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Abstract. In this paper we follow up on the results from our previous publication
[Lobsien J, et al., Nucl. Fus., Vol 58 (2018)106013], where it was found that
stellarator coil design optimization can be substantially improved by using a stochastic
optimisation approach. In that paper performance was quantified by lower (better)
and more narrow (more robust) distributions of the penalty functions at the end of
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the optimisations. Here, we evaluate and compare the various coil sets of the previous
paper but seek a verification and deeper understanding of the physics performance by
replacing the relatively simple penalty function estimate with more accurate ones from
state-of-the-art calculations of MHD stability, neoclassical transport in the 1/ν-regime,
fast particle confinement, and gyrokinetic behavior. The investigation shows that
stochastic stellarator coil optimization generally outperforms the earlier non-stochastic
stellarator optimization, also when using these more accurate metrics, generally
confirming and quantifying the better performance. We do find some discrepancies,
indicating that the penalty function does not represent a physics performance optimum
perfectly. For example, as pointed out by others before us, the depth of the magnetic
well is not a sufficiently good proxy for MHD stability, and the neoclassical transport
can be significantly reduced in configurations that have relatively high field errors and
therefore high penalty values. Thus, our work points to areas where better physics
model inside the optimisation loop are needed, than what is currently represented by
our penalty function.

Keywords: Stellarator, Coil Optimization, Engineering Tolerances, Robust Magnetic
Field, Stochastic Optimization, MHD, Neoclassical Transport, Fast-Particle Confine-
ment, Turbulent Transport
Submitted to: Nucl. Fusion

1. Introduction

A stellarator is defined by a set of nested toroidal flux surfaces which may be optimized
to fulfill multiple performance criteria. In the case of Wendelstein 7-X (W7-X) these
criteria were summarized in the W7-X objectives [3], which not only concentrated
on the quality of the vacuum magnetic surfaces but also focused on the properties
of finite-pressure equilibria. Special emphasis was placed on a small Shafranov shift,
good MHD stability properties, a small neoclassical transport, a general reduction of
parallel currents, and good α−particle confinement in fusion-relevant operating regimes.
All these properties are determined by the shape of the plasma boundary, because this
outermost flux surface defines the magnetic field in its interior, which in turn defines the
corresponding behaviour when a plasma pressure is present. The design of a stellarator,
therefore, may begin with the shape of the plasma boundary and continues with the
optimization of a set of finite current-carrying filaments outside the plasma, which is
meant to produce the desired magnetic field. The starting point is usually a first guess
of the coil structure computed with NESCOIL [4] or REGCOIL [5]. Each coil is then
parametrised by either Fourier coefficients or spline points and a penalty function f is
defined which measures the difference between the magnetic field produced by the coils
and the desired vacuum magnetic field of the stellarator called the target magnetic field.
Nonlinear coil optimization, as done with codes like ONSET [1], COILOPT++ [7] and
FOCUS [8], then minimizes this nonlinear function f , which takes the coil parameters
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as an input value and summarizes the fitness of the corresponding magnetic field in
a real value y ∈ R. The fitness is characterized by a set of quality criteria of which
the field error is the most dominant one. It is quantified by B · n, where B is the
vector of the magnetic field produced by the coils and n is the normal on the plasma
boundary. In general, B may include internal plasma currents, which were absent in
the optimization of W7-X. The minimization of the field error is one major challenge of
stellarator coil optimization but, from a theoretical point of view, deviations from the
ideal target are unavoidable due to the discrete nature of the coil set which inevitably
produces a corresponding ripple of the magnetic surfaces. Additionally, deviations occur
due to geometric constraints necessary for the manufacturing of the coils and assembly
of the coil set.

Once the coil optimization arrives at the lower boundary of the field error, the
penalty function f is extended by additional quality criteria and the optimization
continues. Each new set of quality criteria describes a more intricate property of the
set of nested toroidal flux surfaces which define the stellarator. But the more intricate
the quality criterion, e.g. effects with finite plasma pressure, the more time it takes
to compute a single evaluation of f . Therefore, it is the challenge of nonlinear coil
optimization to include new elements within the penalty function f step by step, such
that the field error is not increasing while keeping the complexity of the quality criteria
in f moderate so as to avoid excessive computing times.

Traditionally, the coil optimization is completed when the underlying magnetic
field fulfills the same performance criteria, that initially led to the shape of the plasma
boundary. But optimizing them requires a transition of the optimization targets. The
optimization of the quality criteria, which reduces the difference between the magnetic
field from the coils and the magnetic field defined by the plasma boundary, is replaced
by the direct optimization of the performance of the magnetic field produced by the
coils. This last step is similar to the optimization of the target stellarator magnetic field
itself, with the difference that instead of varying the plasma boundary one changes the
coil configuration that defines the plasma boundary.

Once a suitable set of filaments has been found, the focus is changed and the
coil configuration is evaluated in a perturbation analysis. Each deviation leads to a
change of the magnetic field and consequently to a change in the performance criteria.
After performing a statistical ensemble of deviations the perturbation analysis defines a
measure of the change of the quality of the magnetic field w.r.t. deformations of the coil
set. A prescribed lowest acceptable magnetic field quality then leads to coil construction
tolerances which will require more time and resources the lower they are. Unfortunately,
recent major stellarator projects have had the tendency to be negatively influenced by
their own strict tolerance requirements, e.g. Wendelstein 7-X [9] and NCSX [10].

With the aim to ease the construction of future stellarator projects, we established
a stochastic version of stellarator coil optimization that was able to increase the
construction tolerances during the design process of the coil configuration [2]. Nonlinear
coil optimization is combined with an iterative perturbation analysis with the result
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that the target magnetic field is more accurately reproduced and is also more resilient
against coil displacements w.r.t. the penalty function f . The new technique replaces
the optimization of a single coil configuration f1 with the optimization of a cloud of
neighboring coil configurations fN . Each element of the cloud is a perturbation of
the original coil configuration at the cloud’s center. The cloud is characterized by the
number of samples N (number of perturbations) and their Gaussian distribution around
the unperturbed configuration. With the aim to test the stochastic version of stellarator
coil optimization against its classical counterpart, a compact optimization sequence for
the original W7-X plasma boundary [11] was developed, in which the complexity of
the penalty function stayed rather low. The test included 6 different sample sizes
(1, 100, 1000, 2000, 4000 and 8000) and compared the results based on their fitness
and robustness w.r.t. f . Here, f1 is the classic, single coil optimization case. The
algorithm together with the optimization sequence is described in more detail in [2].
The 6 optimization runs of the optimization sequence concentrate mainly on the field
error and at the end on properties of the vacuum magnetic field, while adhering the
geometric constraints throughout the optimization. The penalty values at the end of
the optimization sequence resulted in the following ordering of the sample size cases

f8000 < f4000 < f2000 < f1 < f1000 � f100, (1)

where the biggest gap in this order is between the case with 1000 and 100 samples. The
case with 8000 samples has a 20% lower penalty value compared to the coil optimization
that uses just a single sample. In all cases, the penalty on the field error constitutes 85%
of the total penalty value since the design values of the remaining quality criteria are
reached with quite high accuracy. The focus of the first study was to demonstrate the
advantages of stochastic optimization in the context of stellarator coil design, using only
ONSET. The improved results do not necessarily imply that these results are superior
to newer coil design tools (such as FOCUS), only that the stochastic optimization itself
was beneficial.

During the optimization and subsequent perturbation analysis in [2], the fitness of
the coil sets and the corresponding quality of the magnetic fields were measured by the
penalty function f . This perspective is limited and shows only the differences w.r.t. the
target magnetic field and not how these magnetic field differences influence the more
fundamental physics properties of the configuration. In this paper we move beyond
the scope of f and compare the coil sets optimized in [2] by the actual performance
criteria which lead to the shape of the plasma boundary. We shift the perspective, from
investigating properties of magnetic fields to a physics analysis of finite-〈β〉 equilibria.
This way, we make a better assessment of the actual fitness of the coil sets and test
the ordering obtained from the penalty values in equation (1) against the number of
samples used during the optimization. Loosely formulated, we try to assess how much
the lower penalty function has brought us in terms of more fundamental and important
physics properties, assessed with the best tools we have available today. It is at least
in principle possible that the significantly reduced penalty value in the end does not
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translate into significantly improved physics properties. So part of our purpose is also
to make a first assessment of the appropriateness of the penalty function itself, although
admittedly the data presented here are too sparse to give more than a first indication.

In this physics analysis, the single coil optimization with a single sample is the
reference case of classic coil optimization and we refer to the rest of the cases optimized
in [2] as stochastic case N . All the results are ranked with the target magnetic field,
defined by the original W7-X boundary [12]. The origin of all magnetic fields is explained
in more detail in section 2 and their differences w.r.t. the quality criteria used at the
end of the optimization are described in section 3. The performance criteria are chosen
following the list of the W7-X objectives in [3]. We describe the development of the
Shafranov shift in section 4.1 and the global ideal MHD stability properties using the
CAS3D stability code [15] in section 4.2. The neoclassical transport will be discussed
in section 4.3, and the confinement of fast particles using the ANTS code [16] will be
compared in section 4.4. Last but not least, we move beyond the performance criteria
for which the W7-X boundary was optimized and present a mode analysis in section
4.5 showing a glimpse into the gyrokinetic behaviour observable in a selection of three
cases.

2. Origin of the Magnetic Fields

The optimization that led to the design of the actual W7-X coil set can unfortunately not
be reproduced today. That optimization procedure involved iterations and constraints
that are not easily automated and not sufficiently documented. Some of these
are described below. The optimization, which compared traditional and stochastic
stellarator coil optimization used the original W7-X ”high-mirror” configuration as the
target magnetic field. The boundary was first introduced in [12] but is better described
in [20]. The coil configuration that reproduced the magnetic fields of the original W7-X
configurational space is no longer available and its shape has repeatedly changed since
its first publication in [17]. The main motivation was the manufacturability at the time
combined with the additional desire of more experimental flexibility. With the change
of the coil configuration the magnetic fields of the W7-X configurational space changed.
Consequently, there is a not fully known difference between the original target magnetic
field and the magnetic field for which the coils in the end were designed.

We computed an analytic current distribution on a surface outside the plasma
boundary with NESCOIL [4], that reproduces the original boundary with acceptable
precision. We used the magnetic field produced by this current sheet to obtain the
target values used for the optimization and therefore, we refer to this magnetic field as
the target magnetic field. Choosing a vanishing net toroidal coil current guarantees that
the magnetic field of the stellarator can be generated from poloidally closed magnets,
and that there is no need for toroidal or helical magnets. This way, a discretization
of the current sheet into poloidally closed modular current filaments is possible. These
provide the starting point of the coil optimization with ONSET [1] and its stochastic
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extension [2]. The optimization ended after 6 runs with the coil sets that produce the
magnetic fields we refer to as the reference case and the stochastic cases.

The finite-〈β〉 MHD equilibria of the 7 magnetic fields are computed with the free
boundary version of VMEC [18] [19], where we use the pressure profile of the stability
analysis [20] of the original W7-X configurational space [11] which is proportional to

p(ρ) ∝ 7− 11ρ2 + 4ρ4 ,where 0 ≤ ρ ≤ 1 (2)

is the minor radius normalized to the minor radius of the last closed flux surface.
VMEC is used with 65 flux surfaces allowing residual forces of the order of 10−11. The
resolution of the MGRID files uses 130 points in radial- and z-direction and 62 points
in ϕ-direction. Here we denote that the optimization of the finite-〈β〉 effects of the
original W7-X boundary was done using the fixed-boundary VMEC. This means that
the free-boundary VMEC equilibrium of the target magnetic field was never directly
optimized, only indirectly through the fixed-boundary VMEC studies.

3. Quality Criteria

The quality criteria used during the optimization are visualized in figure 1 and the
corresponding values of the stochastic and reference cases together with the target values
are listed in table A1 of the Appendix A. We added the corresponding penalty values to
better assess equation (1). During the optimization, the squared residual of each quality
criterion w.r.t. its corresponding target value was a weighted part in the penalty function
f whose minimization was the main task of the optimization sequence described in [2].

The field error is quantified with two values, the maximum local field error
max el = |B·n|

|B| , where B is the vector of the magnetic field and n is the normal on
the plasma boundary, and the average global field error ea =

∫
A eldA

A
, where A is the area

of the plasma boundary. They are the most dominant quality criteria in the penalty
function directly quantifying the difference between the target magnetic field and the
magnetic field produced by the coils. The target magnetic field is produced by an
analytic current distribution computed with NESCOIL (12 poloidal and 10 toroidal
modes) on a current-carrying surface 30 cm outside the plasma boundary. Its field error
sets the lower boundary compared to the field errors of the coil optimization study as
can be seen in table 1.
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Figure 1: A W7-X half-module is shown together with the surfaces used during a stellarator
coil optimization with ONSET [1]. Additionally, we present the quality criteria used during
the compact optimization sequence cf.A1.

Table 1: Values of the Field Error

Magnetic Fields: Maximum Local Average Global
Field Error: Field Error:

Target Magnetic Field 3.4× 10−4 9.5× 10−5

Stochastic Case 8000 6.0× 10−2 1.6× 10−2

Stochastic Case 4000 5.7× 10−2 1.66× 10−2

Stochastic Case 2000 6.0× 10−2 1.95× 10−2

Reference Case 7.0× 10−2 1.7× 10−2

Stochastic Case 1000 7.0× 10−2 1.92× 10−2

Stochastic Case 100 8.0× 10−2 2.27× 10−2

The differences in the field error between the optimized coil cases reflect the order of
the penalty values in equation (1) obtained after the optimization and highlights that the
stochastic case 8000 has nearly the same field error as the stochastic case 4000, that the
reference case is somewhere between the stochastic case 2000 and stochastic case 1000

and that the worst values with the largest gap among the coil cases has the stochastic
case 100. The vacuum Poincare plots of all the magnetic fields at the bean-shaped cross
section presented in figure 2 confirm this situation and show that the magnetic field of
the stochastic case 100 deviates most from the target magnetic field. But variations
in the Poincare plots do not necessarily lead to changes in the plasma performance as
stated in [13] and [14]. Table A1 visualizes in numbers that all coil configurations show
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quite good agreement on the properties of the vacuum magnetic field and meet the
geometric constraints such that all coil configurations are valid approximations of the
target magnetic field.

Figure 2: Poincare plots of the vacuum field at the bean-shaped and triangular cross section

The geometric properties of the filament structure guarantee the feasibility of the
stellarator construction. The material used and consequently the extent of the coil
usually defines the maximal allowed coil curvature. It is defined as κ = 1

R
, where R

is the radius of the smallest circle representing a coil segment. Additionally, one tries
to avoid unnecessary undulations, which is enforced by the second curvature. It is a
weighted integral of the first curvature and fully described in [22]. The finite extent of
the coil also defines the required clearance between adjacent coils, and the two limiting
surfaces guarantee that the coils do not get too close or too far away from the plasma
boundary. Besides these properties, coil to plasma separation and coil length ([5], [6],
[8], [21]) are often used as design metrics.

The basic properties of the magnetic field are characterized by 7 aspects in the
penalty function:

• The magnetic axis is determined at the beginning and at the end of the half-module.
• The difference between the magnetic field strength on the axis at the start and at the
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end of the half-module is referred to as the magnetic mirror. It is normalized to the
sum of the two magnetic field strength values. It is important for the confinement
of fast particles and will be discussed in section 4.4.

• The value of iota on the axis and the shear is determined. The latter is computed
by taking the difference of iota on axis and iota 0.2m off axis at the beginning of
the half-module at z = 0.

• The change of the magnetic volume along the radial direction is summarized in the
magnetic well, which is necessary for the global MHD stability and will be discussed
in section 4.2.

• The Fourier coefficients of inner flux surfaces can be computed and optimized
towards the coefficients of the corresponding surfaces of the target magnetic field.
They are derived in PEST coordinates [45] and we chose the Rmn and Zmn of a
flux surface slightly inside the plasma boundary.

3.1. Remark:

We point out, that only the values of first curvature, the clearance and the two axes
positions have physical units.

4. Performance Criteria

4.1. Shafranov Shift

The Shafranov shift measures the deviation of the magnetic axis when a plasma pressure
is applied. The reduction of the Shafranov shift was one of the key objectives in the
design of W7-X [3].

In figure 3 we compare the position of the magnetic axis at both up-down symmetric
plasma cross sections as a function of normalized plasma pressure (〈β〉). The Shafranov
shift between 〈β〉 = 0% and 〈β〉 = 5% measured at the bean-shaped cross section is
about 1 cm lower for the stochastic case 100 compared to the rest of the cases. They
all have almost the same shift with the reference case having the largest one. At the
triangular cross section the stochastic case 100 has again the smallest Shafranov shift,
which is this time 2 cm smaller than the Shafranov shift of the reference case. The rest
of the cases including the target magnetic field have a Shafranov shift in between the
latter two cases, around 1 cm higher than the stochastic case 100 and around 1 cm lower
than the reference case. The Shafranov shift is in general a factor of two lower at the
bean-shaped cross section compared to the triangular cross section due to the different
elongations of the two cross sections. The results yield the following ordering:

f100 < Target ≈ f8000 ≈ f4000 ≈ f2000 ≈ f1000 < f1. (3)
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Figure 3: Shift of the magnetic axis from 〈β〉 = 0% up to 〈β〉 = 5% measured at both ends
of the half-module.

4.2. Stability

The depth of the magnetic well is a figure of merit in the ideal MHD considerations
[23]. Having a magnetic well means that the rate of increase of the contained magnetic
volume with toroidal flux , V ′(s), decreases with radius, i.e. V ′′(s) < 0 [24]. In ONSET,
the magnetic well is defined as the normalized difference of the specific volume of two
well-separated magnetic surfaces (including the magnetic axis)

−2 · V
′
2 − V ′

1

V ′
1 + V ′

2

. (4)

Here V ′
1 is the specific volume belonging to the magnetic surface closer to the magnetic

axis and V ′
2 the corresponding specific volume belonging to the magnetic surface closer

to the last closed flux surface. During our optimization we computed V ′
1 on the magnetic

axis and V ′
2 on the surface at ρ = 0.2, where ρ is the normalized minor radius. The

specific magnetic volume is computed as the average line integral along a magnetic field
line normalized by the magnetic field strength and is expressed as the limit of

lim
N→∞

1

N

∫
N

dl

B
=

dV

dΨ
with Ψ− toroidal flux. (5)

The target magnetic field provides the design value of the magnetic well of 7.0× 10−3.
The stochastic cases 4000 & 8000 possess a deeper magnetic well of ≈ 8× 10−3 and the
reference case has a more shallow magnetic well of 5.4× 10−3. The magnetic well of the
stochastic cases 100 & 1000 & 2000 is more than two times deeper than the magnetic
well of the stochastic cases 4000 & 8000. Having a magnetic well is a necessary condition
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for global ideal MHD stability and the result suggests that the stochastic cases are more
stable than the reference coil case.
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Figure 4: Left: Cross sections of the equilibria at 〈β〉 = 0.048 at the triangular- and bean-
shaped cross section. Right: Ideal MHD eigenvalue calculations versus average plasma-β.

We discuss the global ballooning stability of the reference and stochastic cases and
compare the results with the target magnetic field based on four MHD equilibria each.
The volume-averaged plasma-β is varied in a small range around the W7-X beta stability
limit of about 5%. The rotational transform varies between ι = 5/6 near the magnetic
axis and ι = 5/5 near the plasma boundary in the reference and the stochastic cases.
Only in the target magnetic field we see ι < 0.8 on the axis. For the equilibria at
〈β〉 = 0.048 two characteristic plasma cross sections of one half-module are shown in
figure 4 (left).

The ideal MHD computations were done using the CAS3D code [15] with
520 Fourier harmonics for the scalar perturbation components and 64 equidistant
flux intervals for the radial discretization. We consider even-parity fixed-boundary
perturbations for which the normal displacement is up-down symmetric on the up-down
symmetric plasma cross sections, i.e. at the bean-shaped and triangular cross sections,
figure 4 (left). The angular resolution is reduced by using a phase-factor transform that
extracts a potentially strongly varying part of the scalar perturbation components.

Global ballooning stability prevails for the β-values studied of the reference case
and stochastic cases 8000 & 4000 & 2000 as can be seen from their positive eigenvalues in
figure 4 (right). The target magnetic field together with the stochastic cases 100 & 1000

have unstable eigenvalues for the poloidal mode number ≈ 100 considered in figure 4.
Here, extrapolation from the stable or unstable side yields points of marginal stability.
Above the marginal plasma-β the equilibrium is predicted to be unstable. Hence looking
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at the modes with poloidal mode number ≈ 100, we can derive the stability limit of all
the cases shown in table 2.

Table 2: Stability limit of poloidal mode number 100

Magnetic Fields: Stability Limit:

Stochastic Case 1000 〈β〉 = 4.7%

Stochastic Case 100 〈β〉 = 4.9%

Target Magnetic Field 〈β〉 = 4.9%

Stochastic Case 8000 〈β〉 = 5.6%

Reference Case 〈β〉 = 5.8%

Stochastic Case 2000 〈β〉 = 5.9%

Stochastic Case 4000 〈β〉 = 6.1%

Higher mode numbers give more stringent stability limits, but the respective spatial
structure is of very small scale. The wavelength of the poloidal mode number ≈ 100 is
only one order of magnitude above the Larmor-radius of gyrating ions moving in the
corresponding magnetic field. Therefore, the spatial structure is close to the point where
physics beyond ideal MHD should be taken into account.

The MHD ballooning stability properties of the reference case and the stochastic
cases 2000 & 4000 & 8000 are almost the same and somehow more stable than the
target magnetic field. Even though the latter cases are mere approximations of its
vacuum magnetic field their rotational transform profile has less shear than that of the
the target magnetic field at finite plasma-〈β〉. The stochastic case 100 is as stable as
the target magnetic field and only the stochastic case 1000 is less stable. The maximum
amplitudes of the normal-displacement harmonics are located quite close to the edge in
the stochastic cases 100 & 1000 for which, near the plasma boundary, the local stability
Mercier criterion is violated, too. Therefore, we additionally looked at medium-mode-
number free-boundary perturbations and compared the stability limits of the poloidal
mode number ≈ 30. This new perspective does not change the order obtained before
and just decreases the values of the stochastic cases 100 & 1000 while increasing the
values of the rest.

The values of the magnetic well are insufficient indicators, since they indicate a
greater difference between the stochastic and reference cases. Here we point out that
the optimization leading to the W7-X configurational space was based on fixed-boundary
equilibria and that MHD stability properties entered the target function by evaluation of
local stability criteria (Mercier and resistive interchange) or driving terms (local field-
line ballooning) [11]. Nevertheless, both investigations arrive at a similar 〈β〉-limit.
Besides the vacuum-field magnetic well, other equilibrium properties are important in
global ideal MHD stability, e.g. the rotational transform profile. Falling below iota=5/6
in the target magnetic field in part explains why a decrease in vacuum-field magnetic
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well does not result in an increased 〈β〉-stability limit. The final order is:

f4000 < f2000 < f1 < f8000 < Target < f100 < f1000. (6)

4.3. Neoclassical Transport

The neoclassical confinement at low collisionalities in the 1/ν-regime can be
characterized by the ’effective helical ripple’ εeff (see [25] and references therein). This
quantity can be determined efficiently from an analytic solution of the bounce-averaged
drift kinetic equation to calculate the neoclassical transport coefficients without using
a simplified model of the magnetic field [26].
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Figure 5: Profile of epsilon effective at 〈β〉 = 5%

In figure 5 we illustrate the εeff profile of all 7 cases at 〈β〉 = 5%. The radial profile
is in all cases quite similar and only differs in the initial value and the ascent towards
the edge. The target magnetic field reaches on average over the whole radial extent the
lowest εeff profile. Its performance is only rivalled by the stochastic cases 100 & 1000

close to the magnetic axis. Their profile, in turn, has a steep ascent towards the edge
which is comparable to the ascent of the reference case which has by far the highest
εeff values. The 2nd best εeff performance has the stochastic case 8000 which is closely
followed by the stochastic cases 2000 & 4000.

The magnetic field in Boozer coordinates can be described by Fourier coefficients
bmn. The Shafranov shift reduces the magnetic mirror term b01 when increasing 〈β〉
from 0% to 5% which leads in all cases to a decrease of εeff close to the axis [27]. The
second consequence of the Shafranov shift is a general increase of the magnitude of the
higher Fourier harmonics which leads to an increased transport gradient at the edge.
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Figure 6: The neoclassical transport is shown for the density and temperature distribution
displayed in the top first and top second picture. From third top to bottom the radial electric
field, particle and energy flux and the bootstrap current is displayed all along the radial
direction.

In figure 6 we present neoclassical transport calculations based on the ’Drift Kinetic
Equation Solver’ DKES [28] [29]. In order to reach 〈β〉 = 5% we chose a density of
1.46× 1020 m−3 and a temperature of 5 keV in the core. The corresponding profiles are
shown in the first and second frame of figure 6. Their shape is chosen similar to profiles
found during the experimental campaign OP1.2 of W7-X while the overall pressure
profile reaches 〈β〉 = 5%. A multiplication of the density and temperature profile yields
the pressure profile defined in (2), which was used for the equilibria calculations with the
free boundary version of VMEC [19]. The radial electric field, the energy and particle
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fluxes together with the bootstrap current along the radial direction are shown in figure
6 (third to bottom frame, respectively). There is almost no difference in the radial
electric field, but the development of the particle and energy flux in the radial direction
reflects that the εeff-profile is highest for the reference case. The stochastic case 8000 and
the target magnetic field have quite similar energy flux development but are noticeably
lower than the reference case. The stochastic cases 100 & 1000 have the same particle
and energy flux as the target magnetic field close to the core but diverge towards the
edge. The particle and energy flux development of the stochastic cases 2000 & 4000 lies
in between the reference case and the stochastic case 8000. A different picture presents
itself regarding the development of the bootstrap current as can be seen in table 3,
where we integrated the bootstrap current density over the cross sectional area.

Table 3: Integrated bootstrap current density over the cross sectional area.

Magnetic Fields: Bootstrap Current

Stochastic Case 8000 17 kA

Stochastic Case 2000 22 kA

Reference Case 28 kA

Stochastic Case 100 31 kA

Stochastic Case 1000 32 kA

Stochastic Case 4000 33 kA

Target Magnetic Field 35 kA

The stochastic case 8000 has the lowest total bootstrap current, the reference case
is situated in the middle and the highest bootstrap current is found surprisingly in the
target magnetic field. A calculation of the equivalent bootstrap current of an elongated
tokamak (corr. scale found in [31]) with the same volume and aspect ratio with NTSS
[32] yields values around 220 kA. The bootstrap current of a more realistic circular
scaled tokamak with the same volume and aspect ratio would yield values around
600 kA. Consequently, the bootstrap current is significantly reduced in all 7 cases
considered,which confirms the minimization of the bootstrap current of the HELIAS
line described in [30]. The small differences in total bootstrap current between the cases
can thus be neglected.

In summary, the neoclassical confinement is best in the target magnetic field and
closely followed by the stochastic case 8000 & 1000, which have almost the same
performance. The rest of the stochastic cases have worse neoclassical confinement
although still better than the performance of the reference case, yielding the following
order:

Target < f8000 ≈ f100 < f4000 ≈ f1000 < f2000 < f1. (7)



Physics analysis of results of stochastic and classic stellarator coil optimization 16

4.4. Fast Particle Confinement

In the case of W7-X a magnetic mirror of 10% or higher is a necessary condition
to assure good α-particle confinement [33]. All the stochastic cases with N > 0

ended the optimization sequence with the same magnetic mirror as the target magnetic
field and only the reference case reaches a slightly higher magnetic mirror of ∼ 13%.
Unfortunately, the magnetic mirror is not a direct proxy for fast particle confinement
which means that a higher magnetic mirror does not necessarily mean better fast particle
confinement.
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Figure 7: Comparison of the loss fraction of fast particles initiated at different starting
positions along the radial direction. The reference case together with the stochastic cases 100
& 1000 are situated left, the stochastic cases 2000 & 4000 & 8000 are in the middle and the
target magnetic field is placed on the right.

We measure the fast particle confinement of the 7 magnetic fields with ANTS
[16]. Along the radial direction, 7 different starting positions are defined at ρ =

0.25, 0.5, 0.7, 0.78, 0.84, 0.9, 0.95. At each radial position an ion population of 10 000

particles was initiated and the loss fraction was measured as a function of time. The
deuterium ions are initiated with a kinetic energy of 60 keV, which yields about the same
gyroradius-to-system-size ratio as for fusion alpha particles at 3.5MeV in a HELIAS
reactor [34]. We do not consider collisions while tracing the particles along the field
lines in the magnetic field of a 〈β〉 = 5% equilibrium.

In figure 7 we compare the development of the loss fraction as a function of time
starting with the reference case and the stochastic case 100 & 1000 on the left, the
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stochastic cases 2000 & 4000 & 8000 in the middle and the target magnetic field on
the right. The latter exhibits excellent fast particle confinement near the axis, as is
evident by the small loss fraction for t < 2× 10−2 s. Details about its optimization,
which focused on the confinement close to the axis only, can be found in [11]. During
the optimization of the magnetic fields of the stochastic and the reference cases no proxy
for the confinement of fast particles was used due to their time-intensive computation.
Therefore, the fast particle confinement was only indirectly optimized through the field
error.

As expected, the target magnetic field has the best confinement of fast particles
at each starting position. If we compare the rest of the cases at ρ ≥ 0.7, we see
that the reference case has noticeably the worst performance while the stochastic cases
with N > 0 have almost the same performance. At ρ = 0.7 we find, surprisingly,
the performance ordered by the number of sample used during the optimization
(f8000 < f4000 < f2000 < f1000 < f100 < f1). Looking at the two starting positions
close to the axis (ρ = 0.25 and ρ = 0.5), we see the worst performance from the
stochastic case 100 & 2000. A comparison between the remaining 5 cases is shown in
figure 8. Additionally, we added the slowing-down time of 5× 10−3 s computed for a
similar W7-X magnetic field stated in [35]. Its magnetic configuration only reaches a
pressure of 〈β〉 = 4%, but the density of 1.6× 1020m−3 is comparable to the one shown
in section 4.3. A comparison at this particular time step shows that at ρ = 0.25 the
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fast particle confinement is second best for the stochastic case 1000, closely followed
by the stochastic case 8000 and the reference case which have the same performance.
At ρ = 0.5 the stochastic case 1000 & 8000 have the second best performance after the
target magnetic field with a slightly better performance then the reference case. At both
starting positions, the stochastic case 4000 performs worst among the cases considered
in figure 8.

In summary, the fast particle confinement is best in the target magnetic field,
which is closely followed by the stochastic cases 1000 & 8000 which have almost the
same performance. Their performance is quite similar to the reference case, but only
close to the axis. For ρ ≥ 0.7 the reference case actually performs worst. Consequently,
the performance of the stochastic case 4000 is still better than the reference case which
is only better than the stochastic case 2000 & 1000 due to their bad performance close
to the axis. The final order is:

Target < f8000 ≈ f1000 < f4000 < f1 < f2000 ≈ f100. (8)

4.5. Turbulent Transport

As neoclassical transport is suppressed, turbulent transport becomes more important
in present day stellarators like W7-X [36]. Therefore, attempts have been made to
develop models to predict turbulent transport in stellarators in order to optimize future
devices [37]. Here, we show simulation results produced by GENE-3D, the radially-
global stellarator version of the grid-based gyrokinetic turbulence code GENE [39, 38, 40]
which was recently developed at IPP Garching [41]. Previous studies of stellarators
with GENE were limited to the flux-tube and flux-surface global version of GENE
[42, 43]. This is one of the first studies performed with the fully global GENE-3D code.
We compare three different equilibria mentioned in section 2 w.r.t. to two different
temperature and density profiles. The first profile type was used in the investigation of
the neoclassical transport of section 4.3 and the second profile type is a standard used
in GENE. Its gradient peaks at ρ = 0.5 and has a Gaussian like shape (see fig. 9). It
allows GENE simulations to run accurately with relatively low resolution requirements
and hence lower computational cost. The differences of the profiles in location and
height of the peak of the gradients can lead to different mode structures in GENE-3D
simulations which is part of the upcoming investigation.

4.5.1. Linear simulations with adiabatic electrons Figure 10 shows the most unstable
modes drifting in the ion diamagnetic direction in linear simulations assuming
Boltzmann-distributed electrons. Looking at the solid lines which correspond to the
profiles used in the neoclassical transport investigation of section 4.3, the reference case
and the stochastic case 8000 peak at the same toroidal mode number of n = 110 and
the target magnetic field peaks at a slightly smaller mode number of n = 105. A
higher mode number indicates that the underlying mode structure varies on a smaller
scale. Large scale instabilities are however more relevant in nonlinear simulations as
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Figure 9: Density and temperature profiles used in GENE-3D simulations for the mode
analysis. The gradient profiles have very different shape and peak at different positions and
can therefore lead to different dominant modes in the simulations.

they lead to more particle and heat transport. The picture stays the same when looking
at the growth rates, where the target magnetic field has a slightly higher growth rate of
γ = 0.146vi

a
compared to γ = 0.137vi

a
for the other two cases. Here, vi is the ion thermal

velocity defined as
√

Ti0/mi and a is the minor radius.
Looking at the dashed lines of figure 10 which correspond to the profile type 2 in

figure 9 the reference case and the stochastic case 8000 peak again at the same toroidal
mode number of n = 175 but with slightly different growth rates. This time the target
magnetic field peaks at a slightly higher toroidal mode number of n = 185 and has a
noticeably higher growth rate of γ = 0.202vi

a
.

As both temperature profiles show similar behavior in respect to differences in the
magnetic field geometry we continue the simulations using the profile type 2 which leads
to lower computational cost of the GENE-3D simulations.
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Figure 10: Most unstable modes in linear simulations of adiabatic electrons. Two different
temperature and density profiles were used.

4.5.2. Linear simulations with kinetic electrons An explicit electron species can change
the outcome of a simulation as the dominant mode can have different characteristics.
Theoretically, the mode can change from ion modes such as ion temperature gradient
(ITG) modes to electron modes such as electron temperature gradient (ETG) modes
or trapped electron modes (TEM). Therefore, we repeated the tests of section 4.5.1 for
kinetic electrons to investigate their effect on the mode structure and small changes in
the geometry. We assume the same density and temperature gradient for the electrons
as for the ions, such that the two linear cases differ only by the additional explicit heavy
electron species in the system with me/mi = 1/100 (me: electron mass, mI : ion mass).

As can be seen from figure 11, adding kinetic electrons to the simulations shifts
the toroidal mode number to higher values and increases the growth rate. In the
performed simulations with kinetic electrons the dominant mode is still rotating in
the ion diamagnetic drift direction like with adiabatic electrons. The up shift in mode
number due to kinetic electrons is smallest in the target magnetic field and largest in the
reference case. But in general the up shift is smaller than the change of mode number
due to the difference in profiles, which indicates that an explicit electron species in the
simulations does not have a strong effect on the underlying instability. The reference
case again has the lowest growth rate while the target magnetic field has the highest.

4.5.3. Nonlinear simulations with adiabatic electrons Adding kinetic electrons to
the simulations in the linear scenario did not have a strong effect on the outcome.
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Figure 11: Most unstable modes in linear simulations of kinetic electrons

Therefore, we concentrate on nonlinear simulations of adiabatic electrons to measure
the volume-averaged (electrostatic) ion heat flux. As can be seen from figure 12 the
three equilibria behave almost identically for the first 250 time units. This confirms
the linear results as the first part of virtually uninhibited growth (until t ≈ 100) of a
nonlinear simulation is often considered the linear phase until nonlinear effects start to
take over. Hereafter, similarity or equality can only be determined statistically because
two nonlinear simulations will never be exactly the same. Therefore, the qualitative
features of the three equilibria are very similar since they all show the same development.
After the first peak follows a dip and then another peak of heat flux. These fluctuations
persist even on long time scales. Quantitatively, the heat flux averaged over time for
the three equilibria is also very similar as well as their uncertainties. The uncertainty is
computed as one standard deviation of the time trace in the interval used for averaging.

4.5.4. Conclusion Comparing three different free-boundary equilibria representing the
W7-X high-mirror variant we find that the target magnetic field is actually linearly
more unstable than the reference and stochastic case 8000. Between the reference
and stochastic case 8000 we could only find minor differences in terms of mode
structure or linear growth rate. Nonlinearly, the differences between the three equilibria
are negligible. Therefore, considering the performed gyrokinetic simulations small
differences in geometry do not affect the heat flux significantly. As the differences
between the three different equilibria do not have a large impact on the GENE-3D
results such that no additional runs were performed for the rest of the coil cases.
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5. Discussion and conclusion

The magnetic fields of a stochastic stellarator coil optimization (stochastic case N) are
compared with a magnetic field of the traditional stellarator coil optimization (reference
case) on the basis of an identical optimization sequence. The results are compared with
the target magnetic field used during the optimization. The coil sets are naturally
ordered by their fitness w.r.t. the penalty function f , which measures the difference
between the magnetic field produced by the coil configuration and the target magnetic
field by means of several quality criteria. Except for the reference case (sample size 1),
the ordering of the penalty values represents the number of samples used during the
optimization: The higher the sample size, the lower the penalty value. The reference
case lies between the stochastic case 2000 & 1000 and has a 20% lower penalty value
than the stochastic case 8000. The stochastic case 100 has by far the highest penalty
value, suggesting that it would have the worst performance. Each magnetic field is
transformed into a 〈β〉 = 5% equilibrium with VMEC and compared on the basis of the
W7-X objectives [3], namely the Shafranov shift, stability and neoclassical transport
properties, and the confinement of fast particles. At last, we investigate the gyrokinetic
behavior of the stochastic case 8000, the reference case, and the target magnetic field.

The penalty function f represents the performance of the stochastic cases 8000

& 4000 & 2000 together with the reference case quite well when investigating the
Shafranov shift, the neoclassical transport and the confinement of fast particles. The
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target magnetic field, which has a penalty value of zero, shows in the latter two criteria
the best performance, but only reflects its much better fitness w.r.t. f in the confinement
of fast particles. The stability is not very well described by the penalty function and
suggests that further improvement should be made. Interestingly, the stochastic cases
1000 & 100 show good results when investigating the performance criteria which means
that the penalty function f did not represent their performance very well. Especially
the surprisingly good performance of the stochastic case 100 questions the effectiveness
of the penalty function f and shows again that an agreement in the vacuum magnetic
field is not necessary for good performance (c.f. [13] and [14]). The investigation of the
turbulent transport showed that the differences in the magnetic field geometry are too
small to find reasonable differences in the heat flux.

Summarizing the performance investigation, the target plasma shape is optimal
followed by the stochastic cases and concludes with the plasma shape of the reference
case. This shows that stochastic stellarator coil optimization outperforms classic
stellarator coil optimization irrespective of the number of considered samples. The
original reason for introducing the stochastic coil optimization was to improve
robustness, but it managed to also find coil sets that outperform the previously found
coil set even when disregarding tolerances.

6. Outlook

The reason why stochastic stellarator coil optimization outperforms classic stellarator
coil optimization irrespective of the number of considered samples when analyzing
the physics properties of the corresponding magnetic fields is not fully understood.
Stochastic optimization smooths out the optimization space which leads to lower field
error values when the sample size is high enough. It is left to future work to investigate
why stochastically optimized coil configurations with noticeably higher field error values
performed better than the reference case.

The fitness ordering obtained from the penalty values after the optimization did
not fully reflect the actual expected physics performance of the coil sets. This motivates
to invent new proxies especially for the MHD stability. The coil optimization that we
have been focusing on here takes as input the target magnetic field and is therefore
limited to the performance of the target magnetic field, even if this target itself could be
further optimized. Therefore, an obvious next step is to apply the stochastic framework
to stellarator optimization, which concentrates on the optimization of the performance
criteria directly.
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Appendices
Appendix A. Quality Criteria used during the Optimization

In table A1 we list the achieved values of the quality criteria of the reference & stochastic
cases after the optimization together with the target values. Additionally, we show
the corresponding penalty values in brackets (). The quality criteria are grouped in
4 categories and appeared at different stages during the optimization sequence. The
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optimization sequence consisted of 6 optimization runs which differ in the values used
for each individual quality criterion. A detailed list of the corresponding weights used
in every single optimization run can be found in [2]. The optimization started with the
field error together with the geometric properties and introduced the basic properties
of the magnetic field in the second stage. The third stage was the optimization of the
Fourier coefficients of an inner flux surface. We obtained the Fourier coefficients from
the target magnetic field and optimized the corresponding coefficients in the magnetic
field produced by the coil set. We use PEST coordinates [45] for this computation
which assure identical poloidal angles for the different cases. In the corresponding row
in table A1 we are presenting the penalty value instead of the 104 Fourier coefficients.
A detailed description of the quality criteria and how they are computed in ONSET [1]
can be found in [22].
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Table A1: Values of the Quality Criteria

Quality Criteria: Stochastic Case 8000: Target Values: Reference Case:

Maximum Local Field Error 6.0× 10−2 (3.70) (0) 7.0× 10−2 (4.87)
Average Global Field Error 1.6× 10−2 (1.25) (0) 1.7× 10−2 (1.45)

Curvature 1 (m−1)(Coil 1/2/3/4/5) 3.0/2.9/3.0/3.1/3.3 (9.2× 10−2) 3.0 (0) 3.0/3.0/3.0/3.0/3.1 (7.0× 10−3)
Curvature 2 (in 10−1) 2.7/3.1/5.1/6.1/6.2 (1.0× 10−1) 0.3 (0) 3.6/4.2/5.6/5.1/5.4 (6.7× 10−2)
Clearance (cm) 27/27/27.7/26.8/26.8 (1.4× 10−3) 27 (0) 27/26.8/26.8/26.8/31 (3.1× 10−3)

Magnetic Axis (bean-shaped cross.) 5.936m (5.6× 10−5) 5.934m (0) 5.928m (1.3× 10−4)
Magnetic Axis (triangular cross.) 5.166m (7.2× 10−3) 5.17m (0) 5.17m (1.1× 10−4)
Magnetic Mirror on Axis 0.10853 (8.8× 10−6) 0.107 (0) 0.132 (1.9× 10−3)
Iota on Axis 0.882 (9.9× 10−7) 0.883 (0) 0.881(3.9× 10−3)
Magnetic Shear 1.521 (2.6× 10−3) 1.56 (0) 1.49 (3.9× 10−3)
Magnetic Well 8.1× 10−3 (0) 7.0× 10−3 (0) 5.4× 10−3 (2.9× 10−3)

Fourier Coeff. of inner Flux Surface (2.83× 10−1) (0) (2.44× 10−1)

Total Penalty Value (5.89) (0) (6.65)

Quality Criteria: Stochastic Case 4000: Stochastic Case 2000:

Maximum Local Field Error 5.7× 10−2 (3.29) 6.0× 10−2 (3.6)
Average Global Field Error 1.66× 10−2 (1.39) 1.95× 10−2 (1.9)

Curvature 1 (m−1)(Coil 1/2/3/4/5) 2.9/2.5/2.8/3.1/3.2 (4.0× 10−2) 2.2/2.3/3.1/3.1/3.3 (8.5× 10−2)
Curvature 2 (in 10−1) 2.2/2.4/4.1/5.3/5.4 (5.1× 10−2) 2/3.1/4.5/5.4/5.3 (5.1× 10−2)
Clearance (cm) 30.78/30.78/30.9/28/28 (0) 33.0/31.22/29.66/27.8/27.8 (0)

Magnetic Axis (bean-shaped cross.) 5.922m (5.3× 10−4) 5.923m (5.0× 10−4)
Magnetic Axis (triangular cross.) 5.158m (6.4× 10−2) 5.152m (1.4× 10−1)
Magnetic Mirror on Axis 0.0994 (1.1× 10−3) 0.0953 (3.8× 10−4)
Iota on Axis 0.8815 (6.2× 10−8) 0.8849 (5.5× 10−3)
Magnetic Shear 1.56 (9.2× 10−2) 1.63 (4.2× 10−3)
Magnetic Well 7.9× 10−3 (0) 1.7× 10−2 (0)

Fourier Coeff. of inner Flux Surface 0.646 (6.46× 10−1) (5.07× 10−1)

Total Penalty Value (5.48) (6.3)

Quality Criteria: Stochastic Case 1000: Stochastic Case 100:

Maximum Local Field Error 7.0× 10−2 (4.81) 8.0× 10−2 (6.38)
Average Global Field Error 1.92× 10−2 (1.85) 2.27× 10−2 (2.58× 10−2)

Curvature 1 (m−1)(Coil 1/2/3/4/5) 2.2/2.5/3.0/3.4/3.3 (1.7× 10−1) 2.1/2.4/2.6/3.2/3.2 (3.2× 10−2)
Curvature 2 (in 10−1) 1.9/2.2/3.2/6.1/4.8 (5.1× 10−2) 1.7/3.5/3.9/4.8/5.0 (4.5× 10−2)
Clearance (cm) 30.78/30.78/30.9/28/28 (0) 26.7/26/26/30.8/34.8 (0)

Magnetic Axis (bean-shaped cross.) 5.923m (4.8× 10−4) 5.94m (1.6× 10−4)
Magnetic Axis (triangular cross.) 5.174m (1.1× 10−2) 5.191m (2.2× 10−1)
Magnetic Mirror on Axis 0.1011 (8.8× 10−5) 0.0975 (2.5× 10−4)
Iota on Axis 0.879 (1.2× 10−2) 0.8768 (6.6× 10−2)
Magnetic Shear 1.43 (1.3× 10−2) 1.52 (1.4× 10−2)
Magnetic Well 1.8× 10−2 (0) 1.6× 10−2 (9.7× 10−5)

Fourier Coeff. of inner Flux Surface (7.34× 10−1) (9.62)

Total Penalty Value (7.65) (11.03)

Description:
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Penalty Value Number in brackets ().
Field Error Normal magnetic field on the plasma boundary.
Clearance Minimum distance between adjacent coils.
Curvature 1 Maximum coil curvature.
Curvature 2 Weighted curvature defined in [22].
Magnetic Axis Central closed field line about which the other field lines wind [44].
Magnetic Shear Difference of iota on axis and an iota value off axis divided by the

squared length.
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