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S1	–	Sample	growth	and	characterization	

	
The	K3C60	powder	pellets	used	in	this	work	were	prepared	and	characterized	as	previously	

reported	 in	Refs.	1,2.	Finely	ground	C60	powder	and	metallic	potassium	in	stoichiometric	

amounts	 were	 placed	 in	 a	 vessel	 inside	 a	 Pyrex	 vial,	 evacuated	 to	 10!"	mbar,	 and	

subsequently	sealed.	The	two	materials	were	heated	at	523	K	for	72	h	and	then	at	623	K	for	

28	h.	To	ensure	 that	C60	was	exposed	only	 to	a	clean	potassium	vapor	atmosphere,	 solid	

potassium	and	fullerene	powder	were	kept	separated	during	the	heating	cycle.	The	vial	was	

then	opened	under	inert	atmosphere	(in	an	Ar	glove	box	with	<0.1	ppm	O2	and	H2O)	and	the	

black	 powder	 was	 reground,	 pelletized	 and	 further	 annealed	 at	 623	K	 for	 5	days.	 This	

yielded	phase	pure	K3C60	powders,	as	confirmed	by	powder	X-ray	diffraction	measurements	

(Fig.	S1a)	that	indicate	an	average	grain	size	ranging	from	100	nm	to	400	nm.	Figure	S1b	

shows	magnetic	 susceptibility	measurements	 of	 the	 obtained	 K3C60	pellets	 upon	 cooling	

with	 an	 external	magnetic	 field	 of	 zero	 (ZFC)	 and	 400	A/m	 (FC).	 A	 critical	 temperature	

around	19.8	K	can	be	extracted,	which	is	in	agreement	with	literature3.	

	

	 	

Figure	S1:	a.	X-ray	diffraction	data	and	single	f.c.c.	phase	Rietveld	refinement	for	the	K3C60	powder	
used	in	this	work.	b.	Temperature	dependence	of	the	sample	magnetic	susceptibility	measured	by	
SQUID	 magnetometry	 upon	 cooling	 without	 (ZFC:	 zero	 field	 cooling)	 and	 with	 a	 magnetic	 field	
applied	(FC:	field	cooling).	
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S2	–	Equilibrium	optical	properties	and	fitting	models	

	
The	 equilibrium	 optical	 properties	 of	 K3C60	 were	 retrieved	 in	 a	wide	 spectral	 range	 from	

5	meV	to	500	meV	at	temperatures	between	25	K	and	300	K.	For	this	purpose,	the	reflectivity	

of	 the	K3C60	 pellet	was	measured	 by	 Fourier-transform	 infrared	 spectroscopy	 at	 the	 SISSI	

beamline	(Elettra	Synchrotron	Facility,	Trieste,	Italy)	using	a	commercial	Fourier	transform	

infrared	 spectrometer	 equipped	with	 a	microscope.	 The	 pellet	was	 embedded	 in	 a	 sealed	

holder,	pressed	against	a	diamond	window	to	obtain	an	optically	flat	interface,	and	attached	

to	 a	 helium	 cooled	 cryostat	 for	 temperature	 dependent	 measurements.	 To	 prevent	

degradation	of	the	K3C60	pellets,	all	sample	handling	was	performed	in	a	glove	box	with	Argon	

atmosphere	(<0.1	ppm	O2	and	H2O).	

	The	K3C60	 reflectivity	 spectra	were	 referenced	against	 a	 gold	mirror	placed	at	 the	 sample	

position.	The	low	energy	part	of	the	spectrum	(<	5	meV	)	was	extrapolated	using	a	Drude-

Lorentz	fitting	while	for	the	high	energy	side	(>	500	meV)	data	on	K3C60	single	crystals	was	

used4,5.	 The	 complex	 valued	 optical	 conductivity	was	 retrieved	 through	 a	 Kramers-Kronig	

transformation	for	samples	in	contact	with	a	transparent	window6.		

Figure	S2	shows	the	equilibrium	optical	properties	of	K3C60	at	ambient	pressure	and	at	a	fixed	

temperature	T	=	100	K.	This	and	further	data	measured	at	different	temperatures	and		

pressures	were	 already	 reported	 in	 Refs.	 1,2	 and	 discussed	 also	 in	 comparison	with	 data	

obtained	from	single	crystals.	

The	measured	conductivity	spectra	were	fitted	by	a	combination	of	a	Drude	term	describing	

the	free-carrier	response	and	a	Lorentz	oscillator	reproducing	the	mid-infrared	absorption	at	

higher	frequencies	(ω0	~	50	meV	–	100	meV):	

	

𝜎#(𝜔) + 𝑖𝜎$(𝜔) = 	
𝜔%$

4𝜋
1

𝛾& − 𝑖𝜔
+
𝜔%,()*$

4𝜋
𝜔

𝑖3𝜔+,()*$ − 𝜔$4 + 𝛾()*𝜔
	

	

here	𝜔%	and	𝛾&	are	the	plasma	frequency	and	scattering	rate	of	the	Drude	term,	while	𝜔%,()* ,	

𝛾()* ,	and	𝜔+,()* 	are	the	oscillator	strength,	the	linewidth,	and	the	resonance	frequency	of	the	

additional	Lorentz	term.	The	result	of	the	fit	is	shown	as	a	solid	blue	curve	in	Figure	S2.	The	

equilibrium	data	reported	here	were	used	to	normalize	the	transient	optical	spectra	of	K3C60	

measured	upon	photoexcitation,	as	discussed	in	detail	in	section	S4.	
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S3	–	Generation	of	picosecond	mid-infrared	pump	pulses	
	

The	1	ps	long	pump	pulses	centered	at	7.3	µm	wavelength	used	for	the	experiments	reported	

in	Figure	2	were	obtained	starting	from	~100	fs	long,	7.3	µm	wavelength	pulses	generated	by	

difference	frequency	mixing	of	the	signal	and	idler	outputs	of	a	home	built	optical	parametric	

amplifier	(OPA)	in	a	0.5	mm	thick	GaSe	crystal.	The	OPA	was	pumped	with	~60	fs	long	pulses	

from	a	commercial	Ti:Al2O3	regenerative	amplifier	(800	nm	central	wavelength).	To	obtain	a	

pulse	 duration	 of	~1	ps,	 the	7.3	µm	 radiation	was	propagated	 through	 a	 highly	 dispersive	

16	mm	long	CaF2	rod.	The	spectrum	of	the	pump	pulses	was	characterized	using	a	home	built	

FTIR	spectrometer.	Their	duration	was	measured	by	cross-correlation	with	a	synchronized,	

35	fs	long,	800	nm	wavelength	pulse	in	a	50	µm	thick	GaSe	crystal.	

This	experimental	setup	could	not	efficiently	produce	pulses	with	a	duration	 longer	than	

few	picoseconds,	and	also	lacked	the	flexibility	of	a	continuously	variable	pulse	duration.	

For	this	reason,	the	experiments	reported	in	Figure	3,	4,	and	5,	were	obtained	with	a	new	

optical	device	based	on	CO2	lasers	that	generated	longer,	narrow-band	pulses	centered	at	

10.6	µm	wavelength,	with	fully	tunable	duration	between	5	ps	and	1.3	ns.		

To	perform	mid-infrared	pump,	THz	probe	experiments,	the	pump	pulses	generated	from	

the	CO2	 laser	system	needed	to	be	synchronized	to	the	Ti:Al2O3	 laser	generating	the	THz	

probe	light	(see	section	S4).	To	achieve	this,	we	developed	the	setup	described	in	Figure	3a.	

Figure	 S2:	 Equilibrium	 optical	 properties	 (reflectivity,	 real,	 and	 imaginary	 part	 of	 the	 optical	
conductivity)	of	K3C60	measured	at	a	temperature	of	100	K	(blue)	and	300	K	(red).	The	black	dashed	
curve	is	a	Drude-Lorentz	fit	to	the	optical	conductivity	at	100	K	in	the	range	from	3	meV	to	60	meV	
as	described	in	the	text.	
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Here,	 ~150	fs	 long,	 10.6	µm	wavelength	 pulses	were	 generated	 by	 difference	 frequency	

mixing	of	the	signal	and	idler	outputs	of	a	home	built	OPA	in	a	1.5	mm	thick	GaSe	crystal.	

The	OPA	was	pumped	with	~100	fs	 long	pulses	from	a	commercial	Ti:Al2O3	regenerative	

amplifier	 (800	nm	 wavelength).	 A	 fraction	 of	 these	 femtosecond	 pulses	 (~60	pJ)	 were	

injected	through	the	semitransparent	front	window	(20	%	transmission)	into	the	cavity	of	

a	 commercial	 transversely	excited	atmosphere	 (TEA)	CO2	 laser.	The	 injection	of	10.6	µm	

wavelength	 seed	 pulses,	 induces	 a	 temporal	mode	 locking	 resulting	 in	 a	 train	 of	 output	

pulses,	which	are	synchronized	to	the	femtosecond	seed	laser7.	Because	of	the	high	finesse	

of	the	CO2	laser	oscillator	cavity,	the	seed	pulses	were	spectrally	filtered	and	the	oscillator	

produced	 pulses	with	 nanosecond	 duration.	 The	most	 intense	 pulse	 from	 the	 train	was	

selected	with	a	custom	designed	CdTe	Pockels	cell	and	mid-infrared	wire	grid	polarizers.	

The	resulting	output	consisted	of	a	single	pulse	with	a	duration	of	~1.3	ns	and	a	pulse	energy	

of	~730	µJ	per	pulse	at	18	Hz	 repetition	 rate.	This	pulse	was	 then	amplified	 further	 in	a	

second	ten-pass	amplifier	based	on	a	modified	commercial	TEA	CO2	laser.	The	typical	pulse	

energy	achieved	after	the	amplifier	is	~11	mJ	at	18	Hz	repetition	rate,	with	a	pulse	duration	

of	~1.3	ns.	

The	pulse	duration	of	these	1.3	ns	long	pulses,	was	tuned	using	a	combination	of	a	plasma-

mirror	 and	 -shutter,	 which	 allows	 “slicing”	 of	 the	 leading	 and	 trailing	 edge	 of	 the	mid-

infrared	 (MIR)	 pulses.	 For	 both	 plasma	 slicers	 we	 utilized	 semiconductor	 wafers	

transparent	to	the	10.6	µm	radiation	(Si,	Ge,	or	CdTe)	set	at	the	Brewster’s	angle	to	suppress	

the	 reflection	of	 the	p-polarized	MIR	beam.	A	pair	 of	 time-delayed,	 intense	 femtosecond	

pulses	(λ	=	800	nm,	100	fs	duration)	was	used	to	photoexcite	the	semiconductors	to	create	

an	 electron	 hole	 plasma	 at	 the	 surface	 that	 acts	 as	 an	 ultra-fast	 switchable	 mirror8-10.	

Varying	the	time	delay	between	the	two	femtosecond	pulses	enabled	us	to	tune	their	pulse	

duration	between	5	ps	and	1.3	ns.	To	compensate	the	path	length	in	the	cavities	of	the	CO2	

laser	 and	 amplifier	 (~300	m),	 the	 slicing	 pulses	 were	 derived	 from	 a	 second	 Ti:Al2O3	

amplifier.	This	was	optically	synchronized	to	the	one	used	for	generating	the	seed	pulses	for	

the	CO2	laser	by	seeding	it	with	pulses	from	the	same	Ti:Al2O3	master	oscillator.	

The	 envelope	 of	 the	 sliced	 mid-infrared	 pulses	 is	 affected	 by	 the	 decay	 time	 of	 the	

electron/hole	plasma	in	the	semiconductor.	When	using	n-doped	silicon,	 the	 long	carrier	

recombination	 time	yielded	pulses	 that	have	an	almost	 flat-top	 shape	 for	different	pulse	

lengths	up	to	~300	ps.	The	pulse	envelope	of	the	generated	pulses	was	measured	by	cross-
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correlation	with	a	synchronized	100	fs	long,	800	nm	wavelength	pulse	in	a	2	mm	thick	GaSe	

crystal	(Figure	S3).	

	

 

S4	–	Determination	of	the	out-of-equilibrium	optical	response	

	
The	 mid-infrared	 pump-THz	 probe	 experiments	 presented	 in	 Figures	1,	 2,	 and	 3	 were	

performed	on	compacted	K3C60	powder	pellets	pressed	against	a	diamond	window	to	ensure	

an	optically	flat	interface.	As	K3C60	is	water	and	oxygen	sensitive,	the	pellets	were	sealed	in	an	

air-tight	holder	and	all	sample	handling	operations	were	performed	in	an	Argon	filled	glove	

box	 with	 <0.1	ppm	 O2	 and	 H2O.	 The	 sample	 holder	 was	 then	 installed	 at	 the	 end	 of	 a	

commercial	 Helium	 cold-finger	 (base	 temperature	 5	K),	 to	 cool	 the	 pellets	 down	 to	 a	

temperature	of	100	K.	Although	a	detailed	 study	of	 the	 sample	damage	 threshold	was	not	

carried	out,	no	damage	was	observed	up	to	4.5	mJ cm2⁄ 	for	100	fs	pulses	and	up	to	fluences	in	

excess	of	50	mJ cm2⁄ 	for	pulses	longer	than	1	ps.	

The	 mid-infrared	 pump	 induced	 changes	 in	 the	 low	 frequency	 optical	 properties,	 were	

retrieved	using	transient	THz	time	domain	spectroscopy	in	two	different	experimental	setups.	

The	THz	pulses	were	generated	in	a	commercial	photoconductive	emitter	or	in	a	0.2	mm	thick	

Figure	S3:	Time	profile	of	the	10.6	μm	pulses	generated	by	slicing	in	two	photo-irradiated	n-doped	
silicon	wafers.	These	traces	are	a	result	of	a	cross-correlation	measurement	following	the	procedure	
described	in	the	text.	
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(110)-cut	GaP	crystal	using	800	nm	pulses	with	a	duration	of	100	fs	and	35	fs,	respectively.	In	

both	cases,	these	800	nm	pulses	were	generated	by	the	Ti:Al2O3	laser	optically	synchronized	

with	the	one	producing	the	mid-infrared	excitation	pulses.	The	generated	probe	pulses	were	

focused	at	normal	incidence	on	the	K3C60	sample,	and	their	electric	field	profile	was	measured,	

after	 reflection	 from	 the	sample,	by	electro-optic	 sampling	 in	1	mm	thick	ZnTe,	or	0.2	mm	

thick	GaP	(110)-cut	crystals.	The	ZnTe	based	setup	had	a	measurement	bandwidth	ranging	

from	3.3	meV	 to	12	meV,	while	 the	GaP	based	one	 spanned	 the	 range	between	4.1	meV	 to	

29	meV.	The	time	resolution	of	both	setups	is	determined	by	the	measurement	bandwidth	and	

is	~300	fs	and	~150	fs,	respectively.	

To	minimize	the	effects	on	the	pump-probe	time	resolution	due	to	the	finite	duration	of	the	

THz	probe	pulse,	we	performed	 the	 experiment	 as	described	 in	Refs.	 11,12.	The	 transient	

reflected	THz	 field	at	 each	 time	delay	𝜏	 after	excitation	was	obtained	by	 fixing	 the	delay	𝜏	

between	the	pump	pulse	and	the	electro-optic	sampling	gate	pulse,	while	scanning	the	delay	t	

of	the	single-cycle	THz	probe	pulse.	

The	 electric	 field	 reflected	 by	 the	 unperturbed	 sample,	 𝐸,(𝑡),	 and	 the	 pump-induced	

changes,	Δ𝐸,(𝑡, 𝜏)	were	simultaneously	acquired	at	each	time	delay	τ	by	acquiring	the	electro-

optic	 sampling	 signals	 and	 chopping	 the	 pump	 and	 probe	 beams	 at	 different	 frequencies.	

Simultaneous	measurement	of	the	reference	electric	field	𝐸,(𝑡)	and	the	light-induced	changes	

Δ𝐸,(𝑡, 𝜏)	avoids	the	introduction	of	possible	phase	artifacts	(e.g.	due	to	long	term	drifts)	and	

is	particularly	useful	when	the	measured	electric	field	contains	fast-varying	frequencies.	𝐸,(𝑡)	

and	Δ𝐸,(𝑡, 𝜏)	were	 then	 independently	Fourier	 transformed	 to	obtain	 the	complex-valued,	

frequency	dependent	𝐸<,(𝜔)	and	∆𝐸<,(𝜔, 𝜏).	The	photo-excited	complex	reflection	coefficient	

	r>(𝜔, 𝜏)	was	determined	by		

	

∆𝐸<,(𝜔, 𝜏)
𝐸<,(𝜔)

=
r>(𝜔, 𝜏) − r>+(𝜔)

r>+(𝜔)
	,	

	

where	 r>+(𝜔)	 is	 the	 stationary	 reflection	 coefficient	 known	 from	 the	 equilibrium	 optical	

response	(see	Supplementary	Section	S2).	

As	 the	mid-infrared	pump	penetrated	 less	(𝑑%-.% ≈ 0.2	µm)	 than	the	THz	probe	(𝑑%/(01 ≈

0.6 − 0.9	µm),	 these	 light-induced	 changes,	 measured	 at	 each	 pump-probe	 delay	𝜏,	 were	

reprocessed	to	take	this	mismatch	into	account.	As	the	pump	penetrates	in	the	material,	its	

intensity	is	reduced	and	it	induces	progressively	weaker	changes	in	the	refractive	index	of	the	
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sample.	A	sketch	of	this	scenario	is	shown	in	Figure	S4,	which	was	modelled	by	considering	

the	 probed	 depth	 of	 the	 material	 𝑑%/(01 	 as	 a	 stack	 of	 thin	 layers,	 with	 a	 homogeneous	

refractive	 index	 and	 assuming	 the	 excitation	 profile	 to	 follow	 an	 exponential	 decay.	 By	

calculating	the	complex	reflection	coefficient	of	this	“multilayer”	system	with	a	characteristic	

matrix	approach13,	the	complex	refractive	index	at	the	surface	𝑛>(𝜔, 𝜏),	can	be	self-consistently	

retrieved.	From	this,	the	complex	conductivity	for	a	homogeneously	transformed	volume	was	

obtained	as:	

	

𝜎(𝜔, 𝜏) = 	
𝜔
4𝜋𝑖

[𝑛>(𝜔, 𝜏)$ − 1].	

	

The	 only	 free	 parameter	 in	 this	 modelling	 is	 the	 intensity	 penetration	 depth	 of	 the	 mid-

infrared	pump,	which	is	determined	by	the	equilibrium	intensity	extinction	coefficient	at	the	

pump	wavelength,	𝜆%-.% 4𝜋𝐼𝑚(𝑛>+3𝜔 = 	𝜔%-.%4)
L .	 The	probe	penetration	depth	𝑑%/(01 	is	 a	

frequency-	 and	 time-dependent	 quantity	 that	 was	 self-consistently	 extracted	 from	 the	

transient	response	of	the	material	𝐼𝑚(𝑛>(𝜔, 𝜏))	through	the	multilayer	modelling.	

	

  

Figure	 S4:	a	 Schematics	 of	 pump-probe	 penetration	 depth	mismatch.	b	Multi-layer	model	with	
exponential	 decay	 used	 to	 calculate	 the	 pump-induced	 changes	 in	 the	 complex	 refractive	 index	
𝑛>(𝜔, 𝜏)	for	each	pump-probe	delay	𝜏.	The	transition	from	red	to	background	(grey)	represents	the	
decaying	pump-induced	changes	in	𝑛>(𝜔, 𝑧).	
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S5	–	Influence	of	uncertainties	in	the	equilibrium	optical	properties	

	
The	error	of	the	reconstructed	light	induced	transient	optical	response	of	K3C60	is	primarily	

determined	 by	 uncertainties	 in:	 (i)	 the	measured	 values	 of	 the	 normalized	 change	 of	 the	

electric	field	Δ𝐸 𝐸⁄ ,	(ii)	the	pump	penetration	depth	𝑑%-.%,	which	is	used	to	reconstruct	the	

𝑛>(𝜔, 𝑧)	profile	in	the	multilayer	model	(see	Supplementary	Section	S4),	and	(iii)	the	absolute	

Figure	S5:	Errors	in	the	obtained	transient	optical	properties	caused	by	different	possible	sources	of	
uncertainty.	The	propagated	error	on	the	optical	properties	is	shown	as	light	and	dark	blue	coloured	
bands	and	was	propagated	from	a.	±5%	and	±10%	uncertainty	in	the	measured	∆𝐸 𝐸⁄ ,	b.	±10%	and	
±20%	uncertainty	in	the	value	of	the	pump	penetration	depth	and	c.	±2%	uncertainty	in	the	value	of	
the	 equilibrium	 R(ω).	 All	 measurements	 (red	 curves	 at	 equilibrium	 and	 blue	 dots	 1	ns	 after	
photoexcitation)	were	carried	out	at	T	=	100	K.	Photoexcitation	was	performed	in	the	same	conditions	
as	the	data	presented	in	figure	3	of	the	main	text.	
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value	of	the	measured	equilibrium	reflectivity,	which	is	typically	smaller	than	2%.	To	display	

the	effect	of	these	uncertainties	we	display	transient	optical	properties	reconstructed	from	

the	Δ𝐸 𝐸⁄ 	values	measured	1	ns	after	photo-excitation	at	a	temperature	T=100	K.	

In	Figure	S5a,	S5b,	and	S5c	we	show	as	shaded	colored	bands	the	propagated	uncertainties	

introduced	by	 	±5%	and	±10%	variations	 in	Δ𝐸 𝐸⁄ ,	±10%	and	±20%	uncertainties	 in	 the	

value	of	𝑑%-.%,	and	a	±2%	error	in	the	value	of	the	equilibrium	reflectivity	𝑅(𝜔)	respectively.	

Importantly,	all	features	of	the	light	induced	response	such	as	the	gap	opening	in	𝜎#(𝜔)	and	

the	presence	of	a	divergence	in	𝜎$(𝜔)	are	not	affected	by	any	of	these	uncertainties.	

	

S6	–	Drude-Lorentz	fits	of	the	out-of-equilibrium	optical	response	

	
The	out-of-equilibrium	optical	response	of	the	photo-irradiated	K3C60	pellets	was	modelled	

by	 fitting	 simultaneously	 the	 reflectivity	 and	 complex	 optical	 conductivity	 with	 the	 same	

Drude-Lorentz	model	used	to	fit	the	equilibrium	response	described	in	Section	S2:	

	

𝜎#(𝜔) + 𝑖𝜎$(𝜔) = 	
𝜔%$

4𝜋
1

𝛾& − 𝑖𝜔
+
𝜔%,()*$

4𝜋
𝜔

𝑖3𝜔+,()*$ − 𝜔$4 + 𝛾()*𝜔
		

	

As	 previously	 reported1,	 this	 model	 is	 also	 able	 to	 capture	 the	 photo-induced	

superconducting-like	response	of	K3C60	as	in	the	limit	of	𝛾& → 0	the	Drude	conductivity	can	

capture	the	response	of	a	superconductor	below	gap:	

	

𝜎#(𝜔) + 𝑖𝜎$(𝜔) =
𝜋
2
𝑁2𝑒$

𝑚 𝛿[𝜔 = 0] + 𝑖
𝑁2𝑒$

𝑚
1
𝜔 +

𝜔%,()*$

4𝜋
𝜔

𝑖3𝜔+,()*$ − 𝜔$4 + 𝛾()*𝜔
	

	

Here	 𝑁2,	 𝑒,	 and	𝑚	 are	 the	 superfluid	 density,	 electron	 charge,	 and	 mass,	 respectively.	

Furthermore,	the	transient	nature	of	a	photo-induced	superconductor	having	a	finite	lifetime	

appears	as	a	broadening	of	the	zero-frequency	Dirac	delta14.		

The	data	acquired	with	broadband	THz	probe	(Figure	2)	were	fitted	by	optimizing	iteratively	

the	 parameters	 of	 both	 the	 Drude	 (𝜔%	and	 𝛾3)	 and	mid-infrared	 absorption	 band	 (𝜔%,()* ,	

𝜔+,()* ,	and	𝛾()*).	On	the	other	hand,	data	acquired	with	narrower	probe	bandwidths	(Figure	

3)	were	fitted	also	by	keeping	only	𝜔%	and	𝛾3 	free	to	vary.	Importantly,	in	both	cases	the	fits	
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yielded	similar	Drude	parameters	and	we	chose	to	only	optimize	the	Drude	parameters	for	

these	data	as	the	probed	frequency	range	does	not	overlap	with	the	mid-infrared	oscillator.	

Figure	S6	shows	representative	fits	to	data	measured	at	100	K	for	three	different	time	delays	

of	-150	ps,	-100	ps,	and	10	ps.	The	fitting	was	performed	on	transient	conductivity	spectra	for	

each	time	delay	shown	in	Figure	4a.	The	obtained	parameters	were	used	to	calculate	the	zero-

frequency	extrapolated	optical	conductivity	𝜎+	and	from	this	the	“optical	resistivity”	𝜌+	as:	

	

𝜌+ = 1 𝜎+U = 	 lim
4→+

1
𝜎#(𝜔)U 	

 

S7	–	Sample	preparation	for	electrical	transport	measurements	
	

For	time-resolved	electrical	transport	measurements,	pellets	of	K3C60	were	integrated	into	a	

sample	carrier	with	patterned	microstrip	transmission	lines.	Fig.	S7	shows	a	picture	of	the	

sample	carrier	and	a	sketch	of	its	cross-section.	The	four	Ti	(10	nm)/Au	(270	nm)	microstrip	

structures	were	grown	using	a	combination	of	e-beam	evaporation,	laser-lithography,	and	lift-

off	processing,	on	a	500	µm	thick	diamond	substrate,	transparent	to	the	10.6	µm	radiation.	

The	wave	impedance	of	the	transmission	lines	was	adapted	to	50	Ω.	A	pellet	of	1	mm	diameter	

and	~75	µm	thickness	was	made	from	K3C60	powders	with	a	pellet	die	and	a	manual	press.	All	

the	sample	handling	operations	were	carried	out	in	an	Argon	filled	glove	box	with	<0.1	ppm	

Figure	 S6:	 Measured	 optical	 properties	 (reflectivity,	 real,	 and	 imaginary	 part	 of	 the	 optical	
conductivity)	of	K3C60	measured	at	a	temperature	of	100	K	at	equilibrium	(red	curve)	and	at	three	
different	time	delays	of	-150	ps,	-100	ps,	10	ps	(blue	filled	symbols).	These	data	were	acquired	with	
a	 pump-pulse	 duration	 of	 200	ps	 and	 by	 definition	 the	 time	 delay	 is	 zero	when	 the	 pulse	 ends	
(cf.	Figure	3c).	The	solid	lines	are	Drude-Lorentz	fits	to	the	transient	optical	properties.	
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O2	 and	 H2O	 to	 prevent	 sample	 oxidation.	 To	 ensure	 good	 electrical	 contact	 between	 the	

polycrystalline	pellet	and	the	transmission	lines	at	 low	temperatures,	a	 layer	of	2	µm	thick	

Indium	 was	 deposited	 on	 the	 inner	 parts	 of	 the	 Au	 transmission	 lines	 by	 an	 additional	

lithography	 and	 lift-off	 step.	 To	 reproducibly	 position	 the	 pellet	 in	 the	 center	 of	 the	 four	

microstrips,	 a	 ~50	µm	 thick	 layer	 of	 photoresist	 (SU8)	 with	 a	 1	mm	 central	 bore	 was	

deposited.	The	K3C60	pellet	enclosed	in	the	photoresist	layer,	was	then	capped	with	a	500	µm	

thick	sapphire	plate	and	sealed	with	vacuum	compatible	glue.	This	assembly	was	placed	on	a	

copper	holder	and	then	installed	at	the	end	of	a	commercial	LHe	cold-finger,	in	order	to	cool	

the	K3C60	pellets	down	to	a	base	temperature	of	5	K.	The	microstrips	were	terminated	to	SMP	

connectors	 to	 connect	 them	 to	 50	W	 wave	 impedance	 coaxial	 cables	 that	 are	 thermally	

anchored	on	the	cold	finger,	and	routed	to	the	outside	of	the	cryostat.	

 

	
S8	–	Time-resolved	electrical	transport	measurements	
	

Standard	 four-terminal	 resistance	 measurements	 (Figure	 S8a)	 were	 performed	 on	 K3C60	

pellets	encapsulated	 in	 the	high-frequency	sample	carrier	using	a	 lock-in	 technique	with	a	

sinusoidal	excitation	current	of	amplitude	I6789:; = 1	µA	at	a	frequency	of	300	Hz.	While	this	

technique	provides	accurate	values	of	the	low	frequency	sample	resistance	𝑅)<.%=1 	it	could	

only	be	applied	up	to	frequencies	of	a	few	MHz	due	to	the	limited	bandwidth	of	the	high	input	

impedance	differential	amplifiers	as	well	as	parasitic	capacitances	in	the	circuit.		

Figure	S7:	a.	Photograph	of	the	sample	carrier	used	for	transport	measurements.	b.	Schematic	section-
view	 of	 the	 K3C60	 sample	 assembly	 (not	 to	 scale).	 The	 pulsed	mid-infrared	 excitation	 reaches	 the	
sample	from	below.	The	upper	right	panel	shows	a	sketch	of	the	electrode	geometry	similar	to	the	one	
used	in	both	four-	and	two-terminal	measurements.	
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The	lifetime	of	the	light-induced	superconducting	state	is	several	nanoseconds,	hence	four-

terminal	measurements	are	too	slow	to	probe	transport	properties	on	these	time	scales.	To	

overcome	this	 issue,	we	performed	high-frequency	two-terminal	resistance	measurements.	

These	 measurements	 were	 conducted	 by	 launching	 a	 1	ns	 long	 voltage	 pulse	 from	 a	

commercial	pulse	generator	through	the	microstrip	transmission	lines	and	the	K3C60	pellet	in	

the	sample	carrier.	A	gated	integrator	was	then	used	to	detect	the	amplitudes	of	the	injected	

voltage	pulse	V>?(t),	 and	of	 the	one	 transmitted	 through	 the	 sample	V78@(t).	An	equivalent	

circuit	diagram	of	this	two-terminal	measurement	is	shown	in	Figure	S8b.	 

These	 measurements	 allow	 to	 retrieve	 the	 resistance	 𝑅$A∗ =	R6CDEF; + RG# + RG$	 which	

includes	 contributions	 from	wiring	 and	 contact	 resistances.	 As	 the	 injected	 voltage	 pulse	

propagates,	 it	 can	 be	 reflected	 at	 the	 input	 and	 output	 terminals	 of	𝑅$A∗ 	 due	 to	 a	 possible	

impedance	mismatch.	To	account	for	this,	it	is	convenient	to	describe	the	propagation	of	the	

pulse	through	the	network	using	the	two-port	scattering	matrix	formalism15,	from	which	the	

total	resistance	of	the	sample	𝑅$A∗ 	can	be	retrieved	as:	

		

Figure	S8:	a.	Equivalent	 circuit	of	a	 four-terminal	 resistance	measurement.	A	constant	amplitude	
sinusoidal	current	is	injected	into	Rsample	through	the	contact	resistances	RC1,	and	RC2.	The	voltage	drop	
across	Rsample	is	detected	by	a	high	input	impedance	lock-in	amplifier	through	the	contact	resistances	
RC3	and	RC4.	The	sample	resistance	can	be	directly	retrieved	as	Vout Isource⁄ .	b.	Equivalent	circuit	for	
two-terminal	measurements.	The	sample	with	intrinsic	resistance	Rsample	and	contact	resistances	RC1	
and	RC2	is	connected	via	two	terminals.	TML	indicates	the	coaxial	cable	which	acts	as	a	transmission	
line	for	high	frequency	signals.	c.	Temperature	dependent	resistance	measured	in	a	two-	and	four-
terminal	measurement.	The	temperature-dependent	contact	resistance	Rcontact	=	RC1	+	RC2	is	displayed	
as	red	shading	inbetween	the	graphs.	Both	measurements	were	performed	on	the	same	type	of	pellet	
with	identical	preparation	procedure	and	equal	electrode	geometry.	
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𝑅$A∗ = 𝑅)<.%=1 + 𝑅H# + 𝑅H$ = 2] I!"
I#$%

− 1^𝑅..	

	

Here,	𝑉JK	 and	𝑉(-L	 are	 the	 amplitudes	 of	 the	 injected	 pulse	 and	 of	 the	 pulse	 transmitted	

through	the	sample	while	𝑅.	=	50	Ω	is	the	input	impedance	of	the	gated	integrator	used	for	

signal	detection.	This	result	was	quantitatively	verified	by	simulating	the	equivalent	circuit	

with	the	software	QucsStudio	starting	from	measured	values	of	the	elements	in	the	circuits	

(see	Supplementary	Material	S9	for	more	details).		

Extracting	 R6CDEF;	 from	 𝑅$A∗ 	 requires	 knowledge	 of	 the	 contact	 resistance	 from	 the	 low-

frequency	 four-terminal	 measurements.	 In	 order	 to	 calibrate	 the	 contact	 resistance	

𝑅H = 𝑅H# + 𝑅H$	we	compared	the	temperature	dependence	of	the	resistance	𝑅$A∗ 	(measured	

in	the	pulsed	two-terminal	geometry,	red	curve	in	Fig.	S8c)	to	that	of	the	sample	resistance	

𝑅)<.%=1 	 (measured	 in	 the	 four-terminal	 geometry,	 blue	 curve	 in	 Fig.	 S8c).	 In	 both	

measurements,	the	equilibrium	superconducting	transition	of	K3C60	is	observed	as	a	drop	in	

the	measured	resistance	of	~8	Ω	as	the	sample	becomes	superconducting.	Hence,	the	two-	and	

four-terminal	measurements	are	equally	sensitive	to	changes	in	𝑅)<.%=1 	and	are	only	offset	by	

the	contact	resistance	𝑅H 	(red	shaded	area	in	Figure	S8c),	allowing	us	to	extract	𝑅)<.%=1 	from	

the	high-frequency	two-terminal	measurements.		

The	 time-resolved	 resistance	measurements	 of	 the	 photo-irradiated	K3C60	 pellet	 shown	 in	

Figure	4b	were	performed	at	100	K	by	repeating	the	pulsed	two-terminal	measurements	at	

different	time	delays	after	photoexcitation.	This	was	achieved	by	electronically	synchronizing	

the	 pulse	 generator	 that	 provided	 the	 probe	 voltage	 pulse	 to	 the	 laser	 system.	 These	

measurements	 yielded	 the	 total	 resistance	 𝑅$A∗ ,	 from	 which	 the	 contact	 resistance	

𝑅H(100	K) = 66	Ω	 was	 subtracted	 to	 obtain	 the	 time-dependent	 resistance	 of	 the	 K3C60	

sample	 alone.	 Note	 that	 the	 change	 of	 the	 resistance	 in	 the	 time-resolved	 experiment	 at	

T	=	100	K	is	ΔR	=	6	Ω	(Figure	4),	which	is	what	is	quantitatively	expected	from	the	DC	four-

terminal	measurement	if	the	sample	turns	superconducting	at	this	temperature.	

	

S9	–	Modeling	time-resolved	electrical	transport	measurements	

	
To	ensure	that	the	experimental	procedure	used	to	extract	the	sample	resistance	(described	

in	 Supplementary	 Section	 S8)	 was	 not	 affected	 by	 additional	 contribution	 due	 to	 stray	
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impedances	we	have	modelled	the	experimental	setup	using	the	software	QucsStudio,	 that	

simulates	propagation	of	electrical	signals	in	the	time	domain.		

The	simulations	were	performed	according	to	the	setup	described	in	Figure	S9a,	that	matches	

closely	 the	experimental	 setup.	A	1ns	 long	voltage	pulse	generated	by	a	 commercial	pulse	

generator,	was	split	in	two	identical	replicas	by	a	power	divider;	one	was	sent	through	the	

sample	while	the	other	was	used	as	a	reference.	Both	pulses	were	sampled	with	a	real-time	

oscilloscope	with	20	GHz	bandwidth	and	80	GSamples/s.	The	recorded	signals	are	referred	to	

as	𝑉(-L(𝑡)	and	𝑉/1M(𝑡)	in	the	following.	

Figure	S9:	a.	Schematic	description	of	the	setup	for	measuring	the	unknown	R*2P	resistance	in	a	two-
terminals	configuration.	TML	denotes	HF	compatible	microstrip	transmission	lines.	Their	length	was	
adjusted	so	that	pulses	are	not	overlapping	when	measured	on	the	oscilloscope.	b.	Ideal	equivalent	
circuit	diagram	for	R*2P	consisting	of	two	contact	resistors	(𝑅()and	𝑅(*) and	the	intrinsic	resistance	
of	the	sample	(𝑅+,-./0).	c.	Lossy	equivalent	circuit	diagram	for	R*2P	considering	a	capacitive	as	well	
as	inductive	component	of	the	contacts.	d.	Time	traces	for	Vref(t)	(blue)	and	Vout(t)	(red)	measured	at	
a	temperature	of	30K	without	photo-excitation	and	corresponding	numerical	simulations	(green	and	
yellow	lines)	performed	under	the	assumption	of	an	ideal	R*2P.	The	measured	oscillations	at	the	base	
of	the	first	pulse	in	Vout(t)	and	the	second	pulse	in	Vref(t)	are	caused	by	residual	reflections	not	relevant	
to	our	analysis.	e.	Comparison	of	two	simulations	with	ideal	and	lossy	R*2P.	Parasitic	capacitances	and	
inductances	of	2	pF	and	2	nH	were	introduced	resulting	in	voltages	spikes	that	are	bigger	than	any	
deviation	observed	between	the	measurement	and	the	ideal	case	simulation.	
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Figure	S9d	shows	the	𝑉(-L(𝑡)	and	𝑉/1M(𝑡)	time	traces	(red	and	blue	lines)	measured	at	30	K,	

and	 corresponding	 simulations	 (green	 and	 yellow	 lines)	 of	 the	 equivalent	 circuit	 diagram	

shown	in	figure	S9a,	where	the	two-terminal	resistance	𝑅$A∗ 	is	simply	modelled	by	two	contact	

resistors	(RG#	and	RG$)	and	the	intrinsic	sample	resistance	(𝑅)<.%=1).	Remarkably,	all	peak	

positions	and	amplitudes	are	reproduced	with	good	agreement.	The		𝑉/1M(𝑡)	trace,	shows	the	

injected	pulse	at	~0	ns	and	a	later	pulse,	around	~13.5	ns	which	is	a	reflection	from	the	sample	

arm.	The	𝑉(-L(𝑡)	 trace	 shows	 a	 pulse	 appearing	 at	~8	ns	which	 is	 the	 injected	pulse	 after	

propagation	through	the	sample	and	contacts.	Because	of	the	voltage	drop	across	𝑅$A∗ 	it	has	

lower	amplitude	compared	to	the	injected	pulse.	

As	mentioned	in	Supplementary	Section	S8,	 the	propagation	of	voltage	pulses	through	this	

network	can	be	described	by	applying	the	two-port	scattering	matrix	formalism	to	retrieve	

the	 sample	 resistance	 𝑅)<.%=1 	 directly	 from	 the	 amplitude	 of	 the	 reference	 (𝑉JK)	 and	

transmitted	(𝑉(-L)	pulses	as:	

𝑅$A∗ = 𝑅)<.%=1 + 𝑅H# + 𝑅H$ = 2b
𝑉JK
𝑉(-L

− 1c𝑅.	

where	 𝑅.	is	 the	 internal	 impedance	 of	 the	 oscilloscope,	 𝑅H#,	 and	 𝑅H$	 are	 the	 contact	

resistances.	 For	an	accurate	measurement	of	𝑅$A∗ 	 it	 is	 important	 that	 the	amplitude	of	 the	

reference	and	transmitted	pulses	is	not	changed	by	parasitic	effects.	

To	evaluate	the	influence	of	possible	parasitic	capacitances	at	the	contacts,	that	might	short	

the	 contact	 resistance	 at	 high	 frequencies,	 we	 simulated	 the	 extended	 equivalent	 circuit	

diagram	for	𝑅$A∗ 	shown	in	Supplementary	Figure	S8c.	We	estimated	2	pF	and	2	nH	as	realistic	

upper	 limits	 for	 the	 respective	 capacitance	 and	 inductance	 values.	 The	 results	 of	 these	

simulations	 are	 compared	 to	 those	 in	 the	 ideal	 case	 in	 Supplementary	 Figure	 S9e.	 The	

additional	stray	impedances	resulted	in	voltage	spikes	on	top	of	the	nanosecond	pulses,	that	

are	stronger	in	amplitude	than	the	deviations	observed	between	the	measured	signals	and	

simulations	 in	 the	 ideal	 case.	 A	 similar	 simulation	 (not	 shown)	 with	 additional	 parasitic	

capacitances	to	ground	yielded	comparable	results,	the	only	differences	were	due	to	the	lower	

bandwidth	of	the	circuit.		

The	 good	 agreement	 between	 the	 ideal	 simulations	 and	 our	 measured	 signals	 strongly	

suggests	that	capacitive	and	inductive	contributions	to	the	contact	resistance	are	negligible.	

More	 importantly,	 these	 putative	 contributions	 do	 not	 lead	 to	 a	 significant	 change	 of	 the	

average	pulse	amplitude	which	is	used	to	calculate	the	resistance.	
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S10	–	Pulse	length	dependence	of	the	out-of-equilibrium	metastable	state	

	
In	analogy	 to	Figure	5,	Figure	S10	shows	excitation-pulse	 length	dependent	data	extracted	

from	transient	THz	time	domain	spectroscopy	measurements.	Here,	we	plot	the	reduction	of	

spectral	weight	in	the	real	part	of	the	optical	conductivity	(lower	panels)	as	

	

∆𝜎# =	∫ 𝜎#L/<K)(𝜔)
#+.1I/ℏ
$.$.1I/ℏ −	𝜎#

1Q(𝜔)	𝑑𝜔,	

	

upon	excitation	with	mid-infrared	pulses	of	different	duration	varying	between	250	ps	and	

700	ps	(top	panels).	The	excitation	fluence	was	kept	constant	to	a	value	of	22	mJ/cm².	The	

data	 indicates	 that	∆σ1	measured	100	ps	and	500	ps	after	excitation	 is	 independent	of	 the	

excitation	 pulse	 duration.	 This	 is	 in	 agreement	 with	 the	 pulse-length	 dependent	 data	

presented	in	Fig.	5	and	measured	by	electronic	transport.	Pump	pulse	lengths	shorter	than	

250	ps	were	not	measured	here	since	the	fluence	of	22	mJ/cm2	could	not	be	achieved	for	these	

shorter	pulses.	

	

Figure	 S10.1:	 (lower	panels)	 Pump	pulse	 length	dependence	 of	 the	 spectral	weight	 loss	∆𝜎)	 (as	
defined	in	the	text)	induced	upon	photoexcitation	and	measured	at	time	delays	of	100	ps	and	500	ps	
for	different	pump	pulse	durations.	The	red	dashed	line	displays	the	equilibrium	value	of	∆𝜎).	(upper	
panels)	Excitation	pump	pulse	profiles	of	the	mid	infrared	pulses	measured	via	cross-correlation	(see	
Section	S3).	The	blue	curves	are	a	guide	to	the	eye	indicating	the	typical	time	dependence	of	the	signal.	
All	 measurements	 were	 performed	 at	 a	 constant	 fluence	 of	 22	mJ/cm²,	 excitation	 wavelength	 of	
10.6	μm,	and	base	temperature	T	=	100	K.	
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We	have	also	measured	the	dependence	of	the	time	resolved	optical	properties	on	the	pulse	

length	 at	 constant	 peak	 electric	 field	 of	 the	 excitation	 pulse.	 Figure	 S10.2	 shows	 the	 time	

dependence	of	the	real	part	of	the	optical	conductivity	〈𝜎#〉,	averaged	in	the	2-10meV	range,	

for	 excitation	 pulse	 lengths	 between	 10	ps	 to	 75	ps.	 This	 quantity	 displays	 the	 degree	 of	

gapping	of	𝜎#(𝜔)	and	is	used	as	a	metric	for	light-induced	superconductivity.	For	short	pulses	

and	low	fluences	(Fig.	S10.2	a,b) we	observe	that	〈𝜎#〉	approaches	zero	-	indicating	full	gapping	

-	only	during	the	drive,	similarly	to	what	shown	in	Fig.	1d.	A	few	picoseconds	after	the	drive	

terminates,	〈𝜎#〉	relaxes	to	a	metastable	value	with	only	partial	gapping.	The	decay	time	of	this	

intermediate,	partially	gapped	state	is	≈10	ns.	As	the	fluence	is	increased,	the	value	of	〈𝜎#〉	in	

the	metastable	state	eventually	approaches	zero,	indicating	full	gapping	(Fig.	S10.2	d).		

Instead	 of	 increasing	 the	 lifetime	 of	 the	 short-lived	 state,	 higher	 fluences	 lead	 to	 the	

appearance	 of	 a	 distinct,	metastable	 state	with	 a	 decay	 time	which	 is	 independent	 of	 the	

fluence	and	excitation	pulse	duration	(see	shaded	areas	in	Fig.	S10.2).	

	 	

Figure	S10.2:	Time	dependence	of	 the	 real	part	of	 the	optical	 conductivity	𝜎1(𝜔)	 averaged	 in	 the	
region	of	the	photo-induced	gap	(2-10	meV).	The	subfigures	show	data	for	four	different	pulse	lengths	
of	a.	10	ps,	b.	20	ps,	c.	40	ps	and	d.	75	ps	with	respective	excitation	fluences	of		12	mJ/cm²,	18	mJ/cm²,	
46	mJ/cm²	and	51	mJ/cm².	These	data	were	acquired	at	a	base	temperature	T	=	100	K.	The	top	panels	
show	the	measured	intensity	time	profile	of	the	different	excitation	pulses.	
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S11	–	Relaxation	dynamics	of	the	out-of-equilibrium	metastable	state	

	
The	 relaxation	 dynamics	 of	 the	metastable	 photo-induced	 superconducting	 state	 in	 K3C60	

were	measured	both	optically	and	electronically.	Figure	S11a	displays	the	time	evolution	of	

the	photo-induced	reduction	of	spectral	weight	in	the	real	part	of	the	optical	conductivity	∆σ1	

in	 the	 region	between	2.2	meV	and	10	meV.	These	measurements	were	performed	on	 two	

different	K3C60	 samples	with	a	10.6	µm	pump	pulse	of	200	ps	duration	and	at	 a	 fluence	of	

30	mJ/cm².	The	relaxation	behavior	can	be	modelled	with	an	exponential	decay	with	a	time	

constant	of	~12	ns	(dashed	line).	To	achieve	optical	delays	longer	than	2	ns	we	introduced	

additional	 fixed	 retardation	 lines	 into	 our	 setup	 to	 extend	 the	 range	 of	 the	 continuously	

tunable	optical	delay	stages.		

Figure	S11b	 displays	 the	 time-dependent	 resistance	 of	 the	 laser	 irradiated	 K3C60	 pellet	

obtained	 from	 transient	 two-terminal	 measurements.	 The	 graph	 shows	 the	 same	 data	

presented	in	Fig.	4b.	The	inset,	displays	the	time-dependence	of	the	photo-induced	resistance	

up	to	a	time	delay	of	1	µs.	The	relaxation	can	be	modelled	with	a	double	exponential	decay	

(light	blue	solid	line)	one	with	a	faster	time	constant	𝜏#~30	ns	(compatible	with	what	is	shown	

in	Figure	S11a)	and	a	second	slower	one	with	𝜏$~550	ns.	 	

Figure	S11:	a.	Time	dependent	spectral	weight	 loss	∆σ1	as	defined	in	supplementary	section	S8,	
measured	on	two	different	K3C60	samples.	The	dashed	line	is	a	fit	with	a	single	exponential	decay	
yielding	a	time	constant	𝜏)~12	ns.	b.	Time-dependent	resistance	of	a	laser	irradiated	K3C60	pellet	
obtained	from	high-frequency	two-terminal	transport	measurements.	The	graph	shows	the	same	
data	as	in	Figure	4b.	The	inset	displays	the	relaxation	dynamics	of	the	signal	on	a	longer	timescale.	
The	light	blue	solid	line	is	a	fit	with	a	double	exponential	decay	function	(𝜏)~30	ns	and	𝜏*~550	ns).	
All	measurements	were	performed	at	an	excitation	wavelength	of	10.6	μm,	and	base	temperature	
T=100	K.	
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S12	–	Temperature	dependence	of	the	out-of-equilibrium	state	

	
The	temperature	dependence	of	the	out-of-equilibrium	optical	response	of	the	photo-induced	

superconducting	state	in	K3C60	is	shown	in	Figure	S12.	Therein,	we	report	data	measured	at	

temperatures	 of	 100	K,	 200	K,	 and	 300	K	 for	 increasing	 time	 delays	 of	 10	ps,	 100	ps,	 and	

300	ps	 after	 photo-excitation	 with	 1	ps	 long,	 7.3	µm	 central	 wavelength	 pulses.	 The	 data	

acquired	at	100K	is	also	shown	in	Figure	2	of	the	main	text.	

Figure	S12:	Temperature	dependence	of	the	light-induced	optical	properties.	The	measurements	
were	performed	at	three	different	temperatures	of	100	K,	200	K	and	300	K	(upper	middle	and	lower	
row,	respectively).	Each	row	displays	reflectivity	(sample-diamond	interface),	real,	and	imaginary	
part	of	the	optical	conductivity	measured	at	equilibrium	(dashed	lines),	and	10,	100,	and	300ps	after	
photo-excitation	(filled	symbols).	The	solid	lines	are	Drude-Lorentz	fits	to	the	transient	optical	data	
(cf.	Supplementary	Information	S6).	All	measurements	were	performed	using	1	ps	long	excitation	
pulses,	centred	at	7.3	µm	wavelength,	and	with	a	fluence	of	18	mJ/cm².	
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At	 temperatures	 above	 100K,	 the	 light-induced	 gapping	 in	 𝜎#(𝜔)	 is	 only	 partial	 and	 is	

significantly	reduced	as	the	temperature	is	increased.	A	similar	behavior	is	also	observed	for	

the	 low-frequency	 divergence	 in	 𝜎$(𝜔)	 that	 progressively	 vanishes	 upon	 heating.	

Interestingly,	we	note	 that	 for	 all	measured	 temperatures	 the	optical	properties	 remained	

unchanged	 for	 300	ps	 after	 excitation.	 This	may	 suggest	 that	 precursors	 of	 the	 long-lived	

superconducting	state	discovered	at	100	K	are	present	all	the	way	to	room	temperature.	

	

S13	–	Simulations	of	the	superconducting	order	parameter	relaxation	
	

In	 the	 following,	 we	 describe	 a	 phenomenological	 theory	 for	 the	 relaxation	 of	 the	

superconducting	 order	 parameter	 following	 laser	 excitation.	 This	 model	 is	 similar	 to	

phenomenological	 models	 used	 for	 cuprate	 superconductors16-18,	 shown	 to	 be	 capable	 to	

accurately	 reproduce	 a	 surprising	 amount	 of	 the	 available	 experimental	 data	 on	 these	

materials.	As	argued	in	the	main	text,	in	a	situation	where	preformed	pairs	exist	in	the	material	

above	 𝑇* ,	 and	 superconductivity	 is	 destroyed	 by	 phase	 fluctuations,	 a	 laser-induced	

synchronized	state	can	decay	very	slowly.		

	

We	 considered	 a	 phenomenological	Ginzburg-Landau	model	 of	 the	 superconducting	 order	

parameter	on	a	 two-dimensional	 square	 lattice	with	100x100	sites	and	periodic	boundary	

conditions.	The	order	parameter	at	site	𝑚	is	denoted	𝜓.(𝑡) = |𝜓.|𝑒J	S& 	,	where	|𝜓.|	is	the	

local	amplitude	and	𝜙.	the	local	phase.	As	in	Ref.	16,	we	assumed	that	the	order	parameter	is	

microscopically	 related	 to	 the	 local	 singlet	 pairs,	 i.e.	 𝜓. ∼ ⟨	𝑐.↓𝑐.↑ − 𝑐.↑𝑐.↓	⟩,	 but	 no	

assumptions	were	made	on	how	these	pairs	are	generated	microscopically.		

The	free	energy	potential	was	chosen	as:	

𝐹 =t(𝐴	|𝜓.|$ +	
𝐵
2
|𝜓.|V)

.

+	
𝐶
2 t |𝜓.||𝜓K| cos(𝜙K − 𝜙.) ,
W.,KX

	

where	the	summation	< 𝑚, 𝑛 >	runs	over	neighbouring	sites.	The	first	term	describes	a	local	

potential	which	determines	the	equilibrium	Cooper	pair	density.	This	theory	contains	three	

free	parameters	A,	B,	and	C	which	we	specify	below.	We	chose	the	parameters	such	that	the	

mean	 local	 order	 parameter	 is	 given	 by	 ⟨|𝜓.|⟩ = 	|−𝐴/𝐵 = |1 − 𝑇/𝑇+,	 where	 𝑇+	 is	 the	

temperature	at	which	Cooper	pairs	start	to	form	in	the	material.	The	second	term	in	the	free	

energy	 potential	 couples	 adjacent	 sites	 and	 determines	 the	 phase	 stiffness.	 A	 positive	

parameter	𝐶	means	it	is	energetically	favourable	for	the	phases	to	align.	The	strength	of	this	
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phase	coupling	controls	the	temperature	scale,	at	which	the	relative	phase	of	pairs	on	different	

sites	can	lock	and	the	condensate	achieves	phase	coherence.		

Here	we	focused	on	the	situation	where	𝐶 ≪ |𝐴|, 𝐵,	i.e.	we	consider	a	gas	of	localised	bosons	

which	weakly	interact	with	one	another.	The	weak	interaction	can	lead	to	condensation	only	

at	 low	 temperatures.	 Importantly,	 the	 model	 reproduces	 correctly	 the	 equilibrium	 phase	

transition	at	≃ 20	K	as	displayed	in	Figure	S13.1.		

	

To	describe	the	nonequilibrium	relaxation,	we	set	the	superconducting	gap	2Δ+ ∼ 10	meV	as	

observed	 in	 the	 transient	 optical	measurements.	 To	 describe	 the	 relaxation	 of	 the	 photo-

induced	 superconducting	 state	 we	 simulated	 the	 dynamics	 using	 the	 time-dependent	

Ginzburg-Landau	(TDGL)	equation:	

𝜏𝜕L	𝜓.	(𝑡) = 	−
𝛿𝐹(𝜓., 𝜓.∗ )

𝛿𝜓.∗
+ 𝜂.(𝑡),	

where	 𝜂.(t)	 is	 a	 random	 force	 describing	 random	 thermal	 fluctuations	 and	 obeys	

⟨𝜂.∗ (𝑡)𝜂.'(𝑡Y)⟩ = 2	𝜏	 Z([
\	])

	𝛿.,.'𝛿(𝑡 − 𝑡′),	 where	 𝑓	 is	 a	 dimensionless	 parameter	 which	 is	

introduced	below.	Here	𝜏	is	a	free	parameter	that	determines	the	characteristic	time	scale	at	

which	the	dynamics	evolve	and	that	needs	to	be	determined	from	a	fit	to	the	experiments.	We	

found	that	a	good	match	between	the	measurements	and	simulated	relaxation	is	obtained	for	

𝜏	~	1.5	ps	and	f	=	6000	(see	figure	6	in	the	main	text).	

Figure	 S13.1: Temperature	 dependence	 of	 the	 amplitude	 of	 the	 average	 superconducting	 order	

parameter	 ⟨|𝜓-|⟩	 calculated	 from	 the	 Ginzburg-Landau	 model	 described	 in	 the	 text,	 showing	 a	

transition	at	𝑇2 ≃ 20	K.	The	light	blue	line	is	a	guide	to	the	eye.	
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Discussion	

	

If	the	order	parameter	is	driven	away	from	its	equilibrium	value,	the	time	evolution	due	to	the	

derivative	 of	 the	 free	 energy	 potential	 gives	 rise	 to	 an	 exponential	 decay	 back	 to	 its	

unperturbed	value.	For	small	perturbations,	and	neglecting	the	spatial	variation	of	the	order	

parameter,	we	linearize	the	TDGL	equation	as:		

𝜏𝜕L𝜓.(𝑡) ≃ −|𝐴|𝜓.(𝑡),	

to	obtain	the	amplitude	relaxation	time		

𝑇<.%=JL-31 =
𝜏
|𝐴|	

This	sets	the	time	scale	for	relaxation	driven	by	the	deterministic	part	of	the	TDGL	equation.		

	

As	our	model	considers	a	situation	where	incoherent	Cooper	pairs	survive	above	the	critical	

temperature,	 another	 relaxation	 time	 scale	 emerges	 naturally.	 It	 stems	 from	 the	 thermal	

diffusion	of	local	phases	taking	place	at	the	minimum	|−𝐴/𝐵	of	the	local	free	energy	potential.	

Below	the	critical	temperature,	the	relative	phases	are	kept	fixed	due	to	the	coupling	𝐶.	But	

above	𝑇* ,	 this	 attraction	 is	 overpowered	by	 thermal	noise	 and	phase	 coherence	 is	 lost.	To	

assess	the	timescale	on	which	this	should	take	place,	we	consider	a	high	temperature	regime	

where	fluctuations	dominate	the	dynamics,		

𝜏𝜕L𝜓.(𝑡) ≃ 𝜂.(𝑡).	

We	consider	the	noise	as	𝜂. = 𝜂# + 𝑖	𝜂$,	where	𝜂#	and	𝜂$	are	real-valued	independent	random	

variables,	 respectively.	 We	 note	 that	 ⟨𝜂#(𝑡)𝜂#(𝑡Y)⟩ = ⟨𝜂$(𝑡)𝜂$(𝑡Y)⟩ = 	𝜏	 Z([
M	])

	𝛿(𝑡 − 𝑡Y)	 and	

⟨𝜂#𝜂$⟩ = 0.	 Assuming	 that	 the	 amplitude	 has	 reached	 its	 equilibrium	 value	 ⟨|𝜓.|⟩ =

|1 − 𝑇/𝑇+,	we	obtain	a	time	evolution	equation	for	the	phase:	

�1 −
𝑇
𝑇+
𝜏	𝜕L𝜙.(𝑡) = 𝜂$ cos(𝜙.) − 𝜂# sin(𝜙.) = 𝜂Y(𝑡).	

In	the	second	equality,	we	recognize	that	the	noise	term	can	again	be	written	as	a	random	

noise	𝜂Ywith	the	same	variance	as	𝜂#	and	𝜂$.	Consequently,	we	find	that	the	phase	undergoes	

a	one-dimensional	random	walk	induced	by	the	random	force	𝜂Y.	The	diffusion	time	scale	can	

be	found	by	solving	the	associated	Fokker-Planck	equation	for	the	probability	distribution	of	

𝜙.	(see	e.g.	Ref.	19).	Solving	this	diffusion	equation,	we	find	the	phase	relaxation	timescale:		
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𝑇%^<)1 =
𝑓Δ+(1 − 𝑇/𝑇+)

k_𝑇
𝜏.	

We	note	that	in	this	case,	it	is	determined	by	the	ratio	between	the	superconducting	gap	Δ+	

and	the	thermal	energy	k_𝑇	of	the	environmental	degrees	of	freedom.	

	

The	ratio	between	phase	and	amplitude	relaxation	time	is	proportional	to	the	steepness	of	the	

free	energy	potential,		
𝑇%^<)1

𝑇<.%=JL-31
∝ 𝑓.	

If	the	free	energy	potential	is	shallow	and	amplitude	fluctuations	are	large,	the	ratio	can	be	

close	to	one.	If	phase	fluctuations	dominate,	phase	relaxation	becomes	much	slower	than	the	

amplitude	 relaxation.	 Furthermore,	 if	 the	 temperature	 of	 the	 environmental	 degrees	 of	

freedom	in	which	the	relaxation	takes	place,	is	close	to	the	‘pseudogap’	temperature	𝑇+,	the	

ratio	becomes	smaller.	Fig.	S13.2	displays	snapshots	of	 the	phase	distribution	 for	different	

values	 of	𝑓.	When	𝑓	 = 	60,	 the	 potential	 is	 very	 shallow	 and	 the	 phases	 relax	 to	 a	 broad	

distribution	with	vanishing	average	amplitude.	Clearly,	 in	such	a	situation	 there	can	be	no	

distinction	between	phase	and	amplitude	relaxation.	However,	when	𝑓	increases,	amplitude	

fluctuations	are	suppressed	and	the	local	order	parameters	are	confined	to	a	narrow	ring	with	

Figure	S13.2:	Snapshots	of	the	on-site	order	parameter	𝜓-	in	the	complex	plane	after	time	evolution	

up	 to	 𝑡 = 103 4
|6|
.	The	 simulations	were	performed	at	𝑇 = 100	K	using	 three	different	𝑓	 parameter	

values	 of	 60,	 600,	 and	 6000	 (left	 to	 right).	 The	 on-site	 order	 parameters	𝜓-	 are	 initialised	 in	 a	

synchronised	state,	𝜓-(𝑡 = 0) = 	D−𝐴/𝐵	and	then	relaxed	according	to	the	TDGL	equation	described	

in	the	text.	
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radius	 |−𝐴/𝐵.	 In	 such	 a	 situation,	 phase	 relaxation	 becomes	 the	 dominant	 relaxation	

pathway	and	a	synchronised	state	can	survive	much	longer.		

	

Parametrization		

We	write	the	coefficients	of	the	free	energy	as:	

	

𝐴	 = 	−	
Δ+
𝑘_𝑇+	

	(1 −
𝑇
𝑇+
)	

𝐵 =
Δ+
𝑘_𝑇+

,	

𝐶 = −
𝑐
𝑓	

Δ+
𝑘_𝑇+

,	

	

where	we	assume	that	the	relevant	energy	scale	is	Δ+/𝑘_𝑇+.	Here	we	assume	that	A	changes	

its	sign	at	a	very	large	temperature	𝑇+ = 300	K,	i.e.	a	local	Cooper	pair	density	can	survive	up	

to	 room	 temperature.	 In	 addition,	 we	 introduce	 the	 dimensionless	 parameter	 𝑓,	 which	

determines	 the	 relative	 strength	of	amplitude	 fluctuations.	This	parameter	determines	 the	

relative	speed	of	the	amplitude	and	phase	relaxation:	An	increase	of	𝑓	reduces	the	absolute	

amplitude	 of	 thermal	 fluctuations	 as	 well	 as	 the	 pair	 coupling	 constant	 𝐶,	 such	 that	 the	

superconducting	transition	temperature	remains	constant.	Finally,	the	parameter	𝑐 = 4.5	is	

adjusted	to	induce	a	superconducting	transition	at	≃ 20	K	at	equilibrium	(see	Figure	S13.1).	
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