of βX containing ∂βX misses
only finitely many points of ιX. This may be thought of as a topological
manifestation of the fundamental theorem of ultraproducts due to  Loś, which
says that for a collection of models (Mi)i∈I of a first order theory, there is
an equivalence for any formula φ:

(6.18)

{
φ hold in Mi

for almost all i ∈ I

}
ey ∼ %9

{
φ hold in

∏
UMi

for all U ∈ ∂βI

}
,
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where
∏
UMi denotes the ultraproduct of the Mi at U . While ultraproducts

at non-principal ultrafilters thus capture generic information about the col-
lection (Mi)i∈I , they tend to also exhibit simplifying features. For example,
for U ∈ ∂βP a non-principal ultrafilter on the set of prime numbers P, the
ultraproduct of (Fp)p∈P turns out to be a rational field.

If F is a presheaf on a topological space X with values in a coefficient
category C that is closed under filtered colimits and products, then one may
construct a naive completion of F to be the presheaf on βX given as the
composite

F̂ : Open(βX)op ι∗
// Open(X)op F

// C,

where ι∗ denotes the inverse image functor. Assuming that X is discrete so

that F is a just a collection of stalks (Fx)x∈X , the stalk of F̂ at an ultrafilter
U ∈ βX is given by

(6.19) F̂U ' colimA∈U
∏
x∈AFx,

where the filtered colimit is taken over the projection maps induced by
inclusions A ⊆ A′ in U . In particular, if U = Ux0 ∈ βX is principal at a

point x0 ∈ X, then F̂Ux0 ' F̂x0 . The formula (6.19) exhibits the stalk F̂U as
a categorical generalization of ultraproducts: indeed, if all the Fx are non-
empty and the coefficients are C = Set, then this recovers the usual notion
of ultraproducts mentioned above.

In Section 2, we saw that the points of the spectrum Spc(Sp) are in
bijective correspondence with pairs (p, n) ∈ P×(N∪{∞}) with (p, 0) ∼ (q, 0)
for all p, q ∈ P. From the point of view of tensor triangular geometry, one may
think of the category of spectra as behaving like a bundle of categories over
the space Spc(Sp). Restricting to the discrete subspace P× {n} ⊂ Spc(Sp),
this bundle should then be a disjoint union of the local categories SpK(n) for
varying p ∈ P. Therefore, the above formalism yields a diagram

∐
p∈P SpK(n)

��

̂∐
p∈P SpK(n)

��

∏[
U SpK(n)

��

P× {n} ι
// ̂P× {n} ∼= βP {U},⊃

oo

in which the right vertical arrow exhibits
∏[
U SpK(n) as the stalk of the

compactification over U ∈ βP. (Here, the superscript [ indicates that the

coefficient category is C = Cat[∞ for a suitable decoration [. For the details,
we refer the interested reader to [BSS17, BSS].)

The final ingredient in the formulation of the asymptotic algebraicity of
chromatic homotopy theory is the algebraic model itself. Informally speak-
ing, this is given by the stable∞-category of periodized ind-coherent sheaves
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on the formal stack Ĥ(n) from Section 2.2. An algebraic avatar of this cat-
egory has previously been studied by Franke [Fra]. Based on [BSS17], the
main theorem of [BSS] can now be stated as follows:

Theorem 6.20. For any non-principal ultrafilter U on P there is a sym-
metric monoidal equivalence∏[

U SpK(n)
∼
//
∏[
U IndCoh(Ĥ(n))per

of Q-linear stable ∞-categories.

The algebraic categories IndCoh(Ĥ(n))per admit explicit algebraic models
in terms of certain comodule categories. Therefore, the above result gives
a precise formulation of the empirical observation that height n chromatic
homotopy theory becomes asymptotically algebraic when p→∞.
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