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Abstract  

Biological markers of risk taking are prominent targets for clinical, developmental, 

and longitudinal research. With respect to brain function, several regions are considered 

central for risky choice, yet insights into the neural basis of risk taking stem primarily from 

studies using single measures. Considering that recent studies suggested different risk-taking 

measures cannot be used interchangeably, it is currently unclear whether core regions of the 

brain involved in risk show a measure-dependent functional dissociation. Reporting results 

from the imaging subsample (N = 116 young adults) of the Basel–Berlin Risk Study, we 

examine (1) the conjunction of average neural representations of experience-based risky 

choice in the Balloon Analogue Risk Task and description-based risky choice in monetary 

gambles, (2) the preservation of individual activation differences across the two measures, 

and (3) the explanatory power of the neural correlates of risky choice for behavior. Our results 

suggest common group-level activation increases in nucleus accumbens, inconsistent 

individual differences in regional activation across measures, and limited explanatory power 

of neural indices for behavior, within and across measures. Our findings help clarify 

commonalities and differences between the neural representation of experienced and 

described risk, and thus should inform research designs targeting individual differences in risk 

taking.  
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Introduction  

Risk preference—whether in the economic sense of preferring high-variance monetary 

options over more certain ones or, more commonly, preferring options involving uncertain but 

potentially sizeable negative consequences (Schonberg et al., 2011)—impacts decisions 

across various life domains, including health, wealth, and criminality (Moffitt et al., 2011; 

Steinberg, 2013). Past literature offers numerous behavioral measures of risk preference 

(Appelt et al., 2011; Dohmen et al., 2011), yet recent research suggests these may provide 

different pictures of individuals’ appetite for risk as a function of the different cognitive 

processes they exploit (Mata et al., 2011; Defoe et al., 2015; Mamerow et al., 2016; van den 

Bos and Hertwig, 2017; Frey et al., 2017; Pedroni et al., 2017).  

One factor contributing to the divergence of behavioral measures resides in how 

individuals come to know about risk-relevant information: Description- and experience-based 

measures—henceforth referred to as described risk and experienced risk, respectively—share 

central characteristics of decision making under risk (e.g., processing of outcome magnitudes, 

probabilities and their integration into a subjective value signal informing choice), yet differ 

with regard to the (coincidental or necessary) involvement of additional cognitive processes, 

including affect, memory, and learning (Pleskac, 2008; Figner et al., 2009; Hertwig and Erev, 

2009; Mata et al., 2011; van Ravenzwaaij et al., 2011). Indeed, experienced risk measures 

have been proposed to be more ecologically valid because they elicit stronger affective 

responses as a product of their sequential nature (Schonberg et al., 2011). Perhaps 

unsurprisingly, described and experienced risk have been found to elicit different choices, 

leading to different average and individual risk profiles (Mata et al., 2011; Mamerow et al., 

2016).  

Both described and experienced risk have been used to understand the neural basis of 

risk preference (Rao et al., 2008; Mohr et al., 2010; Schonberg et al., 2012; Wu et al., 2012; 

Bartra et al., 2013), yet very few studies have directly compared the two (Pletzer and Ortner, 
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2016; Blankenstein et al., 2018). Instead, much of our understanding of the neural correlates 

of risk preference comes from average activation profiles elicited from different measures in 

between-participant designs. Across such studies, three neural regions have been identified as 

belonging to a “risk matrix”, differentially promoting (nucleus accumbens in ventral 

striatum), inhibiting (insular cortex), and controlling (anterior cingulate cortex) risky choice 

(Knutson and Huettel, 2015). However, given the average nature of these results, “risk 

matrix” regions could present the union of commonly observed risk-related activation 

patterns, rather than an intersection of all involved regions. But to what extent do different 

measures of risk preference rely on the same cognitive and neural components? And how are 

these related to individual differences in risky choice? In the current study, we set out to 

examine the overlap of neural activation differences in “risk matrix” regions for experienced 

and described risk.  

To understand whether different measures elicit common neural responses, it is crucial to 

look beyond average (i.e., group-level) activation differences and probe whether activation 

differences converge between measures at the level of the individual. Owing to the often 

neglected lack of a match between group-level (i.e., average) and individual-level effects 

(Blanco et al., 2011; Bornstein et al., 2017), any observed commonality of average neural 

function in response to described and experienced risk does not necessarily indicate 

individual-level consistency (Fliessbach et al., 2010). Furthermore, regional activation 

differences do not necessarily reflect useful, reliable predictors of observed behavior 

(Poldrack et al., 2018), making it important to evaluate which neural indices of individual 

differences in described and experienced risk are predictive of choice, within and across 

measures.  

In sum, several neural regions have been proposed as core correlates of risk preference 

(Knutson and Huettel, 2015), yet it is unclear whether repeated-measures designs of neural 

activation differences for measures of experienced and described risk result in consistent 
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neural activation, at group and individual level, and the extent to which neural indices 

obtained from such measures can account for behavior. This, however, is crucial for our 

understanding of individual differences in risk preference, especially where neural indices 

inform studies investigating associated developmental trajectories (Moffitt et al., 2011; 

Braams et al., 2015) or clinical outcomes (Büchel et al., 2017). To tackle these issues, the 

current study uses task-dependent neural functional data from the imaging subsample of the 

Basel–Berlin Risk Study (Frey et al., 2017) in order to examine (1) whether experienced and 

described risk elicit common group-level activation differences in “risk matrix” regions (i.e., 

insula, nucleus accumbens, anterior cingulate cortex), (2) whether individual differences for 

activation in “risk matrix” regions are preserved (i.e., consistent) across the two measures, 

and (3) the explanatory power of neural indices from “risk matrix” regions for risky choice, 

within and across measures.  

Methods  

Participants 

We recruited an imaging subsample of 133 young adults from a pool of participants in 

the Basel–Berlin Risk Study, a large-scale study assessing individual differences, 

psychometric structure and biological underpinnings of risk preference (for an overview, see 

Frey et al., 2017 and https://osf.io/rce7g; Dutilh et al., 2017; Pedroni et al., 2017). Exclusion 

criteria for participation in the magnetic resonance imaging (MRI) session were safety-

limiting permanent implants, a history of neurological or psychiatric conditions, usage of 

psychoactive medication or substances, and receiving psychiatric treatment. After quality 

control and exclusions (see Supplementary Materials for details), the final sample included in 

all analyses comprised 116 participants (62 females, mean age at scan = 25.4 years, SD = 2.6 

years, range = 20.4–30.1 years).  

Ethical approval was obtained from the German Society for Psychology, and the 

ethics committee of the Center for Adaptive Rationality, Max Planck Institute for Human 
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Development; this study was conducted in accordance with the stipulated guidelines and 

regulations. 

Experimental measures and procedure 

Inside the scanner, participants completed two incentive-compatible risk-taking 

measures: the Balloon Analogue Risk Task (BART; Lejuez et al., 2002), and monetary 

gambles (Tom et al., 2007). These were chosen because they are commonly used, relatively 

simple measures, for which average neural activation profiles (Tom et al., 2007; Rao et al., 

2008; Schonberg et al., 2012; Barkley-Levenson et al., 2013) and individual differences have 

been extensively investigated (Tom et al., 2007; Canessa et al., 2013; Peper et al., 2013; 

Helfinstein et al., 2014; Braams et al., 2015). Importantly, both measures feature similar 

concepts including loss, reward, and risk. Yet, whereas these parameters are explicitly 

described for monetary gambles, some (in particular “risk”) must be learned from experience 

in the BART (Wallsten et al., 2005; Pleskac, 2008). As shown schematically in Figure 1A, the 

BART involves sequentially inflating a series of virtual balloons in the absence of a priori 

knowledge about the underlying contingencies. For monetary gambles, individuals make 

repeated choices between two options: a gamble offering a 50% chance of a gain and a 50% 

chance of a loss, or a sure outcome of zero (Figure 1B). The individual performance variables 

of interest were mean number of pumps for the BART, and proportion of accepted gambles 

for monetary gambles. For further details on the two neuroimaging measures, other measures 

collected, the experimental procedure, MRI data acquisition and image preprocessing, see 

Supplementary Materials.  

fMRI model specification 

At the individual level, we concatenated the two runs for each of the two risk-taking 

measures, and specified one general linear model (GLM) for the BART and one for monetary 

gambles. To target the neural representation of risky decisions in both measures, we 

operationalized risky decisions as the following events: the decision to Pump (on reward 
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balloons) in the BART, and to Accept a lottery in monetary gambles. Activation parameter 

estimates were obtained by convolving event onsets with a canonical hemodynamic response 

function, filtering out low-frequency components of the time-series data above 128 s 

(considered to be noise) and correcting for further temporal error autocorrelation by pre-

whitening the data using an AR(1) model (Henson, 2003). Movement parameters were 

entered as covariates.  

For our main contrasts of interest—risky versus safe decisions—we operationalized 

safe decisions as the decision to Cash out in the BART, and Reject a lottery in monetary 

gambles. For the BART, we contrasted decisions to Pump (on reward balloons) with 

decisions to Cash out. For monetary gambles, we contrasted decisions to Accept a lottery with 

decisions to Reject. Given the current focus on neural correlates of decision making under risk 

rather than correlates of anticipation or feedback-related processes, all analyses involved 

modeling the time from trial onset (i.e., display of stimulus) until choice (i.e., Pump/Cash out 

for BART or Accept/Reject for monetary gambles). At the group level, we specified a flexible 

factorial design with subject and measure as separate factors in order to obtain statistical 

parametric maps for mean activation patterns in the two measures and compute a conjunction. 

See Supplementary Materials for details. 

All contrast analyses of neuroimaging data were conducted at the level of the whole 

brain. Accounting for multiple comparisons, group-level and regression analyses were 

conducted using a family-wise error (FWE) cluster correction (p<.05), with a p<.001 

uncorrected voxel-wise (peak) threshold. We report the coordinates of local maxima in MNI 

space (mm). We obtained anatomical labels from the Neuromorphometrics Atlas in SPM8. 

Results are displayed on a customized study-specific group template, which we created by 

averaging all normalized structural volumes of all participants. 

Overview of statistical analyses 

Data and analysis scripts will be made available shortly via the Open Science 
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Framework; we will update the document and provide the link here.   

Behavioral data. To examine whether elicited risk taking in the BART and monetary 

gambles was successful with respect to mirroring behavioral patterns observed in the 

literature (Tom et al., 2007; Schonberg et al., 2012; Mamerow et al., 2016), we assessed 

aggregate and individual-level behavior under experienced and described risk via application 

of two mixed-effects regression analyses to individuals’ trial-by-trial performance in the 

BART and monetary gambles. For the BART, we assessed the effect of balloon capacity and 

having experienced an explosion on the last trial on risky choice (measured as the number of 

pumps on experimental balloons in a given trial). For monetary gambles, we assessed the 

effect of the magnitude of gains and losses on risky choice (measured as binary choice 

outcome Accept or Reject in a given trial). Both analyses controlled for the effects of age and 

gender on risky choice. See Supplementary Materials for details. 

Imaging data. We performed confirmatory analyses involving three “risk matrix” 

regions of interest (ROI) identified by previous work (Knutson and Huettel, 2015); the 

nucleus accumbens (NAcc), insula, and anterior cingulate cortex (ACC). For each person, we 

extracted the mean slope for activation differences between risky and safe decisions from the 

three ROIs, separately for BART and monetary gambles. All ROIs were derived from the 

Hammersmith atlas (www.brain-development.org). See Supplementary Materials for details. 

Additionally, we conducted some exploratory whole-brain analyses to ascertain local 

activation differences for experienced and described risk measures outside the “risk matrix” 

regions. When reporting the results, we declare exploratory analyses as such.  

Group-level conjunction of experienced and described risk. First, we examined 

group-level neural activations common to both measures as a function of risk (i.e., pumping 

relative to cashing out in the BART; accepting relative to rejecting an offer for monetary 

gambles), in particular to see the extent to which joint activation differences occur in NAcc, 

insula, and ACC. For this purpose, we conducted a whole-brain conjunction analysis of risky 
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versus safe decisions in the BART and monetary gambles following standard implementation 

routines in SPM. Specifically, we performed a conjunction analysis over two orthogonal 

contrasts that tested the conjunction null hypothesis rather than the global null hypothesis, 

allowing us to infer a conjunction of two effects (risky vs. safe in experienced and described 

risk) at significant voxels (Friston et al., 2005). We used visualizations of group maps for the 

BART and monetary gambles to establish whether average brain activity for contrasts of 

interest were comparable to published functional brain maps and whether our measures could 

capture typical neural reactions to risk (Tom et al., 2007; Rao et al., 2008; Schonberg et al., 

2012; Canessa et al., 2013).  

Individual-level consistency of neural activations in “risk matrix” regions for 

experienced and described risk. Second, we assessed whether individual differences in the 

neural representation of risky choice were consistent across the two measures. Recall that 

common activation in response to risk at group level is not necessarily synonymous with 

consistent individual differences: Even if the majority of individuals shows comparable 

patterns in each measure, this majority need not be made up of the same individuals. For this 

purpose, we extracted mean beta values from risky versus safe contrast images obtained for 

individual-level analyses of the BART (pumps vs. cash out) and monetary gambles (accept 

vs. reject) using “risk matrix” ROIs, and conducted correlational analyses between the neural 

indices of the two measures (brain–brain associations).  

Explanatory power of neural activations in “risk matrix” regions for risky choice. 

Third, we examined the explanatory power of experience- and description-based risk-related 

neural activation for risk-taking behavior, within and across measures. We conducted brain–

behavior associations focusing on the “risk matrix” ROIs, modeling whether individual 

differences in the neural response to risky versus safe decision making (1) in the BART were 

associated with mean number of pumps, (2) in monetary gambles were associated with 

proportion of accepted gambles, and (3) in the BART were associated with proportion of 
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accepted gambles in monetary gambles. Given the temporal order of the two measures, we did 

not test whether neural signal in monetary gambles accounted for BART behavior. We 

estimated brain–behavior associations by means of linear regression analyses with 

standardized variables and controlling for age and gender. This procedure yielded partial 

correlation coefficients for the association between measure-specific mean beta values 

extracted from the three ROIs and behavioral indices of risk preference in the BART (mean 

number of pumps) and in monetary gambles (proportion of accepted gambles). In addition, 

we ran exploratory whole-brain regression analyses to examine the explanatory power of 

activation differences outside “risk matrix” regions for behavior. For our analyses examining 

individual differences, we applied family-wise error correction based on four test families, 

and report which of the associations reach corrected significance thresholds. See 

Supplementary Materials for further details. 

To note, ROI-based brain–behavior associations have come under scrutiny for being 

based on non-independent indices (Poldrack and Mumford, 2009; Vul et al., 2009). For 

example, non-independence arises if (1) an ROI is defined as a result of analyses of the same 

data having identified this region as functionally relevant for a behavioral index, or (2) the 

events for which the neural index is computed are closely tied to the behavioral index (e.g., 

neural and behavioral index from the same measure). We argue that the ROI-based brain–

behavior associations computed in this study do not fall into either category. Recall that all 

our ROI analyses are based on structurally defined regions that were identified a priori as a 

result of independent research on the neural correlates of risk taking, and that our exploratory 

whole-brain regression analyses were computed after our focal ROI analyses. Furthermore, 

mean number of pumps and proportion of accepted gambles are widely used behavioral 

indices for risk taking, and within-measure brain–behavior associations may yield an upper 

bound for the explanatory power of localized brain activation. Importantly, regional activation 

differences may not be equally associated with behavior, hence we were interested in the 
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relative explanatory power of activity in a set of a priori regions, and the extent to which their 

relative contributions change as a function of the measure used.  

Results  

Behavioral results 

Table 1 contains group-based descriptive statistics for behavior in the two fMRI 

measures. The two outcome variables of interest - mean number of pumps (across reward 

balloons) for BART, and proportion of accepted gambles for monetary gambles - were 

approximately normally distributed (Figures 2A and 2B). 

Results from the mixed-effects modeling of the BART (Table 2) were in line with 

previous results (Schonberg et al., 2012; Mamerow et al., 2016), including main effects of 

gender (b = -0.16, SE = 0.08, p = 0.04) and previous explosion (b = -0.14, SE = 0.03, p < 

0.001). As expected, the mean number of pumps was lower for low-capacity (mean pumps = 

4.45, SD = 1.06) than high-capacity (mean pumps = 5.50, SD = 1.52) balloons (cf. Schonberg 

et al., 2012) but this difference did not translate into a significant main effect of balloon 

capacity (b = 0.03, SE = 0.06, p = 0.70). For monetary gambles, group-level acceptance rates 

for individual gambles (Figure 2C) were comparable with previous work (Tom et al., 2007). 

The results from the mixed-effects logistic regression model for monetary gambles yielded a 

main effect of age (b = -0.60, SE = 0.09, p < 0.001), gender (b = -0.37, SE = 0.19, p = 0.04), 

magnitude of gain (b = 0.39, SE = 0.02, p < 0.001) and loss (b = -0.84, SE = 0.03, p < 0.001) 

on individuals’ decisions to reject or accept a risky gamble (Table 3).  

Examination of risk preference across the two measures revealed a lack of consistency 

at the level of the individual because proportion accepted in monetary gambles was not 

significantly associated with mean number of pumps in the BART (r = -0.11, p = 0.24; Figure 

2D). The lack of behavioral consistency was not a result of combining the two runs to 

compute one behavioral index for each task, as risky choice was consistent over the two runs 

in monetary gambles (r = 0.86, p < 0.001) and the BART (r = 0.63, p < 0.001). 
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Neuroimaging results  

Let us emphasize that both in the BART and monetary gambles, group-level activation 

differences for risky versus safe decisions (Table 4, Figure 3A and 3B) were in line with 

previously reported results (Tom et al., 2007; Barkley-Levenson et al., 2013; Pletzer and 

Ortner, 2016). For further details, see Supplementary Materials. On this basis, we can now 

begin to analyze how group-level and individual-level activation converges or fails to 

converge across the two paradigms for measuring risk preference.  

Group-level conjunction of experienced and described risk. One of our main goals 

was to examine the overlap of neural activation differences in response to experienced and 

described risk, in particular the extent to which joint activity may be observed in the “risk 

matrix” regions NAcc, insula, and ACC (Knutson and Huettel, 2015). A conjunction analysis 

of activation differences in response to risky versus safe options in the BART and monetary 

gambles revealed a common locally restricted risk signal in a small portion of the ventral 

striatum, the NAcc (Table 4, Figure 3C). Taking a risk thus seems to elicit an average 

measure-invariant neural signal in NAcc, but not in insula or ACC. Next, we turn to 

individual-level analyses to investigate whether individual differences in the neural response 

to risk are preserved across the two measures, and to examine their explanatory power for 

risky choice. 

Individual-level consistency of neural activations in “risk matrix” regions for 

experienced and described risk. We examined the consistency of neural signal in the NAcc 

across measures to assess whether being a conjunction region for experience- and description-

based risk activation means that the NAcc is informative for individual differences. Contrary 

to what might be expected, mean activation in NAcc in the BART was not significantly 

predictive of NAcc activation in monetary gambles (r = -.07, p =.48; Table 5, Figure 4A). 

Thus, although at the level of the group the two measures converged on NAcc activity, 

individual differences were not preserved across measures. In other words, we found group- 
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but not individual-level consistency for experience- and description-based risk-taking 

(Bornstein et al., 2017).  

We also examined the consistency of the neural signal in the remaining “risk matrix” 

regions. Mean activation in insula and ACC in the BART was significantly predictive of 

activation differences in ACC and insula in monetary gambles, respectively; these 

associations, however, were negative (r = -.45 and r = -.46; p < .001) rather than the positive 

correlations required to suggest consistency (Table 5, Figure 4A). These associations 

remained significant after application of correction thresholds (FWE) for the number of tests.  

Explanatory power of neural activations in “risk matrix” regions for risky 

choice. We used ROI analyses to examine whether activation differences in response to risky 

choice in the BART were predictive of mean number of pumps, and whether activation 

differences in response to risky choice in monetary gambles were predictive of proportion of 

accepted gambles. For the BART, ROI analyses revealed no significant associations 

(correlation coefficients r between -.19 and .01) between risk-related activation differences 

and performance as measured by mean number of pumps (Table 5, Figure 4C). In contrast, for 

monetary gambles, ROI-analyses supported the involvement of “risk matrix” regions in 

predicting choice in monetary gambles. Specifically, mean activation in NAcc, insula and 

ACC extracted from Accept versus Reject decisions in monetary gambles was significantly 

negatively associated with the proportion of risky gambles accepted (-0.3 < r < -0.52, all p < 

0.001; Table 5, Figure 4B). The links between neural signal and behavior in monetary 

gambles remained significant after controlling (FWE) for the number of tests conducted.  

We were also interested in brain–behavior associations across measures, that is, 

whether activation differences in the BART were predictive of risky choice in monetary 

gambles. Using ROI-specific neural signal, mean activation in ACC in BART was 

significantly positively associated with the proportion of gambles accepted (r = 0.20, p = 
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0.01; Table 5; Figure 4D), suggesting that control and monitoring processes in the BART 

account for some variance in risky choice in monetary gambles.  

Exploratory whole-brain regression analyses (whole-brain corrected) did not reveal 

significant brain–behavior associations for the BART or across measures, but revealed a set of 

neural regions for which the neural signal in monetary gambles was significantly associated 

with the proportion of accepted gambles (see Supplementary Table S2). 

Discussion  

In this study we investigated group- and individual-level neural representations of risk 

for two prototypical measures—the BART and monetary gambles—to systematically 

understand which components of the neural response to risk are measure-(in)variant, and 

investigate the extent to which neural indices explain individual differences within and across 

measures.  

At group level, our conjunction results in NAcc support the notion of a measure-

invariant core neural signal of risky choice across experienced and described risk (Knutson 

and Huettel, 2015). The striatum in general has been implicated in reward processing 

(Preuschoff et al., 2006; Izuma et al., 2008); to the extent that risk-taking is driven by the 

motivation to achieve a reward (Ravert et al., 2018), striatal activation is a common neural 

correlate of risk taking (Tom et al., 2007; Schonberg et al., 2012; Knutson and Huettel, 2015). 

Note that an alternative explanation for a common NAcc signal for experienced and described 

risk is the proposed role of the ventral striatum in the coding of prediction error (Hare et al., 

2008). Unfortunately, the two measures do not allow us to disentangle these different choice-

relevant signals, leaving open the possibility that the main commonality between experience- 

and description-based risk taking may be comparison of the current option with the status 

quo.  

In turn, the observed group-level activation differences in insula for the BART, but 

not monetary gambles, support the argument that experienced risk involves potentially more 
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affective and motivational processes compared with described risk (Hertwig and Erev, 2009; 

Schonberg et al., 2011). Indeed, the insula is heavily implicated in signaling subjective 

feelings and explicit motivation (Namkung et al., 2017), and is thought to inhibit risky choice 

(Knutson and Huettel, 2015). In this study, the feedback involved in the BART, but not 

monetary gambles, may have involved additional motivational components and led to the 

observed neural dissociation in insula. One primary contribution of such results is to highlight 

that although there may be core regions associated with risk preference (Knutson and Huettel, 

2015), some may be more “core” than others, depending on the measure used. 

Concerning the issue of individual differences, past work has made clear that group 

averages are not necessarily reflective of individual-level behavioral (Blanco et al., 2011; 

Bornstein et al., 2017) or neural (Fliessbach et al., 2010) patterns. We examined whether 

individual differences in neural activation are preserved across two measures and documented 

a lack of consistency of individual differences in neural activation for risky versus safe 

decisions under experienced and described risk. Specifically, although, on aggregate, joint 

activation increases were localized in NAcc across the two measures, individual differences in 

NAcc activation were not preserved from BART to monetary gambles. Examination of 

further regions previously identified as core functional correlates of risk and risk preference 

(Knutson and Huettel, 2015), i.e., insula and ACC, also failed to yield consistent (i.e., 

positively correlated) individual differences across measures. Although the mechanisms 

underlying group-level convergence but individual-level divergence (Hedge et al., 2017) can 

be debated, the current results suggest that individuals respond very differently to different 

measures, both behaviorally (Frey et al., 2017) and neurally.  

A last major aim was to examine the explanatory power of “risk matrix” regions for 

risky choice. Our results revealed significant brain–behavior associations within-measure for 

monetary gambles, but not for the BART. As for individual-level neural effects, the measure-

dependent explanatory power arises as a likely consequence of the specific processes afforded 
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by experienced and described risk (Hertwig and Erev, 2009; Mata et al., 2011). In an 

experience-based, sequential decision-making measure such as the BART, activation 

differences in a single region are less likely to be highly correlated with choice because 

choice depends on many interconnected processes (Pleskac, 2008; van Ravenzwaaij et al., 

2011; Schonberg et al., 2011). In contrast, the simple nature of description-based monetary 

gambles lends itself very well to the use of a choice rule, which, at brain level, is evident in 

choice-relevant neural signal. Concerning the specific brain–behavior associations identified, 

the observed associations for ACC and insula were in the expected negative direction 

(Knutson and Huettel, 2015); the more affect-based inhibition and control-related processes 

are experienced, the lower the number of risky gambles that are accepted. Further, we found 

that individuals with an on average lower NAcc signal in response to risky choice accepted a 

higher proportion of gambles. Intuitively, one may expect the opposite; namely, that higher 

NAcc (i.e., reward) signal is positively associated with risky choice. It is possible that the 

observed negative association is a corollary of our payoff matrix not being calibrated to 

individuals, which may result in choice being less discerning for those who place a similar 

subjective value on all gambles. Future research could easily address this issue by calibrating 

payoff matrices, for instance via an adaptive willingness-to-pay measure. Across measures, 

we obtained a link between ACC activation in the BART and proportion of accepted gambles. 

Given that ACC activation in the BART was not related to performance in the BART, an out-

of-measure link for ACC seems surprising and could also be a sequence effect rather than a 

robust link between experienced and described risk. Thus, for now, we consider this 

association an informative starting point for further investigation. 

There are some limitations to our study. First, we adopted two prototypical risk-taking 

measures as examples of experienced and described risk, which limits generalization. Past 

research, however, suggests that other tasks do not fare much better regarding behavioral 

consistency (Sharma et al., 2014; Pletzer and Ortner, 2016; Frey et al., 2017; Pedroni et al., 
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2017), suggesting that other measures would probably not show more extensive convergence 

at group- and individual level. Nevertheless, implementing additional measures based on 

experienced (Bechara et al., 1994; Figner et al., 2008) and described risk (Holt and Laury, 

2002) could address further interesting questions, including whether the convergence of 

measures is overall higher for experienced or described risk (Frey et al., 2017) and within the 

respective classes of experienced versus described risk preference measures.   

Second, despite our best efforts to create contrasts targeting the neural risk component 

in the BART and monetary gambles, risk and reward may not be easily distinguishable 

because the two components coincided in both measures. This is a special limitation for 

contrast analyses that average activation differences over particular events (e.g., Pumps or 

Accept decisions). One way to disentangle risk from reward is to use parametric analyses that 

map activation to specific functional forms, such as increases in risk or reward. However, 

standard implementations of the BART, such as the one used here and elsewhere (Lejuez et 

al., 2002; Schonberg et al., 2012; Helfinstein et al., 2014; Braams et al., 2015), do not allow 

for the isolation of risk from reward signal even by using parametric analyses, because risk 

and reward increase linearly over a given trial. Thus, further task manipulations are required 

that can disentangle risk from reward in the BART, for example, by introducing different (less 

correlated) payoff and risk (i.e., probability of explosion) functions. However, it deserves to 

be pointed out that in many real-world domains payoff (reward) and risk (probability) are 

negatively correlated (Pleskac and Hertwig, 2014). 

Third, our design is prey to order effects because we opted for a fixed task order as 

randomization would have required splitting the sample into two groups based on order, thus 

reducing power. Note, however, that the overall level of observed risk taking in the BART 

and monetary gambles was comparable to previous independent investigations (Tom et al., 

2007; Schonberg et al., 2012), risky choice within a task was relatively consistent across the 

two runs, and correlations between risky choice in the BART and monetary gambles did not 
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change substantially as a function of run number, overall providing little evidence for order 

effects.  

We would like to put forward two recommendations that arise directly from our 

results. First, a tempting richness of risk preference measures exists, but, as our results show, 

measures should not be used interchangeably. Increased transparency in selection criteria will 

not only help researchers make more informed choices between different risk-taking measures 

for their studies, but will also push the research community towards establishing a taxonomy 

of measures and their core biological underpinnings. Secondly, we suggest that whenever 

feasible, researchers include multiple measures in their designs. This would enable direct 

comparison of measures and, perhaps more importantly, allow analysis of their shared and 

unique components, for example, through psychometric modeling (Frey et al., 2017; Harden 

et al., 2017; Poldrack et al., 2018).  

To conclude, many longitudinal, clinical and developmental research designs focus on 

risk preference as a critical predictor or outcome, and often aim to establish links between 

individual differences in risk preference and neural structure or function (Moffitt et al., 2011; 

Braams et al., 2015; Holmes et al., 2016; Büchel et al., 2017). Until recently, neuroimaging 

studies investigated primarily group-level neural representations of risk and paid less attention 

to individual differences or measurement convergence. To successfully target individual 

differences in risk taking and understand the biological underpinnings, a switch is required—

especially within neuroscience—from group-level to individual-level research (Foulkes and 

Blakemore, 2018; Rosenberg et al., 2018), and from single- to multi-measure research 

(Poldrack et al., 2018). If the ultimate aim is to help individuals navigate an uncertain, risk-

laden world and make better choices, we first need to navigate and map the mainly uncharted 

territory of our risk preference measures. 
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FIGURE LEGEND 

 

Figure 1. fMRI measures. A, BART. upper row, Example cash-out trial. lower row, Example 

explosion trial. B, Monetary gambles. upper row, Example “Reject” trial. lower row, 

Example “Accept” trial.  

Figure 2. Behavior in the two fMRI measures. A, Distribution of mean number of pumps in 

the BART, collapsed across all risky balloons. B, Distribution of proportion accepted trials in 

monetary gambles. C, Payoff matrix overlaid with heatmap showing the observed probability 

of gamble acceptance in monetary gambles. D, Association between risky choice in the 

BART and monetary gambles. 

Figure 3. Statistical parametric maps of activation differences obtained for risky versus safe 

decisions under experienced and described risk. A, BART, Pumps > Cash out (cluster-level 

FWE p<.05, k>100). B, Monetary gambles, Accept > Reject (cluster-level FWE p<.05, 

k>100). C, Conjunction of joint increased activation differences in response to risky versus 

safe decisions in the BART (Pumps > Cash out) and monetary gambles (Accept > Reject) 

(cluster-level FWE p<.05). Activation differences are displayed on a customized study-group 

structural template. Note: The right (left) side of the image corresponds to the right (left) side 

of the brain. 

Figure 4. Partial correlations (controlling for age and gender) between mean neural signal 

extracted from ROIs for the BART contrast (Pumps vs. Cash out), mean neural signal 

extracted from ROIs for monetary gambles contrast (Accept vs. Reject), mean number of 

pumps in the BART, and proportion accepted trials in monetary gambles. A, Association 

between regional neural signals across measures (brain–brain). B, Brain–behavior association 

BART. C, Brain–behavior association monetary gambles. D, Brain–behavior association 

across measures. Note: NAcc = nucleus accumbens; ACC = anterior cingulate cortex. All 
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variables were z-standardized prior to plotting and analysis. Intercepts and slopes were 

estimated using robust regression analyses. 
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Figure 1. fMRI measures. A, BART. upper row, Example cash-out trial. lower row, 

Example explosion trial. B, Monetary gambles. upper row, Example “Reject” trial. lower 

row, Example “Accept” trial.  
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Figure 2. Behavior in the two fMRI measures. A, Distribution of mean number of 

pumps in the BART, collapsed across all risky balloons. B, Distribution of proportion 

accepted trials in monetary gambles. C, Payoff matrix overlaid with heatmap showing the 

observed probability of gamble acceptance in monetary gambles. D, Association between 

risky choice in the BART and monetary gambles. 
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Figure 3. Statistical parametric maps of activation differences obtained for risky 

versus safe decisions under experienced and described risk. A, BART, Pumps > Cash out 

(cluster-level FWE p<.05, k>100). B, Monetary gambles, Accept > Reject (cluster-level FWE 

p<.05, k>100). C, Conjunction of joint increased activation differences in response to risky 

versus safe decisions in the BART (Pumps > Cash out) and monetary gambles (Accept > 

Reject) (cluster-level FWE p<.05). Activation differences are displayed on a customized 
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study-group structural template. Note: The right (left) side of the image corresponds to the 

right (left) side of the brain. 
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Figure 4. Partial correlations (controlling for age and gender) between mean neural 

signal extracted from ROIs for the BART contrast (Pumps vs. Cash out), mean neural signal 

extracted from ROIs for monetary gambles contrast (Accept vs. Reject), mean number of 

pumps in the BART, and proportion accepted trials in monetary gambles. A, Association 

between regional neural signals across measures (brain–brain). B, Brain–behavior association 
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BART. C, Brain–behavior association monetary gambles. D, Brain–behavior association 

across measures. Note: NAcc = nucleus accumbens; ACC = anterior cingulate cortex. All 

variables were z-standardized prior to plotting and analysis. Intercepts and slopes were 

estimated using robust regression analyses. 
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TABLE LEGEND  

 

Table 1. Descriptive statistics for outcome measures for the BART and monetary gambles. 

Table 2. Mixed effects linear regression model for trial-by-trial number of pumps in the 

BART. Age was entered as a continuous variable, sex (0=male, 1=female), capacity (0=12 

pumps max, 1=20 pumps max), and explosion on previous trial (0=no, 1=yes) were entered as 

dichotomous variables.  

Table 3. Mixed-effects logistic regression model for trial-by-trial decision making (0 = 

Reject, 1 = Accept) in monetary gambles. Age, gain, and absolute loss were entered as 

continuous variables, sex (0=male, 1=female was entered as a dichotomous variable.  

Table 4. Significant peak coordinates obtained from group-level contrast analyses for BART 

and monetary gambles. 

Table 5. Partial correlations (controlling for age and gender) between regional (ROI) neural 

and behavioral indices of risk preference, computed within and across measures. 
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Table 1. Descriptive statistics for outcome measures for the BART and monetary 

gambles. 

Outcome Mean (SD) Range 

BART   
Number of completed trials (including controls) 60.72 (6.23) 37–73 

Number of low-capacity balloons (max. 12) 20.12 (2.12) 12–25 
Number of high-capacity balloons (max. 20) 20.25 (2.20) 12–25 

Average pumps on low-capacity balloons (max. 12) 4.45 (1.06) 2.40–6.95 
Average pumps on high-capacity balloons (max. 20) 5.50 (1.52) 2.25–9.93 

Number of explosions experienced 15.81 (3.81) 6–24 
Reaction time pumps control (seconds) 0.62 (0.47) 0.002–15.25 

Reaction time pumps risky (seconds) 0.71 (0.53) 0.002–15.09 
Reaction time cash out (seconds) 0.90 (0.70) 0.27–11.59 

MONETARY GAMBLES   
Number of valid responses 142.67 (1.96) 133–144 

Proportion accepted gambles 0.47 (0.16) 0.13–0.92 
Reaction time Accept decisions (seconds) 1.31 (0.47) 0.46–2.98 

Reaction time Reject decisions (seconds) 1.30 (0.44) 0.07–2.99 
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Table 2. Mixed effects linear regression model for trial-by-trial number of pumps in 

the BART. Age was entered as a continuous variable, sex (0=male, 1=female), capacity (0=12 

pumps max, 1=20 pumps max), and explosion on previous trial (0=no, 1=yes) were entered as 

dichotomous variables.  

  
Estimate SE df t  p 

Intercept 0.16 0.07 136.63 2.44 0.02 
Age 0.02 0.04 111.26 0.38 0.70 
Sex -0.16 0.08 111.22 -2.07 0.04 
Capacity 0.03 0.06 113.21 0.49 0.63 
Explosion on previous trial -0.14 0.03 111.04 -4.19 < 0.001 
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Table 3. Mixed-effects logistic regression model for trial-by-trial decision making (0 

= Reject, 1 = Accept) in monetary gambles. Age, gain, and absolute loss were entered as 

continuous variables, sex (0=male, 1=female was entered as a dichotomous variable.  

 
 

Estimate SE z  p 
Intercept 0.52 0.15 3.55 < 0.001 
Age -0.59 0.09 -6.35 < 0.001 
Sex -0.37 0.19 -2.02 0.04 
Gain 0.39 0.02 25.73 < 0.001 
Loss (absolute) -0.84 0.03 -25.47 < 0.001 
 



 37 

 
Table 4. Significant peak coordinates obtained from group-level contrast analyses for 

BART and monetary gambles. 

  MNI (mm)    

Region R/L x y z T  k 

BART: Pumps > Cash out 

Supplementary motor cortex L -6 -2 60 11.07 2534 

Posterior cingulate gyrus R 24 -42 14 8.26 206 

Nucleus accumbens L -6 8 -4 7.84 106 

Nucleus accumbens R 8 8 -4 7.83 137 

Anterior insula L -30 26 4 7.45 177 

Anterior insula R 40 22 6 7.10 170 

Posterior cingulate gyrus L -14 -34 20 6.56 131 

BART: Cash out > Pumps 

Inferior occipital gyrus L -38 -76 -12 20.00 100274 

MONETARY GAMBLES: Accept > Reject 

Caudate / Nucleus accumbens R 10 16 -2 7.31 278 

Inferior frontal gyrus (triangular part) L -44 34 14 7.00 427 

Caudate / Nucleus accumbens L -8 16 -2 6.94 209 

Angular gyrus L -32 -72 36 6.89 1182 

Inferior temporal gyrus L -50 -66 -12 6.21 449 

Supramarginal gyrus L -46 -40 40 5.93 358 

Precentral gyrus L -36 4 26 5.83 165 

Middle frontal gyrus L -24 14 50 5.58 176 

CONJUNCTION Pumps > Cash out & Accept > Reject 

Nucleus accumbens R 8 12 0 6.03 49 

Nucleus accumbens L -8 10 -4 5.72 36 

All analyses whole-brain, using FWE cluster correction (p<.05), with a p<.001 uncorrected voxel-wise 

(peak) threshold; cluster extent threshold k >100; controlled for effects of age and gender; k = number 

of voxels in cluster within which peak coordinate is located. Cluster extent threshold not applied to 

conjunction analysis. 
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Table 5. Partial correlations (controlling for age and gender) between regional (ROI) neural and behavioral indices of risk preference, 

computed within and across measures. 

 
Analysis Index NAcc  Insula ACC  

  b (SE) t (p) b (SE) t (p) b (SE) t (p)  

Brain–brain:  Monetary gambles activation ~ BART activation -0.06 

(0.09) 

-0.67 

(.50) 

-0.46 

(0.09) 

-5.37 

(<.001) 

-0.47 

(0.08) 

-5.54 

(<.001) 

 

Brain–behavior: Within measures BART: Mean number of pumps 0.02 

(0.09) 

0.24 

(.81) 

0.04 

(0.09) 

0.38 

(.70) 

-0.17 

(0.09) 

-1.79 

(.08) 

 

 Monetary gambles: Proportion Accept -0.50 

(0.08) 

-5.97 

(<.001) 

-0.31 

(0.09) 

-3.56 

(<.001) 

-0.39 

(0.08) 

-4.63 

(<.001) 

 

Brain–behavior: Across measures Proportion Accept ~ BART activation 0.07 

(0.09) 

0.75 

(.46) 

0.15 

(0.09) 

1.61 

(.11) 

0.24 

(0.09) 

2.61 

(.01) 

 

 

Note: Estimates obtained from linear regression analyses with standardized outcome and predictor variables. For models within measures, 

behavioral outcome measures and neural predictors originated from the same measure. For models across measures, the behavioral outcome 

originated from monetary gambles, and the neural predictors from the BART. ACC = anterior cingulate cortex, NAcc = nucleus accumbens 
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METHODS 

Participants 

The participants in this neuroimaging study came from an existing pool of individuals 

who had participated in the Basel-Berlin Risk Study (BBRS). The BBRS entailed 

participation in a one-day laboratory session, during which individuals completed an 

extensive battery of measures assessing individual differences in risk taking (including self-

report, frequency, and behavioral measures), cognitive capacity, personality, affect, and 

genetics (an overview of all subsamples, measures, and further details on the BBRS is 

reported on https://osf.io/rce7g). The BBRS was run in Basel and in Berlin but for the current 

study we recruited only individuals from the Berlin site due to the location of the 

neuroimaging facilities available. The size of the imaging subsample is reflective of 

oversampling to achieve an effective sample size of N~100 (Yarkoni, 2009) in the event of 

participant exclusions (e.g., due to excessive head motion in the scanner, image artefacts). 

Of the 133 individuals recruited, two participants aborted the session before any 

functional sequences were collected thus were removed from all subsequent analyses. We 

excluded a further five participants due to excessive head motion inside the scanner (see 

image preprocessing section for movement parameter thresholds), one participant due to 

incidental anatomical findings, four participants due to incomplete data (e.g., only one 

paradigm was completed inside the scanner), and five participants due to non-compliance 

with the scanner protocol (e.g., falling asleep, reports of having mixed up button box 

responses). The final sample included in all analyses comprised 116 participants (62 females, 

mean age at scan = 25.4 years, SD = 2.6 years, range = 20.4–30.1 years). 

Experimental paradigms and additional measures 

Inside the scanner, participants completed the Balloon Analogue Risk Task and a 

monetary gambles task; we describe these measures in more detail below. Outside of the 



scanner, we collected self-reported demographic data (date of birth, gender, marital status, 

educational attainment, native language, and current occupation). Of note, only gender and 

age at the MRI session (calculated from date of birth) were included as covariates in the 

current analyses; all other demographic measures were merely collected to describe the 

sample and ascertain the external validity of our findings with respect to sample 

characteristics.  

As part of an independent project, we assessed individuals’ height and weight, collected 

data from a verbal fluency task, and administered various self-report measures of impulsivity 

(Schmidt et al., 2008), eating-related behaviors and attitudes (Meermann and Vandereycken, 

1987; Pudel and Westenhöfer, 1989; Westenhöfer, 1992); given that these measures were not 

part of the current analyses, we do not elaborate on these measures here.  

Balloon Analogue Risk Task (BART). The BART involves a series of virtual 

balloons, which individuals are tasked with pumping up in the absence of knowledge about 

when the balloon will burst. Successful pumps (i.e., pumps that do not lead to a balloon 

explosion) earn the participant a certain amount of money, but an explosion leads to the loss 

of the money accumulated on the current trial. Individuals thus make repeated decisions 

about whether to (1) continue pumping up a balloon (i.e. risky decision), with the prospect of 

accumulating more money, or (2) stop pumping and cash out any accumulated earnings on a 

given trial (i.e. safe decision), yet foregoing any further earnings on that trial. Importantly, as 

individuals move from trial to trial and experience the outcome of their decisions (e.g., a 

balloon explosion), they can build a mental representation of explosion distributions for a 

given balloon type over time.  

The BART version implemented in the current study featured two risky balloon types 

and a control balloon. The maximum capacity for the two risky balloons was set to be 12 and 

20 pumps, respectively; that is, on average, balloons with a capacity of 12 pumps burst earlier 



than balloons with a capacity of 20. Risky balloons were represented in blue and red to 

discriminate between balloon types based on capacity, with capacity-color assignment being 

randomized between participants but stable across the two runs. Control balloons were 

presented in gray, had a maximum capacity of 16, and were added to control for neural 

processes that required no decision making (e.g., motor or visual). Participants merely 

inflated control balloons until they disappeared from the screen.  

On any given trial, balloon capacity was determined via a random draw from a 

uniform distribution of values between one and the maximum capacity for the presented 

balloon type. Participants completed two runs of the BART, with a short break in-between. 

Each run was programmed to continue for 10 min, after which the final balloon was 

presented. Given that decisions are made sequentially and may become more difficult as the 

number of successful pumps in a trial increases, we did not impose a time limit on the 

decision phase of a given trial, resulting in the number of balloons played varying between 

individuals (Table 1). Intervals between trials and between successive stimuli within trials 

were randomized (mean inter-trial interval = 4.39 s, range = 1–11 s; mean inter-stimulus 

interval = 1.5 s, range = 1–2 s).  

The outcome variable typically used in the BART to reflect individuals’ risk 

preference is the average number of pumps administered on cash-out trials only (Lejuez et 

al., 2002; Wallsten et al., 2005; Rolison et al., 2012; Yu et al., 2016), also referred to as the 

adjusted average number of pumps. In line with previous research (Mamerow et al., 2016; 

Frey et al., 2017), in the current study the adjusted average number of pumps was highly 

correlated with the average number of pumps across all balloons (r = 0.97, p < 0.001). Given 

these results, we used the average number of pumps across all balloons as outcome variable 

in the BART, because it allowed us to retain a maximum number of trials for analysis while 

working with congruent trial numbers in both neural and behavioral analyses.  



It has been suggested that computational models of the BART can help to disentangle 

different cognitive processes underlying the observed behavior in this task, including gain 

and loss sensitivity, response consistency, risk preference, or learning (Wallsten et al., 2005; 

van Ravenzwaaij et al., 2011). However, attempts to model the BART have frequently 

resulted in highly correlated model parameters and failed parameter recovery (van 

Ravenzwaaij et al., 2011), suggesting that the purported benefit of using parameters obtained 

from currently available models may be limited. We set out to model behavior in the BART 

with two standard models: a target model that assumes a fixed strategy is being used 

(Pleskac, 2008; Frey et al., 2015) and a Bayesian sequential risk-taking model that allows for 

dynamic updating processes (Pleskac, 2008). In line with past research the estimation of the 

model parameters turned out to be unreliable, and we thus do not report the modeling attempt 

here (a possible reason for the unreliable model parameters may be the lack of strong learning 

effects). Consequently, we relied on the average number of pumps as a simpler and generic 

index of risk preference in all subsequent analyses.  

Monetary gambles. We further adopted a monetary gambles paradigm with mixed 

outcomes as an example of a description-based risk-taking measure (i.e., both gains and 

losses were possible) (Tom et al., 2007; Barkley-Levenson et al., 2013; Canessa et al., 2013; 

Sokol-Hessner et al., 2013). In the current study, participants made a total of 144 decisions 

between a sure zero-outcome and a 50/50 gamble. Individual gambles were constructed to 

populate an asymmetric 12x12 payoff matrix (Figure 1B, right panel) with gains of between 

10 and 32 (increments of 2) and losses of between 5 and 16 (increments of 1). Each gamble 

was presented once, with the order of gamble presentation randomized between participants. 

On a given trial, once the gamble was presented, participants had 3 s to accept or reject the 

gamble via respective button presses. Although in previous studies participants gave 

responses indicating the strength of their decision (Tom et al., 2007; Canessa et al., 2013), 



we collected binary responses (accept/reject) only. The rationale for this was that responses 

under time pressure may bias individuals towards using more extreme responses (Paulhus 

and Vazire, 2007) and that previously reported analyses were commonly conducted for 

collapsed (binary) responses (Tom et al., 2007; Canessa et al., 2013). We therefore did not 

expect a substantial benefit from adopting more fine-grained response options. Participants 

completed two runs with a short pause in-between, each run featuring 72 gambles. Jitters 

were introduced between trials (mean inter-trial interval = 4.32 s, range = 1–11 s). 

Whereas we computed the proportion of accepted gambles out of all gambles for 

which a response was provided as an index of risk preference, a simple model that captures 

sensitivity to gains versus losses has been used to capture decision making for monetary 

gambles (Tom et al., 2007; Barkley-Levenson et al., 2013; Canessa et al., 2013). However, 

the critical parameter of this model, loss aversion, was highly correlated with the proportion 

of accepted gambles (r = -0.9, p < 0.001). Consequently, we relied on the proportion of 

accepted gambles as a simpler and generic index of risk preference in all subsequent 

analyses. 

Experimental procedure 

Participants who had previously completed the laboratory session of the BBRS were 

contacted via phone and informed about the MRI follow-up study. Interested individuals 

were screened for any contraindications regarding MRI safety. For the current analyses, we 

did not link participants’ data from the laboratory and MRI session, using only data collected 

during the MRI session. At the time of the MRI session, individuals completed a 2-min 

training run for the BART and monetary gambles before entering the scanner. The scanner 

protocol took 75 minutes and included a high-resolution structural scan, two functional 

sequences for the BART, two functional sequences for monetary gambles, a resting state 

sequence and a diffusion-weighted imaging sequence. For the current study, only the high-



resolution structural scan and the functional sequences were utilized, with the structural scan 

only serving normalization purposes during preprocessing of functional imaging data. The 

resting-state and diffusion-weighted sequences were not part of the current analysis and are 

not discussed further. The order of scanner sequences was fixed, the BART preceding the 

gambles task. The risk-taking paradigms were presented using E-Prime 2.0 software 

(Psychology Software Tools, Pittsburgh, PA), and responses inside the scanner were 

collected via a COVILEX response box system (series 1.X, Magdeburg, Germany) using the 

right-hand index and middle finger.  

After the MRI session, individuals reported demographic data and completed 

additional measures reported above. Individuals received a fixed fee of 25 Euro for their 

participation. In addition, participants could increase their earnings based on performance in 

the two scanner paradigms. For the BART, participants received 0.05 Euro for each 

successful pump on a balloon that was cashed out, i.e., did not explode. For monetary 

gambles, one trial was drawn at random and, if the participant had accepted the trial, was 

played out. The resulting loss or gain was combined with money made in the BART. Trials 

which were drawn but which the participant had rejected resulted in a 0 Euro outcome. 

Participants were told about the incentive structure at the start of the MRI session and 

received cash earnings at the end of the session (average actual payment = 41.50 Euro, SD = 

14.50 Euro). 

MRI data acquisition and image preprocessing 

Neuroimaging data were collected at the Magnetic Resonance Imaging Laboratory at 

the Max Planck Institute for Human Development (Berlin, Germany) on a 3T Siemens MRI 

system with 12-channel head coil. Participants received a magnetization-prepared rapid 

gradient echo (MP-RAGE) sequence (repetition time = 2500 ms, echo time = 4.77 ms, 

inversion time = 1100 ms, flip angle = 7 degrees, field of view = 256 × 256 mm2, 192 slices, 



voxel size = 1 × 1 × 1 mm3). In each of the four functional runs, up to 320 functional T2*-

weighted BOLD echo-planar images were acquired for every person (repetition time = 2010 

ms, echo time = 30 ms, flip angle = 78 degrees, field of view = 192 × 192 mm2, voxel size = 

3 × 3 × 3 mm3, 33 transversal slices/volume with 15% distance factor). Image preprocessing 

and analyses were carried out using standard procedures implemented in SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Preprocessing involved realignment and 

co-registration of functional to structural volumes. Volumes were nonlinearly warped into 

standard stereotactic (MNI) space based on structural scans using the New Segment method 

(Ashburner and Friston, 2005). To control for spatial noise and average effects that may arise 

as a function of residual anatomical differences between subjects, images were spatially 

smoothed using an 8-mm full-width half-maximum Gaussian kernel. 

fMRI model specification 

BART. To model the neural activation in response to experienced risk in the BART, 

we specified a first level design matrix for each individual which included the following 

regressors per run (see Supplementary Figure S1 for an exemplary design matrix): Onset 

vector of pumps for control balloons, two onset vectors for pumps on reward balloons, onset 

vector for cash outs, onset vector for explosions, and six motion parameters estimated during 

the realignment process. We included two onset vectors for pumps on reward balloons to 

facilitate different analyses. Our main analysis focused on contrasting risky decisions with 

safe decisions on the BART, which we operationalized as contrasting pumping on risky 

balloons with the decision to cash out. One potential confound of such a contrast is that there 

may be systematic biases in the history of trials leading to a cash out decision. Concretely, 

cash-out decisions may not be similarly distributed across trials with regards to their onset, 

but perhaps happen early on in the trial as a result of mounting tension or the motivation to 

ensure some saved earnings. In building a contrast between cash-out events and pump events, 



any such systematic biases may also bias the neural signals. To address this issue, for every 

individual included in the analysis, we isolated the maximum serial position of all cash-out 

decisions and used this to cap the serial position of pumps included in the first onset vector; 

we refer to this vector as ‘matched pumps’. Onsets for the remaining pumps (i.e., those 

exceeding the maximum serial position of all cash-out decisions) were included in the second 

pumps vector; together, the two vectors facilitated supplementary analyses contrasting pumps 

on all risky (i.e. reward) balloons with pumps on control (i.e., non-reward balloons). 

 The onset vector for explosions was included in order to account for additional 

variance, better isolate the main effects of interest, and also remove neural responses to 

explosions from baseline activity. We did not differentiate between onsets for high- and low-

capacity balloons because preliminary analyses in which we contrasted pumps on high-

capacity with pumps on low-capacity balloons yielded no significantly different neural 

activations as a function of balloon type; consequently, we collapsed pumps across high- and 

low-capacity balloons for all analyses. For this main contrast of interest—risky versus safe 

decisions—we contrasted cash-out decisions with matched pumps, using the contrast weights 

[0 1 0 -1 0 0 0 0 0 0 0] to assess Pumps (matched) > Cash out, and [0 -1 0 1 0 0 0 0 0 0 0] for 

Pumps (matched) < Cash out. 

Neuroimaging analyses of BART data usually involve contrasting activation 

differences in response to pumps on reward balloons with pumps on control balloons (Rao et 

al., 2008; Schonberg et al., 2012; Yu et al., 2016). This procedure, however, does not address 

the question of risk preference directly because it merely contrasts activation for conditions 

with and without a decision component thus providing a general picture of the neural 

correlates of decision making but not risk preference. The ubiquity of contrasting reward and 

control pumps in the BART in the literature, however, allows for a direct comparison of 

group-based results originating from different studies. Thus, we supplemented our focal 



analysis with a contrast of all pumps on reward versus control balloons. For this 

supplementary contrast of pumps on reward versus control balloons, we used the contrast 

weights [-2 1 1 0 0 0 0 0 0 0 0] to compute Control pumps < Reward pumps, and [2 -1 -1 0 0 

0 0 0 0 0 0] to compute Control pumps > Reward pumps. 

Monetary gambles. For the individual-level modeling of monetary gambles 

decisions, we specified one GLM, which targeted the neural representation of risky versus 

safe decisions (Barkley-Levenson et al., 2013) and included the following regressors (see 

Supplementary Figure S2 for an exemplary design matrix): Onset vector for all Accept 

decisions, onset vector for all Reject decisions, six motion parameters estimated during the 

realignment procedure. The simplicity of the paradigm allowed for this comparatively 

straightforward design matrix with only two regressors of interest, nevertheless yielding 

clean (event-unrelated) baseline activity. Emulating previous analyses (Barkley-Levenson et 

al., 2013) and striving for a contrast analysis that is comparable for risk in both the BART 

and monetary gambles, individuals’ Accept decisions were contrasted with Reject decisions.  

To estimate activation differences for risky versus safe decisions in monetary 

gambles, we used the contrast weights [1 -1 0 0 0 0 0 0] to estimate Accept > Reject, and [-1 

1 0 0 0 0 0 0] to estimate Accept < Reject. 

At the group level, we specified a flexible factorial design with subject and measure 

as separate factors in order to obtain statistical parametric maps for mean activation patterns 

in the two measures and compute a conjunction. Within-subject contrast images from risky 

versus safe decisions in monetary gambles and the BART were entered as two blocks, one 

block per measure (see Supplementary Figure S3 for design matrix). We assumed 

independence for the subject and measure factors but equal variance only for the subject 

factor. Gender and age were entered as covariates of no interest. See Supplementary 

Materials for details about the design matrices, onset vectors, contrast weights and additional 



contrast analyses. 

Overview of statistical analyses  

Behavioral data. The specification of regression models and selection of predictor 

variables for both tasks followed previously reported trial-level effects (Wallsten et al., 2005; 

Tom et al., 2007; Mamerow et al., 2016). To model trial-specific effects on risky choice in 

the BART, we regressed the number of pumps on experimental balloons (in a given trial) 

onto average effects of balloon capacity as a proxy for the level of risk (12/20), whether the 

previous trial ended in an explosion (yes/no), age and sex (0=male, 1=female), allowing for 

random effects for balloon capacity and previous explosion (nested within individual). For 

monetary gambles, we specified a logistic mixed-effects model, in which the decision to 

accept or reject a particular lottery in a given trial was regressed onto average effects of 

magnitude of the gain, magnitude of the loss, age and sex (0=male, 1=female), as well as 

individual effects for gain and loss magnitude. Before fitting the models, all continuous 

variables were normalized and categorical variables dummy-coded. In the BART, number of 

pumps was normalized separately for each of the two experimental balloon types.  

All behavioral analyses were run in R (R Project for Statistical Computing; 

RRID:SCR_001905 http://r-project.org), using the packages lme4 (lme4: Linear mixed-

effects models using Eigen and S4; R package v 1.1–8; http://CRAN.R-

project.org/package=lme4) and lmerTest (lmerTest: Tests in linear mixed effects models; R 

package v 2.0–25; http://CRAN.R-project.org/package=lmerTest). We used the functions 

lmer and glmer for the mixed-effects models of continuous and binary outcome variables, 

respectively. To obtain p-values for the fixed-effects test statistics in lmerTest, the calculation 

of the denominator degrees of freedom adopts Satterthwaite’s approximation (cf. SAS proc 

mixed theory). 

For analyses of individuals’ trial-by-trial data coming from the BART, control 



balloons were not included in the mixed-effects modeling. Control balloons merely constitute 

the baseline for the neural analyses and offer no insight into decision making in the BART. 

Imaging data. For each person we extracted a mean signal for neural activations that 

were larger for risky compared with safe options from three regions of interest (ROI): the 

nucleus accumbens (NAcc), insula, and anterior cingulate cortex (ACC). Mean signal for a 

particular ROI was operationalized as the mean of all regression slopes extracted from all 

voxels contained in the structurally defined ROI. Concretely, for the BART, we extracted the 

mean of the regression slopes for the contrast Pumps > Cash out, and for monetary gambles 

Accept > Reject. All ROIs were structurally defined based on the Hammersmith atlas nr30r83 

(http://brain-development.org/brain-atlases/adult-brain-maximum-probability-map-hammers-

mith-atlas-n30r83-in-mni-space/).  

Initial plotting of mean beta values extracted from the three ROIs indicated relatively 

normally distributed mean signals for both measures, except for a small number of possible 

outliers for signals extracted from ACC (n = 2) and insula (n = 1) in the BART, and ACC (n 

= 1) in monetary gambles. To account for any biasing effects, we computed robust regression 

analyses (“rlm” function in R package MASS (Venables and Ripley, 2002) using method 

“MM”) and obtained a correlation coefficient of r = 0.97 (p < 0.001) between the coefficients 

from standard and robust analyses. Consequently, we only report estimates obtained from 

standard regression analyses. Results from ROI analyses were not confounded by laterality 

because similar findings were obtained from analyses extracting mean beta values from the 

two hemispheres separately. Concatenating the two runs from each paradigm to compute one 

neural index did not bias the results; comparable findings were observed for supplemental 

ROI analyses based on two separate runs per measure. 

Corrections for multiple testing. To account for the number of analyses, we applied 

correction procedures to contrast analyses of neuroimaging data and individual differences 



analyses of ROI data. All initial contrast analyses of neuroimaging data were conducted at the 

level of the whole brain. Accounting for multiple comparisons, a cluster-forming threshold (p 

< .001, uncorrected) was applied, followed by family-wise error correction at peak level (p < 

.05). To avoid putting too much emphasis on potentially uninformative single-activated 

voxels, we applied an extent threshold of a minimum of 100 contiguous voxels for all whole-

brain group-level analyses. As we were agnostic regarding the potential overlap of voxels 

activated by both fMRI paradigms, we removed the extent threshold from our conjunction 

analysis.  

To control for the number of analyses examining individual differences, we report 

which of the associations reach significance thresholds after family-wise error correction. For 

this purpose, we define four families of tests: (1) brain–brain associations (three tests); (2) 

brain–behavior associations for the BART (four tests; one whole-brain multiple regression 

analysis and three regression analyses based on extracted mean beta values from ROIs); (3) 

brain–behavior associations for monetary gambles (four tests; one whole-brain multiple 

regression analysis and three regression analyses based on extracted mean beta values from 

ROIs); and (4) brain–behavior associations across the two measures (four tests; one whole-

brain multiple regression analysis plus three regression analyses based on extracted mean 

beta values from ROIs). 

RESULTS 

Neuroimaging results  

In the BART, taking a risk (decisions to pump) versus going safe (decisions to cash 

out) was associated with increased activity in striatum (specifically bilateral NAcc), left 

anterior insula, and right precentral gyrus, extending into supplementary motor cortex (Table 

4, Figure 2A); results for this contrast are comparable with previous results (Pletzer and 

Ortner, 2016). Due to the various cognitive and visual aspects surrounding cash-out 



decisions, examination of the reverse main effect revealed widespread bilateral decreased 

activity, particularly in thalamus extending into hippocampal and parahippocampal regions 

and lateral occipital cortex. Because of the very short temporal delay between cash-out 

decisions and the subsequent visual feedback (~ 1 s), inclusion of the onset and duration of 

the visual feedback for cash-out decisions in the GLM did not achieve a more localized cash-

out signal. Replication analyses of average activation differences for pumps on risky versus 

control balloons yielded results comparable with those of previous studies (Rao et al., 2008; 

Schonberg et al., 2012), including increased activation for peak coordinates located in 

bilateral ventral and dorsal striatum, bilateral anterior insular cortex, inter-hemispheric 

anterior cingulate and prefrontal cortex, as well as decreased activation in inter-hemispheric 

ventromedial prefrontal cortex, posterior cingulate and posterior parietal cortex, and bilateral 

parahippocampal gyrus and posterior insula (Table 4). 

For monetary gambles, decisions to accept a risky gamble, when compared with 

decisions to reject, were associated with increased activation in several neural regions, 

including peak coordinates located in bilateral caudate extending into NAcc, right ACC, left 

angular gyrus, left inferior temporal and frontal gyrus (Table 4, Figure 2B). Examination of 

the reverse main effect yielded no significant deactivation. The pattern of activations found is 

comparable to those found in similar measures involving decisions from description 

(Barkley-Levenson et al., 2013; Tom et al., 2007; Wu et al., 2012). 

Furthermore, replication analyses of average activation differences for pumps on 

reward versus control balloons in the BART (Table S1) yielded results comparable with 

previous studies (Rao et al., 2008; Schonberg et al., 2012; Yu et al., 2016). 



FIGURE LEGEND 

 

Figure S1. Exemplary SPM design matrix for first (i.e., individual) level modeling of neural 

activation in the BART. 

Figure S2. Exemplary SPM design matrix for first (i.e., individual) level modeling of neural 

activation in monetary gambles. 

Figure S3. SPM design matrix for second (i.e., group) level modeling of main effects for the 

BART, monetary gambles, and their conjunction. 

 

 

 

 

 



 

 

Figure S1. Exemplary SPM design matrix for first (i.e., individual) level modeling of 

neural activation in the BART. 

 

 



 

 

Figure S2. Exemplary SPM design matrix for first (i.e., individual) level modeling of 

neural activation in monetary gambles. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. SPM design matrix for second (i.e., group) level modeling of main effects 

for the BART, monetary gambles, and their conjunction. 
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TABLE LEGEND 

 

Table S1. Significant peak coordinates obtained from group-level contrast analyses for 

pumps on experimental (i.e., reward) balloons and control balloons in the BART. 

Table S2. Significant peak coordinates obtained from multiple regression analysis to identify 

brain–behavior associations for monetary gambles. 



 
Table S1. Significant peak coordinates obtained from group-level contrast analyses 

for pumps on experimental (i.e., reward) balloons and control balloons in the BART. 

  MNI (mm)    

Region R/L x y z T  k 

BART: Pumps_Risky > Pumps_Control 

Supplementary motor cortex R 4 22 40 25.61 49140 

Supramarginal gyrus R 46 -42 44 17.26 5649 

Occipital pole L -12 -102 -2 15.10 2845 

BART: Pumps_Control > Pumps_Risky 

Angular gyrus L -48 -66 22 21.21 50828 

Medial frontal cortex L -2 58 -12 18.65 5684 

All analyses whole-brain, FWE cluster correction (p<.05), with p<.001 uncorrected voxel-wise (peak) 

threshold, controlled for effects of age and gender; k = number of voxels in cluster within which peak 

coordinate is located. 

 



Table S2. Significant peak coordinates obtained from multiple regression analysis to 

identify brain–behavior associations for monetary gambles. 

  MNI (mm)    

Region R/L x y z T  Voxels 

Accept>Reject ~ Proportion accepted gambles: Positive association 

Occipital pole R 24 -96 16 8.39 376 

Central operculum R 40 -12 20 8.06 406 

Precentral gyrus R 26 -22 52 7.85 1017 

Occipital pole L -26 -96 14 7.23 262 

Medial frontal cortex R 10 48 -14 7.12 358 

Middle temporal gyrus L -56 -10 -20 6.75 437 

Superior temporal gyrus R 62 -30 12 6.57 205 

Parietal operculum L -38 -40 18 6.14 101 

Superior temporal gyrus R 60 -8 -6 6.06 153 

Accept>Reject ~ Proportion accepted gambles: Negative association 

Anterior insula R 36 24 -4 12.89 10048 

Anterior insula L -34 18 -6 11.82 1155 

Supramarginal gyrus R 42 -40 42 11.61 4519 

Supramarginal gyrus L -50 -38 46 10.60 2888 

Middle cingulate gyrus L -2 -26 30 8.22 313 

Precentral gyrus L -52 8 28 7.76 700 

Inferior temporal gyrus R 56 -56 -14 7.36 240 

Precentral gyrus L -28 -12 52 7.29 321 

All analyses whole-brain, FWE cluster correction (p<.05), with p<.001 uncorrected voxel-wise (peak) 

threshold, and cluster extent threshold k >100, controlled for effects of age and gender; k = number of 

voxels in cluster within which peak coordinate is located. 

 

 

 

 

 



REFERENCES 

Ashburner, J., Friston, K.J. (2005). Unified segmentation. NeuroImage, 26, 839–51 

Barkley-Levenson, E.E., Van Leijenhorst, L., Galván, A. (2013). Behavioral and neural correlates of 

loss aversion and risk avoidance in adolescents and adults. Developmental Cognitive 

Neuroscience, 3, 72–83 

Canessa, N., Crespi, C., Motterlini, M., et al. (2013). The functional and structural neural basis of 

individual differences in loss aversion. The Journal of Neuroscience, 33, 14307–17 

Frey, R., Pedroni, A., Mata, R., et al. (2017). Risk preference shares the psychometric structure of 

major psychological traits. Science Advances, 3, 1–13 

Frey, R., Rieskamp, J., Hertwig, R. (2015). Sell in may and go away? Learning and risk taking in 

nonmonotonic decision problems. Journal of Experimental Psychology: Learning Memory and 

Cognition, 41, 193–208 

Lejuez, C.W., Read, J.P., Kahler, C.W., et al. (2002). Evaluation of a behavioral measure of risk 

taking: the Balloon Analogue Risk Task (BART). Journal of Experimental Psychology. Applied, 

8, 75–84 

Mamerow, L., Frey, R., Mata, R. (2016). Risk Taking Across the Life Span: A Comparison of Self-

Report and Behavioral Measures of Risk Taking. Psychology and Aging, 31 

Meermann, R., Vandereycken, W. (1987). Therapie der Magersucht und Bulimia nervosa. Berlin: de 

Gruyter. 

Paulhus, D.L., Vazire, S. (2007). The Self-Report Method. In: R. W. Robins, R. C. Fraley, R. F. 

Krueger (eds). Handbook of Research Methods in Personality Psychology. New York: Guilford, 

p. 224–39. 

Pleskac, T.J. (2008). Decision Making and Learning While Taking Sequential Risks. Journal of 

Experimental Psychology: Learning Memory and Cognition, 34, 167–85 

Pletzer, B., Ortner, T.M. (2016). Neuroimaging supports behavioral personality assessment: 



Overlapping activations during reflective and impulsive risk taking. Biological Psychology, 119, 

46–53 

Pudel, V., Westenhöfer, J. (1989). Fragebogen zum Essverhalten (FEV): Handanweisung. Göttingen, 

Toronto, Zürich: Verlag für Psychologie, Hogrefe. 

Rao, H., Korczykowski, M., Pluta, J., et al. (2008). Neural correlates of voluntary and involuntary risk 

taking in the human brain: An fMRI Study of the Balloon Analog Risk Task (BART). 

NeuroImage, 42, 902–10 

van Ravenzwaaij, D., Dutilh, G., Wagenmakers, E.J. (2011). Cognitive model decomposition of the 

BART: Assessment and application. Journal of Mathematical Psychology, 55, 94–105 

Rolison, J.J., Hanoch, Y., Wood, S. (2012). Risky decision making in younger and older adults: the 

role of learning. Psychology and Aging, 27, 129–40 

Schmidt, R.E., Gay, P., D’Acremont, M., et al. (2008). A German adaptation of the upps impulsive 

behavior scale: Psychometric properties and factor structure. Swiss Journal of Psychology, 67, 

107–12 

Schonberg, T., Fox, C.R., Mumford, J.A., et al. (2012). Decreasing ventromedial prefrontal cortex 

activity during sequential risk-taking: An FMRI investigation of the balloon analog risk task. 

Frontiers in Neuroscience, 6, 1–11 

Sokol-Hessner, P., Camerer, C.F., Phelps, E.A. (2013). Emotion regulation reduces loss aversion and 

decreases amygdala responses to losses. Social Cognitive and Affective Neuroscience, 8, 341–50 

Tom, S.M., Fox, C.R., Trepel, C., et al. (2007). The neural basis of loss aversion in decision-making 

under risk. Science, 315, 515–18 

Venables, W.N., Ripley, B.D. (2002). Modern Applied Statistics with S. Fourth edi. New York: 

Springer. 

Wallsten, T.S., Pleskac, T.J., Lejuez, C.W. (2005). Modeling Behavior in a Clinically Diagnostic 

Sequential Risk-Taking Task. Psychological Review, 112, 862–80 



Westenhöfer, J. (1992). Gezügeltes Essen und Störbarkeit des Essverhaltens. Göttingen: Verlag für 

Psychologie, Hogrefe. 

Wu, C.C., Sacchet, M.D., Knutson, B. (2012). Toward an affective neuroscience account of financial 

risk taking. Frontiers in Neuroscience, 6, 1–10 

Yarkoni, T. (2009). Big correlations in little studies. Inflated fMRI correlations reflect low statistical 

power - commentary on Vul et al. (2009). Perspectives on Psychological Science, 4, 294–98 

Yu, J., Mamerow, L., Lei, X., et al. (2016). Altered Value Coding in the Ventromedial Prefrontal 

Cortex in Healthy Older Adults. Frontiers in Aging Neuroscience, 8 

 

 


