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Abstract

The best measure to limit spread of contagious diseases caused by influenza A viruses (IAVs)

is annual vaccination. The growing global demand for low-cost vaccines requires the establish-

ment of high-yield production processes. One possible option to address this challenge is the

engineering of novel vaccine producer cell lines by manipulating gene expression of host cell

factors relevant for virus replication. To support detailed characterization of engineered cell

lines, we fitted an ordinary differential equation (ODE)-based model of intracellular IAV replica-

tion previously established by our group to experimental data obtained from infection studies in

human A549 cells. Model predictions indicate that steps of viral RNA synthesis, their regulation

and particle assembly and virus budding are promising targets for cell line engineering. The

importance of these steps was confirmed in four of five single gene overexpression cell lines

(SGOs) that showed small, but reproducible changes in early dynamics of RNA synthesis and

virus release. Model-based analysis suggests, however, that overexpression of the selected

host cell factors negatively influences specific RNA synthesis rates. Still, virus yield was res-

cued by an increase in the virus release rate. Based on parameter estimations obtained for

SGOs, we predicted that there is a potential benefit associated with overexpressing multiple

host cell genes in one cell line, which was validated experimentally. Overall, this model-based

study on IAV replication in engineered cell lines provides a step forward in the dynamic and

quantitative characterization of IAV-host cell interactions. Furthermore, it suggests targets for
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gene editing and indicates that overexpression of multiple host cell factors may be beneficial

for the design of novel producer cell lines.

Author summary

Influenza viruses depend on cellular functions at every step of their life cycle and a com-

prehensive picture of virus-host cell interactions is the key to understand influenza disease

and establish antiviral therapies. Over the past decade, this was supported by numerous

screening approaches, which identified cellular factors relevant for intracellular virus rep-

lication. Ideally, the identification of pro-viral targets should also support the generation

of cell lines to optimize influenza virus replication in cell cultures. As a first approach

towards this goal, we used a mathematical model to identify mechanisms of viral growth

that would be most promising targets for host cell factor manipulation. Based on predic-

tions, we expected a significant increase in virus production if RNA synthesis and virus

assembly and virus budding were perturbed, which was partially confirmed by cell lines

overexpressing single and multiple selected host cell factors. However, the cell-specific

productivity of engineered cell lines was not improved significantly and, according to

model-based analysis, this can be explained by adverse changes in kinetic parameters of

intracellular replication steps. Finally, results indicate that screening approaches should

focus on late time points post infection to identify targets for engineering of cell lines that

support high-yield vaccine production processes.

Introduction

Influenza A viruses (IAVs) are highly contagious respiratory pathogens that constitute a per-

manent threat to public health, causing three to five million cases of severe illness and up

650,000 deaths per year [1]. As obligate intracellular parasites, influenza viruses rely on host

cellular functions at every step of their life cycle. Thus, to deepen the understanding of virus-

host cell interactions is a key step to improve vaccine production and thereby efficiently coun-

teract disease. During the past decade multiple RNAi screens, yeast-two-hybrid approaches

and omics studies, allowed for systematic identification of cellular factors that are relevant for

the IAV life cycle (recently reviewed by [2]). These factors are commonly grouped into pro-

and antiviral factors, which can be used to design new therapeutic and preventive disease

measures. So far, the focus of these investigations was mainly on novel antiviral treatment that

targets host dependency factors instead of viral factors, which might help to avoid the emer-

gence of viral escape mutants [3–6]. Regarding the design of cell lines for optimized virus

production, however, host restriction factors, e.g. factors that belong to cellular antiviral

defense mechanisms and which can be downregulated to increase the virus yield in vaccine

manufacturing, are of key importance. In the case of poliovirus, for instance, the knockdown

of host cell factors that inhibit virus replication in adherent Vero cells was reported to result in

a ten-fold increase in virus titers [7]. This promising result, however, could not be reproduced

in a recent follow-up study [8]. Another option, pursued in our study, is the overexpression of

host dependency factors to facilitate virus replication and increase yields in cell culture-based

IAV production. To this end, we chose the lung carcinoma cell line A549 as a model cell line

that was previously used in two genome-wide RNAi screens for identification of antiviral tar-

gets [9,10] (for further review of relevant RNAi screens the reader is referred to [11]). In these

studies, changes in virus replication were measured in cells with temporal modulation of gene

expression and evaluated at single time points post infection (p.i.). To complement this
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approach, we investigate the dynamics of virus replication in cell lines stably overexpressing

host cell genes over an extended period.

Since virus-host cell interactions display highly complex dynamics, mathematical modeling

approaches are crucial to support the interpretation of time courses of viral components mea-

sured in experiments, e.g. intracellular viral RNA copy numbers. In addition, such models

help to explain specific steps and outcomes of virus-host cell interaction, to study effects of

changes in expression of viral or cellular components, or to make predictions about pheno-

typic changes after cell line engineering, i.e., inhibition of virus growth or increase in yield. We

employed a model of the IAV life cycle that describes virus replication within a single infected

adherent MDCK cell [12]. First, we re-calibrated this model to experimental data from infected

A549 cells obtained in this study. Second, we predicted which steps of the virus life cycle are

most sensitive with respect to cell-specific virus yield and therefore represent promising targets

for cell line engineering. To validate model predictions, we integrated various experimental

data sets from infection studies performed in A549 cell lines that we modified genetically to

overexpress host cell factors previously identified by RNAi screening [9,13–15] and studies

performed by other research groups [16–19]. Finally, the resulting parameter sets for IAV rep-

lication in single gene overexpression cell lines (referred to as SGOs), were used to predict the

outcome of IAV infection in multiple gene overexpression cell lines (referred to as MGOs).

While only one of five of the selected SGOs showed a higher virus yield compared to the

parental A549 cell line, MGO simulations indicated that there is a potential for a significant

increase in virus yield. However, this finding was confirmed only partially in experiments.

Overall, SGOs and MGOs that were established during this study showed an improvement

in early release dynamics rather than the expected increase in total virus yield compared to

their parental cell line. Using a single cell model of IAV replication, we elucidate this in greater

detail and link the overexpression of host cell factors to changes in key parameters of virus

growth, which has not been reported before.

Results

Mathematical model for intracellular influenza A virus replication in A549

cells

The model of IAV replication used in this study is identical to a previously published descrip-

tion of the intracellular life cycle of IAV [12]. In general, we assume that basic mechanisms of

IAV replication are similar in different host cell lines, but that values for key parameters of

virus growth have to be adapted for each host cell system. While the previous model [12] was

calibrated against various experimental data, mostly acquired from infected MDCK cells

[20,21], the re-calibration of the model used in this study was based on three sets of in-house

experimental data from infected A549 cells (S1 Fig). The available measurements allowed to

estimate the kinetic parameters for nuclear import of vRNPs kImp, the synthesis of viral

mRNA, cRNA and vRNA (kSynM , kSynC , kSynV ) as well as binding of matrix protein 1 (M1) kBindM1
and

the release of viral progeny kRel. Statistical testing (Table 1) revealed that kSynC and kBindM1
were not

significantly different in A549 compared to MDCK cells [12]. However, kSynV was significantly

increased and kSynM significantly reduced in A549 cells, respectively.

Model-based identification of potential bottlenecks in influenza A virus

replication

Two simplifying assumptions were made to simulate the influence of host cell factors on IAV

replication. First, we considered that each step in the virus life cycle was dependent on one
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host cell factor and secondly, that a change in the expression level of this host cell factor would

directly translate into a change of the corresponding kinetic parameter value in our mathemati-

cal model for IAV replication. For instance, if a host cell factor responsible for vRNA synthesis

is overexpressed, vRNA replication is enhanced, resulting in a higher vRNA synthesis rate. Like-

wise, the downregulation of the same factor would result in a reduced vRNA synthesis rate.

Based on these assumptions, we performed in silico engineering of A549 cells by perturbing

each parameter of our model individually with the objective to maximize virus yield at 24 h p.i.

(optimized parameter values are summarized in S1 Table). By comparing the simulated virus

release of parental A549 cells to results obtained for in silico optimized cell lines (Fig 1), we

observed three possible outcomes upon parameter perturbation: (i) virus release dynamics

were not affected significantly, (ii) only onset of virus release was improved, starting at least 1

h earlier compared to the parental A549 cell line and (iii) virus release dynamics were affected

significantly leading to an increase in final yield by at least two-fold. The latter was caused by

perturbations of parameters that define the most promising targets for cell line engineering,

namely steps of viral RNA synthesis, its regulation and virus release (Fig 1, green shaded subfi-

gures). Interestingly, the model predicted that the upregulation of viral mRNA synthesis is

beneficial for virus replication whereas synthesis of viral cRNA and vRNA should be downre-

gulated. To investigate this in greater detail we, next, compared the dynamics of the simulated

intracellular viral RNAs and protein levels in both upregulation and downregulation scenarios

to levels in parental A549 cells (Fig 2). We observed that changes of intracellular replication

dynamics were most evident upon manipulation of viral mRNA synthesis (Fig 2, middle

panel). Most importantly, the sole increase of the mRNA synthesis rate lead to a higher

increase in vRNA levels than the upregulation of the vRNA synthesis rate itself (Fig 2, upper

and middle panel second column). This strongly indicates that viral RNA replication in A549

cells is already saturated and only if more viral mRNA, and consequently, more viral proteins

were available, more vRNA could be produced and virus release could be enhanced signifi-

cantly. In addition, the modulation of regulatory steps, which is accounted for in our model by

binding of M1 (negative regulator), had only an impact on final RNA and protein levels rather

than on the dynamics per se (Fig 2, bottom panel).

Screening of different cell lines based on HA titer upon infection at MOI 10−4

To validate our model predictions, we used lentiviral gene transfer to generate A549 cell popu-

lations that overexpress specific host cell genes relevant for IAV replication. The host cell

Table 1. Comparison of key parameters of IAV replication in adherent MDCK and A549 cells.

Rate constant Description Value MDCK cells [12] Value A549 cells Unit

kImp Nuclear vRNP import 6 n.a. 0.296 h−1

kSynV vRNA synthesis 13.86 ��� 100.93 h−1

kSynC cRNA synthesis 1.38 n.s. 1.53 h−1

kSynM mRNA synthesis 2.5x105 �� 3.06x104 nt�h−1

kBindM1
Binding of M1 to nuclear vRNPs 1.39x10-6 n.s. 1.82x10-6 molecule−1�h−1

kRel Virus release 3.70x10-3 n.a. 1.10x10-3 virions�molecule−1�h−1

n.a.–not assessed (no bootstrap simulations in [12] available)

asterisks indicate significant differences of the parameter values with respect to the A549 cell line for a one-sided Gauss test with

�� p � 0.01 and

��� p� 0.001

n.s.–not significant.

https://doi.org/10.1371/journal.pcbi.1006944.t001
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factors CEACAM6, FANCG, NXF1, PLD2 and XAB2 were selected from a set of candidate

genes determined previously by RNAi screening [9,13–15] and virus-host cell interaction stud-

ies [16,17]. An overview of genes and their function in the IAV life cycle is given in S2 Table.

The resulting cell populations were subjected to fluorescence activated cell sorting (FACS) to

enrich cells that express the transduced gene based on eGFP, which is the co-expressed

reporter gene. SGOs that showed stable gene overexpression were infected with A/Puerto

Rico/8/34 (A/PR/8/34, H1N1) at a multiplicity of infection (MOI) of 10−4, which is usually

applied for vaccine production processes. We compared virus titers of each SGO to that of the

parental A549 cell line at selected time points p.i. (Table 2). Assuming that changes in virus

release are associated with changes in intracellular mechanisms, we selected SGOs for further

characterization of intracellular virus replication based on their HA titer. To facilitate selec-

tion, we ranked the HA measurements for each time point and each cell line according to their

relative increase compared to the parental A549 cell line. As can be seen by the measurement

data and the corresponding ranking values in Table 2, HA titers of all SGOs were increased at

early time points p.i., whereas none of the SGOs showed an increase greater than 20% of the

final HA titer at the usual time of harvest 72 h p.i. Thus, by modulating the expression level of

Fig 1. Virus release dynamics in response to in silico manipulation of gene expression of host cell factors in A549 cells. We assume that the efficiency of

individual steps in the virus life cycle is directly dependent on host cell factors and their influence is changed upon knockdown or overexpression of the

corresponding gene. We simulated manipulation of gene expression by perturbing the corresponding kinetic parameters of an IAV replication model for A549

cells, which is based on a model previously established by our group [12]. For a simulated infection at MOI 1, virus release of the parental A549 (blue solid line)

and the engineered cell line (brown solid line) are shown for the most important virus replication steps. Colors indicate whether perturbation of the

corresponding step improved virus yield at 24 h p.i. by at least two-fold (green), had only an impact on the starting time point of virus release (yellow) or no

impact (red). Scheme of IAV replication adapted from [22].

https://doi.org/10.1371/journal.pcbi.1006944.g001
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these host cell factors, it was possible to influence the IAV release dynamics, however, the total

virus yield was similar comparing SGOs to their parental cell line.

Detailed experimental characterization and determination of kinetic

parameters for cell lines overexpressing selected host cell genes

Next, we performed a detailed characterization of intracellular steps of viral growth in IAV-

infected SGOs as well as in the parental A549 cells and an eGFP transduction control (Figs 3–5).

Fig 2. Intracellular replication dynamics in response to in silico modifications of host cell gene expression in a single infected cell. Changes

in levels of viral cRNA (column 1), vRNA (column 2), mRNA (column 3) and matrix protein 1 (M1, column 4) are shown for a simulated

infection at MOI 1 for the parental A549 cell line (blue solid line) or upon targeting selected steps of virus replication, as indicated on the left-

hand side, by either knockdown (brown solid line) or overexpression (green dashed line).

https://doi.org/10.1371/journal.pcbi.1006944.g002

Table 2. HA titers and ranking results of cell lines overexpressing single host cell genes infected with A/PR/8/34 (H1N1) at MOI 10−4.

HA titer+ (log10 HA units/100 μL) Ranking value# (-)

time p.i. (h) 36 42 72 96 36 42 72 96

A549 1.05 1.44 1.85 1.97 0 0 0 0

control 0.97 1.39 1.60 1.87 0 0 0 0

CEACAM6 1.13 1.40 1.80 1.78 1 0 0 0

FANCG 1.27 1.55 1.76 1.85 3 1 0 0

NXF1 1.37 1.65 1.90 1.91 5 3 0 0

PLD2 1.16 1.49 1.91 1.88 1 0 0 0

XAB2 1.22 1.48 1.73 1.79 2 0 0 0

+ Evaluation of HA titers by color shading indicates the higher the value the darker the shading
# Zero, 1, 2, 3, 4, 5 for increase in log HA titer by < 20%,� 20%,� 40%,� 60%,� 80%,� 100%, respectively

See S3 Table for the level of overexpression of the corresponding genes.

https://doi.org/10.1371/journal.pcbi.1006944.t002
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Nuclear import of viral genomes. We examined nuclear import of vRNPs in A549 cells

with the help of imaging flow cytometry, which combines both the statistically relevant

throughput of cell counts known from conventional flow cytometry and the information on

localization of the fluorescence signal inside a single cell usually acquired by fluorescence

microscopy. Cells were treated with cycloheximide (CHX) to inhibit translation, such that

only incoming vRNPs, resulting from virus uptake, would be detected in infected cells co-

stained with DAPI and an anti-vRNP antibody.

Overall, the kinetics of nuclear vRNP import were similar in all tested cell lines (Fig 3). In

particular, the transduction control (Fig 3A) and the XAB2 SGO (Fig 3F) showed exactly the

same time course of nuclear vRNP import as the parental A549 cell line. FANCG and PLD2

SGOs showed slightly reduced levels (Fig 3C and 3E), while CEACAM6 and NXF1 showed a

slightly slower increase of relative nuclear fluorescence intensity over time (Fig 3B and 3D).

Using the mathematical single cell model, we estimated the nuclear import rate of viral

genomes kImp for each cell line. While the differences in parameter values were statistically not

significant with respect to the parental A549 cell line, we observed a trend showing a slight

reduction (p� 0.1, calculated by one-sided Gauss test) of kImp for CEACAM6 and NXF1

SGOs (Fig 6).

Viral replication and transcription. Next, we analyzed the intracellular replication and

transcription dynamics of IAV RNA by segment-specific RT-qPCR. Therefore, we infected

A549 cells at MOI 50 and measured viral mRNA, cRNA and vRNA of segment 5, which

encodes the viral nucleoprotein (NP).

Overall, the dynamics of the three viral RNA species were similar in all five SGOs compared

to the parental A549 cell line (Fig 4). A few trends (statistically not significant) were found in

Fig 3. Nuclear import of viral genomes in different A549 cell lines. Model fit (lines) to experimental data (circles ± standard deviation, n = 4)

for the import of viral genomes (vRNPs) in cycloheximide-treated cell lines upon infection by A/PR/8/34 (H1N1) at MOI 50. Relative increase

in fluorescence intensity (FI) of the nucleus was determined by imaging flow cytometry after co-staining of cells with DAPI and vRNP antibody.

The nuclear import rate was estimated by fitting the simulated fraction of nuclear vRNPs to the averaged experimental data. To account for the

background signal of the nucleus in images, an offset of approximately 50% at 0 h p.i. was applied with respect to the experimental data obtained

for parental A549 cells (A-F, blue), the transduction control (A, brown) and engineered cell lines overexpressing one of the following host cell

factors: CEACAM6 (B, brown), FANCG (C, brown), NXF1 (D, brown), PLD2 (E, brown), XAB2 (F, brown). The asterisks indicate differences

in relative FI levels with respect to the parental A549 cell line, that were either noticeable, however, statistically not significant (� p� 0.1), or

significant (�� p� 0.05) determined by Kruskal-Wallis test.

https://doi.org/10.1371/journal.pcbi.1006944.g003
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Fig 4. Intracellular dynamics of viral RNA synthesis in different A549 cell lines. Model fit (lines) to experimental data (circles ± standard

deviation, n = 4 or single circles for FANCG, n = 2) of viral mRNA (panel 1), cRNA (panel 2), vRNA (panel 3) of segment 5 (encoding NP) in

cell lines infected with A/PR/8/34 (H1N1) at MOI 50. Viral RNA synthesis rates and M1 binding rate were estimated by fitting the simulated

number of the three viral RNA species to averaged segment-specific RT-qPCR data. To account for the offset in vRNA measurements caused by

free viral RNAs in the seed virus we also implemented such offsets in our simulations with respect to the measurements obtained for parental

A549 cells (A-F, blue), the transduction control (A, brown) and engineered cell lines overexpressing one of the following host cell factors:

CEACAM6 (B, brown), FANCG (C, brown), NXF1 (D, brown), PLD2 (E, brown), XAB2 (F, brown). The asterisks indicate differences in RNA

levels with respect to the parental A549 cell line, that were either noticeable, however, statistically not significant (� p� 0.1), or significant (��

p� 0.05) determined by Kruskal-Wallis test.

https://doi.org/10.1371/journal.pcbi.1006944.g004
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intracellular RNA measurements. In particular, viral mRNA levels in CEACAM6 (Fig 4, upper

panel, B), NXF1 (Fig 4, upper panel, D), and PLD2 SGOs (Fig 4, upper panel, E) seemed to be

reduced at time points� 6 h p.i. Interestingly, viral cRNA levels were reduced significantly

(p� 0.05) in the PLD2 SGO from 4 to 7 h p.i. (Fig 4, middle panel, E), while no significant dif-

ferences in cRNA levels were evident for other SGOs. Although we observed a slight reduction

of mRNA and/or cRNA in some of the infected SGOs, the time courses of vRNA synthesis and

the number of viral genome copies per cell were similar for most tested cell lines (Fig 4, bottom

panel). Only the FANCG SGO is an exception, since vRNA levels in infected FANCG SGO

cells were reduced as measured in two independent experiments. Furthermore, viral mRNA

and cRNA levels were also reduced in FANCG SGO cells. According to the Kruskal-Wallis

test, the difference in the raw data compared to those of parental A549 cells was statistically

not significant. However, statistical testing could be performed on the empiric parameter dis-

tributions, generated upon multiple resampling of the intracellular viral RNA measurement

data and repeated model fitting (Fig 6). For this, we fitted the time courses of the three RNA

species simultaneously to estimate the synthesis rates of mRNA kSynM , vRNA kSynV , cRNA kSynC and

the binding rate of the negative regulator M1 to vRNPs kBindM1
. In agreement with the experimen-

tal data, model-based analysis revealed that the mRNA synthesis rate kSynM and cRNA synthesis

rate kSynC were reduced in most of the SGOs (Fig 6). In particular, both kSynM and kSynC , were also

reduced for the FANCG SGO. Furthermore, the synthesis rate of vRNA kSynV was estimated to

be slightly higher in SGOs compared to the parental A549 cell line. Since all three viral RNA

species engage in an autocatalytic cycle, the synthesis rate of vRNA kSynV has to be increased in

order to maintain vRNA levels comparable to the parental A549 cell line and therefore com-

pensates for reduction of either kSynC or kSynM in infected SGOs. However, the increase of kSynV was

Fig 5. Virus particle release of different A549 cell lines. Model fit (lines) to cell-specific numbers of released virions estimated from HA titer and maximum

viable cell count (circles ± standard deviation, n� 4) obtained from A/PR/8/34 (H1N1) infections at MOI 1. Simulated number of released virions was fitted to

averaged cell-specific yield obtained for parental A549 cells (A-F, blue), the transduction control (A, brown) and engineered cell lines overexpressing one of the

following host cell factors: CEACAM6 (B, brown), FANCG (C, brown), NXF1 (D, brown), PLD2 (E, brown), XAB2 (F, brown). The asterisks indicate

differences in cell-specific yield with respect to the parental A549 cell line, that were either noticeable, however, statistically not significant (� p� 0.1), or

significant (�� p� 0.05) determined by Kruskal-Wallis test.

https://doi.org/10.1371/journal.pcbi.1006944.g005
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not significant for any of the SGOs. Similarly, model-based analysis of the M1 binding rate

kBindM1
in infected SGOs revealed no significant changes compared to the parental A549 cell line.

Virus release. In addition to intracellular viral RNA levels, we also integrated experimen-

tal data of total virus release based on HA titer into our model to estimate the virus release rate

kRel of SGOs (Fig 5). In contrast to our screening experiment for which cells were infected at

MOI 10−4, we had to apply a higher MOI for model fitting. This was necessary since our single

cell model cannot describe the progression of infections with multiple cycles in a cell popula-

tion, which occur in low MOI scenarios. Therefore, we infected cells at MOI 1 and estimated

the cell-specific virus release rate kRel with respect to the experimental data. Contrary to our

expectations, the differences in the number of released virions were even less pronounced in

this experiment compared to the initial cell line screening (Table 2). Only the NXF1 SGO

showed significant differences in the number of released virions compared to the parental cell

line (Fig 5D), which is also in line with a noticeable, although not significant, increase of the

virus release rate kRel compared to the parental A549 cell line (Fig 6). Interestingly, also other

SGOs showed an increase of kRel of about two-fold. This can be explained by the model’s archi-

tecture that leads to a compensation of the adverse/disadvantageous parametrization of viral

replication and transcription through an increase in kRel, which finally allows the model to cap-

ture the cell-specific virus yield determined in experiments.

Computational investigation of cell lines overexpressing multiple host cell

genes

Although only NXF1 SGOs showed a promising increase in virus yield, it seemed that overex-

pression of host cell factors can influence IAV replication on the intracellular level. Thus, we

also explored the possibility whether additive or even synergistic effects on IAV yield could be

achieved by overexpressing multiple host cell factors simultaneously. At first, we investigated

this option by a computational approach and simulated the virus release of single cells overex-

pressing different combinations of multiple host cell factors. Since integration of genes into

the host chromosome is random, the gene constructs will be inserted at different chromosomal

locations with different transcriptional activities and, since transduction follows a Poisson dis-

tribution, not every cell will obtain the same number of the gene constructs. Together, these

Fig 6. Comparison of parameter values for viral kinetics obtained for A/PR/8/34 (H1N1) infections in different A459 cell lines. After fitting 3000 resamplings of

the available experimental data, all parameter values were normalized to the median of each kinetic parameter obtained for parental A549 cells. Bars represent the

normalized medians and error bars indicate the first and third normalized quartile of each parameter per cell line (detailed boxplots in S2 Fig). The asterisk indicates

differences in parameter values with respect to the parental A549 cell line, that were noticeable, however, statistically not significant (p� 0.1) as calculated by a one-

sided Z test (Gauss test).

https://doi.org/10.1371/journal.pcbi.1006944.g006
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factors influence the strength of overexpression. In addition, the integration process can also

have an impact on the gene expression through off-target effects. To account for all these sce-

narios, which involve some sort of randomness, we used randomized sets of parameters assem-

bled based on the median values of the model parameters kImp, kSynV , kSynC , kSynM , kBindM1
and kRel,

previously estimated from experimental data of infected SGOs and the parental A549 cell line.

The parameter set of the latter was also included to account for off-target effects. For instance,

the parameter set of an MGO may be composed of kImp of XAB2 SGOs, kSynV of PLD2 SGOs,

kSynC of NXF1 SGOs, kSynM of FANCG SGOs, kBindM1
of CEACAM6 SGOs, and kRel of the parental

A549 cell line. We assume that all transduced genes can be expressed theoretically with the

same probability, i.e., that there is an equal chance that kinetic parameters of the SGOs will be

selected during randomization. Note, that even if all five candidate genes were transduced, not

every MGO single cell will be a phenotypic mixture of all SGOs, but its parameter set could be

kImp and kSynV of the parental A549 cell line, kSynC and kSynM of CEACAM6 SGOs and kBindM1
and kRel

of the NXF1 SGOs. To generate in silicoMGOs, we chose to randomize parameter sets of

those SGOs that showed a beneficial change in parameters according to initial model predic-

tions of this study (Fig 1). Thus, we combined parameter sets of the top three candidates with

the highest virus release rate kRel (CEACAM6 (C), FANCG (F) and NXF1 (N), CFN in Fig 7),

the top three with the lowest cRNA synthesis rate kSynC (FANCG (F), PLD2 (P) and XAB2 (X),

FPX in Fig 7), and the top three with the lowest M1 binding rate kBindM1
(NXF1 (N), PLD2 (P),

XAB2 (X), NPX in Fig 7). Finally, we also randomized parameter sets of all SGOs (CFNPX in

Fig 7).

In a Monte Carlo approach, we generated multiple randomized parameter sets according to

the selected combinations of SGOs and simulated virus infection at MOI 1 for 48 h (S3 Fig).

Finally, we evaluated every single cell simulation for the time point at which the first simulated

virus particle was released t(VRel�1) and the fold change in the maximum number of released

viral progeny (Fig 7). Interestingly, these model predictions revealed that a single cell overex-

pressing multiple genes can theoretically yield up to five-fold more virus progeny than its

parental cell line if the underlying parameter set was kImp and kSynM of the parental A549 cell

line, kSynV of XAB2 SGOs, kSynC of PLD2 SGOs, and kBindM1
and kRel of the NXF1 SGOs. In particu-

lar, the earlier virus release started, the higher was the fold increase in the number of viral

progeny. While the time point of first virus release followed a normal distribution, the fold

change of virus release showed a log-normal distribution with highly productive cells as rare

events. Overall, the combinations CFN, NPX and CFNPX showed similar distributions of the

simulation read outs, whereas the combination of FPX resulted in a narrower distribution of

virus yield with a slightly lower maximum fold increase of four-fold. Finally, this analysis

revealed that highly productive cells are rare events in a heterogenous MGO population and

their contribution to the population average is negligible, which leads to an increase of less

than two-fold in the final virus yield (Fig 7, dashed line in vertical histograms).

Experimental evaluation of cell lines overexpressing multiple host cell

genes

The computational analysis of MGOs indicated that overexpressing multiple host cell factors

could result in an earlier onset of virus release and, to some extent, also in an improvement of

virus yield. To validate these model predictions, we generated populations of A549 cells in

which individual cells express random combinations of selected host cell factors at various lev-

els (S4 Table). In particular, we generated three independent cell populations (MGO 1-3)

which provide random combinations of all five host cell factors CFNPX, which also covers the
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Fig 7. Evaluation of the time point of first virus release and the fold change in virus yield for model predictions of cell lines overexpressing

multiple and single host cell genes. Multiple gene overexpression cell lines (MGOs) were generated in silico by random assembly of kinetic

parameter sets based on experimental single gene overexpression cell lines (SGOs), where letters in the upper right corner indicate which gene

combinations were simulated (genes names are abbreviated as their first letter). For the resulting MGOs (pink dots) every 10th of approximately

1 x 104 – 2 x 104 model predictions are shown and compared to simulations with parameter sets experimentally determined for SGOs and parental

A549 cells (dots, colors according to legend) at 48 h p.i. for a simulated infection at MOI 1, cell-specific virus yields were normalized to the one

obtained for parental A549 cells. Open circles represent single cell predictions using the indicated optimal parameter according to the analysis

shown in Fig 1. Dashed lines in histograms indicate the arithmetic mean of the corresponding simulation readout.

https://doi.org/10.1371/journal.pcbi.1006944.g007
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phenotypes of combinations CFN and NPX according to simulations. Further, we generated

MGO 4 in which the three factors FPX were randomly combined and which should show a

slightly different phenotype compared to CFNPX. All MGOs were infected with IAV at MOI

10-4. We chose this MOI according to the SGO screening experiment (Table 2) since under

these experimental conditions differences between cell lines were more pronounced than for

infections at MOI 1 (Fig 5). Ranking of HA titers revealed that virus release of MGOs was

increased at early time points, while final virus yield was not increased significantly in these

cell populations compared to the parental A549 cell line (Table 3). Of note, the impact of over-

expressing single host cell genes on virus yield could be enhanced by overexpressing multiple

of these host cell genes simultaneously, which partially confirms our model predictions on

MGOs. In addition, MGO 4 was the only cell line showing less than 40% increase in virus yield

at 42 h p.i. compared to the parental A549 cell line. This supports the model prediction that

the combination FPX results in a slightly less productive phenotype than other gene

combinations.

Discussion

Influenza A virus replication in A549 cells

IAVs depend on host cellular functions to complete their replication cycle. Our aim was to

take advantage of this dependency and manipulate the expression of host cell factors that are

relevant for IAV replication to improve virus production for vaccine manufacturing. Due to

the complexity of virus-host cell interactions mathematical models are required to comple-

ment the interpretation of infection experiments. In the present study, we used a re-calibrated

model of IAV replication to predict and quantify changes in virus replication in genetically

engineered A549 cells.

To account for the influence of host cell factors on steps of the virus life cycle, we made the

simplifying assumption that changes in host cell gene expression have a direct impact on

kinetic parameters of our model. Although we did not explicitly model physical interactions

between host cell factors or cellular pathways with viral components, we were able to identify

targets for cell line engineering by evaluating changes in the cell-specific virus release upon

parameter perturbations. According to this in silico analysis, both a significant increase in

virus yield as well as an earlier onset of virus release could be expected if either viral transcrip-

tion or translation were significantly enhanced. In contrast, the model predicted that various

steps of virus replication need to be downregulated to achieve a higher cell-specific virus yield.

For instance, the binding of M1 to nuclear vRNPs, which mediates the nuclear export of

Table 3. HA titers and ranking results of cell lines overexpressing multiple host cell genes infected with A/PR/8/34 (H1N1) at MOI 10−4.

HA titer+ (log10 HA units/100 μL) Ranking value# (-)

time p.i. (h) 36 42 72 96 36 42 72 96

A549 1.05 1.44 1.85 1.97 0 0 0 0

MGO 1 1.49 1.67 1.96 1.92 5 3 0 0

MGO 2 1.56 1.69 2.01 2.02 5 3 2 0

MGO 3 1.55 1.67 2.01 1.95 5 3 2 0

MGO 4 1.38 1.56 1.89 1.79 5 1 0 0

+ Evaluation of HA titers by color shading indicates the higher the value the darker the shading
# Zero, 1, 2, 3, 4, 5 for increase in log HA titer by < 20%,� 20%,� 40%,� 60%,� 80%,� 100%, respectively

MGO 1–3 overexpress all five host cell genes, MGO 4 overexpresses three host cell genes (FANCG, PLD2, XAB2)

See S4 Table for the level of overexpression for the corresponding genes.

https://doi.org/10.1371/journal.pcbi.1006944.t003
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vRNPs, should be delayed. The lower the binding rate of M1 kBindM1
, the longer vRNPs serve as

template for viral genome replication and transcription inside the nucleus. Accordingly, not

only more viral genome copies but also mRNAs will be synthesized and, thus, higher viral pro-

tein levels will be achieved (Fig 2, lower panel), which together will benefit virus yield. Further-

more, the model predicts that a decrease in the vRNA synthesis rate, in the cRNA synthesis

rate, and a delayed binding of NP to naked viral RNA, needed to form replication-competent

vRNPs and cRNPs, will cause an increase in virus yield (Fig 1). These three predictions seem

counterintuitive since they cause a slowdown of viral replication. On the other hand, however,

this strongly suggests that there is an imbalance between viral RNA replication and viral pro-

tein synthesis. While the synthesis of viral genomes is saturated, i.e., the RNA synthesis rates

are too high, the supply of viral proteins either needed to form RNPs (NP and polymerases) or

needed for virus budding (HA and NA) represents a limiting step in A549 cells. Interestingly,

Ueda and colleagues [23] made similar observations when comparing IAV growth in MDCK

and A549 cells. While steps of viral replication were similar in both cell lines, A549 cells

released fewer virions because both the maturation of glycoproteins and their transport to the

plasma membrane were slower compared to MDCK cells. In line with that, parameter pertur-

bation studies with the single cell model for MDCK cells [12] did not point to bottlenecks in

viral transcription and translation (S4 Fig). Indeed, the MDCK-based model is more sensitive

to a change in the vRNA synthesis rate compared to a change in the protein synthesis rate,

while the A549-based model is highly sensitive to changes in the protein synthesis rate (S5

Fig).

Analysis of influenza A virus replication in cell lines overexpressing a single

host cell gene

We generated cell lines overexpressing host cell genes beneficial for virus replication previ-

ously determined by RNAi screening [9,13–15] and studies on virus-host cell interactions per-

formed by other research groups [16–19].

Overall, the maximum virus yield was similar in all A549 cell populations. However, the

engineered cell populations released more virus particles at earlier time points compared to

the parental cell line during infection studies performed at low MOI. To assure that target

genes were stably overexpressed, we confirmed the expression of the functionally linked

reporter gene coding for eGFP by flow cytometric measurements during cell culture mainte-

nance (S6 Fig). Furthermore, we determined relative expression levels of the transgenes in

SGOs by RT-qPCR (S3 Table). Although the overall number of virus progeny produced by

engineered cells was not significantly higher compared to the parental cell line, we could not

exclude that intracellular mechanisms of virus replication had changed due to the modulation

of host cell gene expression. To elucidate this in greater detail we investigated virus replication

dynamics on the intracellular level both experimentally and computationally. With the help of

the single cell model, we quantified the changes in key kinetic parameters by fitting to the

available experimental data. In contrast to our initial model predictions, both nuclear import

rate and viral mRNA synthesis rate were reduced in some SGOs compared to their parental

A549 cell line. For instance, the viral mRNA synthesis rate in infected cells overexpressing the

nuclear export factor NXF1 was only 60% of the one in parental A549 cells, which alone would

lead to a reduction in virus yield by 50%. Still, the NXF1 SGO was the only cell line with a

higher cell-specific virus yield when infected at MOI 1 (Fig 5D). The model can only capture

these experimental data by an increase in the virus release rate. Hence, the improved virus

release rescues virus yields such that despite the adverse changes in viral RNA synthesis, the

SGOs release equal or slightly higher amounts compared to the parental A549 cell line. It was
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reported that inhibition of NXF1 in A549 cells impairs nuclear export of viral mRNAs encod-

ing for NP as well as the surface proteins hemagglutinin (HA) and neuraminidase (NA) [18].

Upon NXF1 overexpression viral mRNA export might be improved, which may lead to an ear-

lier onset of translation, such that viral surface proteins are available earlier compared to the

parental A549 cell line, which is less efficient in protein maturation and trafficking [23]. In the

single cell model these steps are not explicitly modeled but lumped into a joint release mecha-

nism that depends on the availability of viral proteins and genome copies in the cytoplasm (S1

File, Equation 27). In addition, the importance of the virus release mechanism was also shown

by initial model predictions (Fig 1) that identified virus assembly and budding as kinetic bot-

tleneck of virus production.

The overall tendency that an increase in the virus release rate can compensate adverse

changes in RNA synthesis steps can also be observed for infected CEACAM6 SGO cells. In

contrast to NXF1, CEACAM6 is not directly involved in steps of RNA synthesis but seems to

interact with newly synthesized viral NA proteins during infection, which activates the Src/Akt

survival pathway in A549 cells as shown by Gaur and colleagues [16]. In the same study, CEA-

CAM6-silenced A549 cells showed reduced levels of viral genome copies and proteins. How-

ever, in our study, the overexpression of CEACAM6 was not beneficial for IAV replication.

Accordingly, temporal upregulation of CEACAM6 instead of high abundance seems to be cru-

cial for cellular survival signaling during infection. Furthermore, members of the CEACAM

family are already upregulated upon infection by different influenza virus strains, as recently

also shown for CEACAM1 and CEACAM5 [24]. In particular, CEACAM1 induction triggers

the innate antiviral host cell response by suppression of the translational machinery and limits

viral spread [25]. Taken together, the ambivalent role of the CEACAM family and, in particu-

lar, the functional role of CEACAM6 in cellular survival pathways, may support the finding

that the overexpression of CEACAM6 can be disadvantageous for IAV replication. Still, it is

remarkable that CEACAM6 SGO cells release equal amounts of progeny virions compared to

parental A549 cells, indicating that despite a certain inhibition of replication, the virus main-

tains a basal level of reproduction.

Except for SGOs NXF1 and CEACAM6, for which the nuclear import rate was slightly

reduced (p� 0.1, calculated by one-sided Gauss test), the nuclear import rate of vRNPs was

similar in the other SGOs compared to parental A549 cells. For the PLD2 SGO, this was unex-

pected, since it is known that inhibition of PLD2 results in delayed virus entry and reduced

viral titers [19]. Still, overexpressing PLD2 did neither improve virus entry nor virus release in

our study. The only change in kinetic parameters, that was in agreement with initial model

predictions (Fig 1) and should benefit virus yield, was the reduction of the cRNA synthesis rate

to 50% compared to parental A549 cells. However, this alone would result in an increase of

virus yield by only about 1.3-fold in simulations, a small improvement that is eliminated by a

simultaneous decrease in the mRNA synthesis rate in PLD2 SGOs as determined from the

experimental data.

The candidate FANCG interacts with the three viral polymerase subunits (PB2, PB1 and

PA) and has a direct influence on polymerase activity according to a minigenome replicon

assay using a vRNA-like reporter gene [17]. In this particular assay, it was demonstrated that a

FANCG knockdown resulted in a decrease of polymerase activity by 50% while overexpression

of FANCG showed a three-fold increase in polymerase activity. According to our initial model

predictions, FANCG would have been the most promising candidate to improve virus yield, in

particular, if the mRNA synthesis rate was increased (Fig 1). Surprisingly, all viral RNA species

showed reduced levels in infected FANCG SGO cells. Although we have only performed two

independent experiments to measure intracellular viral RNA levels in infected FANCG SGO

cells, RNA copy numbers were lower compared to those in infected A549 cells in the same
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experiments as well as compared to the averaged RNA levels in A549 cells from all four inde-

pendent experiments. Taken together, it seems that an overall increase of the viral polymerase

activity results in imbalanced virus replication. Therefore, additional simulations were per-

formed to test the effect of increasing all three or different combinations of the RNA synthesis

rates simultaneously. However, by only increasing the vRNA synthesis rate, a reduction in

virus yield is predicted (S7 Fig), while any other scenario leads to an increase in final yield in

simulations (for instance see S8 and S9 Figs). Hence, our experimental observations together

with the model-based analysis of this candidate are not in agreement with the study of Taffor-

eau and colleagues [17]. On the one hand, this may indicate that observations in an (artificial)

minigenome replicon assay can only give hints towards changes in mechanisms and that the

observation in the context of an infection, i.e., including additional regulatory steps of replica-

tion and availability of cellular and viral precursor molecules, can be contradictory. On the

other hand, FANCG also has a beneficial function for the host cell, since it is involved in DNA

repair mechanisms. We could, therefore, speculate that damage of cellular DNA induced by

IAV infection [26] is reduced by overexpressing FANCG. However, we cannot exclude that

FANCG plays a pro-viral role by interacting with the viral polymerase.

Similar to FANCG, also XAB2 is involved in DNA repair mechanisms, in particular, in

transcription-coupled DNA repair [27]. XAB2 is a host restriction factor for IAV as well as for

other viruses, e.g. West Nile virus, Vaccinia virus and HIV-1 [28]. In our study, however, the

overexpression of this factor neither improved nor impaired viral reproduction.

Analysis of virus release from cell lines overexpressing multiple host cell

genes

In a few infected SGOs the change in various kinetic parameters should be beneficial for virus

replication according to model predictions (Fig 1), e.g. a decrease in cRNA synthesis rate upon

overexpression of FANCG, PLD2 or XAB2, or an increase in the virus release rate upon over-

expression of CEACAM6, FANCG or NXF1. Using a Monte Carlo approach, we analyzed sin-

gle cell simulations using randomized SGOs parameter sets to predict virus release of MGOs.

This analysis revealed that the productivity of single cells follows a log-normal distribution

with highly productive cells as rare events. This finding is supported by previous single-cell

analyses performed by our group, which investigated the cell-specific productivity of MDCK

cells infected by IAV. In particular, they demonstrated that there is a large variability in the

productivity of individual cells and that only very few cells are highly productive (with up to

10-fold higher titers compared to the cell population average) [29,30]. Furthermore, the most

recent study showed that single cell virus yields are log-normally distributed [30].

While MGO simulations suggest that particular combinations of genes have the potential to

yield IAV titers similar to an in silico optimized cell line with an optimal virus release rate or

M1 binding rate (open circles, Fig 7), we could not generate MGOs with an elevated overall

HA titer. However, it has to be taken into account that all experimental data were acquired

from cell populations of genetically modified cells with different combinations and expression

levels of host cell genes. Thus, beneficial host cell factor combinations in individual cell clones

might be masked. More extensive screening would be required to identify and isolate individ-

ual cell clones, which reflect the features predicted in silico.

Applicability and limitations of the single cell model

The present version of the mathematical model of IAV replication is most suited to describe

the impact of host cell factors that act directly on individual steps of the virus life cycle, e.g. fac-

tors that modulate the activity of the polymerases. The assumption that the influence of such
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factors also directly impacts kinetic parameters of the model enabled the identification of bot-

tlenecks in virus replication that could be modulated by cell line engineering. Similar model-

based approaches were performed previously by others to compare the replicative properties

of different influenza virus strains [31,32] and virus replication with and without antiviral

treatment [22,33]. While Binder and colleagues [34] compared low and high permissive host

cells for hepatitis C virus replication that showed different intracellular basal concentrations of

the same host cell factor, we applied the single cell model of IAV replication to quantify

changes in key kinetic parameters of virus replication in cell lines overexpressing different host

cell factors, which has not been reported before. Still, all these approaches have in common

that they are solely computational, focusing on viral dynamics described by a fixed set of equa-

tions. As a result, in our study, similar ‘patterns’ of parameter changes were found for cell lines

overexpressing host cell factors with very diverse functions, e.g. kImp #, kSynV !, kSynC !, kSynM #,
kBindM1
! and kRel " for both NXF1 and CEACAM6. Therefore, this model-based analysis can

only provide indications regarding the general impact of an overexpressed host cell factor.

Clearly, further in-depth characterization of the impact of host cell factors on individual steps

of virus replication is required on the molecular level to fully comprehend the biological impli-

cations of parameter changes determined in the present work. To neglect details of cellular

processes and pathways, e.g. cellular transcription and translation or immune response, may

limit model predictions. On the contrary, the implementation of proposed functions of candi-

date host cell factors into the model may lead to biased interpretation of experimental data

(self-fulfilling prophecies). More elaborate dynamic models on virus-host cell interactions

should not only account for the viral life cycle but also include a mathematical description of

the cellular pathways in which the considered host cell factors are involved. Yet, the biological

knowledge about how most host cell factors impact the viral life cycle is too sparse and even

controversial to be readily implemented into a mathematical framework. To elucidate this in

more detail can only be accomplished through experiments which analyze changes in the viral

life cycle together with the dynamics of host cell factors and the activity of the corresponding

cellular pathways. Regarding the further improvement of quantitative models for intracellular

virus replication, this will probably be one of the most challenging tasks to be performed over

the next decades. Moreover, we model viral dynamics in an average infected cell and do not

account for stochastic effects that play a role at low molecule numbers, i.e., for low MOI infec-

tions. We can therefore only estimate parameters from experimental infections performed at

high MOI (MOI� 1), which ensures that the majority of cells is infected simultaneously.

Thus, the infection propagates synchronously in the cell population and virus release reaches

steady state within 24 h. In these high MOI scenarios, replication can also be affected adversely

by introducing a high number of non-infectious virions, e.g. defective interfering particles

(DIPs). There is already a single cell model available that also describes the impact of DIPs on

virus replication [35]. However, since the intracellular mechanisms of DIP interference remain

elusive, we think that, the modeling of DIP propagation in engineered cell lines seems unrea-

sonable but should be taken into account in future studies.

Limitations of targets identified by RNAi screens and target validation

studies

Usually, the significance of cellular targets identified from loss of function studies is limited,

e.g. due to inefficient knockdown or off-target effects that lead to identification of false posi-

tives and false negatives (discussed in [36–38]). In our study, we therefore chose host cell fac-

tors relevant for IAV replication that were not only identified in RNAi screens, but have also

been described previously in separate studies, except for XAB2. Still, the importance of these
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factors is mostly inferred from loss of function studies and we simply assume that if the knock-

down of a host cell factor results in reduced virus growth, the overexpression of the same factor

should improve virus replication. Overall, however, we found that most differences in both

intracellular replication and progeny virus release were noticeable, but not statistically signifi-

cant compared to parental A549 cells. Only when infected at MOI 10−4, engineered cell lines

showed higher HA titers at early time points, while the HA titers of all cell lines were similar at

time of harvest (72 h p.i.). Hence, we confirmed findings of screens for which changes in virus

growth were evaluated at early time points (12–48 h p.i.) after infection at MOIs below one

[9,13–15], where a single readout is useful to identify host cell factors that have a strong impact

on viral dynamics. Such factors are very interesting in the context of antiviral treatment, for

which the interference with virus replication early during infection might promote viral clear-

ance in an in vivo system. Although they are required to complete the replication cycle success-

fully, such factors might not even limit viral replication at their basal expression level. Hence,

their overexpression would not result in any measurable changes of intracellular mechanisms.

To improve vaccine production, however, the expression of host cell factors should be

increased which improve the maximum cell-specific productivity. For this purpose, screening

designs should be re-considered to capture not only dynamics of virus growth but also virus

yield at time of harvest. Since large scale high-throughput screens are costly, a first step might

be the re-evaluation of already existing screens that considered multiple time points post infec-

tion (e.g. [10,39]). Recently, re-evaluation of primary data from various RNAi screens and dif-

ferent virus-host cell interaction studies, i.e., protein-protein interactions, transcriptomic and

proteomic data, revealed and validated the impact of host cell factors on virus replication, that

were previously unknown [40,41]. This highlights the importance of study design and subse-

quent bioinformatical analysis, which both strongly contribute to the identification of key host

cell factors for intracellular virus replication and release.

Beyond that challenge, we have no indication regarding the optimal level of gene (over)-

expression required to achieve a positive impact on virus growth, while avoiding off-target

effects. In our study, we used lentiviral transduction without control of the integration site and

assumed that cells, for which insertion of the overexpression constructs was beneficial, will

propagate well in culture. Indeed, we saw that transduction of different host cell factors

resulted in different levels of overexpression (S3 and S4 Tables) and surprisingly, that the cell

line with a very low overexpression level of the host cell factor NXF1 was most promising with

respect to early virus dynamics. In contrast, a high level of overexpression might stress the bio-

synthetic capacity of the cell, and result in a competition between expression of candidate

genes and viral proteins. It is particularly known that the translation of viral proteins is the

energetically most costly step of virus replication [42]. If the synthesis capacity of the cell is

exploited by both overexpression of candidate genes and expression of viral proteins, cellular

resources needed for virus growth might become limiting. Together, this might explain the

observation that SGOs, in particular those showing high expression levels of the candidate

gene, produce the same or only slightly higher virus yields compared to the parental A549 cell

line. However, experimental proof would be needed to support these speculations. To better

control overexpression levels, it might be worthwhile to explore other gene editing methods,

e.g. recombinase-mediated cassette exchange [43] or CRISPR/Cas9 [44], for target validation

studies. As discussed before, some host cell factors are already enriched upon infection and it

might be also interesting to follow their expression levels over time and—based on that—

design an inducible overexpression system to control supply of host cell factors in a temporal

manner if this is needed for their function [45,46].

Finally, and as shown in a first attempt in this work, mechanistic models of the virus repli-

cation cycle are indispensable for evaluation and interpretation of infection data from
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engineered cell lines. Thus, we envision that screening approaches focusing on virus yield at

harvest time points relevant in vaccine production supported by simulation studies using

mathematical models for virus replication will enable the design of novel producer cell lines

with the final goal to improve cell culture-based vaccine manufacturing. In addition, the com-

bination of both, experimental and computational, approaches using data from well-defined

experimental conditions will significantly deepen our understanding of intracellular mecha-

nisms of virus-host cell interactions and support analyses of infectious diseases and virus

transmission.

Methods

Model of intracellular influenza A virus replication in A549 cells

The model used in this study is a detailed mathematical description of intracellular IAV repli-

cation as published previously for adherent MDCK cells [12]. It accounts for key steps of the

virus life cycle, using a set of ODEs to simulate virus entry, viral RNA and protein synthesis as

well as virus assembly and progeny virus release. To predict virus replication and release for

A549 cells, we assumed that these do not change mechanistically, but only show differences in

their dynamics due to the change in the host cell system. To capture this, we performed a re-

parameterization of nuclear vRNP import, viral replication, viral transcription and virus

release based on experimental data obtained for infected A549 cells (S1 Fig). As an extension

of the original version of this model, we also computed the percentage of nuclear vRNPs

fracnucRnp to fit measurements of nuclear vRNP import obtained by imaging flow cytometry (Fig

3).

Rnpcyt ¼ 8VEn þ Vpcyt þ VpcytM1 ð1Þ

Rnpnuc ¼ Vpnuc þ VpnucM1
ð2Þ

fracnucRnp ¼
Rnpnuc

Rnpnuc þ Rnpcyt

� �

� 100 ð3Þ

The description of the complete mathematical model can be found in S1 File.

Parameter estimation

Model parameters were estimated in two subsequent steps. First, the nuclear import rate kImp

was estimated by fitting the simulated fraction of nuclear vRNPs fracnucRnp to the mean of the rela-

tive fluorescence intensity (FI) of the nucleus fracnucInt determined by imaging flow cytometry

(see Imaging flow cytometry and image analysis). For this, we assumed that the relative

increase in FI of the nucleus is correlated directly to the increase in the fraction of nuclear

vRNPs caused by nuclear import of the viral genomes which can be stained by a specific anti-

body (see Imaging flow cytometry and image analysis). In our experiments, we observed an

offset for fracnucInt of approximately 50% at the time point of infection, which is related to the

background signal of the nucleus and normally comprises between 40–60% of the cell’s area

evaluated during image analysis. To account for this background signal, we applied an offset to

the simulation values of fracnucRnp. Since offset values differed slightly between cell lines and

showed occasionally high standard errors (Fig 3), we also estimated this offset value and opti-

mized it with respect to the arithmetic mean and standard error of the first measurement

point at zero h p.i. for each cell line. For fitting with parameter set p, we minimized the least-

squares prediction error for all available data points at time point t weighted with the
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maximum measurement value (Eq 4).

min
p

Xtend

t0

fracnucRnpðtÞ � frac
nuc
Int ðtÞ

maxðfracnucInt Þ

� �2

ð4Þ

After optimization of the nuclear import rate kImp, we fitted our model to intracellular mea-

surements of vRNA, cRNA and mRNA levels obtained from experiments at MOI 50 as well as

to progeny particle numbers per cell for experiments at MOI 1. The corresponding set of

kinetic parameters p was estimated simultaneously by minimizing the least-squares prediction

error based on the decadic logarithm of all state variables n, whereby the error of each variable

i was weighted with its maximum measurement value (Eq 5).

min
p

Xn

i

Xtend

t1

log
10
ðpredictioniðtÞÞ � log

10
ðdataiðtÞÞ

maxðlog
10
ðdataiÞÞ

� �2

ð5Þ

To synchronize infection and facilitate parameter inference, we performed infections

experiments at high MOI. Thus, due to the high virus concentration at time of infection, RT-

qPCR already detected vRNA copies as soon as 1 h p.i. (Fig 4, panel 3). This value cannot be

caused by an immediate uptake of all virions but rather stems from vRNAs inside virus parti-

cles and/or free vRNAs attached to the cells. Therefore, we applied the intracellular vRNA

measurement value at 1 h p.i. as an offset to the simulated amount of vRNAs, as done before

similarly in another modeling study of our group [22]. In contrast to this previous study, we

did not apply offsets to viral mRNA and cRNA levels, as these RNA species are not part of

virus particles and are usually not present in the seed virus supernatant. In particular, cRNA

levels at 1 h p.i. were below or close to one copy per cell and have no significant impact on sim-

ulation results. Finally, approximately 10 copies of mRNA per cell were detected at 1 h p.i.

Since mRNA synthesis starts as early as vRNPs reach the nucleus, these mRNAs are a product

of primary transcription and cannot be considered as a plain mRNA offset.

The parameter distributions were determined by parametric bootstrapping performing

multiple model fits to 3000 random resamples from the experimental data according to their

mean and standard deviation, as detailed elsewhere [47]. We set the medians of the resulting

parameter distributions as parameter optima to perform simulations. For the SGO candidate

FANCG, only duplicate measurements of the intracellular viral RNA were available. Therefore,

we considered a relative standard error of 50%, which was the average relative standard error

of all other RNA measurements performed in this study.

In silico analysis of cell lines overexpressing a single gene

The modeling approaches in this work are based on the simplifying assumption that each

step of the virus life cycle is directly dependent on the presence of relevant host cell factors

and that their influence is changed by manipulating the expression of the corresponding

genes. For instance, if a host cell factor crucial for viral RNA synthesis is knocked down, the

efficiency of vRNA synthesis is reduced as well, resulting in a lower vRNA synthesis rate.

When the same host cell factor is overexpressed, RNA replication is enhanced, which results in

a higher vRNA synthesis rate. Using this assumption, we determined the optimal value for

individual kinetic parameters of the model by maximizing the number of released progeny

virions at 24 h p.i. To predict biologically reasonable values, we constrained the parameter

search by a lower bound of factor 0.2 and an upper bound of factor 5 of the original parameter

values, respectively.
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In silico analysis of cell lines overexpressing multiple host cell genes

In this study, lentiviruses were used to modify the expression of host cell factors relevant for

IAV replication. Gene editing constructs delivered by lentiviruses are integrated randomly at

different chromosomal locations with different transcriptional activity (reviewed in [48]).

Therefore, we can anticipate that individual cells within a transduced cell population will show

heterogeneity with respect to levels of relative overexpression.

Consequently, the transduction of more than one overexpression construct leads to an even

larger heterogeneity in gene expression levels. To simulate IAV production of MGOs, we

account for the non-targeted integration of multiple gene constructs by randomly compiling

new parametrizations of the single cell model. More precisely, we assume that IAV can propa-

gate in an individual cell of an MGO population with random combinations of kinetic param-

eters as determined before in detailed characterizations of SGO populations. In addition, to

account for the adverse impacts by off-target effects, we also included the parameter set of the

unmodified parental A549 cell line for randomization.

To facilitate the interpretation of simulation results for MGOs, we simulated IAV replica-

tion with randomly assembled parameter sets for a single cell infection at MOI 1 for 48 h p.i.

In a next step, we evaluated each simulation with respect to maximum virus yield and the time

point of first virus release, i.e., the time p.i. when the first simulated virus particle was released

(VRel�1).

To assure that a sufficient number of simulations was performed that would allow reason-

able conclusions on MGO single cell infections, we repeated simulations with randomized

parameter sets n times until the relative deviation between the mean of n-1 and mean of n sim-

ulated maximum virus yields reached 1 x 10−8.

Simulation and computation

Model equations were solved numerically using the CVODE routine from SUNDIALS [49] on

a Linux-based system. All model parameter values and initial conditions are given in S5 and S6

Tables. Model files and experimental data were handled within the Systems Biology Toolbox 2

[50] for MATLAB (version 8.0.0.783 R2012b). Parameter values were estimated by the least-

squares method as explained before (see Parameter estimation), using the global stochastic

optimization algorithm fSSm [51].

Statistics

To determine the significance level of differences in parameter distributions between parental

A549 and engineered cell lines (SGOs) we performed a one-sided Z test (Gauss test) with

mean p and variance σ2 taken from the empiric parameter distributions to compute the follow-

ing test statistic Z:

Z ¼
pA549 � pSGOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
A549

n þ
s2
SGO
m

q ð6Þ

For this, the variance is usually normalized by the sample sizes n and m. However, we set

the sample sizes to 1 instead of 3000 for the number of bootstrapped resamples, since the artifi-

cially high sample size is otherwise biasing the test result. This was also done previously by oth-

ers to compare parameters of mutant to wild type viruses [31]. Following their approach, we

generally assume that parameters are normally distributed. Only if parameter distributions fol-

lowed a log-normal form, namely the vRNA synthesis rate kSynV and the virus release rate kRel,
the test statistics were calculated based on the decadic logarithm of these parameters.
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To determine statistical significance in differences of measurements from SGOs and the

parental A549 cell line, the Kruskal-Wallis test was performed as available in MATLAB (ver-

sion 8.0.0.783 R2012b).

Lentiviral vectors and transduction of A549 cells

Human cDNAs encoding CEACAM6, XAB2, FANCG, NXF1 and PLD2 were purchased from

the I.M.A.G.E consortium. The cDNA sequences were amplified by PCR and cloned into the

bicistronic lentiviral vector pLV-X-GFPneo. This vector was derived from pLVtTRKRAB-Red

[52] by integrating the fusion gene of GFP and neomycin phosphotransferase in the second

cistron. Lentiviral vectors were produced by transfecting HEK293T cells with the

pLV-X-GFPneo and the lentiviral helper plasmids coding for gag-pol, Rev and VSV-G using

the calcium phosphate transfection protocol as detailed in [53]. The supernatant was collected

two days post transfection, filtered (0.45 μm), titrated and stored at -80˚C.

At the day of transduction, the virus supernatant was supplemented with polybrene (8 μg/

mL) and added to 1 x 105 A549 cells. After 6 h the virus was removed and cells were cultured

in Dulbecco’s Modified Eagle Medium (DMEM, GIBCO) with 10% (v/v) fetal calf serum

(FCS, Sigma-Aldrich). On the day after infection, selection with neomycin was started (1 mg/

mL G418). G418-resistant cell populations were maintained as transduced populations. FACS

was performed to enrich cell populations expressing eGFP.

For generation of MGOs, cells were transduced with two cocktails of two to three different

lentivirus stocks each on two consecutive days using MOI 1 per virus.

Cell culture and virus infection

Parental A549 cells [54,55] and transduced A549 cell lines were maintained in DMEM with

non-essential amino acids, 10% (v/v) FCS at 37˚C and 5% CO2 atmosphere. Prior to infection,

cells were washed twice with phosphate buffered saline (PBS), detached and counted using a

Vi-CELL XRTM (Beckman Coulter). Subsequently, 0.4 x 106 cells per well were seeded into

multiple 12-well plates and incubated overnight. Infection was performed with an

A549-adpated seed virus preparation of influenza virus A/Puerto Rico/8/34 (#3138, Robert

Koch Institute Berlin) which had an infectious virus titer of 1.08 x 108 virions per mL as deter-

mined by TCID50 (see [56] for detailed description of the TCID50 assay). For infection, cells

were washed twice with PBS and virus was added together with serum-free cell culture

medium containing trypsin (#T7409, Sigma-Aldrich) at a concentration of 1 x 10-4 units per

cell. To support synchronous infection of cells, experiments were carried out at MOI 50 in a

reduced volume of 300 μL per well. After 30 min, 700 μL DMEM was added to compensate for

liquid losses through evaporation. To investigate the nuclear import of viral genomes, cells

were treated with the translation inhibitor CHX (Sigma Aldrich). For this, cells were incubated

for 1 h in serum-free culture medium at a CHX concentration of 100 μg per mL. Then, infec-

tion was performed by replacing the supernatant with serum-free culture medium containing

seed virus, trypsin and CHX.

Virus quantification

The amount of total virus particles in the supernatant of infected cells was determined by the

hemagglutination assay as described by Kalbfuss and colleagues [57]. The virus titer measured

as log10 HA units per test volume (log10 HAU per 100 μL) can be used to estimate the concen-

tration of hemagglutinating particles cvirus with

cvirus ¼ cEry � 10ðlog10HAU=100mLÞ; ð7Þ
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assuming that one virus particle per erythrocyte is sufficient to cause agglutination [58,59],

where cEry denotes the concentration of chicken erythrocytes added for hemagglutination

(2 x 107 cells per mL). The number of virions released per cell was assessed by dividing the

virus concentration by the maximum viable cell count obtained in each experiment.

Real-time RT-qPCRs

Viral and cellular RNA were purified from cells using the extraction kit ‘NucleoSpin RNA’

(Macherey-Nagel) according to the manufacturer’s instructions. To quantify intracellular viral

RNA levels of segment 5 (encoding viral nucleoprotein, NP) polarity- and gene-specific tagged

primers (listed in S7 Table) were used for reverse transcription to distinguish between the

three different RNA species of the IAV genome (as detailed in [60]). Reference standards were

synthesized in vitro using a specific set of primers (listed in S8 Table) and supplemented with

350 ng of RNA from A549 cells to mimic intracellular conditions. In order to determine rela-

tive overexpression levels of host cell genes, mRNA of uninfected A549 cells was reverse tran-

scribed using Oligo(dT) primers (listed in S9 Table).

For both, viral and cellular RNA, real time RT-pPCR was performed using the Rotor-Gene

SYBR Green PCR Kit and Rotorgene Q (Qiagen) according to the manufacturer’s instructions.

The calculation on viral RNA molecule numbers per cell was performed as described in [60].

Relative expression levels of host cell genes in SGOs and MGOs compared to the parental

A549 cells were calculated by the 2� DDCT method, using 18S rRNA as a calibrator [61].

Imaging flow cytometry and image analysis

For the analysis of nuclear vRNP import, 1 x 106 infected A549 cells were fixated with parafor-

maldehyde (PFA) at a final concentration of 1% (w/v) for 30 min on ice. Subsequently, samples

were transferred to reaction tubes, cells pelleted by centrifugation (8 min, 300 x g, 4˚C) and

resuspended in 70% ice-cold ethanol before storage at -20˚C.

For vRNP and DAPI staining, stored samples were centrifuged (8 min, 300 x g, 4˚C) and the

cell pellet was resuspended in wash buffer (PBS, 2% (w/v) glycine, 0.1% (w/v) bovine serum

albumin (BSA)) and centrifuged as before. Afterwards, the cell pellets were resuspended in

150 μL wash buffer, transferred to 96-well plates and centrifuged once more. Next, cell pellets

were resuspended in 25 μL blocking buffer (wash buffer with 1.1% (w/v) BSA) and incubated

for 30 min at 37˚C. After a final washing step with 200 μL wash buffer, cells were resuspended

in 25 μL antibody solution and incubated for 1 h at 37˚C. The anti-NP antibody mAb61A5 that

preferentially binds oligomerized NP as present in the vRNP complex, was kindly provided by

Fumitaka Momose [62]. Upon incubation, cells were washed three times with wash buffer and

afterwards 25 μL of Alexa Fluor 647-conjugated polyclonal goat anti-mouse antibody (Life

Technologies, #A21235) solution was added to the cells and incubated for 1 h at 37˚C. Both the

primary and secondary antibody were used at a dilution of 1:500 in wash buffer. Finally, cells

were washed three times and the cell pellet was resuspended in 30 μL wash buffer with 2% (v/v)

DAPI (Roth, 143 μM stock solution) for nuclear staining. After 5 min of incubation in the dark

at room temperature, cells were measured using the ImageStream X Mark II (Amnis, EMD,

Millipore) together with the INSPIRE software. For each sample 10,000 single cells were ana-

lyzed using the 60x magnification and the 375 nm and 642 nm lasers for excitation of DAPI and

vRNP antibody, respectively. Channels 1 (DAPI signal, CH1) and 5 (Alexa Flour 647, CH5)

were acquired together with channel 6 (CH6), which records the bright field (BF) image. The

laser powers were adjusted according to the value of the ‘raw max pixel’ feature that should be

in the range between 200 and 1500 for single-stained positive controls. Furthermore, 1000 single

positive cells were measured to adjust the compensation settings.
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To evaluate the localization of vRNPs only double positive single cells in focus were selected

for analysis. In order to distinguish between nucleus and the whole cell, a nucleus mask and a

cell mask were defined according to the DAPI signal on CH1 and the BF image on CH6,

respectively (examples are shown in S10 Fig). To determine the relative fluorescence intensity

of the vRNP signal (CH5) located in the nucleus, the intensity of the vRNP signal within the

nucleus mask was divided by the intensity of the vRNP signal within the whole cell mask.
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S1 Fig. Comparison of simulations of intracellular influenza A virus replication in MDCK

and parental A549 cells. Model fit (blue lines) to experimental data (blue symbols) for A549 and

simulations for MDCK cells (brown lines) are shown, respectively. (A, B) Intracellular dynamics

of viral RNA for a simulated infection at MOI 50 for vRNA and cRNA (circles, solid line) as well

as for mRNA (squares, dashed line) in A549 cells and MDCK cells. (C) Nuclear import of viral

genomes in CHX-treated cells for a simulated infection at MOI 50. For better comparison, the

simulated fraction of nuclear vRNPs in MDCK cells was compressed with respect to the vRNP

offset of A549 cells. (D) Cell-specific virus release for a simulated infection at MOI 1.

(TIF)

S2 Fig. Comparison of parameter distributions for different A549 cell lines. Decadic loga-

rithm of parameter values for fitting 3000 resamplings of the available experimental data
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obtained from SGOs. Shown are median (red solid line), first and third quartile (blue box),

maximum values (whiskers) and outliers (red crosses). Blue dashed lines represent the median

of the respective parameter in parental A549 cells. Experimental data for estimating the

nuclear vRNP import rate in cycloheximide-treated cells (A) were resampled separately from

those used for simultaneous estimation of vRNA (B), cRNA (C), mRNA (D), M1 binding (E)

and virus release rate (F) in conventional infection experiments (without CHX treatment).

(TIF)

S3 Fig. Simulated virus release dynamics of MGO CFNPX and A549 cells. Light blue area

shows the mean and standard deviation of released virions from approximately 2 x 104 simula-

tions with randomized parameter sets, for a simulated infection at MOI 1. Infection of parental

A549 cells, the transduction control and SGOs were simulated with the optimized parameter

sets as determined in the present study (colors according to legend).

(TIF)

S4 Fig. Virus release dynamics in response to in silico manipulation of gene expression of

host cell factors in MDCK cells. We assume that efficiency of individual steps in the virus life

cycle is directly dependent on host cell factors and that their influence is changed upon knock-

down or overexpression of the corresponding gene. We simulated manipulation of gene

expression by perturbing the corresponding kinetic parameters in the IAV replication model

for MDCK cells established previously by our group [12] according to the approach presented

for A549 cells (Fig 1). For the most important steps, virus release of parental MDCK cells (blue

solid line) and the engineered cell line (brown solid line) are shown for a simulated infection

at MOI 1. Colors indicate whether perturbation of the indicated step improved final virus

yield at 24 h p.i. by at least two-fold (green), or had no impact (red). Scheme of IAV replication

adapted from [22].

(TIF)

S5 Fig. Fold change in final virus yield in response to parameter perturbations. We simu-

lated manipulation of vRNA synthesis (column 1), viral protein synthesis (column 2) and the

binding of the matrix protein 1 (M1) to nuclear vRNPs (column 3) by perturbing the corre-

sponding kinetic parameters in the IAV replication model for both A549 cells established in

the present study (upper panel) and for MDCK cells established previously by our group [12]

(lower panel). Shown are the fold changes of the virus yield at 24 h p.i. in response to the fold

changes in the corresponding parameters (black solid lines) with respect to the simulation of

the parental cell lines. For every parameter analysis the simulation read out for the parental

cell line (black open circle) and the optimal cell line (red cross) is marked.

(TIF)

S6 Fig. Flow cytometry measurement of eGFP from parental and transduced A549 cell

lines during cell culture maintenance. PFA-fixated cells were measured by imaging flow

cytometry using the 488 nm laser. The eGFP signal of single cells in focus was evaluated using

the mean FI (mean pixel feature) of channel 2 (CH02) and visualized as histograms for paren-

tal A549 cells (A), the transduction control (B) and A549 cells overexpressing one of the fol-

lowing host cell factors: NXF1 (C), CEACAM6 (D), FANCG (E), PLD2 (F), XAB2 (G).

(TIF)

S7 Fig. Simulation of viral components in parental A549 cells and an in silico A549 cell line

with changed parameters according to findings for the impact of FANCG on viral poly-

merase activity, proposed by Tafforeau and colleagues [17]. Virus particle release (A) and

dynamics of intracellular vRNA (B), cRNA (C) and mRNA (D) if overexpression of FANCG
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causes a three-fold increase in the vRNA synthesis rate.

(TIF)

S8 Fig. Simulation of viral components in parental A549 cells and an in silico A549 cell line

with changed parameters according to findings for the impact of FANCG on viral poly-

merase activity, proposed by Tafforeau and colleagues [17]. Virus particle release (A) and

dynamics of intracellular vRNA (B), cRNA (C) and mRNA (D) if overexpression of FANCG

causes a three-fold increase in the synthesis rates for viral vRNA, cRNA and mRNA.

(TIF)

S9 Fig. Simulation of viral components in parental A549 cells and an in silico A549 cell line

with changed parameters according to findings for the impact of FANCG on viral poly-

merase activity, proposed by Tafforeau and colleagues [17]. Virus particle release (A) and

dynamics of intracellular vRNA (B), cRNA (C) and mRNA (D) if overexpression of FANCG

causes a three-fold increase in the mRNA synthesis rates.

(TIF)

S10 Fig. Definition of nucleus and whole cell mask for image analysis of vRNP localization

in infected A549 cells. The nucleus mask was defined with the help of the “morphology” feature

on CH1 (DAPI signal) and the whole cell mask with the “object” feature on CH6 (bright field).

(TIF)

S1 File. List of the ODE model equations used in the present study to simulate IAV replica-

tion in a single cell.

(DOCX)

S2 File. Experimental data. Contains measurements on nuclear import of viral genomes,

intracellular viral RNA and virus release.

(XLSX)
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are Load- and Choke-Points in the Hepatitis C Virus Lifecycle. PLoS Pathog. 2013; 9. https://doi.org/10.

1371/journal.ppat.1003561 PMID: 23990783

Model-based analysis of influenza A virus replication in genetically engineered cell lines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006944 April 11, 2019 28 / 30

https://doi.org/10.1074/jbc.M111.328070
https://doi.org/10.1074/jbc.M111.328070
http://www.ncbi.nlm.nih.gov/pubmed/22396546
https://doi.org/10.1128/JVI.02651-10
http://www.ncbi.nlm.nih.gov/pubmed/21994455
https://doi.org/10.1186/1743-422X-11-1
https://doi.org/10.1186/1743-422X-11-1
https://doi.org/10.1074/jbc.M114.558817
http://www.ncbi.nlm.nih.gov/pubmed/25065577
https://doi.org/10.1021/bi00093a009
http://www.ncbi.nlm.nih.gov/pubmed/8218197
https://doi.org/10.1016/j.jviromet.2010.12.014
https://doi.org/10.1016/j.jviromet.2010.12.014
http://www.ncbi.nlm.nih.gov/pubmed/21185869
https://doi.org/10.1371/journal.pcbi.1003372
http://www.ncbi.nlm.nih.gov/pubmed/24278009
https://doi.org/10.1016/j.virusres.2008.04.028
https://doi.org/10.1016/j.virusres.2008.04.028
http://www.ncbi.nlm.nih.gov/pubmed/18550190
https://doi.org/10.1016/j.virol.2017.06.020
https://doi.org/10.1016/j.virol.2017.06.020
http://www.ncbi.nlm.nih.gov/pubmed/28646652
https://doi.org/10.1016/j.celrep.2016.05.036
https://doi.org/10.1016/j.celrep.2016.05.036
http://www.ncbi.nlm.nih.gov/pubmed/27264178
https://doi.org/10.1007/s00018-015-1879-1
http://www.ncbi.nlm.nih.gov/pubmed/25809161
https://doi.org/10.1074/jbc.M706647200
http://www.ncbi.nlm.nih.gov/pubmed/17981804
https://doi.org/10.1039/c6mb00841k
http://www.ncbi.nlm.nih.gov/pubmed/28561835
https://doi.org/10.1038/ncomms9938
https://doi.org/10.1038/ncomms9938
http://www.ncbi.nlm.nih.gov/pubmed/26586423
https://doi.org/10.1128/JVI.01786-18
https://doi.org/10.1128/JVI.01786-18
http://www.ncbi.nlm.nih.gov/pubmed/30463972
https://doi.org/10.1128/JVI.07244-11
https://doi.org/10.1128/JVI.07244-11
http://www.ncbi.nlm.nih.gov/pubmed/22837199
https://doi.org/10.1038/s41598-016-0001-8
https://doi.org/10.1038/s41598-016-0001-8
https://doi.org/10.1016/j.virusres.2015.09.011
https://doi.org/10.1016/j.virusres.2015.09.011
http://www.ncbi.nlm.nih.gov/pubmed/26409026
https://doi.org/10.1371/journal.ppat.1003561
https://doi.org/10.1371/journal.ppat.1003561
http://www.ncbi.nlm.nih.gov/pubmed/23990783
https://doi.org/10.1371/journal.pcbi.1006944


35. Laske T, Heldt FS, Hoffmann H, Frensing T, Reichl U. Modeling the intracellular replication of influenza

A virus in the presence of defective interfering RNAs. Virus Res. 2016; 213: 90–99. https://doi.org/10.

1016/j.virusres.2015.11.016 PMID: 26592173

36. Hirsch AJ. The use of RNAi-based screens to identify host proteins involved in viral replication. Future

Microbiol. 2010; 5: 303–311. https://doi.org/10.2217/fmb.09.121 PMID: 20143951

37. Stertz S, Shaw ML. Uncovering the global host cell requirements for influenza virus replication via RNAi

screening. Microbes Infect. 2011; 13: 516–525. https://doi.org/10.1016/j.micinf.2011.01.012 PMID:

21276872

38. König R, Stertz S. Recent strategies and progress in identifying host factors involved in virus replication.

Curr Opin Microbiol. 2015; 26: 79–88. https://doi.org/10.1016/j.mib.2015.06.001 PMID: 26112615

39. Zhou Z, Cao M, Guo Y, Zhao L, Wang J, Jia X, et al. Fragile X mental retardation protein stimulates ribo-

nucleoprotein assembly of influenza A virus. Nat Commun. 2014; 5: 3259. https://doi.org/10.1038/

ncomms4259 PMID: 24514761

40. Chasman D, Walters KB, Lopes TJS, Eisfeld AJ, Kawaoka Y, Roy S. Integrating Transcriptomic and

Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens. PLOS

Comput Biol. 2016; 12: e1005013. https://doi.org/10.1371/journal.pcbi.1005013 PMID: 27403523

41. Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, et al. Meta- and Orthogonal

Integration of Influenza “OMICs” Data Defines a Role for UBR4 in Virus Budding. Cell Host Microbe.

2015; 18: 723–735. https://doi.org/10.1016/j.chom.2015.11.002 PMID: 26651948

42. Mahmoudabadi G, Milo R, Phillips R. Energetic cost of building a virus. Proc Natl Acad Sci U S A. 2017/

05/16. National Academy of Sciences; 2017; 114: E4324–E4333. https://doi.org/10.1073/pnas.

1701670114 PMID: 28512219

43. Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H. Road to precision: recombinase-

based targeting technologies for genome engineering. Curr Opin Biotechnol. 2007; 18: 411–419.

https://doi.org/10.1016/j.copbio.2007.07.013 PMID: 17904350

44. Wang H, La Russa M, Qi LS. CRISPR/Cas9 in Genome Editing and Beyond. Annu Rev Biochem. 2016;

85: 227–264. https://doi.org/10.1146/annurev-biochem-060815-014607 PMID: 27145843

45. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive

promoters. Proc Natl Acad Sci U S A. 1992; 89: 5547–51. https://doi.org/10.1073/pnas.89.12.5547

PMID: 1319065

46. Weber W, Fussenegger M. Inducible gene expression in mammalian cells and mice. In: Balbás P, Lor-

ence A, editors. Methods in molecular biology. Second Edi. Totowa, New Jersey: HUMANA Press

Inc.; 2004. pp. 451–466. https://doi.org/10.1385/1-59259-774-2:451

47. Efron B, Tibshirani R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Mea-

sures of Statistical Accuracy. Stat Sci. 1986; 1: 54–77.

48. Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, et al. Genome-wide analysis of retro-

viral DNA integration. Nat Rev Microbiol. 2005; 3: 848–858. https://doi.org/10.1038/nrmicro1263 PMID:

16175173

49. Cohen SD, Hindmarsh AC. CVODE, a stiff/nonstiff ODE solver in C. Comput Phys. 1996; 10: 138–143.

https://doi.org/10.1063/1.4822377

50. Schmidt H, Jirstrand M. Systems Biology Toolbox for MATLAB: A computational platform for research

in systems biology. Bioinformatics. 2006; 22: 514–515. https://doi.org/10.1093/bioinformatics/bti799

PMID: 16317076

51. Egea JA, Rodrı́guez-Fernández M, Banga JR, Martı́ R. Scatter search for chemical and bio-process

optimization. J Glob Optim. 2007; 37: 481–503. https://doi.org/10.1007/s10898-006-9075-3

52. Wiznerowicz M, Trono D. Conditional Suppression of Cellular Genes: Lentivirus Vector-Mediated Drug-

Inducible RNA Interference. J Virol. 2003; 77: 8957–8961. https://doi.org/10.1128/JVI.77.16.8957-

8961.2003 PMID: 12885912

53. May T, Eccleston L, Herrmann S, Hauser H, Goncalves J, Wirth D. Bimodal and hysteretic expression

in mamalian cells from a synthetic gene circuit. PLoS One. 2008; 3: 1–7. https://doi.org/10.1371/journal.

pone.0002372 PMID: 18523635

54. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human

tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973; 51:

1417–1423. https://doi.org/10.1093/jnci/51.5.1417 PMID: 4357758

55. Lieber M, Smith B, Szakal A, Nelson-Rees W, Torado G. A continuous tumor-cell line from a human

lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer. 1976; 17: 62–70. PMID:

175022

Model-based analysis of influenza A virus replication in genetically engineered cell lines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006944 April 11, 2019 29 / 30

https://doi.org/10.1016/j.virusres.2015.11.016
https://doi.org/10.1016/j.virusres.2015.11.016
http://www.ncbi.nlm.nih.gov/pubmed/26592173
https://doi.org/10.2217/fmb.09.121
http://www.ncbi.nlm.nih.gov/pubmed/20143951
https://doi.org/10.1016/j.micinf.2011.01.012
http://www.ncbi.nlm.nih.gov/pubmed/21276872
https://doi.org/10.1016/j.mib.2015.06.001
http://www.ncbi.nlm.nih.gov/pubmed/26112615
https://doi.org/10.1038/ncomms4259
https://doi.org/10.1038/ncomms4259
http://www.ncbi.nlm.nih.gov/pubmed/24514761
https://doi.org/10.1371/journal.pcbi.1005013
http://www.ncbi.nlm.nih.gov/pubmed/27403523
https://doi.org/10.1016/j.chom.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26651948
https://doi.org/10.1073/pnas.1701670114
https://doi.org/10.1073/pnas.1701670114
http://www.ncbi.nlm.nih.gov/pubmed/28512219
https://doi.org/10.1016/j.copbio.2007.07.013
http://www.ncbi.nlm.nih.gov/pubmed/17904350
https://doi.org/10.1146/annurev-biochem-060815-014607
http://www.ncbi.nlm.nih.gov/pubmed/27145843
https://doi.org/10.1073/pnas.89.12.5547
http://www.ncbi.nlm.nih.gov/pubmed/1319065
https://doi.org/10.1385/1-59259-774-2:451
https://doi.org/10.1038/nrmicro1263
http://www.ncbi.nlm.nih.gov/pubmed/16175173
https://doi.org/10.1063/1.4822377
https://doi.org/10.1093/bioinformatics/bti799
http://www.ncbi.nlm.nih.gov/pubmed/16317076
https://doi.org/10.1007/s10898-006-9075-3
https://doi.org/10.1128/JVI.77.16.8957-8961.2003
https://doi.org/10.1128/JVI.77.16.8957-8961.2003
http://www.ncbi.nlm.nih.gov/pubmed/12885912
https://doi.org/10.1371/journal.pone.0002372
https://doi.org/10.1371/journal.pone.0002372
http://www.ncbi.nlm.nih.gov/pubmed/18523635
https://doi.org/10.1093/jnci/51.5.1417
http://www.ncbi.nlm.nih.gov/pubmed/4357758
http://www.ncbi.nlm.nih.gov/pubmed/175022
https://doi.org/10.1371/journal.pcbi.1006944


56. Genzel Y, Reichl U. Vaccine production—state of the art and future needs in upstream processing. In:
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