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Comparing (Empirical-Gramian-Based)

Model Order Reduction Algorithms
Christian Himpe∗

Abstract
In this work, the empirical-Gramian-based model reduction methods: Empiri-
cal poor man’s truncated balanced realization, empirical approximate balancing,
empirical dominant subspaces, empirical balanced truncation, and empirical bal-
anced gains are compared in a non-parametric and two parametric variants, via
ten error measures: Approximate Lebesgue L0, L1, L2, L∞, Hardy H2, H∞,
Hankel, Hilbert-Schmidt-Hankel, modified induced primal, and modified in-
duced dual norms, for variants of the thermal block model reduction benchmark.
This comparison is conducted via a new meta-measure for model reducibility
called MORscore.

1 Introduction
Model reduction research has made great strides in the past decades, spawning
ever new methods and variants for specific requirements. Yet, this plethora of
algorithms is not (or only very sparsely) evaluated against each other on common
benchmarks. Such comparisons would enable a faster transfer of mathematically
research to engineering and industrial applications.
In the following, prototypically, a comparison of empirical-Gramian-based meth-
ods is demonstrated for a standard benchmark system in a manner, which can
be automated, for example to test various variants of a method determining
the best suited for a problem. In the scope of this work, model reduction for
affine-parametric, generalized, linear time-invariant systems is considered:

Eẋ(t) = A(θ)x(t) +Bu(t),
y(t) = Cx(t),

(1)

which consist of an ordinary differential equation in x, with a non-singular
mass matrix E ∈ RN×N , an affinely decomposable parametric system matrix
A(θ) = A0 +

∑P
p=1 θpAp ∈ RN×N , so that E−1A(θ) is asymptotically stable for

all parameters θ ∈ RP , and an input matrix B ∈ RN×M , as well as a linear
output function defined by the output matrix C ∈ RQ×N .
In the following some fundamentals of projection-based model reductions are
assumed; for a background on this topic the reader is referred to the seminal
textbook [2].
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2 Empirical Gramians for Linear Systems
System Gramians are system-theoretic operators encoding the input-output sys-
tem properties of controllability and observability [32]. Empirical Gramians [34]
are generalizations of these system Gramians, which are based on quadrature,
and were introduced to apply linear, Gramian-based methods from linear sys-
tem theory to nonlinear systems, while incorporating nonlinear information and
avoiding (explicit) linearization. Since linear systems are a special case of nonlin-
ear systems, with, admittedly, a very simple “nonlinearity”, empirical Gramians
can also be computed for linear systems. Note that for linear systems, the em-
pirical Gramians correspond to the classic system Gramians up to numerical
error; this is shown in [34, 27]. The quality of the empirical Gramians depends
on simulated state and output trajectories for which the system is excited by
perturbed input or initial state. These perturbations are defined by scales (cm
and dq), which in this context are set to one, but in general should reflect the
operating region of the system. Following, we summarize the three fundamental
empirical system Gramians in the case of linear systems.

2.1 Empirical Controllability Gramian
The controllability Gramian quantifies the ability to drive a linear system to a
steady state in finite time via the input [33]. For linear systems, the controlla-
bility Gramian matrix is defined as WC :=

∫∞
0 eE−1AtE−1BBᵀE−ᵀ eAᵀE−ᵀt dt,

and classically computed as the (low-rank) solution to the Lyapunov equation
AWCE

ᵀ + EWCA
ᵀ = −BBᵀ. Based on the definition of WC , the empirical

controllability Gramian is given by:

ŴC :=
M∑
m=1

∫ ∞
0

xm(t)xm(t)ᵀdt,

with xm(t) being the solution of Eẋm(t) = Axm(t) + B(cmemδ(t)), suitable
scales cm ∈ R, and the m-th canonical standard base vector em ∈ RM .

2.2 Empirical Observability Gramian
The observability Gramian matrix describes the ability to determine the state
of linear system via the output in finite time [33]. For linear systems, the
observability Gramian matrix is defined as WO :=

∫∞
0 eAᵀE−ᵀt CᵀC eE−1At dt,

and is classically computed as the (low-rank) solution to the Lyapunov equation
AᵀWOE+EᵀWOA = −CᵀC. Based on the definition ofWO, the (linear) empir-
ical observability Gramian (via the dual system’s controllability Gramian [56])
is given by:

ŴO :=
Q∑
q=1

∫ ∞
0

zq(t)zq(t)ᵀdt,

with zq(t) being the solution of Eᵀżq(t) = Aᵀzq(t) + Cᵀ(dqeqδ(t)), suitable
scales dq ∈ R, and the q-th canonical standard base vector eq ∈ RN .
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2.3 Empirical Cross Gramian
The cross Gramian matrix combines controllability and observability informa-
tion and hence delineates the minimality of a linear system [17]. For square
linear systems (featuring the same number of inputs and outputs), the cross
Gramian matrix WX is defined as WX :=

∫∞
0 eE−1AtE−1BC eE−1At dt, and

classically computed as the (low-rank) solution of the Sylvester equation
AWXE + EWXA = −BC. Based on the definition of WX , the (linear) em-
pirical cross Gramian [6] is given by:

ŴX :=
M∑
m=1

∫ ∞
0

xm(t)zm(t)ᵀdt,

with xm(t) being the solution of Eẋm(t) = Axm(t) + B(cmemδ(t)), zm(t) be-
ing the solution of Eᵀżm(t) = Aᵀzm(t) + Cᵀ(dmemδ(t)), suitable scales cm,
dm ∈ R, and the m-th canonical standard base vector em ∈ RM .
For non-square systems, the non-symmetric cross GramianWZ , the cross Gramian
of the average system (A, B̄ =

∑M
m=1B∗,m, C̄ =

∑Q
q=1 Cq,∗, E), is proposed in

[29]. The linear empirical non-symmetric cross Gramian is given by:

ŴZ :=
M∑
m=1

Q∑
q=1

∫ ∞
0

xm(t)zq(t)ᵀdt,

with xm(t) being the solution of Eẋm(t) = Axm(t) + B̄(cmemδ(t)), zm(t) being
the solution of Eᵀżq(t) = Aᵀzq(t) + C̄ᵀ(dqεqδ(t)), suitable scales cm, dq ∈ R,
and the m-th, q-th canonical standard base vectors em ∈ RM , εq ∈ RQ.

2.4 Parametric Empirical Gramians
Empirical Gramians may also be applied to parametric systems. Here, the ap-
proach from [28] is utilized, which follows the general principle behind empirical
Gramians: averaging over an operating region. Hence, given a pre-selected sam-
pling from parameter-space Θh, an average (controllability, observability, cross,
or non-symmetric cross) Gramian is computable [6]:

W ∗(Θh) :=
∑
θ∈Θh

W∗(θ).

For low-dimensional parameter-spaces, this could be some uniform grid in a
region of interest; for higher dimensional parameter-spaces, sparse grids can be
utilized [5].
Even though this averaging process can lead to annihilation, it can be justified
by the related accumulation process, typically used, i.e., in (balanced) proper
orthogonal decomposition (POD) model reduction [56], which (compresses and)
concatenates trajectories before assembling a Gramian matrix. So, given two
discrete trajectory matrices X1 and X2, which are first concatenated and then
a Gramian matrix is formed, as for the abstract computation of a POD,[

X1 X2
] [
X1 X2

]ᵀ = X1X
ᵀ
1 +X2X

ᵀ
2 ,

this is mathematically (but not numerically due to annihilation) equivalent to
the sum of the individual trajectory Gramians.

3
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3 Empirical-Gramian-Based Model Reduction
Following, five empirical-Gramian-based model reduction methods are summa-
rized, of which either can be computed via the empirical controllability and
observability Gramians {WC ,WO}, or via the empirical cross Gramian WX

(empirical non-symmetric cross Gramian WZ for non-square systems).
The considered empirical-Gramian-based model reduction methods are exclu-
sively projection-based approaches, meaning from the empirical system Gramian
matrices “projection” matrices are obtained – a reducing projection V and a re-
constructing projection U , both of column-rank n:

U ∈ RN×n, V ∈ Rn×N ,

which appropriately applied to the system (1) yield a reduced order system:

(V EU) ˙̃x(t) =
(
(V A0U) +

P∑
p=1

θp(V ApU)
)
x̃(t) + (V B)u(t),

ỹ(t) = (CU)x̃(t),

or in a more compact form, as the reduced system matrices can be precomputed:

Ẽ ˙̃x(t) = Ã(θ)x̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t).

An orthogonal projection U = V ᵀ, V U = I is called (Bubnov-)Galerkin pro-
jection, a bi-orthogonal projection U 6= V ᵀ, V U = I is called Petrov-Galerkin
projection, and a projection U 6= V , V U 6= I is just called oblique projection.
In the following, only the features of the considered model reduction techniques
are briefly summarized, for a description and algorithm of these methods consult
the referenced works in the respective subsections. Note, that even though error
bounds and error indicators are mentioned below for each method, the purpose
of this work is the heuristic comparison of methods against each other.

3.1 Empirical Poor Man
The Poor Man’s Truncated Balanced Realization (PM) from [43] just utilizes
either the (empirical) controllability Gramian, or the (empirical) observability
Gramian, and uses the Gramian’s dominant singular vectors as Galerkin pro-
jection. Using the controllability Gramian in this fashion is equivalent to the
proper orthogonal decomposition (POD), using the observability Gramian is
equivalent to the adjoint proper orthogonal decomposition [11] (aPOD).
Being a Galerkin projection, this method is stability preserving in the reduced
order model if the system is dissipative. As an error indicator, typically the
normalized sum of kept singular values is used as well as projection error of the
data [40], which quantifies the reduced model’s preserved energy in relation to
the full model.

4
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3.2 Empirical Approximate Balancing
Approximate balancing (AB) is a technique suggested in [44, M3], which uses
the left and right singular vectors from a truncated SVD of the cross Gramian as
oblique projection, yet, without the bi-orthogonality of the Petrov-Galerkin pro-
jections, but orthogonality of the reducing and reconstructing projections with
respect to themselves. This method is based on the approximate balancing
method from [51], but omits the eigenvector approximation. The counterpart
variant based on controllability and observability Gramians is known as mod-
ified proper orthogonal decomposition [40], which uses singular vectors from
truncated SVDs of WC and WO similarly as oblique projection. Even though,
this method is claimed to be “effective for non-normal systems” ([40, Sec. III.D]),
for either method no error bounds or stability guarantees are available, but as
indicated in [40, Fig. 8], an error indicator can be derived based upon the pro-
jection error. Due to the missing bi-orthogonality between the reducing and
reconstructing projections, it is paramount to apply the projections to the mass
matrix if E = I. Using empirical controllability, observability or cross Gramians
yields the empirical approximate balancing method.

3.3 Empirical Dominant Subspaces
The dominant subspaces (DS) method, constructs a Galerkin projection by com-
bining the dominant controllability and observability subspaces [41], obtained
from the respective (empirical) Gramians; while the variant based on the (em-
pirical) cross Gramian is introduced in [8]. The column-rank of the projection
is then determined by the conjoined and orthogonalized singular vectors of the
system Gramians, weighted by their associated singular values. As an orthogo-
nal projection, DS is stability preserving for dissipative systems. Furthermore,
a Hardy-2 error bound exists for the controllability and observability Gramian-
based DS [50] (in two variants), while a Lebesgue-2 error indicator is introduced
in [8] for the cross-Gramian-based DS. To obtain and conjoin the system Grami-
ans’ singular vectors, various algorithms are available, here, we use the truncated
SVDs and rank-revealing SVDs for this task.

3.4 Empirical Balanced Truncation
Balanced truncation (BT) first transforms the system into a coordinate system
in which controllability and observability are aligned, via a Petrov-Galerkin
projection, so the respective controllability and observability Gramians are di-
agonal and equal. The diagonal entries, the Hankel singular values (HSVs),
measure controllability and observability simultaneously, hence the sub-system
associated to the small HSVs is truncated. This method from [38] is the gold
standard of system-theoretic model reduction methods, due to, first, preserv-
ing stability in the reduced order model [42], and second, error bounds in the
Hardy-∞ norm [18, 14], Hardy-2 norm [51, 2] and Lebesgue-1 norm [35, 39].
To balance the Gramians {WC ,WO}, the balanced POD ansatz [56] is employed,
which corresponds to the square-root method [53], but using SVD-based square-
roots of the Gramians. Note that this does not lead to an exactly balanced
system [55, MR3]. For the WX (WZ) balanced truncation variant, the method
from [31] is used, which in turn is based on [46, 47].

5
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3.5 Empirical Balanced Gains
Balanced gains (BG) is a variant of balanced truncation, of which the simplified
variant from [13] is used here. In balanced gains, the system is balanced as
for balanced truncation, but instead of the Hankel singular values, or the sum
thereof, an alternate measure is utilized, based on an observation on the L2-
norm of the impulse response (of symmetric systems):

‖y‖22 = tr(CWCC
ᵀ) = tr(BᵀWOB) = tr(CWXB)

=
N∑
k=1

ĉᵀk ĉkσk =
N∑
k=1

b̂k b̂
ᵀ
kσk =

N∑
k=1
|b̂k ĉk|σk,

for the k-th row b̂k of the balanced input matrix B̂, and the k-th column ĉk of
the balanced output matrix Ĉ. Hence, the sequence of base vectors is given by
the magnitude of the quantity dk, instead of the HSVs σk:

dk := ĉᵀk ĉkσk = b̂k b̂
ᵀ
kσk = |b̂k ĉk|σk.

This means compared to balanced truncation, the same modes are used, but
in a different order. As the order of modes is not a requirement for stability
preservation in the reduced order model, it also holds for balanced gains [42,
Corollary 2]. Empirical balanced gains is then given by the (simplified) balanced
gains approach using empirical Gramians.

4 Approximate Norms
To comprehensively compare the reduced to the full order models, four signal
norms, four system norms, and two induced norms are applied. For an elaborate
discussion of these norms see [10, Ch. 5,6],[2, Ch. 5],[54, Ch. 2]. Due to numeri-
cal, efficiency or practical reasons, only approximate norms of the error system
are considered. Note, that the signal norms are computed from time-domain
trajectories, and the system (and modified induced) norms are approximated by
transformations of empirical Gramians, instead of frequency domain sampling.

4.1 Signal Norms
The signal norms are based on time-domain evaluations of the system output
y and the reduced system’s output ỹ, and are given as the Lebesgue norms of
the output error ‖y− ỹ‖. Practically, vector norms of vectorized discrete output
trajectories yh, ỹh (Q outputs × K time steps data matrices) are computed.

4.1.1 Approximate L0-“Norm”

The L0 signal “norm” describes the sparsity of a discrete-time signal [49], and
is approximated, based on [30], for an error signal by:

‖yh − ỹh‖L0 =
K∑
k=0

Q∑
q=1

∣∣ sgn
(
yh,q(k)− ỹh,q(k)

)∣∣ ≈ n

√√√√QK∏
`=1
| vec(yh − ỹh)`|.

Technically, this is not a norm, due to the lack of absolute scalability, but for
the intended purpose this function can be treated as a norm.

6
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4.1.2 Approximate Lebesgue L1-Norm

The Lebesgue L1-norm of a signal quantifies the action or consumption of a
process and its definition and approximation for an output error signal are
given by:

‖y − ỹ‖L1 =
∫ ∞

0
‖y(t)− ỹ(t)‖1dt ≈ ∆t ‖ vec(yh − ỹh)‖1;

in terms of the model reduction error it can also be seen as the area under the
error signal.

4.1.3 Approximate Lebesgue L2-Norm

The Lebesgue L2-norm of a signal measures its energy. Its definition and ap-
proximation for an output error signal are given by:

‖y − ỹ‖L2 =

√∫ ∞
0
‖y(t)− ỹ(t)‖22dt ≈

√
∆t ‖ vec(yh − ỹh)‖2,

which can be interpreted as the energy loss in the reduced order model. As all
methods tested in this work are energy-based, this norm is the canonical error
measure.

4.1.4 Approximate Lebesgue L∞-Norm

The Lebesgue L∞-norm of a signal determines its peak, with definition and
approximation of the error signal given by:

‖y − ỹ‖L∞ = sup
t
‖y(t)− ỹ(t)‖∞ ≈ ‖ vec(yh − ỹh)‖∞,

which yields the maximum error between the signals.

4.2 System Norms
The system norms characterize frequency-domain errors of the reduced sys-
tem’s output Gr(ω) := Cr(Erω − Ar)−1Br compared to the system output
G(ω) := C(Eω − A)−1B, for frequencies ω ∈ C, Re(ω) < 0, and are either
Hardy-norms and/or Schatten-norms of the Hankel operator H. These four
norms were selected based on [48, Sec. 2.2.7].

4.2.1 Approximate Hardy H2-Norm

The HardyH2-norm can be interpreted as the root-mean-square of the frequency
response to white noise, the L2-norm of the impulse response (thus also known
as impulse response norm), the maximum output amplitude for finite input, or
average gain. To approximate the H2-norm, the truncated balanced part of the
output operator and controllability Gramian are utilized [51, Remark 3.3]:

‖G−Gr‖H2 =

√∫
tr((G(ıω)−Gr(ıω))(G(ıω)−Gr(ıω))∗)dω ≈

√̂̄C2WZ,22
̂̄B2.

7
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4.2.2 Approximate Hardy H∞-Norm

The Hardy H∞-norm describes the worst-case frequency domain error, which
relates, via Parseval’s equation, to the maximum L2-gain, and thus to the time-
domain L2 error. Based on [18, Corollary 9.3], the H∞ error can be approxi-
mated by the balanced truncation error bound, which in turn is approximated
by the principal discarded Hankel singular value [23, Ch. 2.4]:

‖G−Gr‖H∞ = sup(σ1(G(ıω)−Gr(ıω))) ≈ 2
N∑

k=n+1
σk(H) ≈ 2(N − n)σn+1(H),

and is related to the nuclear norm (Schatten-1 norm) of the Hankel operator.
Alternatively, the H∞-norm could be approximated by the trace of the non-
symmetric cross Gramian ‖G−Gr‖H∞ ≈ − 1

2 tr(WZ,22) = −C̄2A
−1
22 B̄2 [36].

4.2.3 Approximate Hilbert-Schmidt-Hankel-Norm

The Hilbert-Schmidt-Hankel norm corresponds to the operator norm
(Schatten-2 norm) of the Hankel operator, and as for the H∞-norm, is ap-
proximated using only the principal discarded Hankel singular value:

‖G−Gr‖HSH =

√√√√ N∑
k=n+1

σ2
k(H) ≈

√
(N − n)σ2

n+1(H)

Scaled by a factor of π, the square-root of this norm yields the enclosed area of
the Nyquist plot [22].

4.2.4 Approximate Hankel-Norm

The Hankel norm is given by the principal discarded singular value of the Hankel
operator, which corresponds to the Schatten-∞ norm of the Hankel operator:

‖G−Gr‖Ha = σn+1(H).

This norm is the lower bound for the model reduction error as by the Adamjan-
Arov-Krein theorem [19, 20].

4.3 Modified Induced Norms
If the Hankel operator is used in its classic form, it maps from and to a function
space of squarely integrable functions, and the (previous) Hankel norm is its
induced norm. If one modifies the Hankel operator to allow for a function space
of just continuous functions as domain or range, the induced norms change as
follows [57]. Note, that for single-input-single-output systems, the following
norms coincide with the Hardy-2 norm.

4.3.1 Induced Primal Norm

Modifying the Hankel operator to the expanded domain of continuous functions,
the induced norm becomes the square-root of the input-observability Gramian’s
spectral radius:

‖H −Hr‖HC
=
√
λmax(Bᵀ

22WO,22B22).

8
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4.3.2 Induced Dual Norm

Modifying the Hankel operator to the expanded range of continuous functions,
is equivalent to expanding the dual system’s Hankel operator’s domain, thus the
induced norm becomes the square-root of the output-controllability Gramian’s
spectral radius:

‖H −Hr‖HO
=
√
λmax(C22WC,22C

ᵀ
22).

4.4 Parametric Norms
To obtain an error quantification for parametric systems, the previous norms
are extended with respect to the considered system’s parameter-space. Given
a (state-space) error norm ‖ · ‖X , the associated parametric state-space error
norm is given by the composition with a parameter-space norm ‖ · ‖Y . In [4]
(see also [7]), this composite state-parameter norms are defined via a norm as a
mapping ‖·‖X⊗Y : M×Θ→ R+, with the Cartesian product of output, response
or operator domain M and parameter domain Θ respectively. To approximate
these parametric norms, a sampling of the parameter-space Θh ⊂ Θ is drawn,
and given this finite, discrete parameter sample Θh an approximate norm is
computed. We follow [21], in evaluating the parametric X ⊗ L1, X ⊗ L2, and
X ⊗ L∞ norms:

‖y(θ)− ỹ(θ)‖X⊗L1 =
∫

Θ
‖y(θ)− ỹ(θ)‖Xdθ ≈

∑
θ∈Θh

‖y(θ)− ỹ(θ)‖X ,

‖y(θ)− ỹ(θ)‖X⊗L2 =

√∫
Θ
‖y(θ)− ỹ(θ)‖2Xdθ ≈

√∑
θ∈Θh

‖y(θ)− ỹ(θ)‖2X ,

‖y(θ)− ỹ(θ)‖X⊗L∞ = max
θ∈Θ
‖y(θ)− ỹ(θ)‖X ≈ max

θ∈Θh

‖y(θ)− ỹ(θ)‖X ,

for X being any of the signal, system or induced norms. To estimate the quality
of a parametric reduced order model fairly, it is a basic requirement to have
disjoint training and test parameter sets. Typically, this is implicitly ensured
by a (sparse) grid parameter sampling for the training and randomly drawn test
parameters from a suitable distribution.

5 MORscore
The comparison of model reduction errors for varying reduced orders, see for
example Fig. 1, is a useful vehicle to evaluate the performance of model reduction
techniques for a specific system in a certain norm. Yet, there are multiple
relevant features in these error graphs characterizing the associated model order
reduction algorithm, such as: lowest attained error or fastest error decay. Now, a
one-by-one comparison for multiple methods, in various norms is too tedious for
potentially many systems. A similar problem arises in comparing optimization
codes, which is managed by so-called relative minimization profiles (RMP) [12,
Sec. 5]. These RMPs standardize such comparisons in various measures, such
as best computed objective, and inspired the following scoring. To make many-
way model reduction comparisons feasible, a scalar score is introduced next,
summarizing a method’s features in a specific norm based on the error graph.

9
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Definition (MORscore)
Given an error graph (n, ε(n)) ∈ N>0 × (0, 1], relating a reduced order n to a
relative output error of a model reduction methodM for a system Σ in norm ‖·‖,
the normalized error graph (ϕn, ϕε(n)) is determined by the maximum reduced
order nmax ∈ N>0, and machine precision εmach ∈ (0, 1] ⊂ R via mappings:

ϕn : N>0 → [0, 1], n 7→ n

nmax
,

ϕε : (0, 1]→ [0, 1], ε 7→ log10(ε)
blog10(εmach)c ,

and the MORscore µ is defined as the area under this normalized error graph,

µ(nmax,εmach)(M,Σ, ‖ · ‖) := area(ϕn, ϕε).

By ϕn the discrete reduced orders 1, 2 . . . nmax are mapped to the real inter-
val [0, 1] by normalization. And by ϕε the relative model reduction error ε is
mapped to the real interval [0, 1], by normalizing the 10-base logarithm of the
error by the 10-base logarithm of the maximum accuracy εmach of the utilized
number system; i.e. double precision floating point numbers have an accuracy
of approximately εmach(dp) ≈ 10−16, so blog10(εmach(dp))c = −16. Practically,
the area is computed via the trapezoid rule1. Note, that the maximum tested
reduced order nmax should be (far) below the original model order, since the
error decay flattens at some reduced order. Hence, given a system of large order,
and two model reduction methods, both yielding their minimal error reduced
models at low orders, a MORscore up to the full order would show only little
difference. Selecting the largest reduced order which attains the minimal error
as nmax, the MORscore is a lot more meaningful.
Altogether, the MORscore is specified by the normalization, and describes the
model reduction performance of a method for a system in a norm by single
number, as typical for (desktop) computer performance benchmarks. A larger
MORscore µ ∈ (0, 1) means better model reduction performance, since the more
area covered, the faster and lower the error decay.
As opposed to the β-RMPs [12, Def. 5.2], no computational budget is prescribed
here, nonetheless, the MORscore could be extended in this manner by limited
computational time or even a prescribed nmax.

6 Benchmark Comparison
For a thorough comparison, the presented empirical-Gramian-based model re-
duction methods are tested in ten (approximate) norms for different configura-
tions of a benchmark system. In coordination with the model reduction software
projects: pyMOR [37], MORLAB [9], M.E.S.S [45], a thermal block benchmark
is tested. A summary of the components for this comparison is given below.

Methods
Each of the five methods summarized in Section 3, can be computed via the
empirical controllability and observability Gramians {WC ,WO}, or the empir-
ical (non-symmetric) linear cross Gramian WZ . Hence overall, ten empirical-
Gramian-based model reduction techniques are compared:

1https://www.mathworks.com/help/matlab/ref/trapz.html

10
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• Empirical Poor Man (PM), via WC or WO,

• Empirical Approximate Balancing (AB), via {WC ,WO} or WZ ,

• Empirical Dominant Subspaces (DS), via {WC ,WO} or WZ ,

• Empirical Balanced Truncation (BT), via {WC ,WO} or WZ ,

• Empirical Balanced Gains (BG), via {WC ,WO} or WZ .

Parameterization
In Section 6.2, a parametric benchmark with a four dimensional parameter-space
is tested. The benchmark is compared in three configurations:
• Non-Parametric (parameters treated as constants),

• Single Parameter (parameters treated as single parameter),

• Multiple Parameters (parameters treated separately).

Measures
The model reduction methods are compared via their MORscore for varying
reduced orders in the following norms from Section 4:
• Approximate Lebesgue L0-“norm”,

• Approximate Lebesgue L1-norm,

• Approximate Lebesgue L2-norm,

• Approximate Lebesgue L∞-norm,

• Approximate Hardy H2-norm,

• Approximate Hardy H∞-norm,

• Approximate Hilbert-Schmidt-Hankel-norm,

• Approximate Hankel-norm,

• Approximate modified induced primal norm,

• Approximate modified induced dual norm,
as well as the number of unstable ROMs up to the maximum order (denoted
by the symbol L). Lyapunov stability is assessed via the real-part of the largest
real eigenvalue of the pencil (Ẽ, Ã(θ)). In the parametric case, these counts are
averaged, similar to the considered norms, in an L1, L2 and L∞ sense over the
sampled parameters.

6.1 emgr – EMpirical GRamian Framework
All tested methods are based on empirical system Gramian matrices. To com-
pute these empirical Gramians for the subsequent numerical experiments, the
empirical Gramian framework emgr [24] is adopted, which has a unified interface
[26] for the empirical controllability, observability and (linear) cross Gramians.
Furthermore, the convergence of the empirical Gramians to the classic algebraic
Gramians for linear systems is shown in [23]. Practically, the current version
emgr 5.7 [25] is used.
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6.2 Thermal Block Benchmark
For the comparison of the empirical-Gramian-based model order reduction meth-
ods, a recurring benchmark example (due to the well reducible diffusion process),
modeling the heat equation on the unit-square [52, Thermal Block] is utilized.
This thermal block benchmark system models dynamic heating of a two-
dimensional, square domain Ω = (0, 1) × (0, 1) with four enclosed circular re-
gions ωi=1...4 of equal radius, one per quadrant, and each of individual para-
metric heat conductivity (diffusivity) κ(x). The left boundary of the domain
∂Ω1 := {0} × (0, 1) is the inflow, realized by a Neumann boundary condition,
the top and bottom boundaries ∂Ω2 := (0, 1)×{0}, ∂Ω4 := (0, 1)×{1} are insu-
lated, via zero Neumann conditions, while the right boundary ∂Ω3 := {1}×(0, 1)
prescribes Dirichlet-zero boundary conditions. Lastly, the four quantities of in-
terests Yi are the average temperature of each circle ωi. The overall partial
differential equation (PDE) system is thus given by:

∂tu(x, t) = −κ(x)∆xu(x, t), x ∈ Ω,
∂xu(x, t) = F (x, t), x ∈ ∂Ω1,

∂xu(x, t) = 0, x ∈ ∂Ω2 ∪ ∂Ω4,

u(x, t) = 0, x ∈ ∂Ω3,

Yi(t) = ∫
ωi

u(x, t)dx,

κ(x) =
{
θi x ∈ ωi, i = 1 . . . 4,
θ0 otherwise.

This PDE is discretized in space using the finite element method (FEM), via the
FEniCs software package [1], yielding an ordinary differential equation system
of the form (1). The resulting linear input-output system has one input and four
outputs, while the state-space has dimension 7488, and the parameter-space is
four-dimensional, with θi=1...4 ∈ [1, 10] ⊂ R as in [3], while the background
diffusivity constant is set to θ0 = 1. For more a detailed description of this
benchmark, and the software stack used for its creation, see also Chapter (TBD).

6.3 Numerical Results
In the following, three variants of the thermal block benchmark are tested:

1. No parameter: 1
5θ1 = 2

5θ2 = 3
5θ3 = 4

5θ4 ≡
√

10,

2. One parameter: 1
5θ1 = 2

5θ2 = 3
5θ3 = 4

5θ4 ∈ [1, 10],

3. Four parameters: θ ∈ [1, 10]4.

For the parametric variants, the (3 · dim(θ)) training samples of the parameter-
space are taken from a logarithmically uniform grid, whereas (ten) test samples
are drawn randomly from a logarithmically uniform distribution over the pa-
rameter range. The empirical Gramians are build from trajectories excited by
impulses, while the ROMs are tested by random input. The decompositions for
the empirical-Gramian-based model reduction methods are approximated up to
rank one-hundred. Practically, the following numerical results are conducted
using MATLAB 2019b on an Intel(R) Core(TM) i3-7130U CPU @ 2.70GHz
with 8GB RAM.
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Figure 1: Relative error of reduced order models in the L2-norm compared to
the full order model for varying reduced orders.

6.3.1 Fixed Parameter

In the first set of numerical experiments, the thermal block benchmark is tested
with a single fixed parameter. Exemplary in Figure 1, the model reduction er-
ror in the approximate L2-norm for the ten considered methods are compared
for reduced models of orders one to fifty. This figure illustrates how complex a
visualization already in a single norm is. The proposed MORscores are listed
in Table 1, which is similarly not directly decipherable by a human observer,
yet, algorithmically it can be processed. In the approximate signal norms the
maximum MORscores are achieved by the DS(WC ,WO), closely followed by
BG(WC ,WO). Notably the BT variants used are not in lead, which in this case
is related to many unstable reduced order models, originating in the low-rank
approximation of the Gramians and using an SVD-based square-root method
for balancing, nullifying the stability-preservation of the original balanced trun-
cation method. While the Galerkin methods do not produce unstable ROMs,
all Petrov-Galerkin methods produce at least 21 unstable ROMs. The H2-norm
is lead by the PM(WC) method, whereas the H∞, Ha and HSH norms are
headed by DS(WC ,WO), closely followed by PM(WC). Finally, in modified in-
duced norms HC and HO, PM(WC) and PM(WO) perform best respectively.
Overall for this benchmark, the methods using WC and/or WO outperformed
methods using WZ , likely due to the non-square system, which requires addi-
tional averaging in the non-symmetric cross Gramian.
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L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L

PM(WC) 0.42 0.42 0.41 0.39 0.63 0.49 0.51 0.52 0.54 0.06 0
PM(WO) 0.29 0.29 0.29 0.28 0.10 0.38 0.38 0.38 0.10 0.45 0
AB(WC ,WO) 0.33 0.33 0.32 0.30 0.46 0.03 0.04 0.04 0.44 0.39 37
AB(WX) 0.08 0.08 0.08 0.08 0.35 0.02 0.02 0.02 0.35 0.04 38
DS(WC ,WO) 0.45 0.45 0.44 0.43 0.32 0.51 0.52 0.52 0.29 0.25 0
DS(WX) 0.39 0.38 0.38 0.36 0.34 0.39 0.39 0.39 0.34 0.08 0
BT(WC ,WO) 0.38 0.38 0.37 0.35 0.43 0.36 0.36 0.36 0.43 0.18 25
BT(WX) 0.41 0.40 0.39 0.38 0.28 0.30 0.30 0.30 0.28 0.08 21
BG(WC ,WO) 0.43 0.43 0.42 0.41 0.42 0.35 0.35 0.35 0.42 0.17 25
BG(WX) 0.36 0.35 0.34 0.32 0.28 0.30 0.30 0.30 0.28 0.08 37

Table 1: MORscores(50,εmach(DP )) for the non-parametric benchmark .

6.3.2 Single Parameter

The MORscores for the single parameter benchmark are given in Table 2 (L1),
Table 3 (L2) and Table 4 (L∞). Generally, all methods perform worse compared
to the non-parametric benchmark, since the averaging of empirical Gramians
over parameter samples decreases specific accuracy while increasing general ap-
plicability. The signal norms are lead by BT(WC ,WO) and directly followed
by BG(WC ,WO), PM(WC), DS(WC ,WO), and DS(WX). In the H2 and HC
norms, the methods BT(WC ,WO), PM(WC), and AB(WC ,WO) are in the lead,
while in the system norms H∞, HSH, Ha the PM(WC) heads the MORscores.
The HO norm is topped by PM(WO) and AB(WC ,WO) methods. Balanced
gains (BG) seem to work well for this benchmark, while approximate balancing
(AB) perform worst overall. As for the non-parametric benchmark, the Galerkin
methods consistently produce stable ROMs, and the Petrov-Galerkin methods
tend to assemble unstable ROMs.

6.3.3 Multiple Parameters

The MORscores for the multiple parameter benchmark are given in Table 5
(L1), Table 6 (L2) and Table 7 (L∞), and correspond overall to the single
parameter setting, yet, with again slightly lower scores. Curiously, balanced
gains performance drops more than balanced truncation.

6.3.4 MORscore Discussion

Summarizing, the presented MORscore tables can improve heuristic compar-
isons of model reduction methods. An automated evaluation could include fil-
tering extreme values per norm, as demonstrated in the previous evaluations,
or means per methods across norms. Specifically for the comparison of the
empirical-Gramian-based model reduction methods on the thermal block bench-
mark, the arithmetic means of MORscores across norms yields the PM(WC) and
DS(WC ,WO) methods as top scoring for the non-parametric benchmark, and the
PM(WC) = POD for the parametric benchmark variants, as in [6].
Beyond this sample comparison, the proposed MORscore could find applica-
tion in model reduction software development signaling regressions, or defining
highscore boards of competing methods for benchmark problems.
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7 Conclusion
This work should be considered an exemplary quantitative comparison using
MORscores, and by no means exhaustive comparison. Specifically, other rele-
vant (empirical) Gramian-based methods not tested here are (empirical) singular
perturbation approximation [16], and (empirical) Hankel norm approximation
[15], yet both methods are not purely projection based, but require a numeri-
cally potentially expensive post-processing of a balanced realization. Also, the
empirical Gramians have various variants [24] that could be tested, as well as
different balancing algorithms [55]. Nevertheless, this work can serve as a tem-
plate for benchmarking model reduction methods by their MORscore.

Code Availability Section
The source code of the presented numerical examples can be obtained from:

http://runmycode.org/companion/view/3760

and is authored by: Christian Himpe.
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L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC) 0.26 0.25 0.25 0.23 0.37 0.42 0.44 0.44 0.37 0.07 0
PM(WO) 0.18 0.18 0.18 0.17 0.10 0.23 0.24 0.24 0.10 0.18 0
AB(WC ,WO) 0.15 0.15 0.14 0.14 0.35 0.03 0.04 0.04 0.36 0.18 37.5
AB(WX) 0.06 0.06 0.06 0.06 0.24 0.02 0.02 0.02 0.23 0.05 38.1
DS(WC ,WO) 0.24 0.23 0.23 0.22 0.19 0.30 0.31 0.32 0.19 0.15 0
DS(WX) 0.24 0.23 0.23 0.22 0.24 0.29 0.29 0.30 0.24 0.07 0
BT(WC ,WO) 0.25 0.25 0.24 0.24 0.38 0.28 0.28 0.28 0.36 0.14 14.8
BT(WX) 0.18 0.18 0.18 0.17 0.20 0.19 0.19 0.19 0.20 0.10 33.2
BG(WC ,WO) 0.26 0.26 0.26 0.25 0.34 0.23 0.23 0.23 0.33 0.12 18.5
BG(WX) 0.12 0.12 0.12 0.11 0.19 0.18 0.18 0.18 0.19 0.08 34.2

Table 2: MORscores(50,εmach(DP )) for the single parameter benchmark (L1).

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC) 0.22 0.22 0.22 0.20 0.34 0.39 0.40 0.41 0.34 0.04 0
PM(WO) 0.15 0.15 0.15 0.14 0.07 0.20 0.21 0.21 0.07 0.15 0
AB(WC ,WO) 0.11 0.11 0.10 0.10 0.32 0.00 0.01 0.01 0.33 0.15 118.66
AB(WX) 0.03 0.03 0.03 0.02 0.21 0.00 0.00 0.00 0.20 0.02 120.56
DS(WC ,WO) 0.20 0.20 0.20 0.19 0.16 0.27 0.28 0.29 0.16 0.12 0
DS(WX) 0.20 0.20 0.20 0.19 0.21 0.26 0.26 0.27 0.21 0.04 0
BT(WC ,WO) 0.21 0.21 0.21 0.20 0.35 0.25 0.25 0.25 0.33 0.10 47.03
BT(WX) 0.14 0.14 0.14 0.13 0.17 0.16 0.16 0.16 0.17 0.07 105.00
BG(WC ,WO) 0.23 0.22 0.22 0.21 0.30 0.20 0.20 0.20 0.30 0.09 58.52
BG(WX) 0.09 0.09 0.08 0.08 0.16 0.15 0.15 0.15 0.16 0.05 108.16

Table 3: MORscores(50,εmach(DP )) for the single parameter benchmark (L2).

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC) 0.24 0.23 0.23 0.21 0.37 0.42 0.44 0.44 0.37 0.07 0
PM(WO) 0.17 0.17 0.17 0.16 0.10 0.23 0.24 0.24 0.10 0.18 0
AB(WC ,WO) 0.12 0.12 0.12 0.11 0.35 0.03 0.04 0.04 0.36 0.18 40
AB(WX) 0.05 0.05 0.05 0.05 0.24 0.02 0.02 0.02 0.23 0.05 41
DS(WC ,WO) 0.22 0.22 0.21 0.20 0.19 0.30 0.31 0.32 0.19 0.15 0
DS(WX) 0.22 0.22 0.22 0.21 0.24 0.29 0.29 0.30 0.24 0.07 0
BT(WC ,WO) 0.23 0.23 0.22 0.21 0.38 0.28 0.28 0.28 0.36 0.14 17
BT(WX) 0.16 0.16 0.16 0.14 0.20 0.19 0.19 0.19 0.20 0.10 34
BG(WC ,WO) 0.24 0.24 0.24 0.23 0.34 0.23 0.23 0.23 0.33 0.12 19
BG(WX) 0.10 0.10 0.10 0.09 0.19 0.18 0.18 0.18 0.19 0.08 35

Table 4: MORscores(50,εmach(DP )) for the single parameter benchmark (L∞).
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L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L

PM(WC) 0.24 0.23 0.23 0.22 0.30 0.33 0.34 0.35 0.29 0.08 0
PM(WO) 0.18 0.17 0.17 0.16 0.10 0.24 0.24 0.24 0.10 0.18 0
AB(WC ,WO) 0.12 0.12 0.11 0.11 0.31 0.03 0.04 0.04 0.29 0.18 43.4
AB(WX) 0.09 0.08 0.08 0.08 0.18 0.02 0.02 0.02 0.18 0.07 33.0
DS(WC ,WO) 0.21 0.21 0.20 0.19 0.20 0.30 0.32 0.33 0.20 0.16 0
DS(WX) 0.19 0.19 0.19 0.18 0.20 0.24 0.25 0.25 0.21 0.09 0
BT(WC ,WO) 0.24 0.24 0.24 0.23 0.30 0.22 0.22 0.22 0.30 0.20 5.1
BT(WX) 0.08 0.08 0.08 0.07 0.15 0.14 0.14 0.14 0.15 0.11 29.8
BG(WC ,WO) 0.20 0.20 0.20 0.19 0.27 0.19 0.19 0.19 0.27 0.18 7.6
BG(WX) 0.05 0.05 0.05 0.05 0.13 0.12 0.12 0.12 0.13 0.11 36.7

Table 5: MORscores(50,εmach(DP )) for the multi parameter benchmark (L1).

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC) 0.20 0.20 0.19 0.19 0.27 0.30 0.31 0.32 0.26 0.05 0
PM(WO) 0.14 0.14 0.14 0.13 0.07 0.21 0.21 0.21 0.07 0.15 0
AB(WC ,WO) 0.08 0.08 0.07 0.07 0.28 0.00 0.01 0.01 0.25 0.15 137.59
AB(WX) 0.04 0.04 0.04 0.04 0.15 0.00 0.00 0.00 0.15 0.04 104.58
DS(WC ,WO) 0.18 0.17 0.17 0.16 0.17 0.27 0.29 0.30 0.17 0.13 0
DS(WX) 0.16 0.15 0.15 0.15 0.17 0.21 0.22 0.22 0.18 0.05 0
BT(WC ,WO) 0.20 0.20 0.20 0.19 0.27 0.19 0.19 0.19 0.27 0.17 16.76
BT(WX) 0.04 0.04 0.04 0.03 0.12 0.11 0.11 0.11 0.12 0.08 94.24
BG(WC ,WO) 0.17 0.16 0.16 0.15 0.24 0.16 0.16 0.16 0.24 0.15 25.18
BG(WX) 0.01 0.01 0.01 0.01 0.10 0.08 0.09 0.09 0.10 0.08 116.19

Table 6: MORscores(50,εmach(DP )) for the multi parameter benchmark (L2).

L0 L1 L2 L∞ H2 H∞ HSH Ha HC HO L
PM(WC) 0.21 0.21 0.21 0.20 0.30 0.33 0.34 0.35 0.29 0.08 0
PM(WO) 0.16 0.16 0.16 0.15 0.10 0.24 0.24 0.24 0.10 0.18 0
AB(WC ,WO) 0.09 0.09 0.09 0.09 0.31 0.03 0.04 0.04 0.29 0.18 47
AB(WX) 0.06 0.06 0.06 0.05 0.18 0.02 0.02 0.02 0.18 0.07 36
DS(WC ,WO) 0.19 0.19 0.19 0.18 0.20 0.30 0.32 0.33 0.20 0.16 0
DS(WX) 0.17 0.17 0.17 0.16 0.20 0.24 0.25 0.25 0.21 0.09 0
BT(WC ,WO) 0.22 0.21 0.21 0.20 0.30 0.22 0.22 0.22 0.30 0.20 9
BT(WX) 0.05 0.05 0.05 0.05 0.15 0.14 0.14 0.14 0.15 0.11 30
BG(WC ,WO) 0.18 0.18 0.17 0.17 0.27 0.19 0.19 0.19 0.27 0.18 11
BG(WX) 0.02 0.02 0.02 0.02 0.13 0.12 0.12 0.12 0.13 0.11 39

Table 7: MORscores(50,εmach(DP )) for the multi parameter benchmark (L∞).
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