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Abstract

Two processes limiting the predictability of the El Niño/Southern Oscillation
(ENSO) phenomenon \Mere investigated. First, the perpetual action of fluctua-
tions in wind stress forcing that are not correlated to ENSO itself but that are

an integral part of the tropical atmosphere-ocean system was included into a sim-
plified coupled model of ENSO. The implications of this random element for the
dynamics and predictability were studied. Second, the growth of small errors in
the initial conditions of the coupled model was analysed. This v¡as accomplished

by computing its singular vectors and singular values, i.e. the spatial structures
and the amplification rates of those initial state perturbations that grow most

strongly over a given time interval.

The simplified coupled model of ENSO used consists of an ocean general circu-
lation model coupled to a diagnostic atmosphere model. Following common ter-
minolog¡ such a model is called a Hybrid Coupled Model (HCM). The HCM was

designed to simulate the interannual climate variability of the ocean-atmosphere
system in the tropical Pacific region. The diagnostic atmosphere exploits the sta-
tistical correlation of anomalous sea surface temperature and wind stress present

in observations. Via linear regression both quantities are related in a reduced state
space of their leading Empirical Orthogonal Functions (EOFs).

To study the effect of random perturbations during the forecast, the cou-

pled model was complemented by a stochastic anomalous wind stress field. This
stochastic part was derived from high-pass filtered data. It mimics the observed

statistics of the random perturbations. The singular vectors, on the other hand,
were derived by generating the linearised numerical code of the HCM and the corre-
sponding adjoint code. This was done with the help of an automatic differentiation
tool.

Both above-mentioned processes are important in limiting the predictability of
ENSO. They can be understood as parts of a stochastic dynamical system which
suffers from the imperfect knowledge of its initial state and the unpredictable
components during simulation. It is shown that each ENSO prediction faces a
natural limit of predictability depending on the season and the phase of ENSO at
its start. I conclude that the limit of ENSO predictability is substantially shorter
than the typical ENSO cycle period.
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I. Introduction

The El Niño/Southern Oscillation (ENSO) phenomenon is the dominant inter-
annual natural climate fluctuation. It manifests itself, among other things, in a

quasi-periodic large scale anomalous warming (El Niño) or cooling (La Niña) of
surface waters in the eastern and central equatorial Pacific. Philander (1990) gives

a thorough introduction and Neelin et al. (1994) review recent research activities.

Observed indices of ENSO, e.g. as derived from the UKMO Global Ice and Sea

Surface Temperature (GISST) data set, Parker et al. (1994), show that ENSO
extremes occur irregularly in time and with varying amplitudes. The typical re-

currence time of El Niño is 2 to 7 years, and its amplitudes, measured in terms
of sea surface temperature anomalies (SSTA), averaged over the eastern equato-

rial Pacific NINO3 index region (5"N - 5"S and 150"\M - 90"W), typically range

from l"C to 2"C. Additionally, ENSO is more or less tightly phase locked to the
annual cyle. The degree of phase locking shows marked interdecadal variations
as observed by Balmaseda et al. (1995) who performed a statistical analysis of
the GISST NINO3 time series. The atmospheric signature of ENSO, the Southern
Oscillation, is characterised by large scale surface pressure anomalies (SLPA) of
opposite sign in the eastern and western tropical Pacific. The Southern Oscilla-

tion Index (SOI) quantifies these deviations from the climatic mean. It is defined

as the difference of sealevel pressure anomalies measured at Tahiti (French Poly-
nesia) and Darwin (Australia). The SOI and the NINO3 SSTA time series are

highly anti-correlated; Fig.l. To illustrate the observed atmospheric and oceanic

characteristics of ENSO further, Fig.2 depicts the leading Empirical Orthogonal
Functions (EOFs) of SSTA and of sea level pressure anomalies (SLPA), along with
the corresponding prinicipal components, for the last two decades.

The above mentioned characteristics of ENSO indicate that ocean and atmo-
sphere act in concert to maintain a coupled process. Such a theoretical explanation
for the ENSO phenomenon was first given by Bjerknes (1966, 1969). According
to his still reigning paradigm, ENSO owes its existence to air-sea interaction. The
warming of the ocean's surface waters causes the trade winds to weaken which in
turn leads to further oceanic adjustment to eventually produce the observed cyclic
deviations from the climatic mean. There are different hypotheses about the de-

tails of the coupled dynamical process just mentioned; see also Neelin et al. (1994).

Presently, the delayed action oscillator scenario, Battisiti and Hirst (1989), Suarez

and Schopf (1988), is favoured by many scientists. Local instabilities, equatorial
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ocean wave dynamics, and amplitude limiting nonlinear effects are assumed to pro-

duce the observed low frequency cycle. To illustrate the dynamics of this scenario,

let us assume that the surface waters in the eastern equatorial Pacific are warming.

Associated anomalous eastward winds excite two kinds of oceanic wave modes: on

the one hand, equatorial Kelvin v/aves that propagate eastward and that enhance

the warming trend, on the other hand, equatorial Rossby 'üaves are exited that
propagate to the western boundary of the Pacific. After reflection at the western

boundary, these Rossby v¡aves are transformed into Kelvin r,¡/aves, now carrying
an uppwelling signal to the east, i.e. they oppose the warming. Eventuall¡ this
delayed response dominates the local warming instabilit¡ stops the warming, and

a cooling in the eartern parts begins. After this, a cold phase of the ENSO cycle

will develop, with the signs of the wind and temperature signals reversed.

SOI versus NINO3 SSTA
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Fig.2: Time evolution of the Southern Oscillation Index (SOI) and of the

NINO3 index (5"N - 5"S and 150o\^/ - 90"W) starting in 1951 up to present

based on monthly means. SOI: dotted line, NINO3: solid line. The SOI data were

smoothed by a 3 month running mean. CPC (199Sa).
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Fig.3: Leading EOFs of SSTA, (a), and SLPA, (b), on a monthly basis and the

corresponding principal components, (c). They account for 24.2% (SSTA) and

16.9To (SLPA) of the variance contained in the data sets. The data were taken

from the datasets of Reynolds, Reynolds and Smith (1994), for SSTA, and NCEP
daily analyses, NCEP (1993), for SLPA. In (c) the thick dashed line corresponds

to the SSTA data, the thick solid line to the SLPA data. The time series were

filtered by a tria.ngular 5-point moving average.
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Among the hypotheses being able to explain the high degree of variability in the
data records one may distinguish at least two. The first is linked to the characteris-

tics exhibited by non-linear dynamical systems. Jin et al. (199a) and Tziperman et

al. (1994), for instance, explain the irregularity of ENSO by non-linear interactions
between the annual cycle and the fundamental ENSO mode. Varying parameters

of their simulation models yielded ENSO frequencies that are rational fractions of
the annual frequency. Irregularity in turn occurs by the overlapping of frequency

locked regimes. Instead of varying internal parameters, Chang et al. (1994) stud-
ied the response of their coupled ocean-atmosphere model to different amplitudes

of the seasonally varying part of heat flux forcing. Apart from chaotic regimes and

transition regimes to chaos, they get three phase locked regimes with 1, 2, and 3
years period. Consequentl¡ changes in the forcing amplitude with time may render
ENSO irregular. A second candidate for rendering ENSO irregular, is stochastic

forcing. Kleeman and Power (1994) studied the influence of random wind stress

perturbations on a coupled model. Forecast ensembles initialised in the 1970s and

1980s showed considerable spread after the start of the individual predictions when

random forcing was included. In this thesis, the influence of stochastic wind stress

forcing on ENSO is studied as well. A stochastically forced ocean-atmosphere sys-

tem which mimics the observed statistics of the random wind stress fluctuations
was designed. This approach is related to Hasselmann (1976) who pointed out
the importance of stochastic forcing for inducing climate variability. Blanke et al.

(1997) performed a similar study. Although they use a different approach to get an

estimate of the stochastic wind stress forcing, their results aggree well with those
presented here and in Eckert and Latif (1997). In both models the sensitivity to
the random perturbations introduced is quite large. The models's predictability is

reduced to less than an average cycle length.

The research efforts in predicting the state of ENSO indicate that this climate
fluctation is predictable for about one year ahead. Barnston et al. (199a) and

Latif et al. (1998) give reviews on this topic. The forecast models' successes in
predicting specific events are, however, very variable. This leads to the question,

which processes limit the predictability of ENSO. Of course, systematic errors of
the forecast models are an important source of ignorance. As our understanding
improves this source of error should become negligible. Apart from this, there are

intrinsic sources of inderterminableness a forecaster has to account for. These are

intimately related to the above mentioned causes for the observed irregularity of
ENSO.

As a working hypothesis, the assumption that the ENSO phenomenon is rep-

resentable as a stochastically driven dynamical system is made in this thesis. In
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general, such a system can be characterised by a probability density function (pdf).
Making a forecast, one seeks to specify a very sharply peaked pdf at the start.
The pdf evolves in time during the forecast. It may shrink in some directions

and become broader in others. Eventually, i.e. for very long forecast intervals, it
asymptotes into the climatological distribution of the dynamical process. It is the

task of the forecaster to describe the time evolution of the pdf during the forecast

interval. From this description one can infer the time span over which one is willing
to favour the time dependent forecast. Afterwards, a forecast made on the basis of
the stationary pdf, the climatology, will be as skillful as the time dependent one,

with the advantage of being much cheaper. The time span during which the time
dependent forecast is the better one, is defined here as the limit of predictability.

This limit can be highly variable, depending on the state of the ocean-atmosphere

system for the specific forecast time. The general limit of predictability can now

be understood as a random variable associated with the dynamical system. At
present, prediction models of different degrees of complexity, ranging from purely

statistical to fully coupled ocean-atmosphere general circulation models, are used

to forecast ENSO. Most of the forecasts issued, especially those derived from dy-

namical models, are not made in the way described above. Either a single forecast

is issued or a small ensemble of forecasts is taken to get some indication of the

likely spread (CPC 1998b). The skill of the forecast model is estimated by carrying

out hindcast experiments and subsequent comparison with measurements.

The amplification of initial errors can be caused by different mechanisms such as

unstable modes on which the error structure projects, Goswami & Shukla (1991),

or the non-selfadjoint nature of the linearised system dynamics, Blumenthal (1991),

Penland and Sardeshmukh (1995). The latter can yield rapid initial error growth

even in asymptotically stable linear dynamical systems. The knowledge of the

error structures that yield largest growth over the forecast time can be exploited

in several v/ays. For example, one may use these error structures to define those

geographical regions in which measurements should be improved to yield better
forecasts. Perturbations of this kind can also improve the estimate of the likely
spread of the forecast. Several authors investigated initial error growth in their
ENSO prediction models. The methods to obtain an estimate of error growth

differ and the relevant structures determined differ as well. The simplest possible

approach that is only feasible for relatively low-dimensional models is to compute

finite difference approximations to the tangent linear propagator. The tangent

linear propagator is the linear mapping that maps an initial state perturbation of

the system linearly onto the corresponding final state perturbation. This was done

by Chen et al. (1997). Next, one may project the simulation model onto dominant
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modes of variability of the model, e.g. the leading EOFs, and subsequently fit linear
models in the reduced state space. Such studies were performed by Blumenthal
(1991) and Xue et al. (1994). Another study of Xue (1997) estimated the tangent
linear propagator of her forecast model by a method originally proposed by Lorenz
(1965), involving a reduction of the model's state space by projection onto EOFs
as well. Moore and Kleeman (1996) were the first to compute those initial state
perturbations that grow most strongly over the forecast time, the singular vectors.

To do this a singular vector analysis of the linearised forecast model has to be
performed. The latter was obtained by linearsing the model equations which were

subsequently coded. In a series of publications Moore and Kleeman discuss the
dynamics of error growth in this model and various sensitivity studies; see Moore
and Kleeman (1997a) and Moore and Kleeman (1997b).

In this study, a Hybrid Coupled Model (HCM) is used as a simulation model
for ENSO. Such an HCM consists of a primitive equation ocean model coupled

to a greatly simplified atmosphere component. The atmosphere is paramterised

by a regression of SSTA and wind stress anomalies. The regression matrix was

derived from observations. The influence of random atmospheric fluctuations is

modeled by extending the HCM to a stochastically forced HCM. The observed

statistics of wind stress fluctuations not correlated to ENSO is simulated. To study
the influence of initial state perturbations, the HCM's linearisation is determined
directly from the numerical code. This is accomplished by the use of an automatic
differentiation tool developed by Giering (1997), the TAMC (Tangent Linear and

Adjoint Model Compiler). The determination of the modes that exhibit strongest

growth over the forecast interval is done with the help of an iterative algorithm
which only requires the specification of the action of a symmetric linear operator
on a given input vector. This property is well suited to study dynamical systems

with a large number of independent variables, such as the HCM.

The contents of this thesis is organised as follows. In chapter II the Hybrid
Coupled Model is described in some detail. The effect of random wind stress per-

turbations on the model's predictability is investigated in chapter IIL Chapter IV
deals with the time evolution of perturbations in the model's initial conditions and

their effect on the outcome of a forecast. The most strongly growing initial per-

turbations are determined by singular vector analysis. Finally, chapter V contains

a summary and a discussion together with some remarks on future work.
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II. ENSO and the Hybrid Coupled Approach

1. Introduction to Hybrid Coupled Models

Seemingly, Neelin (1989, 1990) was the first to introduce the name "Hybrid Cou-
pled Model" for the concept we are going to describe in this chapter, namely, to
model the coupled ocean-atmosphere system in the tropics by using an elaborate
ocean model coupled to a greatly simplified atmospheric component.

The basic assumption underlying this approach is that the atmosphere is in
statistical equilibrium with the forcing sea surface temperature on the time scales

considered, i.e. the adjustment of the atmosphere to a given ocean state is very
much faster than the typical time scales of ocean dynamics.

The model used here was developed by M. Flügel (1994), who applied it to
obtain forecasts of the state of ENSO from 1979 to 1988. The atmosphere consists

of a linear regression of observed anomalies of SST and wind stress. To retain the
spatial correlations of the respective anomalies, the regression was done in EOF
space. The model's forecast skill is comparable to other state of the art forecast

models. Since the model details are important later on, the setup is described at
some length in the following sections.

Barnett et al. (1993) used the same ocean model component in an anologous

HCM experiment. The diagnostic atmosphere, however, was obtained in a slightly
different manner. The regression was done using the anomaly fields of individ-
ual months. Changes in the response characteristics of the atmosphere during
the annual march can thereby be incorporated into the linear relationship. As a
consequence the model variability is increased. This HCM visited different dy-
namical regimes during a 150yr integration. Starting with an irregular behaviour,
around year 30 it got locked into a two year cycle and finally changed to a 3 year

cycle between years 90 and 100. The transitions to different dynamical regimes

were be ascribed to a slow warming trend in the oceanic temperature field by the
investigators.

Recentlg van Oldenborgh et al. (1997) used a Hybrid Coupled Model to study
the oceanic dynamical features during the years 1987 and 1988. They focus on

the sensitivity of the NINOS SST index to itself at earlier times. This was done

by using the adjoint of the ocean general circulation model. The adjoint of the
statistical atmosphere model can be used to relate the NINO3 index to itself. The
results obtained are consistent with the delayed action oscillator scenario described

in the introduction. In chapter IV a description of adjoint models will be given.
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2. The Diagnostic Atmosphere

As already mentioned in the previous section, the diagnostic atmosphere module
consists of a regression of SSTA and anomalous wind stress over the domain of the
ocean model. The regression is done in EOF space, retaining the five leading EOFs
of the respective anomaly fields. This approach takes account of the nonlocal and
large scale atmospheric response to the observed anomalous patterns of SSTA. The
Florida State University (FSU) wind stress data, Goldenberg and O'Brien (1931)

and the SST dataset of Reynolds (1988) were taken to derive the regression matrix.

Formally, the regresssion matrix is obtained as follows. After EOF decomposi-

tion of the observed fields of anomalous SST and wind stress, which we denote by
Too"(r,ú) and Tob"(n,ú), respectively, we may represent the latter by

Too"(æ,ú) : t a,Q)e,(n) and (1)
n

rob"(æ,ú) : I þ,"(t)1,"(*) (2)
rn

The numbers

(þ,.d.)
(3)

\"7)
constitute the entries of the regression matrix gatm. Angle brackets indicate time
averages. The matri* çøtrn solves the minimisation problem

( ll B - çøtrn 6ll' ) : *in (4)

Here, the norm ll.ll it based on the euclidean scalar product. For a given pattern
of SSTA the anomalous atmospheric response can now be estimated by

ru"t(æ,ù : 
* 

Þ""t,,.(t) f *(æ¡ (5)

with 8""¿ being calculated as

Þ""t,,n(t) - D Cff[a"(t) (6)

natnturnn

Íù

On the interannual time scale, the simulated wind stress anomalies agree well
with those observed. Flügel (1994) correlated both quantities obtaining correla-

tions of about 0.8 in the central equatorial Pacific. Before these correlations v¡ere

t2



computed, the observed wind stress anomalies were slightly smoothed by applying

a 5-month running mean.

3. The Ocean Model

The oceanic part of the HCM is an improved version of the model used by Latif
(1987). It is based on the primitive equations with some simplifying approxima-

tions. The hydrostatic and Boussinesq approximations are applied and the model

is formulated on the equatorial B-plane. The model domain extends from 130"8

to 70"W zonally and from 30"S to 30"N meridionally. The northern and south-

ern boundaries are implemented as solid walls, whereas the eastern and western

boundaries mimic the coast lines. The domain is flat-bottomed at a depth of
4000m. Prognostic variables are the fields of horizontal velocit¡ temperature, and

sea surface elevation. Numerically, the model is formulated on an Arakawa E-grid.

The basic equations are split into a vertically averaged part, the barotropic sys-

tem, and the remainder, the baroclinic system. The barotropic system is solved

implicitly, whereas the baroclinic system is treated by an explicit scheme. This
kind of decomposition allows a time step of 2.25 hours. The zonal resolution in the

constituting rectangular subgrids of the staggered E-grid is 6 degrees of longitude,

and the meridional resolution amounts to 50km right at the equator decreasing to
higher latitudes where it is 400km at the northern- and southernmost points. In
the vertical, 13 irregularly spaced levels are used, with 10 of them in the upper

300m. The uppermost layer has a thickness of 20m. Vertical mixing of momen-

tum and heat is parametrised according to Pacanowski and Philander (1981). The

horizontal eddy viscosity is assumed to be constant over the model domain, and

explicit horizontal diffusion of heat is not taken into account. In the course of each

model time step a convective adjustment is applied to avoid an unstable stratifica-

tion. It consists of one sweep through the water column, mixing two adjacent boxes

whenever unstable stratification occurrs. Salinity variations are not taken into ac-

count. Therefore, the equation of state density is linearly related to temperature.

Thus, the governing equations for the ocean's interior are:

*r *(d. v)?î - -vp - þyÉ x ú, + fiø"ftr) + ,qnv2ú

*, *(d.v)" : *Ø,*r)

(7)

(8)

V .tr-: 0
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ftnØ - -Y n lo uro"

p(T):p"(I-aT)

(eb)

(10)

Here, t7 and d denote the horizontal and total velocity, respectively. Vertical ve-

locities are determined from the equation of continuity; Eq.(9ø). The vector ã
is a unit vertical vector and y the meridional coordinate. ,4,., is the Richardson
number dependent vertical eddy viscosity, A¡, the horizontal eddy viscosity, and
leo the Richardson number dependent vertical diffusion coefficient for heat. Tem-
perature and sea level are abbreviated by 7 a,nd r¡, respectively. The reference

density is signified by po, and the thermal expansion coefficient of sea water by o.
V¿ denotes the horizontal gradient operator (*, &)

The above equations are complemented by appropriate boundary conditions.
At the surface, the model is forced by annual cycles of fluxes of momentum and

heat. The thermal forcing enters as a relaxation to an equivalent climatological
temperature with a time constant of about 30 days. This procedure is along the
lines of Haney (1971). The flux of momentum due to the wind stress is paramterised

by the drag law i - ú*¿n¿lú-¡ral. At the bounding walls the velocities vanish. The
actual model configuration posesses 36694 prognostic variables.

Forcing the ocean model with observed anomalies of wind stress reveals system-

atic deviations of the simulated SSTA compared to the observed. For this reason

the simulated SSTA is not directly used as input for the statistical atmosphere.

Instead, a correction adjusts the systematic model errors. Once again, the leading
5 EOFs of the model simulation are related to those derived from the observed

anomalies via linear regression. In Eq.(6) the coefficients o, have to be replaced

by their estimators , eint,nt calculated from this model output correcting interface:

aiú,n(t): t C{ita/t) (11)
I

As a reference climatology for computing anomalies which serve as input for
the model correcting interface and the statistical atmosphere an integration forced

by the FSU wind stress data from 1967 to 1985 was taken.

L4



4. Interannual Variability as Simulated by the HCM

The atmospheric model response \¡¡as magnified by a factor of I.4 to obtain a
self-sustained oscillation of the coupled model. This additional scaling factor is
termed the coupling strength. At least two reasons motivate the necessity of such

a scaling. On the one hand, the regression ansatz reduces the variance of the
atmospheric response, on the other hand the ocean model has a relatively weak

dynamical response to an imposed wind stress forcing due to its rather diffuse

thermocline. The specific value was chosen to run the model in a self-sustained

regime. Coupling is done on a monthly basis with linear interpolation in between.

The coupled model exhibits a very regular cycle with a period of approximately
60 months. Fig.3 shows a l20yr control intergration of the HCM. Apart from the
strictly periodic simulation of warmings and coolings in the NINO3 index region,
the amplitudes of the model ENSO extremes are slightly underestimated compared

to observations. The dynamics of the modeled El Niño and La Niña events, how-
ever, resembles the observed. This can be seen by applying a Principal Oscillation
Pattern (POP) analysis to the combined fields of SSTA, sea level anomalies, and
wind stress anomalies. Performing a POP analysis consists of fitting a multivari-
ate first order Markov process to the given dataset, minimising the one time step
prediction error. The normal modes of the process serve as an alternative basis to
describe the data. They are characterised by an e-folding time and an oscillation
period in case they correspond to a complex eigenvalue of the system matrix, or
an e-folding time only if the eigenvalue is real. The technique was proposed by
Hasselmann (1988). A review along with applications and possible refinements

can be found in von Storch et al. (1995). The leading POP mode of the control
integration has an oscillation period of 62 months, an e-folding time of 450 months,
and accounts for 83% of the variance in the combined data set. This result indi-
cates that most of the information contained in the dataset is well modeled by one

oscillatory mode.

Fig.4 shows a longitude time section along the equator of the control integra-
tion projected onto the leading POP mode. The anomalous SSTs and wind stress

anomalies reveal a standing pattern, whereas the sea level anomalies propagate

slowly from west to east. This simulation is in accord with the delayed action os-

cillator scenario, described in the introduction. Performing the same analysis with
observations of the respective quantities reveals similarities as well as systematic
deficiences of the model. In Fig.5 a POP analysis of the obervations is shown. The
National Centers for Environmental Prediction (NCEP) reanalysis data for SSTA

I.
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and sea level anomalies, Ji et al. (1995), were combined with the FSU dataset for
wind stress anomalies for the period February l982-December 1992. Once again
SSTA and wind stress anomalies are characterised by standing patterns, whereas
the sea level anomalies propagate eastward. The modeled SSTA is displaced to the
west and the observed time dependence is much more variable. The leading POP
mode of this dataset has an e-folding time of 16 months, an oscillation period of
52 months, and accounts for 15 To of the variance.

HCM
SSTA NINO3

1.5
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Fig.3: Time series of anomalous sea surface temperature (SSTA), averaged over

the NINO3 index region (150'- 90"W, 5oS - 5"N), obtained by integrating the
Hybrid Coupled Model (HCM) for 120 yr.
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are the projections of the individual fields onto the dominant POP mode. This
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III. Limitation of Predictability due to Random Forcing

1. The Stochastically Forced HCM

The FSU dataset, from which the data to derive the statistical atmosphere were

taken, exhibits a high degree of variability not correlated to the ENSO phe-

nomenon. To incorporate this kind of variability into the model, the wind stress

anomaly data were high-pass filtered to remove the ENSO time scales. Variability
with time scales of less than 12 months was retained fully and to reduce end effects,

the filter weights were gradually reduced to zero at 16 months period. As already

noted by other investigators, see Kleeman & Power (1994), such high-pass filtered
wind stress data are consistent with a white noise forcing with respect to time. The

leading EOFs of the high-pass filtered wind stress data exhibit large-scale struc-

tures which are likely to affect the interannual variability of the HCM, see Fig.6

which depicts the first and the second EOF. To retain these spatial structures, the

following approach was used to model the random wind stress fluctuations. The

leading 10 EOFs were linearly combined with the expansion coefficients taken from

a white noise process having the appropriate variance. The remainder is simulated

as being white temporally and spatially. Its variance amounts to that contribu-

tion which is not accounted for by the leading 10 EOFs. Each time the statistical
atmosphere is called to produce a wind stress anomaly an additional random wind
stress fluctuation is generated. Their sum constitutes the new wind stress anomaly

by which the ocean model is forced.

This extension of the HCM will be called "Stochastically Forced HCM" further
on. Fig.7 displays a schematic of the whole model. Another 720yr integration
was performed. As expected, a much higher degree of variability is observed.

The model ENSO extremes nolv occur irregularly with varying amplitudes, see

Fig.8 which shows the NINO3 index during this 120yr integration of the extended

model. Sometimes the underlying cyclic behaviour is damped, sometimes it is

reinforced by the random signal. A further POP analysis of the combined fields of

SSTA, wind stress anomalies, and sea level anomalies, shows that the basic ENSO

dynamics is retained, the e-folding time of the leading mode is 22.6 months, its
oscillation period 61.9 months, and it accounts f.or 32.470 of the variance in the

data set. The stochastically forced model's simulation is in closer aggreement with
observations. This can as well be seen by comparing the spectra of the NINO3 time
series of the control integration and the integration with noise added to the GISST

dataset which extends from 1900 to 1992. Fig.9 shows such a comparison of the

maximum entropy spectra calculated for the three time series. The spectral peaks
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of the HCM are broadened when the random wind stress component is added to
the forcing. On decadal and larger time scales the variability of the stachastically

forced HCM is still less than observed. This may be explained by the lack of
interaction with the large-scale ocean circulation. Since the focus of this study are

limitations of predictability on seasonal to interannual time scales this should not
affect the results obtained here.
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Fig.6: The first (a) and the second (b) EOF in units of Pa of the high-pass filtered
wind stress anomalies of the FSU dataset. They explain I0.3% and 7To of the

variance, respectively.
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2. Restart Ensemble Experiments

In a typical forecast experiment, the forecast model is initialised with the past

history of forcing for a certain period of time. Then the forecast is started for
the time span of interest, which in the case of ENSO ranges from one season

up to about 1| years. Since the specific forceast is only one realisation of a
stochastic dynamical process, ensembles of forecasts all starting with indentical
initial conditions were created. Six restart ensembles were generated. Table 1 lists

the restart dates. Additionally, the restarts are marked by black dots in Fig.8.

Different phases of the model ENSO cycle were chosen. Each restart experiment

comprised 216 members and was carried out f.or 72 months. Fig.ll and Fig.12

show such restart ensembles. Selected forecast trajectories as well as the time
evolution of the ensemble mean and of the ensemble standard deviation are plotted.
Fig.13 depicts the time evolution of the individual ensemble standard deviations

seperately. The restart ensemble for month 276 shows a slower increase in ensemble

variance than the one started at month 420. This can be explained in the following

'ü/ay. The ensemble of month 420 was started during the peak phase of a model

El Niño event. Most of the ensemble members evolve into a La Niña event one

year after this. But this is happening with slightly different phases which leads to
a large spread among the ensemble members. The spread diminishes again after
the cold event is reached by most forecasts.

Restart Month Phase of Model ENSO Cycle

276 onset of El Niño

372 El Niño to La Niña

408 onset of El Niño

420 El Niño extreme

468 quiet phase

552 La Niña extreme

Table 1: List of the restart months corresponding to Fig.8 . The stochastically

forced HCM was reinitialised at these dates and integrated forward for 72 months

with different realisations of the stochastic part.
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3. Linear Stochastic Processes

In the following two sections the limitations to the modeled ENSO variability which

occurr due to the random wind stress fluctuations are quantified. The six restart

ensembles that were described in the previous section are taken as reference data.

They serve as a substitute for observations. As a first step towards infering the
model's predictability characteristics, the restart experiments were fitted to low

dimensional linear stochastic processes. The success of the previous POP analyses

in extracting the interannual variability contained in the observations as well as in
the model data motivates such an approach.

Once again, the fields of SSTA, zonalwind stress anomalies and sea level anoma-

lies were taken from the integration of the stochastically forced HCM were pooled

and subjected to an EOF analysis. Next, the individual restarts were projected

onto the leading EOFs. The time evolution of the expansion coefficients was then

modeled by linear stochastic models.

EOFNo Eigenvalue
Explained
Variance

Cumulative
Expl. Var.

I 8.26 35.9r 35.91

2 1.21 5.25 41.t6

3 1.08 4.68 45.84

4 0.78 3.38 49.22

5 0.62 2.68 51.90

6 0.52 2.27 54.r7

Table 2: Result of the EOF analysis of the combined fields of SSTA, anomalous

sealevel, and anomalous zonal wind stress for the l20yr integration of the stochas-

tically forced HCM. The individual fields were scaled with the maximum absolute

value they attained during the noise run before they were pooled.

29



A linear stochastic dynamical system is characterised by the stochastic differ-

ential equation

ù(t) : Aæ(t) + Brt(t) and r(o) : æo ( 12)

The vector n(t) represents the model's state in the reduced state space, A and

B denote the system matrix and the stochastic forcing, respectively, with a(ú)
representing a Gaussian white noise process of unit variance and zero mean. The

diffusion matrix of the random pïocess is given by BBr. Here, the superscript

denotes the transpose of the matrix B. From this one can infer the time evolution

of the mean and the covariance matrix, given appropriate initial values:

*or: A(æ) (ø)(o; : ', ( 13)

rl

frc : AC + cAr + BBr ; C(o) : c" (14)

Angle brackets denote ensemble means in this case. For a derivation of the above

equations see e.g. van Kampen (1992) or Honerkamp (1990).

To obtain a fit that is as close as possible to the ensemble data over the forecast

time interval [0, ?*], . cost function F(A,B) was defined that measures the misfit
between the data and the linear stochastic model:

T
F(A,B): Dt((") - (*1".")r Mt,r((*l - (æ)".")

( 15)t=L

+ (C - Cun")T Mz,t(C - C..")]

C denotes a column vector with its entries given by the main diagonal and the

upper triangle of the covariance matrix. The subscÅpt ens signifies the estimates

of the ensemble mean and the ensemble covariance. The weighing matrices M1,¿

and M2,¿ were derived from the ensemble assuming normal variates

ML$: NC-.:" ( 16)

M2 Í : cov (C.n",¿¡, C 
"n",nt)-l

: l# ç ""s,itC ens,j tc i C un",¿t"C.r",i I)f
-1 ( 17)

where lú is equal to the ensemble size. For a derivation of the second matrix see

Kendall et al. (1983). The cost function was minimised in parameter space by use
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of an optimisation procedure. Among the many possible approaches a software

tool developed by Giering and Kaminski (1996) was used. This tool generates the
adjoint of the numerical evolution equations of Eq.(13) and Eq.(14). \Mith the help

of the adjoint of a given model the gradient of the cost function with respect to the
entries of A and B can be determined, and this enters a minimisation algorithm
which was taken from a standard software package (Numerical algorithms Group

1991). The generation and the use of adjoint models will be described in chapter

ry.

Various dimensionalities of the reduced state space and time intervals [0, ?*]
were considered for carrying out the fit procedure outlined above. As dimension

of the reduced state space 4, 5, and 6 were taken, the time spans ranged from
36 months up to 60 months. Fig.14 shows an example of the outcome of the fit
procedure for the restart ensemble intialised at month 276 of the noise run. In
Appendix A the results are summarised for all the fits performed. Two tables

list the dominant interannual modes of the fitted processes and their simulated

variances in comparison with the data.
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The fitted stochastic models are able to extract the information about the

ensemble averages and the ensemble covariances on the interannual time scale

contained in the restart ensembles. With these linear stochastic models it is now

possible to quantify the restart ensembles's predictability characteristics.

4. Measure of Predictability

A motivation for the definiton of an ensemble's measure of predictability provides

Fig.15. For some time ú after the start it sketches the time-dependent probability
density function (pdf) and the stationary pdf of a stochastic dynamical system.

Fig.15: Illustration of the predictability measure explained in the text. The shaded

area measures the overlap of the time-dependent and the stationary probability

density functions.

As a measure of predictability, the overlap of the time dependent and the

stationary pdf is used. At the start, the time dependent pdf is sharply peaked and

well separable from the asymtotic one; the overlap of both pdfs is small. As time

predictability measure

p(x,t)

Pro,(*)
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goes by, the time dependent probability density widens, resulting in an increasing

overlap. Eventuall¡ both distributions are practically identical and the overlap

is maximal. As long as the overlap is small the chances are good to disriminate

between both pdfs. During the course of time the probability densities merge

together. After this has happened, the climatological forecast will be the most

adequate.

The above motivation can now be applied to linear stochastic processes. A
one-dimensional linear stochastic process, the Ornstein-Uhlenbeck process

æ : -ar * o\, and r(0) : *o

possesses as stationary and time-dependent pdfs, Honerkamp (1990),

( 18)

P"t.,t(n) :
o¿---; eXP

7f o'

a
tto\l - e-2"\ex9

a(r - roe-ot)2 ¡- orc-t"\ )

e#¡ and ( 1e)

(20)p(æ;t): (

respectively. The overlap of these pdfs increases during the forecast. Therefore,

an appropriate measure of predictability is given by the following expression:

tou(t):I-2 roo(t) dnp(r;t)p"t"r(*) (21)

Inserting (19) and (20) yields:

tou(t) - 1 -
1 - ¿-zat)

2 _ 
"-2at

exp
2 eroe-2ot I

_- I

o2(L - "-zat)J
(22)

with ø(ú) : oJ(llã4'). This definition has the properties

s6ry(0) :t and sey(oo) :Q (23)

The generalisation of the definition (21) to an n-dimensional linear stochastic

process, characterised by the stochastic differential equation (12) is given by

s(t) : | - (2\ñ) [det(C(r) C 
"ror))' 

ln drp(n;t)p"t"t(*) , (25)

with C(ú) and C"¿o¿ denoting the covariance matrix at time t and the stationary

covariance matrix, respectively. The pdfs p(r;t) and p"¿o¿(æ) are multivariate

normal distributions. Again, the normalising factors in front of the integral yield
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an initial value of 1 and an asymptotic value of 0 for s(ú) provided all the ensemble

members start with indentical initial conditions. This is the case for the fitted
linear stochastic models described in the previous section. The behaviour of s(ú)

between the two limiting cases ú : 0 and ú : oo depends on the specific process,

i.e. the system dynamics, the noise forcing and on the initial state of the system.

Fig.16 summarises the time evolution of the predictability measure determined for
the restart experiments. Before the predictability measure \ry'as calculated, the fit-
ted linear stochastic models were projected onto the leading two EOF expansion

coefficients. Such a projection does not alter the results substantiall¡ since the
third and higher principal components saturate quickly to their stationary values.

Thus, they contain little information relevant to characterise the intermediate and

asymptotic behaviour of s(ú). In all cases, the predictability is lost well before a
typical cycle period has elapsed. Among the ensembles there are different char-
acteristics observable. Especially the restarts initialised in the peak warm phases

exhibit a peculiar behaviour which can be interpreted in the following way. Since

all ensemble members tend to evolve into a cold state and the stochastic forcing
induces phase differences between them the time dependent probability distribu-
tion widens relatively quickly, yielding a rapid decrease in s(t). The subsequent
cold state represents a relatively large deviation from the climatic mean. After
the regions around zero anomaly are passed, therefore, the climatic and the time
dependent probability distribution reduce their overlap and the predictability mea-

sure recovers. For longer forecast time intervals the time dependent probability
distribution merges into the asymptotic one and s(t) gradually vanishes as in the
other ensembles.

In this chapter, the initial error distribution was not considered, all ensem-

ble members start with indentical initial conditions. Additional initial errors
would limit the system's predictability still further. They would add a term
C¿"¿(t) - exp(A¿)C(O)exp(At)" to the time evolution of the ensemble covari-

ance matrix, which can yield considerable initial error gro\Mth due to the non-

self-adjointness of exp(,A), the one time step propagator. This was discussed by
Blumenthal (1991), using an estimate of the propagator obtained from the cyclo-

stationary POP method, which takes into account the seasonality in the underlying
model. Here, the system matrix and the driving noise were estimated by fitting a

linear stochastic process locally - that is, over a short time interval - to a restart
ensemble of the HCM. As such, it takes into account the model's actual state.

The fits are optimised to monitor the time evolution of the underlying system for
a finite time span. The results obtained suggest that in making actual ENSO
predictions, ensemble forecasts which include noise forcing will provide valuable
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estimates of the forecasts' uncertainty,
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The time evolution of the predictability measure s(t) indicates a clear dependence

on the system's state and may therefore be used as an objective measure of the

expected forecast quality.

There are, of course, some caveats to consider. The estimate of the stochastic

forcing included into the HCM may suffer from errors in the underlying data set,

and the way of constructing the random perturbation cannot be justified rigorously.

This implies that the noise variance could have been over- or underestimated, which

in turn would affect the coupled model's predictability. However, the fact that the

results obtained here are consistent with those of Blanke et al. (1997) strengthens

the reliability of the results. The dominant period of the model ENSO mode is

longer than the observed one. Further, the approximating linear systems do not fit
the stochastically forced HCM perfectl¡ since they are formulated in reduced state

spaces, and misfits remain after optimisation. The sensitivity of the stochastically

forced HCM to different noise amplitudes and coupling strengths was investigated

(not shown here). The reduction of the noise amplitude induced a more regular

behaviour, eventually reproducing the HCM's control run. Reducing the coupling

strength at a constant noise level yielded an increasingly irregular behaviour. At
zero coupling strength and non-vanishing noise forcing, the NINO3 time series did
not exhibit marked interannual fluctuations any more. The choice of the coupling

strength and the noise level, although admittedly subjective, was guided by the

spatio-temporal characteristics of the model simulations.

Nevertheless, it is expected that the main results of this chapter remain valid.

The stochastic forcing is important to model ENSO realistically, and the ENSO

predictability is limited by it, leading to a loss of predictability before a typical
cycle period has elapsed.
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IV. Limitation of Predictability due to lJncertain Initial Conditions

1. The Growth of Initial Errors, Optimal Perturbations,

and Singular Vector Analysis

In the foregoing chapter all forecasts were made with identical initial conditions.

Here, we are going to concentrate on the issue of errors in the initial state and

their subsequent evolution during the forecast. At first, the random perturbations

occurring during the forecast will not be considered. Afterwards, the additional

random forcing will be included.

In general, the coupled model's state cannot be specified accurately, since mea-

surements are not complete, the measurements themselves have some errors, or the

initialisation procedure is imperfect. Let us assume that the initial uncertainty of

a forecast can be described by some multivariate probability distribution with the

dimension of the probability space being given by number of prognostic variables

of the forecast model. This multivariate probability density evolves in the course

of time. At forecast time it has changed its original shape and volume. Looking

in more detail into the time evolution, one can discern directions in the initial
error field in which errors are magnified and others in which errors are damped

during the forecast. This implies that one is mainly interested in determining

those directions in which initial erros gror¡/ most strongly. If the initial error field

is projected onto these directions, one can obtain an estimate of the likely spread

of the forecast.

One approach to determine these directions in the model's state space, consists

of the investigation of sufficiently small perturbations, so that linear perturbation

theory can be applied. Let the forecast be denoted by

*(7.): M(n(0)) (25)

The initial state ø(0) is mapped onto the final state ,(7.) some time T* later via

the forecast model M. A small perturbation ôr(0) of the initial state results in a
perturbed final state

,(7.) * õæ(7.): M@(0) + ôr(0)) j

which in a linear approximation yields for the final state's change

õr(7.) : L(T*,0)ôø(0)
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The linear mapping L(T*,0) is called the tangent linear propagator over the time
interval [0, ?.]. It has to be determined using the forecast model M. Given norms

in the spaces of initial and final state perturbations, ll.ll¡ and ll.llt", one can define

Iengths of the perturbations and therefore their growth with respect to these norms.

The amplification rate of a perturbation is defined as:

_ llôø(7.)llr"a
llôr(o)lls

Scalar products in the spaces of initial and final state perturbations induce such

norms:

llôr'(0)ll3 : (ôr'(0),6ø(0))e : õr(0)r Moôu(0) and (2ea)

llõr(7.)ll?r- : (6n(7.), ôæ(?.)) r. : õr(T*)' Mr.6æ(7.) (zgb)

Depending on the problem to be studied, one may favour specific choices of the
positive-definite metric matrices Ms and My-.

The optimal perturbations are by definition those initial perturbations, that yield

largest amplification rates over the integration time ?*. Mathematically, these can

be determined by solving a maximisation problem for the final state perturbation's

length given a unit perturbation at initial time:

(6æ(7.),õr(T.))y- + À[1 - (ôø(0), ôø(0))s] _ max (30)

In the above equation À denotes a Lagrange multiplier, introduced to incorpo-

rate the constraint ll6ø(0)lls - 1. If the evolved initial perturbation ôæ(7*) is

represented by the action of the tangent linear propagator L(T*,0) on the ini-
tial perturbation, and use is made of the definition of the adjoint tangent linear

propagator L(T*,0)", namely

(õ2, L(T*,0)ôr(0))r. - (Lr (T*,0)õ2,ôr(0))s

(28)

(31)

then one obtains

(õn(7.),6r(T*))y" - (L(T*,0)ôr(0), L(T*,0)ôr(0))a. /eô\

- (Lr (T*,o)L(T*,0)ôø(o), ôr(o))e \"1)

The perturbation ó'z is arbitrarly chosen in the space of final state perturbations.

38



Inserting the metric matrices and differentiating with respect to the initial state
perturbation to determine the maximum, yields a symmetric eigenvalue problem:

m;i rçr. ,0)r Mr. L(7" ,0)M; å¿r(o) : o2 6a(0)

To render the eigenvalue problem symmetric, the transformation

ôy(o) - Miôæ(o) ,

(33)

which does not change the eigenvalue spectrum, has to be applied. Note that in
(31) and in (32) the superscript ? denotes the adjoint with respect to the scalar

products chosen, whereas in (33) the adjoint refers to the usual euclidean scalar

product. For the sake of simpler notation the two cases were not distinguished in
these fromulae.

The set of eigenvectors determined from this maximisation problem forms a

complete orthonormal basis of the space of initial state perturbations. An arbi-

trary initial perturbation can be expanded as a linear combination of these eigen-

vectors. Following common use the optimal perturbations are also called singular

vectors, since there exists an intimate relationship to the well known singular value

decomposition of matrices. The SVD of the tangent linear propagator reads:

11
Ltw(T*,0) :- M4- L(7.,0)M;u : (JEVT (35)

The matrices [/ and V are unitary, i.e. IIT : U-1 and VT : V-r. Ð is a diagonal

matrix, whose entries are called the singular values of L¡a. The columns of V arc
called the right singular vectors and the columns of [/ the left singular vectors of
the decomposed matrix, respectively. Inserting this into (33), we obtain

LT*L* -- vÐ2vr

(34)

(36)

Therefore, the above determined optimal perturbations are exactly the right sin-

gular vectors of the propagator L¡ia(t,O). They form a basis of the space of initial
perturbations, whereas the left singular vectors span the space of final state per-

turbations:

LvLTw - (JE2(JT (32)

An evolved right singular vector o¿ is given by o¿u¿.

The concept of singular vector analysis has been widely applied in atmospheric

sciences, see e.g. Farrel and Ioannou (1996a and 1996b) and references therein.
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In Numercal \Meather Prediction singular vectors can be used as efficient pertur-

bations to generate forecast ensembles, Buizza et al. (1993) and Palmer et al.

(1ee8).

In the context of seasonal predictability several studies already exist as well.

They differ in the way the symmetric linear operator was obtained, and in the way

the matrices Ms and M¿ were specified. Xue et al. (1994) analysed error growth in
the forecast model of Zebiak and Cane (1987). After projection onto the leading

multivariate EOFs of the model a cyclostationary POP analysis using monthly

transition matrices was performed, see Blumenthal (1991). This highly reduced

linear model served as a reference to compute its singular vectors. Xue et al.

identified the first two singular vectors contributing most to the initial error growth

in the linear model. Initial error grov/th in such an asymtotically stable linear

model is intimately related to the non-selfadjoint nature of the system matrix. For

example, two POPs with very different decay times but similar spatial structure

can induce rapid transient error gro\Mth after the start of a forecast. If that fraction

of a model's initial state which erroneously leads to an El Niño condition, could

be subtracted, this would lead to better forecasts. A technically much simpler

approach to estimate the tangent linear propagator of a forecast model was chosen

by Chen et al. (1997). Since their forecast model posesses a moderate number

of prognostic variables the tangent linear propagator '$/as estimated by perturbing

each state variable slightly and carrying out a model integration for the time

interval of interest. This finite difference approximation was then used to calculate

the tangent linear propagator of the SST field. Singular vector analysis revealed

one dominant structure which varied little in its spatial characteristcs, but which

had markedly diflerent amplification rates with respect to an ENSO cycle and with
respect to the annual cycle as well. The norm used in this study was based on the

euclidean scalar product. The onset phases of El Niño and the transitions from

\ryarm conditions to La Niña states rvr¡ere characterised by larger growth rates than

the maxima of the model ENSO. During the course of a year, maximum growth

rates were found in boreal summer, and the period from January to April showed

the smallest amplification rates. The leading singular vector can be characterised

as a dipolar pattern with respect to the meridian at 150"\M. It evolves into a
structure similar to a model El Niño after 3 months integration time. Moore and

Kleeman (1996) determine the singular vectors of the coupled model described in
Kleeman (1993) by a method that does not exploit the reduction of state space like

the above- mentioned studies. Instead, they determined the model's linearisation

from the model equations and coded it subsequently. The adjoint model was then

determined from the discretised tangent linear model equations. The perturbation
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energy'\Mas used as a norm in the calculations. The singular value spectrum was

dominated by the leading singular vector for all experiments performed. Largest

growth rates during the annual cycle were observed in boreal spring. During the

onset of El Niño the growth rates were larger than during the onset of La Niña.

This indicates better chances to predict cold anomalies skillfully than warm states.

In Moore and Kleeman (1997a) and (1997b) a detailed analysis of the dynamics

and energetics of the singular vectors of the coupled model is presented.

2. Determination of the Leading Optimal Perturbations of the HCM

In this stud¡ an approach is persued that consists in the derivation of the tangent

linear model and its adjoint directly from the numerical code of the Hybrid Coupled

Model. The numerical representation of the Hybrid Coupled Model can be viewed

as the composition of individual mappings. Each statement in the computer code

and each structure therein can be viewed as such a mapping:

æ(t) : [Sr o S¡r-r o ... o 
^92 

o ,S1]u (0)

Linearising this sequence of statements is straightforward:

õæ(t) - lrr* oTLx¿ o ... o TL2 orLrl6r(0)

(3s)

(3e)

Here, ?-D¿ signifies the linearised version of statement Si in the numerical code

which involves the Jacobian of the individual mappings. The bracketed compo-

sition of linear mappings represents the tangent linear propagator L(7",0) used

in Eq.(33). The adjoint tangent linear propagator LT(T*,0) can formally be ob-

tained by transposing (39), sucessively applying the rule (AB)' - Br Ar for the

composition of linear mappings A and B:

L'(T*,0) -TLT orLl o...orLT-roTLly (40)

The very simple example below is intended to exemplify the strategy for gener-

ating tangent linear statements and their corresponding adjoint statements from

given statements. Such an example is instructive, since it shows some important

features of the process of automatic differentiation. Let the following statement

be contained in an algorithm to be differentiated:

A: A2 * sin(B)

4L

(41)



The tangent linear statement is readily obtained:

õA -- 2AõA* cos(B)ôB (42)

Now, an easy rvay to generate the corresponding tangent linear code is to first
evaluate the tangent linear statement (42), and after this to calculate statement
(41), since statement (42) requires the value A attained before (a1) is excuted.

No, seperate storage of data is thus required to run this tangent linear code. The
work space for the tangent linear code will be slightly less than twice the original
work space of the nonlinear algorithm. Statement (42) can as well be represented

by the linear mapping

(ii) : (."1" :^) (lx) , (43)

which after transposition yields for the adjoint mapping

(ïx) : (å 'îf) (3:í) Ø4)

Consequentl¡ the adjoint statements that have to be coded read:

õ*B:6*B+cosBõ"A
6* A:2Aõ* A

(45)

Again, the values of A and B attained before (41) is excuted are required to
evaluate the adjoint statements in (a5). Since the order of computations in the
adjoint code is reversed, see (40), they either have to be recomputed, or they have

to be stored during the run of the nonlinear algorithm and supplied to (45) when

needed. Thus, a considerable amount of book-keeping is needed to efficiently
implement the adjoint model. In practice certain variables will be recomputed
during the run of the adjoint model and others will be read in from a secondary

storage device when needed. Due to these requirements, the adjoint code requires

the largest fraction of computing time for the evaluation of the symmetric linear
operator (33). To be specific, the run times of the adjoint tangent linear HCM, the
tangent linear HCM, and the nonlinear HCM have the proportions 2.8 : I.7 : I.

Differentiating an algorithm can be automatised. Each mapping of the nu-

merical code has to be differentiated according to well known rules. To perform
such a differentiation, the differentiation tool has to know the set of variables with
respect to which a given statement has to be differentiated. Such variables are

called active variables. Variables that are not active are called passive variables

of the algorithm. The set of active and passive variables can be determined by
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performing a dependence analysis prior to the differentiation. The differentiation
tool must apply the rules of differentiation to simple statements, such as addition,
multiplication etc., built in functions and procedures of the programming language,

and it must be able to resolve programming structures, such as loops, conditional
statements etc. . A software tool that performs exactly these tasks was developed

by R. Giering, see Giering (1997) and Giering and Kaminski (1996). The tool is

called Tangent Linear and Adjoint Model Compiler (TAMC).

All that is needed to generate the linearised code of the HCM by the TAMC
are some modifications of the FORiTRAN source code to match the programming

conventions expected by the TAMC. The interested reader will find a good account

on the techniques of automatic differentiation in Giering (1996) or in Griewank and

Corliss (1991) and references therein. After specification of the input and output
variables, the TAMC performs a dependence analysis to indentify the active and

the passive variables contained in the numerical code. Then, the tangent linear

and the adjoint tangent linear computer codes can be generated.

Tangent linear and adjoint models can be used in different contexts. Apart
from the computation of optimally growing perturbations, adjoint models can be

used to determine the sensitivities of a dynamical model to small perturbations
at an earlier time, e.g. van Oldenborgh et al. (1997). Particularly interesting in
this respect is the determination of the gradient of a scalar function with respect

to e.g. internal model parameters or initial conditions. The linear stochastic

processes discussed in the previous chapter were determined this way. Another
example is the assimilation of data into circulation models of the atmosphere or

of the ocean can be done with the help of the corresponding adjoint models. The

advantage of this approach is that the assimilation procedure is consistent with
the dynamics of the underlying general circulation model. Such applications along

with an introduction to the generation of adjoint numerical models is excellently

described in Talagrand (1991).

The TAMC generated computer codes were subsequently tested. The adjoint
code was tested by introduction of a simple scalar function. Computation of its
gradients and comparison with finite difference approximations yielded good agree-

ment. The tangent linear code was tested by comparing scalar products according

to (32). The results obtained aggree within computational accurracy.

Since the tangent linear HCM has a large number of input and output vari-

ables, an algorithm suited to handle these large dimensions for the solution of
the eigenvalue problem (33) is needed. In this study a modified version of the

Lanczos algorithm was chosen, Parlett and Scott (1979). The Lanczos algorithm
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reduces the high dimensional problem to a low dimensional one, which approxi-
mates the largest or the smallest eigenvalues of the symmetric eigenvalue problem

(33). Details about the Lanczos algorithm are given in Appendix B.

As a final step, norms at the initial and final time of the model integration have

to be specified. In the experiments described in the next section, an energy norm
was used. The perturbation energy equation for a stratified ocean reads, see Gill
(1e82):

* I 
r2e"eu' t 6a2 + 6u2)dz. *{f,'"e)øõn' + I ;(#)r"}

.* I6põud,z.& | aú,a,-o (44)

For the definition of a norm, we retain those terms containing the prognostic

variables of the ocean model, i.e. the kinetic energy term for the horizontal veloci-

ties, the term containing the density perturbation which is related to temperature
perturbations by the equation of state used in the ocean model, and the term
containing the sea surface elevation. Additionally, the associated entries in the
metric matrices are multiplied by weights, which are smallest in the equatorial
region and largest at the northern and at the southern boundaries. This implies
that the equatorial regions may attain larger perturbation amplitudes relative to
the off-equatorial parts of the basin. The motivation for this additional weighting

reflects the assumption that the equatorial regions are most important for ENSO

dynamics. The choice of norm has the property, that regions of large vertical
temperature gradients can attain larger perturbation amplitudes, since there the
metric weights are smaller compared to regions with weaker vertical temperature
gradients. The perturbations in the thermocline region will thus be important
for the resulting singular vectors. Since the equation of state of the ocean model

relates density linearly to temperature the density perturbation 6 p can easily be

substituted in (aa) by poa6T., see (10).
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3. Dynamics of Optimal Perturbation Growth

In this section, several sets of experiments are discussed. First, the leading 10

singular vectors and singular values of the HCM were determined during a model

ENSO cycle without noise forcing present. During the 5 years of such a cycle every

quarter of a year a ne\M calculation was started. Forecast intervals of 3, 6, 9 and

12 months were considered. This first set comprises a total of 80 individual ex-

periments. In a further set of singlar vector calculations the atmospheric feedback

was switched off in the HCM and in its linearisation. One year during this annual

cycle case was chosen, and again forecast intervals of 3, 6, 9, and 12 months were

taken for the determination of the leading 10 singular vectors and values. This
set comprises 16 experiments. In a third set of experiments, the leading singular

vectors of the stochastically forced HCM were computed for a restart date already

employed in chapter III. to generate model trajectories with different realisations

of the stochastic wind stress component. In this case 4 different realisations of
wind stress noise were considered.

In Fig.17 a typical singular value spectrum is shown. In most experiments

carried out the first singular value dominates the spectrum. The amplification rates

with respect to the chosen norm are considerable with average values of ø : 68.5 in
the 80 ENSO cycle experiments and ¿ : 63.9 in the 16 annual cycle experiments.

The individual leading singular values of the two sets of experiments are displayed

in Fig.18 and Fig.19. The amplification rates exhibit marked dependences on the

annual cycle and on the phase of the model ENSO cycle.
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Fig.17: A typical singular value spectrum. Shown are the leading 10 singular

values of a coupled experiment starting in January of the second year during the

model ENSO cycle. The singular values were optimised for 3 months integration
time.
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Fig.18: Amplification rates of the leading singular vectors of the experiments per-

formed during a model ENSO cycle. The upper panel shows the restart dates,

the lower panel the amplification rates obtained. Different shading indicates the

optimisation time of 3, 6, 9, or 12 months.
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Fig.19: Amplification rates of the leading singular vectors of the experiments per-

formed during an uncoupled model run. The 16 experiments are grouped according

to their starting date: 1-4 January starts, 5-8 April starts, 9-12 July starts, and

13-16 October starts. 3,6,9, and 12 months optimisation times were chosen for
each starting date.

As a common feature of all the experiments, integrations started in January

and in April tend to exhibit much larger amplification rates than those initialised

in July and in October. The dependence on the ENSO cycle is reflected in the

reduced amplification rates during year 5 of the model ENSO cycle and in the

sometimes enhanced amplification rates during the rest of the cycle.

So far, only the amplification rates of the singular vectors were presented. The

spatial patterns associated with the singular values are depicted in Figs. 20 - 23 on

the following pages. The time evolutions of t\ryo singular vectors, one obtained from

the ENSO cycle experiments and one obtained from the uncoupled experiments,

is shown.
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Beginning of Jonuory

End of Februory

End of April

End of June

(c)
Fig.20: Leading singular vector of the
experiment started in January of the
second year during the coupled inte-
gration. In (a) the time evolution of
the surface temperature perturbation
is shown. (b) depicts the evolution of
the sea level perturbation, and (c) con-

tains a vertical section along the equa-

tor depicting the temperature pertur-
bation. Starting in the western part of
the basin, the perturbation gradually
propagates to the East. The vertical
section along the equator reveals that
two baroclinic modes propagate to the
eastern boundary. Biggest amplitudes

in the deeper oceanic layers are located

in the thermocline region, where large

vertical temperature gradients in the
reference state are present. The tem-
peratures are in units of [K] and the sea

level is in [m]. The fields may be scaled

by an abritrary common factor since

the calculations involved in the deter-

mination of singular vectors are linear.
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Fig.21: Longitude time plot along the equator showing the evolution of the sea

level perturbation of Fig.20 (b). Clearly discernible are the two baroclinic modes

propagating from \Mest to East. The first mode traverses the basin in approxi-

mately 2-3 months, whereas the second mode needs about 4-5 months. The units
of the sea level perturbation are in [m].
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Fig.22: Longitude time plot along the equator analogous to Fig.21 showing the

evolution of the sea level perturbation of an uncoupled singular vector optimised

for 6 months (experiment no. 2 in Fig.19).
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Beginning of Jonuory

End of Februory

End of April

End of June

(c) Fig.23: Leading singular vector of an

uncoupled experiment started in Jan-

uary and optimised for 6 months. In
(a) the time evolution of the surface

temperature perturbation is shown, (b)

depicts the evolution of the sea level

perturbation, and (c) gives a vertical
section along the equator of the tem-
perature perturbation. The tempera-

tures are in units of [K] and the sea

level is in [m]. The remarks about scal-

ing mentioned in Fig.20 apply here as

well. This singular vector does not ex-

hibit marked amplitudes in the eastern

equatorial Pacific as \ryas observed for
the coupled case in Fig.20.
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The time evolutions of the singular vectors have characteristic features. In both
cases presented, the largest amplitudes are found initially in the western part of the

ocean basin, the warm pool region. The perturbations gradually aflect the central

and eastern part of the model Pacifc during the singular vector's time evolution.

This happens through the propagation of the first and the second baroclinic equa-

torial Kelvin wave modes propagate from West to East. The ellipsoidal spatial

structure as well as the propagation speeds correspond well with those presented

in Philander (1990). The propagation speeds inferred from Figs.21 and 22, agree

well with the 2.4Ç and 1.4f, for the first and the second baroclinic mode, respec-

tively given in the former reference. These propagation speeds correspond to a
temperature profile representative for the central equatorial Pacific. The variable

depth of the thermocline in the ocean general circulation model induces variable

propagation speeds as seen in Figs.2l and 22. Having reached the eastern bound-

ar¡ the equatorial Kelvin v/aves reflect into coastal Kelvin waves which propagate

to the North and to the South along the boundaries. Some of the wave signal

is reflected into Rossby waves which propagate westward. The coupled singular

vector's SST signal is large in the eastern part of the ocean as well. Such a sig-

nal yields an anomalous westerly wind response in the central and eastern part

of the Pacific region by virtue of the diagnostic atmosphere, Flügel (1994). It
enhances the development of the warming simulated during the evolution of the

coupled singular vector. This explains the much more organised structure of the

coupled singular vector compared to the uncoupled run. In the latter case the lack

of atmospheric feedback inhibits the amplification of a given signal. Therefore,

the uncoupled singular vector does not show large SST amplitudes in the eastern

Pacific. To summarise, the coupled singular vectors in most cases exhibit larger

growth rates than the uncoupled ones, and their spatial structures are affected by

the action of the diagnostic atmosphere.

The singular vectors are derived by linear calculations. If they are added to the

HCM's initial state, they will evolve in a different way depending on the degree

of non-linearity of the HCM. Here, scaling of the singular vectors does matter. To

compare the time evolution of a singular vector with its non-linear evolution after

scaling and superposition onto the HCM's initial state, the experiment shown in

Fig.24 was done. The singular vector shown in Fig.20 was scaled such that its
largest amplitude in the temperature field was lK. The SST of the scaled singular

vector is shown in Fig.24 (a). The lower panel on the left depicts the final state

of the linearly propagated signal, and the lower panel on the right shows the

difference field of an integration performed with the scaled singular vector added

to the initial state and the reference run. Even after 6 months integration time the
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correspondence is remarkably good. Of course, the details visible in the final states

differ, but the spatial sturctures closely resemble each other and the amplitudes

attained at the end of the integration are in good aggreement as well.
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Fig.24: Comparison of non-linear and linear time evolution of the singular vector

shown in Fig.20. The singular vector was scaled such that the maximum per-

turbation amplitude equals lK; (a) the scaled singular vector, (b) the tangent

linearly evolved structure, and (c) the non-linearly evolved structure obtained by

subtrating the unperturbed intergration from the perturbed one.
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The previous example of a singular vector's time evolution indicates that such

a perturbation may well affect the outcome of an HCM ENSO forecast, since large
portions of the eastern equatorial Pacific experience a warming. To investigate
this further, several initial states during a model ENSO cycle were perturbed by
their corresponding leading singular vectors. These were scaled to yield maximum
perturbation amplitudes of -ZK,-IK, lK, and 2K in the oceanic temperature
field. Fig.25 depicts the outcome of the experiment. The individual ensembles of
perturbed model integrations show different spreads during integration time. The
ensemble intialised during the peak phase of a model El Niño exhibits the largest
spread while the trajectory starting during a peak La Niña phase is less affected.
The transition phases from cold to warm ENSO states and from warm to cold
ENSO states lie between the two extremes. However, the impacts on the forecasts
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Fig.25: Effect of the leading singular vectors on the NINO3 index. Each ensem-

ble of integrations shows the effect of adding the leading singular vector to the
HCM. The maximum perturbation amplitudes in each ensemble were chosen to be

-zK,-IK,lK, and 2K in the perturbation's temperature field. The ensemble of
perturbed trajectories and the relevant piece of the reference run are displaced by

-0.3K releative to the HCM NINO3 index.
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are generally small, indicating that the model resides in a regime which exhibits
relatively high predictability.

The extent to which an ENSO forecast will be affected by the addition of a
singular vector for a specific forecast interval depends on several factors. In general,

the perturbation amplitude will be chosen such that it reflects the forecasters

uncertainty of the model's initial condition. This uncertainty can be included in
the singular vector calculations by using the inverse of the initial error's covariance

as a norm in the space of initial state perturbations. F\rrther, the susceptibility
to perturbations may vary, during the annual cycle, as well as during the ENSO

cycle. Random perturbations like those considered in chapter III that perpetually
disturb the ocean-atmosphere system induce a large variability among the oceanic

initial states and alter the stability of the latter.

As a final set of experiments, singular vectors of the stochastically forced HCM
(see chapter III) \¡¡ere computed. The stochastic forcing enters the HCM as an

external forcing analogous to the annual cycle of wind stress. This implies that
only minor modifications of the tangent linear and of the adjoint tangent linear

HCM have to be made in order to include this additional element.

The restart month 276, Fig.8 p.22, was taken for a suite of singular vector
calculations. Four different realisations of the stochastic wind stress component

were chosen and the leading 10 singular vectors of each realisation were computed
for an integration time of 6 months. Fig.26 shows the final states of the leading

singular vectors belonging to the four different realisations of the stoachstic part
of the wind stress field. The amplification rates as well as the final structures of

SST differ considerably among the realisations. This leads to the conclusion that it
might be a difficult task to determine an adequate set of perturbations for an ENSO

forceast via singular vector analysis, since the singular vectors depend on the path
taken by the coupled system during the forecast. They depend on the inevitably
random nature of part of the atmospheric wind stress forcing. Singular vectors

that yield significant perturbations may well exist, but their determination will
require as many singular vector calculations as there are realistions of stochastic

forcing in a forecast ensemble. As already mentioned in the concluding remarks to
chapter III, the random wind stress fluctuations may have been over-estimated. If
this was the case, chances are good that the sensitivity of the singular vectors to
the random wind stress component will be less pronounced.

This study of initial error gro\ryth in an HCM and in a stochastically forced

version of the latter by computing the leading singular vectors revealed different
properties that are important for the quantification of initial error growth in the
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Fig.26: Final states of the leading singular vectors obtained for 4 different re-

alisations of the stochastically forced HCM started at restart month 276. The
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context of ENSO forecasting. The amplification rates of the singular vectors de-

pended on the phases of the annual and ENSO cycles. The structures of the leading

coupled singular vectors and their subsequent time evolution are affected by the

atmospheric feedback. Singular vectors added to the non-linear HCM evolve in a
similar rvay as the tangent linearly propagated ones. The effect on the outcome of

a forceast is variable. It depends on the phase of the model ENSO cycle and, of

course, on how well a given initial error field projects on the singular vectors.

The studies of Moore and Kleeman (1996), Chen et al. (1997), Xue et al.

(1994), and Xue et al. (1997) show similarities as well as striking differences when

compared to the results obtained here. The different degrees of complexity of the

underlying forecast models as well as the diverse approaches to get estimates of

the leading singular vectors and singular values, however, complicates an objective

comparison between these studies. A common feature shared by all investigations

is the dependence of results to the phases of the models' annual and ENSO cycles.
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VI. Summaryo Conclusions, and Outlook

Two aspects which are of relevance to the ENSO predictability limits were investi-

gated studied in this thesis. \Mind stress fluctuations not correlated to ENSO which

perpetually interfere with the ENSO dynamics and the growth of initial uncertain-
ties during a forecast were considered. Both aspects were studied with the help

of a Hybrid Coupled Model (HCM) of ENSO and its extension to a stochastically

forced HCM.

Random wind stress fluctuations not correlated to ENSO that are present in
the tropical atmosphere are an important source of ENSO irregularity. Since the

leading EOFs of these wind stress fluctuations exhibit large-scale structures that
are likely to have an impact on the ENSO dynamcis, they were added to the HCM
in order to mimic the observed random variability. This extension of the original
HCM is termed stochastically forced HCM. As presented in chapter III, the fluctu-
ations result in a considerable spread among forecast trajectories initialised with
identical initial conditions. The variability simulated by the stochastically forced

HCM is in qualitative aggreement with that observed. Spectra of the NINO3 in-

dex time series taken from observations and from the stochastically forced HCM
show a high degree of similarity on interannual time scales. Restart ensembles

during different phases of the model ENSO cycle were computed. A measure of
predictability was defined by fitting linear stochastic models over time intervals of
36, 48, and 60 months in a reduced state space spanned by the leading EOFs of
the pooled fields of SSTA, sea level anomalies, and anomalous zonal wind stress.

This measure of predictability reflects the overlap of the time-dependent and of
the stationary probability density functions (pdf) of the linear stochastic processes.

In the early phases of the forecasts the overlap of both pdfs is small, leading to
high predictability. As time goes by the overlap increases and the measure of pre-

dictability asymptotes to zero. In each case studied, predictability was lost before

a typical cycle period was completed. For intermediate forecast times different

evolutions of the predictability measure were obtained. In some cases a rather
rapid decrease and a subsequent recovery is observed. After this local maximum

in predictive skill is passed the predictability measure asymptotes to zero as in
the other cases. Such a peculiar behaviour can readily be explained by the fact

that the predictability measure incorporates the dynamics of the system. While
the diffusion present in the stochastic process widens the time-dependent pdf, the

dynamical part changes the relative position of the ensemble mean to the clima-

tology. Therefore, large excursions of the ensemble mean relative to its stationary

value can lead to increased predictability at intermediate forceast times.
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The ensemble experiments performed with the stochastically forced HCM did
not incorporate errors in the initial conditions. The latter is a further candidate

for limited ENSO predictability. To get an estimate of the relevance of initial error

growth, the strongest growing perturbations of the coupled model during a forecast

were determined by singular vector analysis. The determination of the HCM's sin-

gular vectors requires the specification of the tangent linear HCM and the adjoint
tangent linear HCM. Among the possible approaches a novel one \ryas pursued: the

tangent linear and the adjoint HCM required for the determination of the singu-

lar vectors and the singular values rüere generated by an automatic differentiation

tool. Earlier studies either studied the singular vectors of low dimensional approx-

imations to the forceast models or they coded the linearised model equations. The

automatic differentiation tool is able to generate the linear codes after some minor
modifications of the HCM's FORITRAN source code. Advantages of this approach

consist in the high flexibility to generate new linear versions after changes in the

HCM's code and the fact that the numerically exact tangent linear and adjoint
tangent linear models are generated. The high dimensionality of the eigenvalue

problem that has to be solved to obtain the singular vectors and values of the HCM
precludes the determination of the complete eigenvalue spectrum. In the exper-

iments presented in chapter IV the ten leading singular vectors were determined

by employing the Lanczos algorithm. This algorithm iteratively aproximates the

eigenvalues and eigenvectors of a symmetric linear operator. The linear operator

only enters the algorithm by its action on a given input vector. The latter property

can be exploited for the treatment of large sparse matrices and linear operators

that are given as a computer program. A set of singular vector calculations was

done during a model ENSO cycle for forecast intervals of 3, 6, 9, and 12 months.

Additionally, the leading ten singular vectors of the uncoupled ocean model dur-
ing an annual cycle for the same forecast intervals as in the coupled cases and

for four starting dates during one year (January, April, July, and October) were

determined. The amplification rates of the singular vectors showed a marked de-

pendence on the ocean model's annual cycle as well as on the HCM's ENSO cycle.

Largest amplification rates are obtained for forecasts started in January and in
April, whereas the starts in July and in October showed lower amplification rates.

Amplification rates were higher in the coupled cases than in the uncoupled cases.

The spatial structures observed during the time evolution of the leading singu-

lar vectors correspond to equatorial wave dynamics. The perturbation's largest

amplitudes are observed in the western part of the model ocean basin. During
integration the perturbation gradually affects the central and the eastern parts of
the ocean. Large perturbation amplitudes are observed in the deeper ocean layers
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as well. The region where the model ocean's thermocline is located shows large

temperature signals. This feature compares well with actual observations of the
evolution of anomalous equatorial temperature signals by the TOGA/TAO array;

NOAA (1998). A third set of singular vector calculations rvas carried out with the
stochastically forced HCM. Four different realisations of the stochastic wind stress

field were taken and the correpsonding leading ten singular vectors optimised for

6 months integration time were determined. The four realisations have different

amplification rates and the¡r evolve into remarkably different final states.

The tangent linear time evolution of the singular vectors compares well with a

perturbed run of the non-linear HCM subtracted from the reference run in the SST

field. Therefore, a superposition of the leading singular vectors onto an HCM's
initial state will lead to similar perturbation patterns as in the linear integrations.

To assess the effect such perturbations might have on the outcome of a forecast,

the leading singular vectors optimised for 6 months were added to initial states of
the HCM in different phases of the model ENSO cycle. Two peak phases, El Niño
and La Niña, and two transition phases, from warm to cold ENSO states and from
cold to \¡/arm ENSO states were taken. The singular vectors were scaled such that
the maximum perturbation amplitude in the oceanic temperature field amounted

to -2K,-1K,1K, or 2K. The eflect on the NINO3 time series \¡/as variable. The

perturbations v¡ere most effective during the El Niño phase and least effective

during the La Niña phase. This experiment shows that singular vectors have the

potential to affect the outcome of an ENSO forecast. The appropriate scaling of the

singular vectors in the context of actual forecasts, however, will depend on the error

attributed to the initial conditions of the forcast model. This error structure can

be incorporated into the determination of the singular vectors by using as a norm
in the space of initial state perturbations the inverse of the error covariance. To

conclude, the singular vector calculations of chapter IV showed that it is feasible

to determine the most strongly growing perturbations by using the numerically

exact tangent linear and adjoint tangent linear versions of the forecast model.

Since the adjoint of the forecast model can as well be used for data assimilation,

an operational ENSO forecast model may use the leading singular vectors for the

generation of perturbations of the model's initial state to assess the likely spread

of the forecasts.

The singular vectors and their associated singular values are model dependent.

It is advisable to be cautious in transferring the results obtained to actual dynam-

ical processes in the real ocean-atmosphere system. Most importantl¡ singular

vector analysis gives hints to the requirements of a given model to yield better

forecasts, and it enables the foecaster to assess the effect initial errors will have on
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the outcome of a forecast.

Comparing both processes studied in this thesis, the stochastic wind stress fluc-

tuations are likely to be the dominant agent in limiting ENSO predictability. The

moderate effect obtained by adding the leading singular vectors to initial states of
the HCM supports this conjecture. Additionally, the spread among forecast tra-
jectories when random wind stress forcing is included are sustantially larger than
than those obtained by adding singular vectors to initial states of the HCM. How-

ever, the latter finding strongly depends on the actual amplitude of the singular

vector added to the initial state of the HCM.

Three directions of possible future research should be mentioned. First, the
singular vector studies begun here could be pursued further by e.g. analysing

the singular vector dynamics in the ocean general circulation model in more de-

tail. The processes enabling singular vector growth can be identified by analysing

the time evolution of oceanic variables in the tangent linear HCM. Second, the

HCM concept allows an efficient way to parameterise the atmospheric response to
an anomalous oceanic circulation in the tropical regions. For the singular vector

study the adjoint of the HCM was generated. An efficient way to generate an

HCM that optimally predicts the state of ENSO can be obtained by optimising
the entries of the atmospheric feedback matrix such that a maximal prediction skill
is attained. The regression matrix may serve as a first guess for an optimisation of
a cost function that measures the misfit between observations and model output
over the forcast interval. The adjoint model enables the determination of the gra-

dient of the cost function with respect to the entries of the atmospheric feedback

matrix. Third, atmospheric random variability induces substantial irregularity in
the recurrence of ENSO extremes and in the amplitudes of the latter. This random

element was incorporated into the HCM by simply parameterising it by statistical
means. The same holds for the determination of the atmospheric response to given

SSTA. The question arises to which extent results will carry over to a dynamically

based representation of the atmospheric dynamics. An atmospheric model of in-

termediate complexity coupled to an ocean general circulation model would allow

to address questions of this kind. Especially the singular vector structure of such

a coupled model would present an interesting area of research, since the nature of
the modeled coupled dynamics would reflect itself in the singular vectors.
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Appendices

1. Appendix to Chapter III

Restart
Month

Dimension
Time

Interval
Period

e-folding
Time

276 4
36
48
60

60.9
60.7
62.6

25.5
26.6
24.8

276 5

36
48
60

59.8
62.1
63.0

33.4
30.2
27.2

276 6
36
48
60

60.3
62.6
63.5

37.t
31.8
27.4

372 4
36
48
60

27.3
23.8
23.O

8.0
6.4
7.1

372 5

36
48
60

27.4
23.6
24.1

7.4
7.3
7.6

372 6

36
48
60

27.3
23.8
24.4

6.6
6.8
6.8

408 4
36
48
60

47.1
50.8
52.1

1

1

1

t.4
2.t
1.5

408 5

36
48
60

45.8
50.3
50.2

10.0
11.8
10.5

408 6
36
48
60

46.6
56.6
5t.4

10.8
12.7
tt.2

Table A1: Periods and e-folding times of the interannual eigenmodes of the fltted
system matrices belonging to the stochastically forced HCM's restart ensembles.
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Restart
Month

Dimension
Time

Interval
Period

e-folding
Time

420 4
36
48
60

5t.4
57.0
66.1

11.9
12.4
17.4

420 5

36
48
60

59.7
6r.7
63.9

13.7
13.1

16.1

420 6
36
48
60

59.2
61.5
64.7

13.1

12.9
16.0

468 4
36
48
60

tt2.o
66.8
58.6

r 1.3

t4.l
16.6

468 5

36
48
60

t24.3
69.t
60.5

rr.9
15.4
19.0

468 6
36
48
60

121.3
67.2
61.2

12.9
18.0
2l.o

552 4
36
48
60

302.1
99.7
r02.5

7 I
1

1

3.8
5. I

552 5

36
48
60

233.6
r07.6
ttz.3

7.2
15.5
16.6

552 6
36
48
60

102.5
99.1
103.9

9.3
t5.7
16.9

- Table A1 continued -
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Rest.
Month

Dim.
Time
Interv

EOFl
(sim.)

EOFl
(dat.)

EOF2
(sim.)

EOF2
(dat.)

Dim.EOFs
(sim.)

Dim.EOFs
(dat.)

276 4
36
48
60

11.80
9.24
8.41

10.66
7.93
7.03

T.L7

1.11

1.07

t.2t
1.18
1.10

14.81

12.16
11.29

13.85
11.05
10.04

276 5

36
48
60

10.79
8.47
7.84

10.66
7.93
7.03

1.1 1

t.04
t.o2

t.2t
1.18
1.10

14.37
tt.94
11.24

14.49
11.65
10.59

276 6

36
48
60

10.80
8.44
7.79

10.66
7.93
7.03

1

1

1

.01

.03

.01

t.2l
1.18
1.10

14.86
12.39
tt.66

15.03
12.t8
11.10

372 4
36
48
60

2.49
3.27
3.98

2.62
4.75
6.81

0.98
0.77
0.78

1.09
1.00
1.08

4.21
5.26
5.91

s.65
7.45
9.82

372 5

36
48
60

2.91
4.00
5.02

2.62
4.75
6.81

0.95
0.92
o.92

r.09
1.00
1.08

5.71
6.82
7.88

6.21
8.22
10.38

372 6
36
48
60

2.75
3.76
4.73

2.62
4.75
6.81

0.95
0.91
0.91

r.09
1.00
1.08

6.00
7.04
8.04

6.70
8.76
10.89

408 4
36
48
60

7.09
7.06
7.00

8.21
7.32
7.41

1.03
1.05
1.05

1.10
1.16
t.t4

9.97
9.95
9.90

11.22
10.42
10.50

408 5

36
48
60

6.90
6.91
6.84

8.21

7.32
7.41

1.00
1.03
1.01

1.10
t.t6
t.t4

t0.25
10.30
t0.21

11.78
10.99
11.05

408 6
36
48
60

6.91
6.91
6.82

8,21

7.32
7.41

1.00
1.03
t.o2

1.10
t.t6
t.t4

10.74
10.77
10.64

I
I
1

2
1

1

.30

.48

.54

Table A2: Variances simulated by the fitted stochastic processes (sim.) and vari-

ances of the input data (dat.).
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Rest.
Month Dim.

Time
Interv

EOFl
(sim.)

EOFl
(dat.)

EOFz
(sim.)

EOF2
(dat.)

Dim.EOFs
(sim.)

Dim.EOFs
(dat.)

420 4
36
48
60

3.86
4.17
4.37

3.50
5.45
7.25

1

I
I

.04

.01

.00

1.06
1.00
1.08

5.64
5.93
6.12

6.M
8.32
10.29

420 5

36
48
60

4.93
5.16
5.2r

3.50
5.45
7.25

0.97
0.97
0.96

1.06
1.00
1.08

8.02
8.30
8.37

7.02
8.83
10.87

420 6
36
48
60

4.81
5.06
5.11

3.50
5.45
7.25

0.98
0.97
0.95

1.06
1.00
1.08

8.37
8.68
8.71

7.52
9.35
11.36

468 4
36
48
60

8.46
8.40
8.11

9.55
9.61
7.96

0.99
1.03

1.06

t.t9
r.19
1.20

Lt.25
tt.26
11.01

12.66
12.75
1 1.13

M8 5

36
48
60

8.57
8.44
8.12

9.55
9.61
7.96

0.97
1.01

1.04

1.19
1.19
1.20

11.84
11.79
11.50

13.24
t3.39
11.69

M8 6
36
48
60

8.57
8.49
8.13

9.55
9.61
7.96

0.96
1.01

t.o4

t.t9
1.19
1.20

t2.31
12.32
11.98

14.05
13.90
t2.22

552 4
36
48
60

3.t3
4.21
4.82

5.88
7.63
9.18

o.92
o.94
0.96

0.99
t.t4
1.13

5.86
6.99
7.62

8.83
1o.72
12.24

552 5

36
48
60

3.10
4.49
5.23

5.88
7.63
9.18

0.90
0.93
o.96

0.99
t.t4
1.13

6.3r
7.78
8.56

9.41
tt.33
t2.87

552 6

36
48
60

3.t6
4.28
4.93

5.88
7.63
9.18

0.89
0.92
0.94

0.99
1.14
1.13

6.81
8.00
8.69

9.89
11.87
13.38

- Table A2 continued -
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2. Appendix to Chapter IV

2.1. The Lanczos Algorithm

Lanczos (1950) proposed an algorithm for computing a tridiagonal matrix T or
thogonally congruent to a given symmetric (n,n)-matrix A, i.e. T - qr AQ and

QT : Q-|.
Subsequent investigations revealed that the numerical treatment of the algo-

rithm poses some problems, see Parlett and Scott (1979) or Stoer (1990). Software

packages now available incorporate efficient means to circumvent the undesirable

features of the algorithm and to exploit its strengths. In this thesis the laso-

algorithm described by Parlett and Scott (1979) is used.

The mathematical foundation of the Lanczos algorithm consists in the following

theorem:

Given a symmetric (n,n)-matrix A and some non-trivial r¿-vector q of unit length,

the sequence of vectors Çr, ...,q¿ obtained by the recursion

Qt:Q "YtQo::0 (-41)

Aq¿:.1¿e¿-t * 6¿8¿ * ^l¿+te¿+t (i > 1) (A2)

with the real scalars ô¿ and l¿..1 and the vector g¿.e1 being given by

õ¿: { Aq¿ (A3)

l¿+t : llr¿ll and r¿: Aq¿ - 6¿q¿ - ^l¿Q¿-t (A5)

Q¿+t: r¿l'Y¿+t

forms an orthonormal basis of the vector space spanned by

(,46)

Q, AQ, A'q,..., Ai-L q (A7)

The above recursion terminates at some m 1 n i Tn+t : 0. \Mritten in matrix
notation, one gets:

AQ¿ : Q¿T¿ i 7t+t(0,...,0, 8¿+t) i : I,...,m
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The matrix Q¿ is formed by qt¡. . . ¡ei as column vectors, and T¿ reads

ôr

'Yz

0

0 'Y¿

Especially for i - rn this implies , since 1rn+L :0¡

AQ,. - Q*T,n (Ag)

The proof of this theorem proceeds by induction oveli and is given in e.g. Stoer
(1eeo).

As an immediate consequence, this theorem provides a transformation of the
eigenvalue problem

An: Àn (A1o)

into an eigenvalue problem for a tridiagonal matrix 7. F\rther investigation reveals

that the largest respectively smallest eigenvalues of .4 are well approximated by
those of. T¿ for relatively small i, so that the above sequence of vectors gt,,. .. ¡ei
is not required to be computed until the index rn is reached. The symmetric
matrix .4 enters the algorithm only by its action on an input vector q¿ at step i
of the above recursion. Due to these facts, the Lanczos-algorithm is well suited
for eigenvalue problems involving large sparse matrices that require special forms

of internal representation on a computer or problems that involve linear operators
that are not given as matrices but by a computer program. The eigenvalue problem

that had to be solved in chapter IV belongs to the latter class.

7¿

õ¿

^lz

?t: (
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