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Word contexts enhance the neural representation
of individual letters in early visual cortex
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Visual context facilitates perception, but how this is neurally implemented remains unclear.
One example of contextual facilitation is found in reading, where letters are more easily
identified when embedded in a word. Bottom-up models explain this word advantage as a
post-perceptual decision bias, while top-down models propose that word contexts enhance
perception itself. Here, we arbitrate between these accounts by presenting words and non-
words and probing the representational fidelity of individual letters using functional magnetic
resonance imaging. In line with top-down models, we find that word contexts enhance letter
representations in early visual cortex. Moreover, we observe increased coupling between
letter information in visual cortex and brain activity in key areas of the reading network,
suggesting these areas may be the source of the enhancement. Our results provide evidence
for top-down representational enhancement in word recognition, demonstrating that word
contexts can modulate perceptual processing already at the earliest visual regions.
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ontext-based expectations can strongly facilitate percep-

tion, but how this is neurally implemented remains a topic

of debate!2. One famous and striking example of con-
textual facilitation is found in reading, where letters are more
easily identified when embedded in a linguistic context such as a
word or name (e.g., a road sign) than in a random string (e.g., a
license plate)?.

Historically, two opposing accounts have been proposed to
explain this so called ‘word superiority effect’. Under the guessing-
based account, letter identification occurs in a bottom-up fashion
and the advantage offered by words constitutes only a post-
perceptual advantage in ‘guessing’ the correct letter®>. Alternatively,
the perceptual account explains word superiority as a top-down
effect, proposing that higher-order linguistic knowledge can
enhance perceptual processing of the individual letters®7. A rich
behavioural literature, dating back several decades®®, has docu-
mented that even when the ability to guess the correct letter is
experimentally controlled, the word advantage persists!(. This has
been interpreted as evidence that the effect must (at least in part)
reflect top—down perceptual enhancement—a view that remains
dominant until today!.

However, some lingering doubts have persisted. For instance,
ideal observer analysis has shown that the efficiency of letter
recognition is much lower than that of a fully holistic (word-
based) observer, and lies within the theoretical limits of a strictly
letter-based (feedforward) observer—even when considering
word superiority!2. Moreover, advances in deep learning have
shown that letters and other complex objects can be accurately
recognised in context by bottom-up architectures, further ques-
tioning the need to invoke top-down explanations!3. Beyond
these theoretical arguments, neural evidence for the perceptual
locus of this supposedly top-down effect is lacking. This is
remarkable, since the top-down interpretation of word super-
iority makes a clear neural prediction: if the behavioural word
advantage is due to a perceptual enhancement of letter stimuli,
then it should be accompanied by an enhancement of sensory
information in the early visual areas that process the individual
letters already.

Here, we test this prediction using a simple paradigm involving
streams of words and nonwords. We use neural network simu-
lations of the paradigm to confirm that top-down models would
uniquely predict the enhancement of letter representations by
word contexts. When we then perform the same experiment in
human observers while recording brain responses using func-
tional magnetic resonance imaging (fMRI), we find that word
contexts robustly enhance letter representations in early visual
cortex. Moreover, compared to nonwords, words are associated
with increased information-activation coupling between letter
information in early visual cortex on the one hand, and blood-
oxygen-level-dependent (BOLD) activity in key areas of the
reading network on the other. These results suggest word
superiority is (at a least in part) a perceptual effect, supporting
prominent top-down models of word recognition.

Results

Word contexts facilitate orthographic decisions. Participants
(n=34) were presented with streams of words or nonwords
consisting of five letters (see Fig. 1a), while maintaining fixation.
We used a blocked design in which word and nonword (i.e.
unpronounceable letter string) stimuli were presented in long
trials of ten items of which the middle letter (U or N) was kept
fixed while the outer letters varied, creating a word or nonword
context (each 10-s trial containing only stimuli of one condition).
To make reading visually challenging, stimuli were embedded in
Gaussian noise (see Methods). To keep participants engaged, they

Fig. 1 Experimental paradigm. a Example stimuli for each condition.
Participants observed words or nonwords (i.e. orthographically illegal,
unpronounceable strings) with a U or N as middle letter, resulting in four
conditions. b Functional localiser. During the functional localiser, the key
letters (U and N) were presented in isolation and without visual noise, while
participants performed an irrelevant task at fixation. ¢ Trial structure. We
used a blocked design, in which each 14-s trial consisted of ten words or
nonwords with a fixed middle letter. Participants performed an orthographic
discrimination task on specific, prelearned targets that occurred once or
occasionally twice per trial. Participants were trained in a separate session
to perform the task while maintaining fixation at the centre of the screen.

performed a spelling discrimination task on specific target stimuli
that occurred occasionally (1-2 times) per trial. Target stimuli
were learned during a prior training session. Targets were pre-
sented either in their regular form or with one letter permuted,
and participants had to categorise targets as ‘spelled’ correctly or
incorrectly (i.e. presented in the learned form or permuted).
Participants were faster (median RT difference: —29.2ms;
Wilcoxon signed rank, Ts, =40, p=1.07x 107>, r=0.87) but
not significantly more accurate (mean accuracy difference: 1.62%;
t-test, t343=1.70, p=0.098, d=0.29) for word compared to
nonword targets. This observation is in line with the word
superiority effect, but from the behaviour alone it is unclear
whether the word advantage was perceptual or post-perceptual.

Representational enhancement is a hallmark of top-down
models. Because our paradigm is different from the traditional
paradigms in the (behavioural) word superiority literature, we
performed simulations of our experiment to confirm that
the top—down account indeed predicts the representational
enhancement we set out to detect. We used a predictive coding
implementation!4 of the influential Interactive Activation archi-
tecture proposed by McClelland and Rumelhart® (see Methods).

In the simulation, we ran artificial ‘runs’ in which we presented
sets of word and nonword stimuli used in the experiment to the
network (Fig. 2a). To simulate experimental viewing conditions,
we added Gaussian noise and ran the network until convergence
so as to mimic long stimulus duration (see Methods) resulting in
stimuli that were presented well-above recognition threshold
(Supplementary Fig. 2). Representational strength was quantified
by dividing the activity level for the correct letter unit by the sum
of activity levels of all letters—a fraction that asymptotically
goes to 1 as representational strength increases. After running
34 simulated runs with the top-down model, the relative evidence
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Fig. 2 Probing representational enhancement in neural network models and the brain. a Modelling representational enhancement in a hierarchical neural
network model®'4, Stimuli used in the experiment were encoded into vectors of visual features and overlaid with Gaussian noise (bottom rows). Inputs
were presented to a network with or without word-to-letter feedback connections. For both networks, representational strength was quantified from the
distribution of activity levels of letter units for the third position (principle illustrated for the fifth letter, E). Solid circles indicate units (representing features,
letters or words); lines indicate feedforward connections, and dotted lines with arrows indicate feedback connections. Note that we used a predictive
coding formulation of the network but for simplicity only the state estimator (prediction) units are shown in the schematic (see Methods for details).
b Quantifying representational letter enhancement using multivariate pattern analysis (MVPA). To probe letter representations in the brain, we used two
MVPA techniques: classification (upper panel) and pattern correlation (lower panel).
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Fig. 3 Word contexts enhance letter representations. a Theoretical predictions. We simulated 34 artificial ‘runs’ in which we exposed a network with
(top-down model) and without (feedforward model) word-to-letter feedback connections to the experimental stimuli, and computed the average
representational strength of the middle letter in word and nonword contexts. Note that the strong dissociation was observed despite the fact that the
middle letter was well-above threshold in all conditions for both models (Supplementary Fig. 2). b Letter representation in early visual cortex of 34 human
observers. Two multivariate pattern analysis methods (see Methods) revealed that neural representations of letters were enhanced in word compared to
nonword contexts, supporting the top-down model. In both panels, grey dots represent individual simulated ‘runs’ (a) or individual participants (b). Lines
represent paired differences. White dots, boxes and whiskers represent between-subject medians, quartiles and 1.5 interquartile ranges, respectively.
Significance levels correspond to p<0.01 (**) or p<0.001 (***) in a paired, two-tailed Student's t or Wilcoxon sign rank test.

for the middle letter was confirmed to be much higher in words
than nonwords (paired t-test, t;y3=50.5, p=7.72x10733),
despite the signal-to-noise ratio of the simulated stimuli being
identical (Fig. 3a). Importantly, when the same stimuli were
presented to a network lacking word-to-letter feedback connec-
tions, no such difference was found (paired #-test, t34 = —0.24,
p =0.81), resulting in a significant interaction (two-sample t-test
tz4=31.1, p=35x10"4!). This confirmed that despite the

differences between our and the classic paradigm, representa-
tional enhancement of letters by word contexts is a hallmark of
top—down models of letter perception.

Word contexts enhance letter representations. Next, we tested
whether we could find a similar enhancement effect in early visual
cortex in our participants. To do so, we first trained a classifier for
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each participant on an independent dataset from a functional
localiser run, during which the two middle letters (U or N) were
presented in isolation and without Gaussian noise (see Fig. 2b). We
then tested the classifier’s ability to identify the middle letter of the
words and non-words presented in the main experiment, in a trial-
based fashion (each trial lasting 14 s and consisting of ten stimuli).
We reasoned that if word context enhances the sensory repre-
sentations of letters (e.g. enhancing the letter features in noise), this
should be apparent in early visual areas, which we defined as the
union of V1 and V2 (see Methods). To focus on voxels sensitive to
the relevant part of the visual field, we selected the 200 voxels (the
same number we used in a previous study!®) most responsive
during the localiser run. We were able to classify letter identity well
above chance level (one sample t-test, t3, = 18.84, p = 3.13 x 1019,
d=3.23) reaching a mean overall decoding accuracy of 81.4%
averaged over both conditions (see Fig. 3).

Having established that letter identity can be extracted with
high fidelity from early visual cortex, we went on to test if
representational content was enhanced by word context. Strik-
ingly, we found that classification accuracy was indeed higher for
words compared to nonwords (Wilcoxon sign rank test, T4 =
141.5, p="7.55 x 1073, r = 0.52; Fig. 3b). To further examine this
enhancement effect, we quantified representational content using
an (arguably simpler) supplementary multi-voxel pattern analysis
(MVPA) technique: pattern correlation analysis—the difference
in voxel response pattern correlation that could be attributed
to letter identity (‘Pearson p within-letter’ minus ‘Pearson p
between-letter’; see Methods). Reassuringly, the results aligned
with those of the classification analysis: the correlation difference
score being significantly higher for words than nonwords
(Wilcoxon sign rank, Ts4 = 103, p = 8.83 x 1074, r = 0.67).

To confirm that the differences revealed by the classification
and pattern correlation analysis were related to differences in
representations of stimulus information and not to unrelated
confounding factors, we performed a number of controls. First,
we tested the stability of the results over different region of
interest (ROI) definitions. Since both representational analyses
used the 200 voxels that were most responsive during an
independent functional localiser, we wished to ensure that the
results were not unique to this a priori specified (but arbitrary)
number. We therefore re-ran the same analyses for ROIs ranging
from 50 to 1000 voxels with steps of 10. This revealed that the
same pattern of effects was found over practically the entire range
of ROI sizes (Supplementary Fig. 3).

Another possibility is that the increased estimates of repre-
sentational content could be explained by a simple difference in
signal amplitude, potentially related to participants being more
attentive to words than nonwords. To address this, we quantified
BOLD amplitude per condition using a standard generalised
linear model (GLM) based approach (see Methods), but found
no significant difference between conditions in the amplitude
estimates for the corresponding voxels (paired ¢-test, t34 = —0.57,
p =0.57, d =0.10; Bayesian paired t-test, BF;o = 0.21; see Supple-
mentary Fig. 4). Importantly, we found no significant differences
in eye-movement deviation from fixation between words and
nonwords (Wilcoxon T3, =197, p=0.21, r=0.25; Bayesian
paired t-test, BF,;=0.48; see Supplementary Fig. 6 and
Methods), confirming participants’ ability to maintain fixation
during the task did not differ significantly between conditions.

As a final control analysis, we wanted to confirm that the
MVPA results relied on retinotopically specific information. This
would be an important indication that both the letter information
extracted from visual cortex, and its enhancement by word
contexts, indeed originate from sensory representations. To this
end, we performed a searchlight variant of the classification and
pattern correlation analysis (see Supplement for details). This

revealed (see Supplementary Figs. 7, 8) that letter identity
information was only visible in neural activity patterns in visual
cortex, ruling out that decoding relied on a brain-wide signal. We
further tested for retinotopic specificity within visual cortex by
comparing the functionally defined central ROI (described
above), to a functionally defined peripheral ROI (see Methods
and Supplementary Note 1 for more details). This revealed
(Supplementary Fig. 9) that overall letter decoding was greatly
reduced for the peripheral ROI compared to the central ROI, both
for classification (paired t-test, t34 = 15.59, p =8.86 x 10717, d =
2.67) and pattern correlation analysis (paired t-test, ¢34 = 8.06,
p=265x10"% d=1.38). Importantly, we found a similar
reduction in the peripheral ROI for the enhancement effect
(the difference in decoding between conditions), again both for
the classification (paired t-test, f34 =2.56, p=0.015, d=0.44)
and pattern correlation analysis (paired t-test, t33=2.92, p=
6.31x 1073, d=0.50).

In sum, these analyses show that sensory letter information in
early visual cortex, as estimated by classification and pattern
correlation analysis, was increased in words compared to
nonwords. This enhancement was present over a range of ROI
definitions, but was reduced for peripheral compared to central
ROIs, and could not be explained by confounding factors such as
BOLD amplitude or eye movements.

Representational enhancement across the visual hierarchy.
Having established a perceptual enhancement effect by word
context in early visual cortex, we then asked how this enhance-
ment effect was distributed among specific visual areas. To this
end, we further investigated five ROIs, four of which were defined
anatomically (V1-V4) and one (visual wordform area (VWFA))
functionally; in each ROI, voxels were selected using the proce-
dure described earlier (see Methods for details).

The results show consistent evidence for word enhancement in
V1, V2 and V4 (all p’s<0.025; see Supplementary Fig. 10 for
details), with both analyses. In contrast, V3 and VWFA showed
no consistent evidence for word enhancement (see Supplemen-
tary Fig. 10). However, in these regions, the overall classification
accuracy and pattern information scores were also close to
chance, making the absence of differences between conditions
difficult to interpret. For regions V1-V4, we also tested for
univariate amplitude differences between word and nonword
conditions. Interestingly, in all four regions, the sign of the
univariate difference was negative (indicating weaker amplitude
of responses to word stimuli), but note that only in V4 this
difference was marginally significant (paired t-test, 34 = —2.11,
p=0.04, d=—0.36, uncorrected; Supplementary Fig. 5). In sum,
we observed word enhancement across multiple regions in the
visual hierarchy. Critically, none of the regions showed BOLD
amplitude differences, ruling out the possibility that word
enhancement was confounded by low-level attentional differences
between conditions.

Information-activation coupling reveals putative neural sour-
ces. Having observed a hallmark of top-down perceptual
enhancement by word contexts, we then asked what the potential
neural source of this top—down effect could be. We reasoned that
if a candidate brain region was involved in the observed
enhancement, then activity levels in this region would be expected
to covary with the amount of letter information represented in
early visual cortex. Moreover, this relationship should not be
driven by a categorical difference between conditions (e.g. that
both BOLD amplitude in a candidate region and informational
content in visual cortex are higher for words than nonwords,
while the two are not related within conditions). Taking the two
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Fig. 4 Information-activation coupling analysis. a ROI-based coupling analysis. For two ROIs, GLMs were fitted to estimate coupling between early visual
cortex classification evidence and regional BOLD amplitude for words and nonwords separately. We then tested for increased coupling (higher coefficients) in
words compared to nonwords. b lllustration for example participant. A single (averaged) timecourse was extracted from each ROl and regressed against visual
cortex classification evidence to test for increased slopes in words compared to nonwords. For illustration purposes, only the predicted slopes based on the
regressor of interest are shown. Note that classification evidence was defined as probability, but here expressed in arbitrary units due to the whitening
operation. ¢ Whole-brain results. Same analysis as in a and visualised in b, but performed for each voxel independently. Resulting contrast images (word-
nonword) were tested at the group level for increases in coupling in words compared to nonwords. This revealed statistically significant clusters (p < 0.05 FWE
corrected), in the left pMTG and in the left IFG. Glass brain plot rendered with nilearn®3. For a non-thresholded slice-by-slice rendering of the whole-brain
results in ¢, see Supplementary Fig. 11. Grey dots indicate coefficients of individual participants, and lines the within-subject differences; white dots, boxes and
whiskers are between-subject medians, quartiles and interquartile ranges, respectively. Significance stars correspond to p < 0.01 (**) or p<0.001 (***) in a
paired two-tailed t-test or Wilcoxon sign rank test. pMTG posterior medial temporal gyrus, IFG inferior frontal gyrus.

requirements together, we expected regions implicated in the
top-down effect to show increased functional coupling between
local BOLD activity and representational information in early
visual cortex, for words compared to nonwords.

To test for this increased information-activation coupling, we
used a GLM-based approach to model regional BOLD amplitude in
both conditions as a function of early visual cortex classification
evidence, and tested for an increased slope for words compared to
nonwords (see Fig. 4b). This is analogous to the well-established psy-
chophysiological interaction (PPI) analysis!®, but uses classifier
evidence instead of BOLD activity as seed timecourse. Classifier
evidence here corresponds to the predicted probability of the correct
(presented) letter stimulus for each brain volume (see Methods).

We first tested for increased coupling in a hypothesis-driven,
ROI-based fashion. We tested two candidate regions: the VWFA
and the left posterior middle temporal gyrus (pMTG), associated
with orthographic/visual!”-18 and lexical/semantic processing!®20,
respectively. Activity of all voxels was averaged to obtain a single
BOLD timecourse per ROIL This BOLD timecourse was then
modelled as a function of visual cortex classification strength to
obtain separate coupling parameters for word and nonword
conditions. We indeed observed a significantly increased coupling
in both VWFA (Wilcoxon sign rank, Ts;= 80, p=2.00x 1074,
r=0.73) and pMTG (paired t-test t;4=2.83, p=82x1073, d=
0.48; see Fig. 4a) for words. The increase in coupling appeared
stronger in VWFA, but the difference in effects between regions
was not statistically significant (paired t-test, ¢34, =0.62, p=0.54,
d=0.11).

Finally, we carried out an exploratory analysis by testing for
increased functional coupling across the entire brain. In essence,
the GLM procedure was identical to the one above, but carried
out at the individual voxel level. This yielded, for each participant,
a map of estimated differences in functional coupling for every
voxel. These functional maps were then registered to a standard
space after which we tested whether there were clusters of voxels
that showed an increase in functional coupling for words
compared to nonwords. We found two significant (FWE-
corrected, cluster-forming p <0.001, cluster-level p <0.05) left-
lateralised clusters at key nodes of the language network: one in
pMTG and one in inferior frontal gyrus (IFG) (Fig. 4c;
Supplementary Fig. 11). No significant cluster was found at
VWFA, possibly due to individual neuro-anatomical variability in
VWFA size and location?!.

Altogether, these results demonstrate increased functional
coupling between visual cortical classification evidence and
neural activity in VWFA, pMTG and IFG. In all of these regions,
we found a significant increase in functional coupling (here,
meaning that classifier evidence increased when the regions
became more active, and vice versa) for words compared to
nonwords, which is consistent with the idea that these regions
might constitute the neural source of the top—down effect.

Discussion
Visual context facilitates perception!. Letter perception offers a
striking example of such facilitation, as letters are more easily
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recognised when embedded in a word. Dominant, ‘interactive’
models of word recognition assume this facilitation occurs in the
visual system already, proposing that linguistic knowledge can
enhance perception in a top-down fashion®. Here we tested this
perceptual enhancement hypothesis at the neural level. We pre-
sented streams of words or nonwords with a fixed middle letter
while recording fMRI. Simulations of this paradigm confirmed
that top—down models of word recognition uniquely predict that
perceptual representations of the middle letter should be
enhanced when embedded in a word. In line with the top-down
account, information about the middle letter, probed using
MVPA in early visual cortex, was enhanced when the letter was
embedded in words compared to nonwords. Further, we found
increased functional coupling between the informational pattern
in early visual cortex, and regional BOLD amplitude in three key
regions of the left-lateralized language network, i.e. VWFA, left
pMTG and IFG. This points to these regions as potential neural
sources of the representational enhancement effect. Together,
these results constitute the first neural evidence for representa-
tional enhancement of letters by word contexts, as hypothesised
by top-down accounts of word recognition®. The results also fit
naturally with theoretical frameworks of top-down perceptual
inference, such as hierarchical predictive coding??-24 (see refs. 22
for review) and with the broader literature on top—down, pre-
dictive effects in language processing?0-28.

Our results are in line with a large behavioural literature on
context effects in letter perception that support interactive acti-
vation (top—down) models. These works have demonstrated, for
instance, that the word advantage persists when the guessing
advantage afforded by words is constrained experimentally®?, see
ref. 10 for review; that readers subjectively perceive letters
embedded in real words as sharper??; and that readers are better
at detecting subtle perceptual changes in real words than in
nonwords?®. While the behavioural literature has extensively
investigated top—down effects, work on the neural basis of visual
word recognition has focussed almost exclusively on its bottom-
up component, most notably by probing the bottom-up selectivity
profile of VWFA (or ventral occipitotemporal cortex more
broadly) to various visual and orthographic properties®*-32. One
study tried to disentangle word and letter encoding at a neural
level33, but did not probe individual letter representations and
their enhancement by word contexts. A recent study did inves-
tigate top—down processing, but was limited to attention-based
response modulations in decision contexts?4.

Beyond the domain of language, but converging with the
results presented here, are results from object perception, where it
was recently found that the facilitation of object recognition by
familiar contexts was accompanied by enhancement of object
representations in object selective cortex3. The similarity to the
current findings speaks to the idea that representational
enhancement reflects a more general principle of contextual
effects in perception. These contextual effects have been exten-
sively studied, and range from neurons in macaque early visual
cortex responding differently to identical lines when presented as
parts of different figures3®37 to neurons in mouse V1 encoding
contextually expected but omitted stimuli (see ref. 38 for review).
As such, it may be that although here the context is linguistic, the
contextual effect in visual cortex reflects a more general
mechanism that is not specific to reading or unique to humans.
Interestingly, the idea that contextual enhancement reflects a
more general perceptual mechanism was a key motivation to
develop models of word recognition in the first place®”.

When viewed as a more general principle of perception, con-
textual enhancement touches on an even broader question: are
objects recognised by their parts or as wholes? On the one hand,
word superiority has historically been taken as an example of

‘holistic’ perception®10 and the enhancement we observed
(in which ‘wholes’ enhance representations of ‘parts’) indeed
seems to contradict a strictly letter-based (part-based) account.
But on the other hand, it has been convincingly demonstrated,
both for word and face recognition!23%, that the identifiability of
parts poses a bottleneck on the identification of wholes, and
hence, even for the most common words, recognition cannot be
truly holistic!2. Moreover, effects of wholes on the identification
of parts are not always faciliatory: facial arrangements, for
instance, have been both reported to have positive and negative
effects on search performance®?4l. Developing a theoretical fra-
mework that naturally accounts for top-down, contextual
enhancement as reported here (see e.g. 23), while being properly
constrained so as to incorporate feature-based bottlenecks, and
the occasional detrimental effects of context, provides an
important challenge for future research.

A limitation of the current study is that we cannot access
sensory representations directly, and instead have to infer them
by estimating sensory information from measured neural activity
patterns. By itself, the fact that letter identity could be more
readily decoded from words than nonwords could in principle
merely reflect confounding differences in the BOLD signal
between conditions, or in the our ability to extract information
from that signal*2. Importantly, however, we obtained converging
evidence using two complementary techniques of probing
representational content. One of these (classification) used an
independent dataset for training purposes in which only single
letters were presented without noise, which suggests that our
MVPA techniques were picking up relevant information about
the middle letters, rather than irrelevant signals that only covaried
with reading (non)words with the respective middle letter.
Moreover, enhancement was consistently found in multiple visual
areas, was retinotopically specific, but not contingent on exact
ROI definitions, and could not be explained by other confounds
such as signal amplitude or eye movements. As such, we believe
that the most parsimonious explanation of the observed
effect is as reflecting an enhancement in the underlying sensory
information available to visual cortex itself—in other words, a
representational enhancement.

We interpret this representational enhancement as a neural sig-
nature of the perceptual enhancement of letters—a process for-
malised by top-down models of word recognition, and widely
characterised in behavioural literature!®2°. However, a limitation of
fMRI is that it cannot differentiate between earlier and later activity.
Hence, it is possible that the observed effects arise late, perhaps
even much later than what is typically considered ‘perceptual’ (e.g.
>400 ms); instead perhaps reflecting what one might call iconic
memory encoding. Although distinguishing between perceptual and
post-perceptual effects is notoriously difficult, future studies might
address this by probing perception more directly using an objective
measure of perceptual sensitivity, or by using a high temporal
resolution method (e.g. ECoG or MEG) in combination with a
temporal criterion to arbitrate between perceptual and post-
perceptual enhancement of sensory representations.

An apparent disconnect between our study and the existing
literature concerns the level of representation at which
enhancement occurs. We probed enhancement in early visual
cortex (representing visual features such as edges and simple line
conjunctions) while in theoretical models®!4 enhancement is
probed at the level of letters, not features. However, perceptual
enhancement is a generic mechanism and should not be unique
to a specific level of representation. In fact, the main reason® that
in the classic models enhancement occurs only at the letter level is
simplicity: because features comprise the input to the network
and are hence not recognised, the possibility of enhancement
occurring at the feature level is excluded by design.
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Apart from model simplicity, one might argue there are more
substantive, cognitive reasons that enhancement is primarily
described at the letter level and not at the level of simple features.
Specifically, word superiority has been reported with stimuli
consisting of mixed case and font*3, implying that sometimes the
word superiority effect can be independent of the visual features
that define exact letter shape, and may instead act at a more
abstract level of letter identity. However, when the exact letter
shape is well known and especially under visually noisy condi-
tions (like in our experiment), enhancement of simple low-level
visual features appears useful for letter recognition, thereby
incentivising top-down enhancement to reach the (functionally
well-localised) visual feature level. As such, we do not claim that
our experiment shows that word superiority always acts at the
level of sensory features. Rather, it demonstrates that in principle
these enhancement effects can extend even to the earliest sensory
cortical regions, contradicting purely bottom-up accounts in
which such top-down enhancement is ruled out by design.

What kind of information is driving the observed representa-
tional enhancement effect? A possible source of information is
lexical knowledge, although sublexical (orthographic/phonological)
knowledge may be an equally plausible candidate. Indeed, beha-
viourally letters are also more easily recognised when embedded in
pronounceable nonwords (pseudowords) than in unpronounce-
able, orthographically illegal nonwords**. Theoretically, such a
pseudoword superiority effect can be either understood as origi-
nating via top-down connections in a dedicated sublexical route*>
or as arising as a by-product from co-activations of lexical items
with overlapping letter combinations®4, The fact that we found
increased functional coupling in both VWFA (associated with
sublexical orthography) and pMTG (associated with lexical access)
makes our data consistent with both types of feedback, originating
from the sublexical and the lexical route. Future studies could
examine the relative contributions of these forms of feedback,
by examining the neural activity patterns to pronounceable
pseudowords.

A final point of discussion concerns the interpretation of the
information-activation coupling analysis. We interpret the results
as pointing to putative candidate sources, because the observed
increases in functional coupling match the expected pattern of
results if the associated regions were indeed a neural source of the
enhancement. However, we acknowledge that since the functional
coupling analysis is correlational in nature, the direction of
causality implied by this interpretation remains speculative.
To get a better understanding of the sources involved this effect,
future studies could either directly perturb candidate sources, use
a more indirect method for inferring directionality such as
laminar fMRI47 or a directional connectivity analysis*®.

In conclusion, we have observed that word contexts can
enhance sensory letter representations in early visual cortex.
These results provide the first neural evidence for top-down
enhancement of sensory letter representations by word contexts,
and suggest that readers can better identify letters in context
because they might, quite literally, see them better.

Methods

Participants. Thirty-six participants were recruited from the participant pool at the
Donders Centre for Cognitive Neuroimaging. Sample size was chosen to detect a
within-subject effect of at least medium size (d > 0.5) with 80% power using a two-
tailed one-sample or paired f-test. The study was in accordance with the institutional
guidelines of the local ethical committee (CMO region Arnhem-Nijmegen, The
Netherlands, Protocol CM02014/288), all participants gave informed consent and
received monetary compensation. Participants were invited for an fMRI session and
a prior behavioural training session, that took place no more than 24 h before the
fMRI session. For one participant, who moved excessively between runs, decoding
accuracy was never above chance; this participant was excluded from all fMRI
analyses. One additional participant had their eyes closed for an extended duration
during more than 20 trials, and was excluded from both the behavioural and fMRI

analyses. All remaining participants (n = 34, 12 male, mean age = 23 + 3.32) were
included in all analyses. Due to technical problems, one participant only completed
four instead of six blocks, all of which were analysed.

Stimuli. Stimuli were generated using Psychtoolbox-3 (ref. 4°) running on
MATLAB (MathWorks, MA, USA). Stimuli were rear-projected using a calibrated
EIKI (EIKI, Rancho Santa Margarita, CA) LC XL 100 projector (1024 x 768,

60 Hz). Each stimulus was a five-letter word or nonword presented in a custom-
made monospaced typeface. To prevent that the multivariate analyses would pick
up on global low-level features (such as overall luminance or contrast) to dis-
criminate between middle letter identity, the middle characters (U or N) were
chosen to be identical in shape and size, but flipped vertically with respect to
each other. Words were presented in a large font size, each letter 3.6° wide and with
0.6° spacing between letters. This size was chosen to make the middle letter as large
as possible while retaining readability of all letters when fixating at the centre. In
addition to the words and nonwords, a fixation dot of 0.8° in diameter was pre-
sented at the centre of the screen. To make reading visually challenging and
incentivize top-down enhancement of low-level visual features, words were
embedded in visual noise. The noise consisted of pixelated squares, each 1.2° wide,
offset so that the pixels were misaligned with the letter strokes. Letters were pre-
sented on top of the noise with 80% opacity. We chose this type of noise after
finding it impacted readability strongly even when the letters were presented at
high physical luminance. Brightness values (in the range 0-255) of the noise ‘pixels’
were randomly sampled from a Gaussian distribution with a mean of 128 and an
SD of 50. To make sure that the local brightness was on average identical for each
trial and across the screen, the noise patches were generated using a pseudo-
random procedure. In each trial, ten noise patches were presented, five of which
were independent and randomly generated, while the other five were copies of the
random patches, but polarity-inverted in terms of their relative brightness with
respect to the mean. This way the brightness of each noise pixel was always 128
(grey) on average in each trial. The order of noise patches was pseudo-random,
with the constraint that copied patches were never presented directly before or after
their original noise patch. This way the re-use of noise patches was not noticeable
and all seemed random.

In the main experiment, we used a blocked design, in which we presented
blocks of four long trials (one of each of the four conditions), followed by a null-
trial. Each trial was 14-s long, during which ten stimuli were presented. Of those
stimuli, nine or occasionally (in 25% of trials) eight were (non-)word items and one
or two were (learned) targets. A single presentation consisted of 900 ms of (non)
word item plus noise background, and 500 ms of blank screen plus fixation dot
(Fig. 1c). Targets were either presented in their regular (learned) form or with one
of the non-middle letters permuted, and participants had to discriminate whether
the target was regular or permuted. Target correctness and occurrence within the
trial were counterbalanced and randomised, with the constraint that targets were
never presented directly after each other. The order of word items was shuffled
pseudo-randomly, with the constraint that the same letter never repeated twice at
the same position (except for the middle letter).

In the functional localiser run, only the middle letters (U and N) plus fixation
bulls’ eye were presented. We again used a blocked design, with long trials that had
a duration of 14 s during which one of letters was repeated at 1 Hz (500 ms on,
500 ms off; see Fig. 1b). During the localiser, each trial was followed by a null-trial
in which only the fixation dot was presented for 9.8 s. This was repeated 18 times
for each letter.

Two different sets of words and nonwords were used for the training and
experimental session. For the experimental session, we used 100 five-letter words
with a U or N as third character in Dutch (see Supplementary Table 1), plus equally
many nonword items. This particular subset was chosen because they were the 100
most frequent five-letter words with a U or N in Dutch, according to the subtlex
database®0. Each item occurred at least four times and maximally five times (4.2 on
average) during the entire experimental session; to ensure repetitions were roughly
equally spaced, items were only repeated once all other items were presented
equally often. Because we wanted to familiarise participants with the task and the
custom-font, but not with the (non)word stimuli themselves (especially because
there was considerable variation in the amount of training between participants),
we used different (non)words for the training session. For the training session, we
used the remaining 50 less frequent five-letter Dutch words with a U and N. For the
nonwords, letters were randomly sampled according to the natural frequency of
letters in written Dutch®!, with the constraint that adjacent letters were never
identical. The resulting nonwords were then hand-selected to ensure all created
strings were unpronounceable, orthographically illegal nonwords. The four learned
target stimuli were CLUBS and ERNST for the words, and KBUOT and AONKL
for the nonwords. These were learned during the prior training session.

Procedure. Each participant performed one behavioural training and one experi-
mental fMRI session. The goal of the training was for participants to learn the four
target items and learn how to perform the task while maintaining fixation at the
centre of the screen. The fMRI session consisted of a brief practice of ~5 min

during which the anatomical scan was acquired. This was followed by six experi-
mental runs of 9—10 min, which were followed by a localiser run of ~15 min. We
used a blocked design, in which we presented blocks of four long trials (one of each
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of the four conditions), followed by a null-trial experimental run consisted of 40
trials of 14 s. Trials were presented in blocks consisting of five trials: one of each
condition (U-word, U-nonword, N-word, N-nonword), plus a null-trial during
which only the fixation dot was present. The order of trial types within blocks was
randomised and equalised: over the entire experiment, each order was presented
twice, resulting in a total number of 240 trials (192 excluding nulls). In the
functional localiser, single letters were presented blockwise: one letter was pre-
sented for 14 s, followed by a null-trial (9.8 s), followed by a trial of the other letter.
Which letter came first was randomised and counterbalanced across participants.

Statistical testing. For each (paired/one-sample) statistical comparison, we first

verified that the distribution of the data did not violate normality and was outlier
free, determined by the D’Agostino and Pearson’s test implemented in SciPy and
the 1.5 IQR criterion, respectively. If both criteria were met, we used a parametric
test (e.g. paired t-test); otherwise, we resorted to a non-parametric alternative (e.g.
Wilcoxon sign rank). All statistical tests were two-tailed and used an alpha of 0.05.
For effect sizes, we report Cohen’s d for the parametric and biserial correlations for
the non-parametric tests.

fMRI acquisition. Functional and anatomical images were collected with a 3T
Skyra MRI system (Siemens), using a 32-channel headcoil. Functional images were
acquired using a whole-brain T2*-weighted multiband-4 sequence (TR/TE =
1400/33.03 ms, voxel size =2 mm isotropic, 75° flip angle, A/P phase encoding
direction). Anatomical images were acquired with a T1-weighted MP-RAGE
(GRAPPA acceleration factor = 2, TR/TE = 2300/3.03 ms, voxel size 1 mm iso-
tropic, 8° flip angle).

fMRI preprocessing. fMRI data pre-processing was performed using FSL 5.0.11
(FMRIB Software Library; Oxford, UK2). The pre-processing pipeline included
brain extraction (BET), motion correction (MCFLIRT), temporal high-pass filter-
ing (128 s). For the univariate and univariate-multivariate coupling analyses, data
were spatially smoothed with a Gaussian kernel (4 mm FWHM). For the multi-
variate analysis, no spatial smoothing was applied. Functional images were regis-
tered to the anatomical image using boundary-based registration as implemented
in FLIRT and subsequently to the MNI152 T1 2-mm template brain using linear
registration with 12 degrees of freedom. For each run, the first four volumes were
discarded to allow for signal stabilisation. Most FSL routines were accessed using
the nipype framework®3. Using simple linear registration to align between parti-
cipants can result in decreased sensitivity compared to more sophisticated methods
like cortex-based alignment®*. However, note that using a different inter-subject
alignment method would not affect any of the main analyses, which were all
performed in native EPI space. The only analysis that could be affected is the
whole-brain version of the information-activation coupling analysis (Fig. 4c;
Supplementary Fig. 11). However, this was only an exploratory follow-up on the
pre-defined ROI-based coupling analysis, intended to identify potential other
regions displaying the signature increase in coupling. For this purpose, the simple
linear method was deemed appropriate.

Univariate data analysis. To test for differences in univariate signal amplitude
between conditions, voxelwise GLMs were fit to each run’s data using FSL FEAT.
For the experimental runs, GLMs included four regressors of interest, one for each
condition (U-word, U-nonword, etc). For the functional localiser runs, GLMs
included two regressors of interest (U, N). Regressors of interest were modelled as
binary factors and convolved with a double-gamma HREF. In addition, (nuisance)
regressors were added for the first-order temporal derivatives of the regressors of
interest, and 24 motion regressors (six motion parameters plus their Volterra
expansion, following Friston et al.>®). Data were combined across runs using FSL’s
fixed-effects analysis. All reported univariate analyses were performed on an ROI
basis by averaging all parameter estimates within a region of interest, and then
comparing conditions within participants (see Supplementary Figs. 4, 5).

Multivariate data analysis. For the multivariate analyses, spatially non-smoothed,
motion-corrected, high-pass filtered (128 s) data were obtained for each ROI

(see below for ROI definitions). Data were temporally filtered using a third-order
Savitzky-Golay low-pass filter (window length 21) and z-scored for each run
separately. Resulting timecourses were shifted by three TRs (i.e. 4.2s) to com-
pensate for HRF lag, averaged over trials, and null-trials discarded. For each par-
ticipant, this resulted in 18 samples per class for the localiser (i.e. training data) and
96 samples per condition (word/nonword) for the main runs (i.e. testing data).

For the classification analysis, we used a logistic regression classifier implemented
in sklearn 0.2 (ref. °°) with all default settings. The model was trained on the time-
averaged data from the functional localiser run and tested on the time-averaged data
from the experimental runs. Because we had the same number of samples for each
class, binary classification performance was evaluated using accuracy (%).

For the pattern correlation analysis, only the time-averaged data from the main
experiment were used. Data were randomly grouped into two arbitrary splits that
both contained an equal number of trials of all four conditions (U-word,
U-nonword, N-word, N-nonword). Within each split, the time-averaged data of
each trial were again averaged to obtain a single average response for each

condition per split. For both word/nonword conditions separately, these average
responses were then correlated across splits. This resulted, for both word and
nonword conditions, in two (Pearson) correlation coefficients: pyitmin and Ppetweens
obtained by correlating the average response to stimuli with the same or different
middle letter, respectively. This process was repeated 12 times, each time using a
different random split of the data, and all correlation coefficients were averaged to
obtain a single coefficient per comparison, per condition, per participant. Finally,
pattern letter information for each condition was quantified by subtracting the two
average correlation coefficients (Pyithin — Pbetween)-

For the searchlight variant of the multivariate analyses, we performed exactly
the same procedure as described in the manuscript. However, instead of using a
limited number of a priori defined ROIs, we used a spherical searchlight ROI that
slid across the brain. A searchlight radius of 6 mm was used, yielding an ROI size of
about 170 voxels on average, similar to the 200 voxels in our main ROI. For both
analyses, this resulted in a map for each outcome metric for each condition for each
subject, defined in native EPI space. These maps were then used for subsequent
analyses (see Supplementary Note 1).

Information-activation coupling analysis. For the information-activation cou-
pling analysis, we used a GLM-based approach to predict regional BOLD ampli-
tude as a function of early visual cortex classification evidence, and tested for an
increase in coupling (slope) for words compared to nonwords (see Fig. 4b). The
GLM had one variable of interest, visual cortex classification evidence (see below
for definition) that was defined on a TR-by-TR basis, and split over two regressors,
corresponding to both conditions (word/nonword). In addition, first-order tem-
poral derivatives of the two regressors of interest and the full set of motion
regressors (from the FSL FEAT GLM) were included to capture variability in HRF
response onset and motion-related nuisance signals, respectively. Because the
classification evidence was undefined for null-trials, these were omitted. To com-
pensate for temporal autocorrelation in the data, pre-whitening of the data was
applied using the AR(1) noise model as implemented in nistats®. The resulting
GLM yielded two regression coefficients (one per condition) for each participant,
which were then compared at the group level to test for an increase in coupling in
word contexts. Conceptually, this way of testing for condition-dependent changes
in functional coupling is analogous to PPI'® but using a multivariate time-course as
a ‘seed’. This timecourse, classification evidence, was defined as the probability
assigned by the logistic regression model to the correct outcome—or p(Aly = A).
This probabilistic definition combines aspects of both prediction accuracy and
confidence into a single quantity. Mathematically it is defined, as in any binomial
logistic regression classifier, via the logistic sigmoidal function:
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where 6 are the model weights, y is the binary stimulus category, X are the voxel
response patterns for all trials, and the letter ‘U’ is coded as 1 and ‘N’ as 0. Note
that while the value of p(A|y = A) itself is bounded between 0 and 1, the respective
regressors were not after applying prewhitening to the design matrix (see Fig. 4b).

Two variants of the GLM analysis were performed: one on timecourses
extracted from two candidate ROIs and one on each voxel independently. For the
ROI-based approach, timecourses were extracted by taking the average timecourse
of all amplitude-normalised (z-scored) data from two ROIs: left pMTG and VWFA
(see ‘ROI definition’ for details). For the brain-wide variant, the same GLM was
estimated voxelwise for each voxel independently. This resulted in a map with the
difference in coupling parameters for each voxel, for each participant (Byora —
Bronwora) defined in native MRI space. These maps were then transformed to MNI
space, after which a right-tailed one-sample ¢-test was preformed to test for voxels
showing an increase in coupling in word conditions. The resulting p-map was
converted into a z-map and thresholded using FSL’s Gaussian random-field-based
cluster thresholding, using the default cluster-forming threshold of z> 3.1 (i.e., p <
0.001) and a cluster significance threshold of p < 0.05.

ROI definition. For the ROIs of V1-V4, fusiform cortex and inferior temporal
cortex, Freesurfer 6.0 (ref. >7) was used to extract labels (left and right) per subject
based on their anatomical image, which were transformed to native space and
combined into a bilateral mask. Labels for V1-V2 were obtained from the default
atlas®8, whereas V3 and V4 were obtained from Freesurfer’s visuotopic atlas®®.
Early visual cortex (EVC) was defined as the union of V1 and V2.

The VWFA was functionally defined following a procedure based on earlier
work34, Briefly, first we took the union of left fusiform cortex and left inferior
temporal cortex that were defined via individual cortical parcellations obtained
from freesurfer, and trimmed the anterior parts of the resulting mask. Within this
broad, left-lateralised ROI, we then selected the 200 voxels that were most selective
to words over nonwords (i.e. words over orthographically illegal, unpronounceable
letter strings) as defined by the highest Z-statistics in the respective word-nonword
contrast in the univariate GLM. Similarly to Kay and Yeatman3*, we found that for
most participants this resulted in a single, contiguous mask and in other
participants in multiple word-selective patches. There are two main reasons we
used the simple contrast word-nonword from the main experiment, rather than
running a separate, dedicated VWFA localiser. First, using the main task strongly
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increased statistical power per subject as we could use a full hour of data per
participant to localise VWFA. Second, the comparison of words and
unpronounceable letter strings (with matched unigram letter frequency) solely
targets regions that are selective to lexical and orthographic information (i.e. the
more anterior parts of VWFA, according to the VWFA hierarchy reported in
ref. 32). As such, the localiser only targets regions selective to the type of linguistic
(lexical or orthographic) knowledge that could underlie the observed effect. This
stands in contrast to other, less-restrictive VWFA definitions (such as words >
phase scrambled words, or words > false fonts).

For the multivariate stimulus representation analyses, we did not use the entire
anatomical ROIs defined above, but performed a selectivity-selection to ensure we
probed voxels that were selective to the relevant part of the visual field. In this
procedure, we defined the most selective voxels as those with the k highest Z-
statistics when we contrasted any letter (U or N) versus baseline in the functional
localiser GLM. Following ref. 1>, we took 200 voxels as our predefined value for k.
To verify that our results were not contingent on this specific (but arbitrary) value,
we also made a large range of masks for early visual cortex by varying k between 50
and 1000 with steps of 10. Repeating the classification and pattern correlation
analyses over all these masks revealed that the same pattern of effects was obtained
over almost the full range of mask definitions, and that the best classification
performance was in fact at our predefined value of k =200 (Supplementary Fig. 3).

For the peripheral visual ROI, voxels were selected based on the functional
criterion that they showed a strong response to stimuli in the main experiment
(which spanned a large part of the visual field), but a weak or no response to
stimuli in the localiser (which were presented near fixation). Specifically, voxels
were selected if they were both in the top 50% of Z-stats for the contrast visual
stimulation > baseline in the main experiment, and in the bottom 50% of Z-scores
for visuals stimulation > baseline in the localiser. This resulted in masks that
contained on average 183 voxels, similar to the 200 voxels in the central ROL
In our initial analysis, we focussed on V1 (see Supplementary Fig. 9) because it has
the strongest retinotopy. However, the same was also applied to early visual cortex
with similar results (see Supplementary Note 1).

To define pMTG, we performed an automated meta-analysis using
Neurosynth®. Because we were interested in pMTG as a hub for lexical access, we
searched for the keyword ‘semantic’. This resulted in a contrast map based on
1031 studies which we thresholded at an arbitrarily high Z-value of Z>9. The
resulting map was mainly restricted to two hubs, in the IFG and pMTG. We
selected left pMTG by overlaying the map with an anatomical mask of medial
temporal gyrus from FSL’s Harvard-Oxford Atlas. The resulting map was brought
to native space by applying the registration matrix for each participant.

Behavioural data analysis. Participants had 1.5 s after target onset to respond.
Reaction times under 100 ms were considered spurious and discarded. If two non-
spurious responses were given, only the first response was considered and eval-
uated. Median reaction times and mean accuracies were computed for both
(word and nonword) conditions and compared within participants.

Eye tracking. Eye movements were recorded using an SMI iView X eye monitor
with a sampling rate of 50 Hz. Data were pre-processed and submitted to two
analyses: number of trials during which eyes were closed for extended periods, and
comparison of horizontal (reading-related) eye movements between conditions.

During pre-processing, all data points during which there was no signal (i.e.
values were 0) were omitted. After omitting periods with no signal, data points with
spurious, extreme values (which sometimes occurred just before or after signal loss)
were omitted. To determine which values were spurious or extreme, we computed
the z-score for each points, over the entire run and ignoring the periods where
signal was 0, and considered all values higher than 4 extreme and spurious. Similar
to the periods with no signal, these timepoints were also omitted in following
analysis. The resulting ‘cleaned’ timecourses were then visually inspected to
evaluate their quality. For two participants, the data were of insufficient quality to
include in any analysis. For six participants, there were enough data of sufficient
quality to perform the overall amount of reading-related eye movements between
conditions, but signal quality was insufficient to quantify the number of trials
during which the eyes were shut for an extended period. This is because in these
participants there were various periods of intermittent signal loss that were related
to signal quality, not to the eyes being closed. To compare eye movements between
conditions, we took the standard deviance of the gaze position over the reading
(horizontal) direction, and averaged this over each trial. Because the resulting data
contained outliers (i.e. trials during which the participants failed to maintain
fixation), we took the median over trials in each condition (word/nonword), and
compared them within participants (Supplementary Fig. 6). For the participants
where the data were consistently of sufficient quality, periods of signal loss longer
than 1.2 s were considered ‘eyes closed for extended period’. As an inclusion
criterion, we allowed no more than 25 trials during which eyes were closed for an
extended period. This led to the exclusion of one participant, who had 33 trials
during which the eyes were closed for an extended period. This participant was a
clear outlier: of all participants with sufficient quality eye tracking data to be
included in this analysis, 14 had no trials during which eyes were closed for an
extended period, and in the remaining 12 with at least one such trial the median
number of trials was 3.5.

Neural network model. Simulations were performed using a predictive coding
formulation of the classic interactive activation model®’. We begin by explaining
the model at an abstract level, then outline the algorithmic and mathematical
details in generic terms, and then specify the exact settings we used for our model
architecture, and how we used them in our simulations.

The interactive activation model is a hierarchical neural network model which
takes visual features as inputs, integrates these features to recognise letters, and
then integrates letters to recognise words. Critically, activity in word-units is
propagated back to the letter-level, making the letter detectors sensitive not only to
the presence of features (such as the vertical bar in the letter E), but also to
neighbouring letters (such as the orthographic context HOUS_ preceding the letter
E). This provides a top-down explanation for context effects in letter perception,
such as (pseudo)word superiority. The predictive coding formulation of this model
was first described by Spratling!4. It uses a particular implementation of predictive
coding—the PC/BC-DIM algorithm—that reformulates predictive coding (PC) to
make it compatible with Biased Competition (BC) and uses Divisive Input
Modulation (DIM) as the method for updating error and prediction activations.
The goal of the network is to infer the hidden cause of a given pattern of inputs
(e.g. the ‘hidden’ letter underlying a pattern of visual features) and create an
internal reconstruction of the input. Note that the reconstruction is model-driven
and not a copy of the input. Indeed, when the input is noisy or incomplete, the
reconstruction will ideally be a denoised or pattern-completed version of the input
pattern. Inference can be done hierarchically: at the letter-level, predictions
represent latent letters given patterns of features, whilst at the word-level
predictions represent latent words given patterns of letters (and reconstructions,
inversely, represent reconstructed patterns of letters given the predicted word).

Mathematically, the network can be conveniently described as consisting of
three components: prediction units (y), reconstruction units (r) and error units (e)
that can be captured in only three equations. First, at each level, error units
combine the input pattern (x) and the reconstruction of the input (r) to compute
the prediction error (e):

e=xo,. @)

Here, x is a (m by 1) input vector; r is a (1 by 1) vector of reconstructed input
activations, @ denotes pointwise division and the square brackets denote a max
operator: [v]c=max(€, v). This max-operator prevents division-by-zero errors
when all prediction units are silent and there is no reconstruction. Following
Spratling!4, we set €, at 1 x 103, Division sets the algorithm apart from other
versions of predictive coding that use subtraction to calculate the error (see
Spratling®! for review). The prediction is computed from the error via pointwise
and matrix multiplication:

y < [yl @We. (3)

Here, W is a (n by m) matrix of feedforward weights that map inputs onto
latent causes (e.g. letters), ® denotes pointwise multiplication, square brackets
represents a max operator and € is set at 1 x 1076, Each row of W maps the
pattern of inputs to a specific prediction unit representing a specific latent cause
(such as the letter) and can hence be thought of as the ‘preferred stimulus’ or basis
vector for that prediction unit. The entire W matrix is then best thought of as
comprising the layer’s model of its environment. Finally, from the distribution of
activities of the prediction units (y), the reconstruction of expected input features
(r) is calculated as a simple linear generative model:

r=Vy, 4)

where V is a (m by n) matrix of feedback weights that map predicted latent
causes (e.g. letters) back to their elementary features (e.g. strokes) to create an
internal reconstruction of the predicted input, given the current state estimate.
As in many multilayer networks, the model adheres to a form of weight
symmetry: V is almost identical to WT, but its values are values normalised so
that each column sums to one. To perform inference, prediction units can be
initialised at zero (or with random values) and the Eqs. (2-4) are updated
iteratively. To perform top—down hierarchical inference, reconstructions from a
higher-order stage (e.g. recognising words) can be sent back to the lower-order
stage (e.g. recognising letters) as additional input. To accommodate these
recurrent inputs, additional weights have to be defined that are added to W and
V as extra columns and rows, respectively. The strength of these weights is scaled
to control the reliance on top-down predictions.

Architecture specification. The interactive activation architecture we used was a
modification of the network described and implemented by Spratling!4, extended
to recognise five-letter words, trained on the Dutch subtlex vocabulary, and with a
slight change in letter composition. Letters are presented to the network using a
simulated font adapted from the one described by Rumelhart and Siple®? that
composes any character using 14 strokes (Supplementary Fig. 12). For our five-
letter network, the input layer comprises five 14-dimensional vectors (one per
character) that each represent the presence of 14 line segments for one letter
position. Note that conceptually it is easier to partition the input into five 14-
dimensional vectors, in reality these were concatenated into a single 70-
dimensional vector x.
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At the first level, weight matrix W has 180 rows 250 columns: rows comprise five
slots of 36 alphanumeric units (5 x 36 = 180); the first columns comprise five slots of
14 input features (5 x 14 =70) and the last 180 columns route the top-down
reconstruction from the word level. To define the weights of 70 (feedforward)
columns, we used encoding function ¢(c) that takes an alphanumeric character and
maps it into a binary visual feature vector. For each alphanumeric character, the
resulting feature vector was concatenated five times and the resulting 70 dimensional
vector comprised the first row. This was repeated for all 36 alphanumeric characters
and concatenated five times. The resulting numbers were then normalised so that the
columns summed to one. Then we added the weights of the second 180 columns
(inter-regional feedback coming from 5 x 36 letter reconstructions) were simply a 180
by 180 identity matrix multiplied by a scaling factor to control top-down strength.
For our ‘top-down model’ (Fig. 3b), we set the scaling factor at 0.4; in the ‘bottom-up
model’, we set it to 1076 to effectively cancel the influence of feedback, resulting in a
‘bottom-up’ model. At the second level, weight matrix W had 6778 rows and 180
columns, representing 6776 Dutch five-letter words from the subtlex corpus, plus the
two learned nonword targets (that we included in the vocabulary as participants
learned these during training) and five times 36 alphanumeric characters. The
orthographic frequency of letters as specified by the corpus was hard coded into the
weights and then normalised to sum to one.

Although there are substantial implementational differences between this model
and the classic connectionist version of the interactive activation model®”’, the
version described here has been shown to capture all key experimental phenomena
of the original model (see ref. 14 for details). Since our simulations only tried to
validate and demonstrate a qualitative principle, not subtle quantitative effects, the
exact numerical differences related to the differences in implementation should not
matter for the effect we demonstrate here.

Simulations. Because our paradigm is different from classical paradigms, we
performed simulations to confirm that the top-down account indeed predicts the
representational enhancement we set out to detect. Although the main simulation
result (Fig. 3a) is not novel, our simulation, by mirroring our paradigm, departs
from earlier simulations in some aspects, which we will clarify before going into the
implementation details. First, most word superiority studies present stimuli near-
threshold: words are presented briefly, followed by a mask, and average identifi-
cation accuracies typically lie between 60 and 80%. This is mirrored in most classic
simulations, where stimuli are presented to the network for a limited number of
iterations and followed by a mask, leading to similar predicted response
accuracies”>14. In our task, stimuli are presented for almost a second, and at least
the critical middle letter is always clearly visible. This is mirrored in our simula-
tions, where stimuli are presented to the network until convergence and predicted
response accuracies of the network are virtually 100% in all conditions (see Sup-
plementary Fig. 2). As such, an important aspect to verify was that enhancement of
a critical letter can still occur when it is well-above threshold and response accuracy
would be virtually at 100% already. Second, our simulations used the same Dutch
word and nonword materials used in the experiment. This includes the occurrence
of learned targets in the nonword condition, which we added to the vocabulary of
the network and were hence a source of contamination as 12% of the items in the
nonword condition were in fact in the vocabulary. Finally, unlike classical simu-
lations, stimuli were corrupted by visual noise.

For Fig. 3a, we simulated 34 artificial ‘runs’. In each run, 48 words and 48
nonwords were presented to a network with feedback connections (feedback weight
strength 0.4) and without word-to-letter feedback (feedback weight strength 10°).
The same Dutch, five-letter (non)words were used as in the main experiment, and
like in the experiment 12% of the (non)word items were replaced by target items.
Critically, the nonword targets were learned and hence were part of the vocabulary
of the network. To present a (non)word to the network, each character ¢ has to be
first encoded into a set of visual features and then corrupted by visual noise to
produce an input vector x:

x=0(c) + N (4, 0%). (5)

For u we used 0, 0 was set to 0.125, and any values of x that became negative after
adding white noise were zeroed. The network then tried to recognise the word by
iteratively updating its activations using Egs. (2-4), for 60 iterations. To compute
the ‘relative evidence’ metric we used in Fig. 3a to quantify representational quality
q(y), we simply take the fraction of activation for the correct letter (y;) of the sum
of letter activations for all characters at the third slot:

Yi
v == — 6
Zj:37 M ©
Finally, to compute predicted response probabilities as in Supplementary Fig. 2,
we followed McClelland and Rumelhart to use Luce’s rule to compute responses
probabilistically:

R ebvi
p(R;) = 7L 7)
The f parameter (or inverse softmax temperature) determines how rapidly the
response probability grows as y; increases (i.e. the ‘hardness’ of the argmax
operation) and was set at 10, following McClelland and Rumelhart®7, but results

are similar for any typical beta value that is approximately in the same order of
magnitude.

All simulations were performed using custom MATLAB code, which was an
adaptation and extension of the MATLAB implementation published by
Spratling!4.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All raw data required to reproduce all analyses and figures are uploaded onto the
Donders Data Repository and can be found at http://hdlLhandle.net/11633/aacjymw?7. A
reporting summary for this Article is available as a Supplementary Information file.

Code availability
All code required to reproduce all analyses and figures are uploaded onto the Donders
Data Repository and can be found at http://hdl.handle.net/11633/aacjymw?7.
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