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ABSTRACT: Black phosphorus has recently attracted significant
attention for its highly anisotropic properties. A variety of ultrafast
optical spectroscopies has been applied to probe the carrier
response to photoexcitation, but the complementary lattice
response has remained unaddressed. Here we employ femtosecond
electron diffraction to explore how the structural anisotropy
impacts the lattice dynamics after photoexcitation. We observe
two time scales in the lattice response, which we attribute to
electron−phonon and phonon−phonon thermalization. Pro-
nounced differences between armchair and zigzag directions are
observed, indicating a nonthermal state of the lattice lasting up to
∼60 ps. This nonthermal state is characterized by a modified
anisotropy of the atomic vibrations compared to equilibrium. Our
findings provide insights in both electron−phonon as well as
phonon−phonon coupling and bear direct relevance for any application of black phosphorus in nonequilibrium conditions.

KEYWORDS: black phosphorus, lattice dynamics, anisotropy, femtosecond electron diffraction, electron−phonon coupling,
phonon−phonon coupling

Layered van der Waals (vdW) materials have attracted
significant research interest in recent years due to their

potential device applications.1−4 The most prominent 2D
material, graphene, exhibits high carrier mobility but lacks a
band gap, which is required in many applications. In contrast,
transition metal dichalcogenides possess a band gap in the
visible range but a lower carrier mobility. With a thickness-
dependent band gap extending from the infrared to the
visible5−7 and a high carrier mobility,8−10 black phosphorus
provides an important complementary building block for vdW
heterostructure devices. A central aspect of black phosphorus is
its in-plane anisotropic structure, shown in Figure 1a. The
layers have two inequivalent high-symmetry directions, the so-
called zigzag and armchair directions. This structural
anisotropy is also reflected in many macroscopic material
properties, such as optical absorption9,11−14 and in-plane
anisotropic thermal15−18 and electrical5,9,19,20 conductivities.
These anisotropic properties offer additional tunability in
device design.
Since any device operates in nonequilibrium conditions, a

microscopic understanding of nonequilibrium states in vdW
materials is of particular interest. For optoelectronic devices,
knowledge of the evolution of the system after optical
excitation is desired. Carrier dynamics in black phosphorus
have been studied using a variety of time-resolved optical
spectroscopies20−26 as well as time- and angle-resolved

photoemission spectroscopy27,28 (trARPES). An important
relaxation pathway for excited carriers is via coupling to the
lattice. However, to date, no study has directly reported on the
ultrafast lattice response of black phosphorus upon photo-
excitation, which reflects the strength of electron−phonon as
well as phonon−phonon interactions. In this work, we employ
femtosecond electron diffraction29 (FED) to directly probe the
structural dynamics of photoexcited black phosphorus.
The measurement principle is sketched in Figure 1b. The

sample is excited with an ultrashort laser pulse (pump), and
the lattice response is probed using an ultrashort electron pulse
(probe) with a kinetic energy of 70 keV. The electrons are
diffracted by the sample and diffraction patterns are recorded
in transmission for different time delays between the pump and
probe pulses. To excite the sample, we use optical pulses with a
wavelength of 770 nm (1.61 eV). The polarization of the pump
pulse is set to the armchair direction of the crystal. All
measurements are performed at a base temperature of 100 K.
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Since diffraction patterns are measured in transmission, the
samples need to be thin films. We prepared a thin film of black
phosphorus by mechanical exfoliation from a bulk crystal (HQ
Graphene) using water-soluble glue and transferred it on a
standard copper transmission electron microscopy (TEM) grid
using the floating technique.30 Based on the transmission of
the film and previously reported optical constants of black
phosphorus,14 we estimate the film thickness to be 39 ± 5 nm.
The sample was transferred to vacuum directly after
preparation to minimize degradation.
Figure 2a shows a typical transmission diffraction pattern of

black phosphorus. The orthorhombic crystal structure of black
phosphorus (see Figure 1a) results in an anisotropic diffraction
pattern. Bragg reflections along the zigzag and armchair
directions, (h00) and (00l), are marked with blue and green
boxes, respectively. Only reflections with even h and l are
allowed due to the crystal symmetry (space group Cmce with
phosphorus atoms at Wyckoff positions 8f). We observe
additional “forbidden” reflections caused by stacking faults,
multiple scattering, or structural deviations at the surfaces,
which are not taken into account in the following analysis.
In this work, we focus on the Bragg reflections along the

armchair and zigzag directions. Our primary observables are
the intensities of the Bragg reflections, which decrease with
increasing displacement of the atoms due to lattice vibrations
(Debye−Waller effect). Since the probe electrons propagate in
parallel to the van der Waals stacking direction through the
crystal, our measurement is sensitive to the in-plane atomic
vibrations.
To extract intensities from the diffraction patterns, we fit the

observed peaks to the sum of a 2D pseudo-Voigt profile and a
tilted background. The same Gaussian−Lorenzian mixing is
assumed in all directions. The integrated intensity of the peak
is then used to obtain the intensity change as a function of
pump−probe delay. Figure 2b displays the resulting evolution
of the Bragg reflection intensities after photoexcitation. We
observe two time scales in the intensity decrease and

pronounced differences between reflections along the armchair
and zigzag directions. The amplitudes of the intensity decrease
are larger for reflections with higher scattering vectors, as
expected by the Debye−Waller theory.
To analyze the structural dynamics, we convert the Bragg

reflection intensities into changes in atomic mean squared
displacement (MSD). For anisotropic crystals, the temperature
factor is31−33
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Here, h, k, and l are the Miller indices and a*, b*, and c* are
the magnitudes of the reciprocal space lattice vectors, defined
such that a·a* = 2π. For black phosphorus in the standard
setting of Cmce, a, b, and c are the (real space) lattice vectors
in zigzag (a = 3.31 Å), out-of-plane (b = 10.46 Å), and
armchair (c = 4.37 Å) directions.34 U11, U22, and U33
correspond to the MSDs in the zigzag, out-of-plane, and
armchair directions, respectively (see refs. 31 and 32 for more
details about the U-matrix). Note that in black phosphorus,
U12 and U13 are zero due to symmetry.34,35 For Bragg
reflections purely along the zigzag direction, that is (h00), the
relative intensity change after laser excitation is given by
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Similarly, for reflections purely along the armchair direction,
(00l), the relative intensity change after laser excitation reads
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Here, Uii
0 denotes the MSD before laser excitation and Uii(t)

denotes the MSD as a function of pump−probe delay. I(t)
denotes the intensity as a function of pump−probe delay and
I0 is the intensity before laser excitation.
The changes in MSD, shown in Figure 2c, are markedly

different for the armchair and zigzag directions. From the
different amplitudes we conclude that the interatomic potential
is anisotropic. It is energetically less costly to displace atoms
along the armchair direction compared to the zigzag direction.
Hence, as the lattice temperature rises, the additional energy
leads to a larger increase of the MSD in the armchair direction.
These findings are in qualitative agreement with lattice
dynamical calculations36 and static X-ray diffraction measure-
ments.34

The MSD dynamics in the armchair and zigzag directions
are fitted with a biexponential function, see solid lines in Figure
2c. The finite time resolution is taken into account by
convolving the fit function with a Gaussian with a full width at
half maximum (FWHM) of 150 fs. The fit results for the
amplitudes Ai and time constants τi are summarized in Table 1.
The fast time constants τ1 are very similar for the armchair

and zigzag directions. We attribute this initial rise in MSD to
energy transfer from the photoexcited electrons to the lattice.
The observed ∼0.5 ps electron−lattice equilibration time
constant is consistent with subpicosecond dynamics observed
with time-resolved optical spectroscopy23,24,26 and trARPES.28

While the amplitudes of the initial MSD rise are the same for
the two directions, the thermalized state at late delays exhibits

Figure 1. Anisotropic structure of black phosphorus and schematic
illustration of the experiment. (a) Side and top views of the crystal
structure of black phosphorus, showing anisotropy not only between
the in-plane and out-of-plane directions but also between the in-plane
directions (armchair and zigzag). (b) Schematic representation of a
time-resolved electron diffraction setup (see text for details).
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a higher MSD increase in the armchair direction compared to
the zigzag direction. This indicates that electron−phonon
equilibration leads to a nonthermal phonon distribution.
Compared to the thermal case, this nonthermal phonon
distribution is characterized by a higher ratio of the zigzag to
armchair MSD. Hence, on average, phonons with a high
displacement in zigzag direction couple more strongly to the
electrons. The persistence of the nonthermal phonon
distribution is illustrated in Figure 2d, in which the time-
dependent MSDs in the armchair and zigzag directions are
normalized to the respective fit values at 100 ps. Within tens of

picoseconds, the nonthermal phonon distribution relaxes into a
thermal phonon distribution. We therefore attribute the slower
time constants τ2 of the MSD dynamics to these redistribution
processes. The fact that the MSD rises further during phonon
thermalization indicates that high-energy phonons decay into
lower-energy phonons because one high-energy phonon decays
into multiple low-energy phonons, and in addition, low-energy
phonons produce a higher atomic displacement per phonon.33

Since the conduction band minimum and the valence band
maximum are located at the Z-point of the Brillouin zone,5

thermalized carriers can mostly absorb and emit phonons with
small momenta. Hence, we can conclude that lattice thermal-
ization is achieved mostly by direct phonon−phonon coupling
via anharmonicities. Finally, a thermal state is reached after
∼60 ps. This time scale of phonon thermalization is similar to
time scales reported for the vdW materials WSe2

37 and
graphite.38 In contrast to these materials, however, the
nonthermal phonon population in black phosphorus manifests
itself in an anisotropic evolution of the MSD due to the in-
plane anisotropy.
We performed similar experiments for different laser pump

fluences, pump pulse polarizations, and for a different sample

Figure 2. Overview of anisotropic lattice dynamics in photoexcited black phosphorus. (a) Transmission diffraction pattern of thin-film black
phosphorus. We focus on the high-symmetry Bragg reflections along the armchair and zigzag directions, indicated by colored boxes. (b) Relative
changes in Bragg reflection intensities as functions of pump−probe delay. Here, we average over the Friedel pairs, e.g., (002) and (002̅), since they
show the same dynamics. The measurement was conducted with an incident fluence of (9.8 ± 1.4) mJ/cm2. Based on the optical constants of black
phosphorus14 and the film thickness, we estimate the absorbed energy density to be (380 ± 70) J/cm3. The data presented are the average of
several delay scans, and the error estimates represent the standard error of the mean. (c) Changes of atomic mean squared displacement (MSD) in
the armchair (green circles) and zigzag (blue triangles) directions as functions of pump−probe delay. The anisotropy of the lattice is reflected in an
anisotropic MSD change in the two directions. The higher MSD change in the armchair direction indicates that bonds are softer in this direction.
The MSD values presented are the weighted average of MSDs calculated from each Friedel pair, and the error bars are calculated using error
propagation. The inset is a close-up of the data at early time delays. (d) MSD changes normalized to the fit values at 100 ps. A two-step time scale
as well as a transient nonequilibrium between the zigzag and armchair directions is observed.

Table 1. Fit Results of the MSD in the Armchair and Zigzag
Directions with a Biexponential Function Convolved with a
Gaussiana

armchair zigzag

A1 [10
−3 Å2] 0.66 ± 0.03 0.68 ± 0.02

τ1 [ps] 0.48 ± 0.05 0.58 ± 0.04
A2 [10

−3 Å2] 1.84 ± 0.03 0.85 ± 0.03
τ2 [ps] 22 ± 1 20 ± 2

aThe errors correspond to 68.3% confidence intervals of the fit.
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base temperature. In all cases, we obtain values of ∼0.5 ps for
the fast time constants τ1, which reflect the energy transfer
from the electrons to the lattice. In contrast, the slow time
constants τ2 decrease with increasing sample base temperature.
We attribute this to enhanced phonon−phonon scattering due
to a larger phonon population at higher temperature.
Correspondingly, we also observe an acceleration of the
phonon thermalization with increasing excitation density. For a
sample base temperature of 295 K and a laser pump fluence of
∼2 mJ/cm2, we obtain τ2 values of (11.5 ± 0.7) ps and (8 ± 1)
ps for the armchair and zigzag directions, respectively. These
data, in addition to the low-temperature data presented here,
are available on a data repository.39

So far, we have only considered the MSD along armchair
and zigzag directions. However, we can calculate the MSD
along all in-plane directions based on the MSD along these two
directions.31,35 Figure 3 visualizes the evolution of the in-plane
MSD, using the biexponential fit of the data shown in Figure
2c. To estimate the MSD before laser excitation, we make the

assumption that both before and after laser excitation, the
MSD is proportional to the temperature (high-temperature
limit). We estimate that the temperature of the system rises by
(270 ± 50) K after laser excitation, based on the calculated
absorbed energy density and the heat capacity of black
phosphorus. The total heat capacity is approximated by its
main contribution, the lattice heat capacity, calculated from the
vibrational DOS.40

In equilibrium, the shape of the in-plane MSD is already
anisotropic (blue curves of Figure 3) due to the anisotropic
bond stiffness. After laser excitation, the MSD increases as
shown in Figure 2c. The evolution of the MSD is displayed in
Figure 3a. Note that not only the size but also the shape of the
MSD evolves with time. This is visualized in Figure 3b by
showing the MSD curves normalized to their area. The
nonthermal phonon distribution leads to a transient reduction
of the MSD anisotropy, with a larger MSD in the zigzag
direction compared to equilibrium. On longer time scales, as
the phonons thermalize, the MSD relaxes back to its
equilibrium shape (dashed red curve).
In summary, our measurements have explored how

structural anisotropy impacts lattice thermalization in photo-
excited black phosphorus. We have shown that the lattice
response is well captured by biexponential dynamics: a
subpicosecond component, common to both zigzag and
armchair Bragg reflections, is assigned to electron−phonon
equilibration, while a ∼20 ps component is found to be highly
anisotropic and indicative of a nonthermal phonon population
persisting for ∼60 ps. Our analysis reveals that the nonthermal
phonon population results in a transient shape change of the
MSD, with a higher displacement in zigzag direction compared
to equilibrium.
We expect this nonthermal state of the lattice to have effects

on the macroscopic properties of black phosphorus, such as
thermal and electrical conductivities. In particular, for any
application in which hot carriers are excited or injected in black
phosphorus, transient changes of material properties will
influence device performance. Beyond black phosphorus, we
expect these results to be relevant to other vdW materials as
well. For example, in any layered material, the evolution of in-
plane and out-of-plane MSD could be different, with
implications for energy flow across heterostructure interfaces.
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