
Resource
Quantitative and Dynamic
 Catalogs of Proteins
Released during Apoptotic and Necroptotic Cell
Death
Graphical Abstract
Highlights
d The release of conventionally secreted cytokines is reduced

in necroptotic cells

d Receptor shedding occurs during TNF-induced necroptosis

and apoptosis

d Lysosomal components are released via lysosomal

exocytosis during necroptosis
Tanzer et al., 2020, Cell Reports 30, 1260–1270
January 28, 2020 ª 2019 The Authors.
https://doi.org/10.1016/j.celrep.2019.12.079
Authors

Maria C. Tanzer, Annika Frauenstein,

Che A. Stafford, Kshiti Phulphagar,

Matthias Mann, Felix Meissner

Correspondence
mmann@biochem.mpg.de (M.M.),
meissner@biochem.mpg.de (F.M.)

In Brief

Tanzer et al. provide a view of dynamically

released proteins during TNF-induced

apoptosis and necroptosis. The data

highlight processes that are commonly

and differentially regulated during these

two different types of cell death.

mailto:mmann@biochem.mpg.de
mailto:meissner@biochem.mpg.de
https://doi.org/10.1016/j.celrep.2019.12.079
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.12.079&domain=pdf


Cell Reports

Resource
Quantitative and Dynamic Catalogs
of Proteins Released during Apoptotic
and Necroptotic Cell Death
Maria C. Tanzer,1 Annika Frauenstein,2 Che A. Stafford,3 Kshiti Phulphagar,2 Matthias Mann,1,* and Felix Meissner2,4,*
1Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
2Experimental Systems Immunology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
3Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich, Germany
4Lead Contact

*Correspondence: mmann@biochem.mpg.de (M.M.), meissner@biochem.mpg.de (F.M.)
https://doi.org/10.1016/j.celrep.2019.12.079
SUMMARY

The inflammatory functions of the cytokine tumor
necrosis factor (TNF) rely on its ability to induce cyto-
kine production and to induce cell death. Caspase-
dependent and caspase-independent pathways—
apoptosis and necroptosis, respectively—regulate
immunogenicity by the release of distinct sets of
cellular proteins. To obtain an unbiased, systems-
level understanding of this important process, we
here applied mass spectrometry-based proteomics
to dissect protein release during apoptosis and nec-
roptosis. We report hundreds of proteins released
from human myeloid cells in time course experi-
ments. Both cell death types induce receptor shed-
ding, but only apoptotic cells released nucleosome
components. Conversely, necroptotic cells release
lysosomal components by activating lysosomal
exocytosis at early stages of necroptosis-induced
membrane permeabilization and show reduced
release of conventionally secreted cytokines.
INTRODUCTION

Tumor necrosis factor (TNF) is a major contributor to many in-

flammatory diseases, including psoriasis, rheumatoid arthritis,

and inflammatory bowel disease (Bradley, 2008). This has

initially been linked to TNF-induced production of various cy-

tokines via nuclear factor kB (NF-kB) and mitogen-activated

protein kinase (MAPK) pathway activation (Bradley, 2008).

Subsequent reports, however, revealed a major role of TNF-

induced cell death in inflammatory diseases (Rock and

Kono, 2008). Binding of TNF to its receptor TNF-R1 activates

the NF-kB and MAPK pathways, leading to cytokine produc-

tion. Cellular inhibitor of apoptosis 1 and 2 (cIAP1 and

cIAP2) regulate the activation of these pathways via their E3

ubiquitin ligase activity toward receptor-interacting serine/

threonine-protein kinase 1 (RIPK1) (Bertrand et al., 2008). Inhi-

bition of cIAPs using small molecules called Smac mimetics

(SMs) results in decreased NF-kB signaling and caspase-8

activation (Arslan and Scheidereit, 2011; Vince et al., 2007;
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Varfolomeev et al., 2007). This triggers the activation of

downstream caspases and initiates the apoptotic process,

which involves nuclear fragmentation, blebbing, and cell

shrinkage (Elmore, 2007). During the early stages of apoptosis,

phosphatidylserine is exposed on the cell surface, which is

recognized by macrophages that engulf dying cells (Fadok

et al., 1992). Although released histones have been described

to activate Toll-like receptors and induce cytokine production,

apoptosis is conceptually considered an immunological

silent death (Elliott and Ravichandran, 2010).

Caspase inhibition prevents apoptosis, but in many cell

types it triggers an alternative cell death pathway termed nec-

roptosis (Vercammen et al., 1998). Upon TNF signaling, cas-

pase-8 regulates necroptosis by cleaving RIPK1 (Oberst

et al., 2011; Pop et al., 2011). Caspase-8 inhibition leads to

autophosphorylation and activation of RIPK1 and RIPK3.

Active RIPK3 phosphorylates and activates the pseudokinase

mixed lineage kinase domain-like protein (MLKL) (Murphy

et al., 2013; Wang et al., 2014; Tanzer et al., 2017). Active

MLKL translocates to the plasma membrane to induce mem-

brane rupture (Hildebrand et al., 2014; Sun et al., 2012). Nec-

roptosis is primarily thought of as an immunologically reactive

process, because of its fast kinetics, the release of damage-

associated molecular patterns (DAMPs) such as high mobility

group box 1 protein (HMGB1) and ATP, as well as reduced

macrophage engulfment (Kaczmarek et al., 2013).

Different modes of cell death can lead to significantly

different physiological outcomes through the release of

distinct molecules. For example, it was recently reported

that necroptotic cell death in contrast to apoptotic cell death

can drive a systemic immune response, leading to tumor

regression (Snyder et al., 2019). The same group showed

that cytokine mRNA translation continues at the endoplasmic

reticulum (ER) during necroptosis even after plasma mem-

brane rupture (Orozco et al., 2019). Another study reported

that the cell death-dependent cytokine microenvironment

determines the lineage commitment and thereby the harmful-

ness of hepatic cancer (Seehawer et al., 2018). Other studies

compared the ability of cytokine and chemokine release by

apoptotic and necroptotic cells (Kearney et al., 2015; Zhu

et al., 2018). However, whereas Kearney et al. (2015) observed

a decrease in cytokines released by necroptotic cells, Zhu

et al. (2018) reported an activation of pro-inflammatory
ors.
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cytokine gene expression instead. Together these studies

underline the different properties of apoptotic and necroptotic

cells on their surrounding microenvironment, which would now

make it attractive to systematically investigate the released

cellular contents.

Mass spectrometry-based proteomics has matured remark-

ably in recent years and now provides a comprehensive

discovery tool to address diverse biological questions (Aeber-

sold and Mann, 2016; Larance and Lamond, 2015). Here we

set out to identify proteins released by apoptotic versus

necroptotic cell death programs using a proteomics strategy

we developed recently for the sensitive detection of secreted

proteins (Meissner et al., 2013; Frauenstein and Meissner,

2018).

We induced TNF-mediated apoptosis and necroptosis in a

lymphoma cell line and human primary macrophages. Proteo-

mic analysis of supernatants and of enriched extracellular ves-

icles shed light on processes regulated during necroptosis and

apoptosis and the cell death type-specific release of

cytokines.

RESULTS

Differential Release of Proteins in Cells Undergoing
TNF-Induced Apoptosis and Necroptosis
To define the inflammatory potential of apoptosis and necropto-

sis on a global scale, we set out to identify proteins released by

cells undergoing TNF-mediated apoptosis or necroptosis. We

induced both forms of cell death in the histiocytic lymphoma

cell line U937 and in human primary macrophages, two cell

types frequently used to investigate these cell death pathways

(Tanzer et al., 2015; McComb et al., 2012) (Figure 1A).

Apoptosis was triggered by TNF and the SM birinapant, while

the further addition of the caspase inhibitor IDUN-6556 (IDN-

6556) led to necroptosis. Both processes showed similar ki-

netics when comparing caspase cleavage (Figure 1B), a hall-

mark of apoptosis, with phosphorylation of MLKL (Figure 1C),

a hallmark of necroptosis. During necroptosis, activated

MLKL translocates to the plasma membrane and leads to im-

mediate membrane permeabilization and propidium iodide

intake (Hildebrand et al., 2014), whereas apoptotic cells retain

plasma membrane integrity until the later stages when second-

ary necrosis occurs (Figure 1D; Figure S1A). A recent report

showed that active caspase-8 can cleave gasdermin-D, a

pore-forming protein that induces plasma membrane rupture

during pyroptosis (Orning et al., 2018). We cannot exclude

processing of gasdermin-D at later time points of apoptosis.

Nevertheless, the slow kinetics and reduced level of propidium

iodide intake (Figure 1D) and the delayed release of HMGB1

(Figures S2B and S2C) (a prominent marker of necroptosis

and pyroptosis; Kaczmarek et al., 2013) are strong indications

against a potential involvement of pyroptosis upon TNF and

SM stimulation, at least before secondary necrosis.

To analyze proteins released by apoptotic and necroptotic

cells, supernatants were harvested and digested, and the

resulting peptides were directly analyzed by single-run liquid

chromatography mass spectrometry (LC-MS/MS) coupled to

high-resolution mass spectrometry on the quadrupole Orbitrap
analyzer (STAR Methods; Figure 1A). Label-free quantification

of the MS data and statistical analysis were performed using

MaxQuant and Perseus (Cox and Mann, 2008; Tyanova et al.,

2016). Overall, 3,507 proteins were identified from U937 super-

natants, with an average of 2,058 protein groups per sample

(Figure 1E). Principal-component analysis revealed partial stim-

ulation and time-dependent separation of samples (Figures

S1B and S1C). Necroptotic supernatants from later time points,

when membrane permeabilization occurred, separated from the

rest of the samples (Figures S1B and S1C). Consistently, the

levels of hundreds of proteins were significantly changed in the

supernatants of necroptotic cells, compared with control sam-

ples (Figure 1F). In contrast, this was the case for only 34 proteins

in apoptosis. However, at a later time point apoptotic cells,

which undergo secondary necrosis, also significantly released

several hundreds of proteins (Figure S1D). The fold changes

of all proteins measured across seven apoptotic and four nec-

roptotic time points compared with respective controls are

provided in Table S1. When we analyzed the proteome of the

dying cells, the most apparent variation in protein levels

occurred in necroptotic cells, including a reduction in cytosolic

proteins, and an increase in mitochondrial proteins and proteins

located at the ER (Figure S1E).

The Release of Conventionally Secreted Cytokines Is
Significantly Reduced in Necroptotic Cells
TNF induces the production of a wide range of cytokines

required to fight infection, and we were particularly interested

in the effect of TNF-induced cell death on their release. CCL2

and IL8 were most strongly induced through TNF stimulation

in U937 cells (Figures 2A and 2B), looking at all cytokines

(retrieved from the keyword annotation ‘‘Cytokines’’; STAR

Methods). At later time points, levels of CCL2 and IL8 were

diminished in supernatants of apoptotic cells, but this was

not statistically significant. However, we observed a significant

downregulation for both cytokines during necroptosis

compared with TNF-only treatment. To confirm our mass

spectrometry results, we used enzyme-linked immunosorbent

assay (ELISA) to measure levels of CCL2 and HMGB1 in su-

pernatants, which showed a similar trend (Figures S2A–S2C).

CCL2 and IL8 contain an N-terminal signal peptide and are

therefore part of the keyword annotation ‘‘Signal’’ (hereafter

referred to as signal proteins). The signal peptide mediates

conventional secretion through the ER-Golgi secretory

pathway. Other conventionally secreted cytokines were also

downregulated at later stages of necroptosis in U937 cells

(Figure S2D) and primary macrophages (Figures 2C and 2D;

Figure S2E). Levels of most non-conventionally released

cytokines were primarily unaffected or increased in necrop-

totic supernatants because of membrane permeabilization

(Figure S2F). AIMP-1 levels, for example, were enriched in a

minor but significant way in necroptotic supernatants

(Figure S2F).

We examined the release of all conventionally released

proteins to test whether the secretion of the ER-Golgi network

is generally affected by necroptosis. Surprisingly, we detected

an increased release of signal proteins at 3 h of necroptosis

treatment (Figure 2E; Figure S2G), while intracellular levels of
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Figure 1. Supernatant Analysis of Cells Undergoing TNF-Induced Apoptosis and Necroptosis

(A) Schematic workflow of supernatant processing.

(B and C) Immunoblot of U937 cells treated with DMSO, TNF (30 ng/mL), and SM (birinapant, 250 nM) to induce apoptosis or with TNF, SM, and IDN-6556

(IDN-6556, 10 mM) to induce necroptosis for 1–7 h and blotted for the apoptotic markers cleaved caspase-8 and caspase-3 (B) and the necroptotic marker

phosphorylated MLKL (C) and the loading control GAPDH.

(D) Cell death analysis by flow cytometry of propidium iodide-positive cells, which were treated as indicated over a time course of 1–7 h (±SEM, n = 3 or 4).

(E) Number of all proteins quantified in the supernatant of cells treated as indicated in (D).

(F) Number of significantly changing proteins in supernatants of cells treated as indicated (Student’s t test: false discovery rate [FDR] = 0.05).
the same proteins were unaffected (Figure S2H). Proteins that

are unconventionally secreted (assigned to the keyword

annotation ‘‘Secreted’’, excluding signal proteins) were not

changed in the supernatant of necroptotic cells (Figure 2E).

The release of conventionally released proteins at 3 h of

stimulation was most strongly inhibited in necroptotic cells by

brefeldin A treatment (Figure 2F), which leads to disruption of

the Golgi apparatus. This indicates that the ER-Golgi secretory

pathway is activated at early stages of necroptosis.

However, at 5 (Figures S2I and S2J) and 7 h of stimulation

(Figure 2G) we detected fewer signal proteins in supernatants
1262 Cell Reports 30, 1260–1270, January 28, 2020
of necroptotic cells compared with the control treated cells,

while intracellular levels were again unaffected (Figure S2K).

This corresponds to the missing impact of brefeldin A on

the signal protein level in supernatants of necroptotic

cells treated for 7 h (Figure 2H). To determine whether degrada-

tion of signal proteins occurs because of an increased release of

proteases at later stages of necroptosis, we analyzed semi-

tryptic peptides of those proteins. Semi-tryptic peptides are

generated by proteolytic processing prior to the proteomic

workflow. In necroptotic supernatants at 7 h of necroptosis in-

duction semi-tryptic peptides of signal proteins are slightly



Figure 2. The Release of Conventionally

Secreted Cytokines Is Reduced in Necrop-

totic Cells

(A–D) Graphs show the log2 intensity of CCL2 and

IL8 in supernatants of U937 cells (A and B) and

CCL24 and IL8 in supernatants of primary macro-

phages (C and D) measured using mass spectrom-

etry. Cells were either left untreated (black squares)

or treated with TNF (purple squares), TNF and SM

(green squares), or TNF, SM, and IDN-6556 (yellow

squares) over a time course of 1–7 h (for U937 cells)

and2–5h (forprimarymacrophages) (±SEM,n=3or

4). Full squares represent two or more valid values

for the data point. Asterisks show significant

changes (Student’s t test: FDR = 0.05).

(E and G) Swarm plot showing log2 fold change of

all proteins (dark gray) and proteins assigned to

the keyword annotation ‘‘Secreted’’ (all proteins

annotated to the keyword annotation ‘‘Signal’’

were excluded, light gray, 1D annotation, not

significant [n.s.], E, p = 1.83 10�4, G) and ‘‘Signal’’

(gray, p = 2.1 3 10�6, E, p = 2.8 3 10�21, G)

released by necroptotic cells compared with the

DMSO control at 3 h (E) and 7 h (G) of treatment.

Taking the antilogarithm, we obtain fold changes

of the mean protein distributions (x for fold). Fold

changes above 0 represent enrichment and fold

changes below 0 represent de-enrichment.

(F and H) Swarm plot showing log2 fold change of

as ‘‘Signal’’ annotated proteins of U937 cells

treated with brefeldin A (BFA; 5 mg/mL) and DMSO

(black; p = 1.1 3 10�27, F, p = 1.9 3 10�8, H), TNF

(purple; p = 1.5 3 10�36, F, n.s., H), TNF and SM

(green; p = 5.8 3 10�26, F, n.s., H), or TNF, SM,

and IDN-6556 (yellow; p = 1.8 3 10�35, F, n.s., H)

compared with the same treatments without bre-

feldin A.
increased compared with the same peptides in necroptotic su-

pernatants at 3 h of stimulation (Figure S2L). However, no

semi-tryptic peptide of the conventionally released cytokines

CCL2, IL8, and GRN could be detected. Necroptotic superna-

tants contained primarily semi-tryptic peptides of other proteins

than signal proteins (Figure S2L), suggesting that the reduction

of conventionally released proteins in supernatants of late-stage

necroptotic cells is not only due to increased proteolytic pro-

cessing. This indicates that the ER-Golgi secretory pathway is in-

hibited at later stages of necroptosis.

Although the inhibition of the ER-Golgi pathway at later stages

of necroptosis prevents the release of conventionally released

cytokines, TNF-induced cytokines CCL2 and IL8 levels were
Cell Repo
already reduced at 3 h of stimulation

compared with TNF treatment alone. To

test whether CCL2 is transcribed in

response to TNF during necroptosis, we

measured its mRNA levels and found a

strong reduction compared with TNF-

only treated cells after 3 and 7 h of stimu-

lation (Figure S2M). The expression of

other TNF-induced genes in U937 cells

was also compromised. Of six proteins
strongly upregulated in response to TNF treatment, we only

found SOD2 being upregulated during necroptosis (Figure S2N).

SQSTM1, NFKB2, ICAM1, PLAU, and JUND, which are all prom-

inent targets of TNF, were not induced during necroptosis.

Receptor SheddingOccurs in Necroptotic andApoptotic
Cells
Comparing proteins released by necroptotic supernatants and

apoptotic cells, we identified several proteins assigned to the

keyword annotations ‘‘Receptor’’ as most enriched in both

supernatants (Figures 3A–3C; Figure S3A; Table S2). This is

unlikely to be a consequence of passive protein release

caused by membrane damage, as necroptosis and apoptosis
rts 30, 1260–1270, January 28, 2020 1263



Figure 3. Necroptosis and Apoptosis Induce Receptor Shedding Mediated by ADAMs

(A) Scatterplot plotting the log2 fold change of proteins released by necroptotic cells compared with the DMSO control against the fold change of proteins

released by apoptotic cells compared with the DMSO control (3 h of treatment). Proteins assigned to the keyword annotation ‘‘Receptor’’ (blue), ten most en-

riched receptors in apoptotic supernatants (dark blue, italics), and most significant receptors in necroptotic supernatants (dark blue, underlined).

(B) Swarm plot showing log2 fold change of all proteins (gray) and proteins assigned to the keyword annotation ‘‘Receptor’’ (blue; p = 2.6 3 10�6) released by

apoptotic cells compared with the DMSO control at 3 h of treatment.

(C) Swarm plot showing log2 fold change of all proteins (gray) and ‘‘Receptor’’ proteins (blue; p = 1.3 3 10�7) released by necroptotic cells compared with the

DMSO control at 3 h of treatment.

(D) Swarm plot showing log2 fold change of all proteins (gray), receptors (blue; n.s.), and significantly upregulated receptors in the supernatant of necroptotic cells

(dark blue) present in extracellular vesicles of necroptotic cells compared with the DMSO control at 3 h of treatment.

(E and F)Matching of detected peptides bymass spectrometry to corresponding proteins using R shows peptide fold changes (log2) in the supernatant (E) and the

cellular proteome (F) of necroptotic U937 cells at 3 h of stimulation compared with DMSO-treated control cells. Selected proteins are the four most enriched

receptors in the supernatant of necroptotic U937 cells compared with the DMSO control. Values are averages of n = 4.

(G) Swarm plot showing log2 fold change of all proteins (gray), receptors (blue; p = 6.8 3 10�13), and significantly upregulated receptors in the supernatant of

necroptotic cells (dark blue) present in supernatants of cells treated with TNF, SM, and IDN-6556 and the ADAM inhibitor GW280264X compared with cells

treated with TNF, SM, and IDN-6556 for 3 h.

(H) Swarm plot showing log2 fold change of all proteins (gray), receptors (blue; p = 3.0 3 10�3, FDR = 0.1), and significantly upregulated receptors in the su-

pernatant of necroptotic cells (dark blue) present in supernatants of cells deficient for RIPK3 treated with TNF, SM, and IDN-6556 compared with wild-type cells

treated the same for 3 h.

(I) Swarm plot showing log2 fold change of all proteins (gray), receptors (blue; p = 0.001), and significantly upregulated receptors in the supernatant of necroptotic

cells (dark blue) present in supernatants of cells treated with TNF, SM, IDN-6556, and the RIPK1 inhibitor necrostatin-1 (Nec-1) compared with cells treated with

TNF, SM, and IDN-6556 for 3 h.

(J) Swarm plot showing log2 fold change of all proteins (gray), receptors (blue; p = 1.4 3 10�6), and the ten most enriched receptors in the supernatants of

apoptotic cells (dark blue) present in supernatants of cells treated with TNF, SM, and the ADAM inhibitor GW280264X compared with cells treated with TNF and

SM for 3 h.

(legend continued on next page)
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induction at 3 h precedes membrane permeabilization (Fig-

ure 1D). To test whether the detected receptors are instead

released via exocytosis, we purified extracellular vesicles us-

ing serial centrifugation (STAR Methods). Proteomic analysis,

however, showed no enrichment for receptors in extracellular

vesicles of necroptotic and apoptotic cells compared with the

control (Figure 3D; Figure S3B). Next, we sought to determine

whether ectodomains are cleaved off the receptors and

therefore enriched in necroptotic supernatants. Indeed, pep-

tides derived from receptor ectodomains were preferentially

released into the supernatant, whereas transmembrane or

cytoplasmic domain peptides were either not detected or

not enriched compared with supernatants of DMSO-treated

cells (Figure 3E; Figure S3C). These cytoplasmic regions

were readily detected when measuring the cellular proteome

(Figure 3F; Figure S3D). A recent study showed that shedding

during necroptosis contributes to inflammation and cell

death in an MLKL-dependent manner (Cai et al., 2016). We

show here that shedding also occurs to a lesser degree in

apoptotic cells. Western blot analysis on the cell lysates did

not detect phosphorylated/active MLKL at any time points

during apoptosis induction, ruling out the possibility that nec-

roptotic cells were present during apoptotic stimulation

(Figure S4E).

Next, we tested whether this shedding is mediated via A

disintegrin and metalloproteinase 10 (ADAM10) and 17, which

are members of the disintegrins and metalloproteinase family

(Cai et al., 2016). Indeed, specific inhibition of ADAM17 and

ADAM10 with GW280264X reduced the release of receptors

in necroptotic as well as apoptotic cells, while the release of

proteins without receptor annotations remained unchanged

(Figures 3G and 3J).

The lack of motif specificity for ADAM substrates complicates

substrate prediction (Gooz, 2010), and we wished to investigate

if there was a relationship between receptor abundance and re-

ceptor shedding. From the proteomic analysis of receptor levels

in untreated cells, we conclude that the expression level itself

has no impact on shedding (Figure S3F). Furthermore, the

enrichment of shed receptors in the supernatant of necroptotic

cells corresponded with their de-enrichment in these cells at

3 h after induction (Figure S3G).

Necroptosis-induced shedding was strongly inhibited in U937

cells deficient for RIPK3, the key activator of MLKL, or in U937

cells additionally treated with the RIPK1 inhibitor necrostatin-1

(Nec-1), where activation of MLKL cannot occur (Figures 3H

and 3I; Figures S3H and S3I). In contrast to shedding during nec-

roptosis, apoptosis-induced shedding was not prevented in

RIPK3-deficient U937 cells or by addition of the RIPK1 inhibitor

Nec-1 (Figures 3K and 3L). This indicates that TNF-induced

shedding can be completely prevented only by blocking both

caspase activation and the necroptotic pathway. Hence, we

conclude that the shedding of receptors occurs during TNF-
(K) Swarm plot showing log2 fold change of all proteins (gray), receptors (blue; n.

cells deficient for RIPK3 treated with TNF and SM compared with wild-type cells

(L) Swarm plot showing log2 fold change of all proteins (gray), receptors (blue; p =

in supernatants of cells treated with TNF, SM, and the RIPK1 inhibitor necrostati

(M) Scheme of receptor shedding downstream of apoptosis and necroptosis ind
induced cell death and is not only restricted to necroptosis

(Figure 3M).

Apoptotic Cells Exclusively Release Histones while
Necroptotic Cells Release Lysosomal Proteins
We observed the release of apoptotic- and necroptotic-specific

proteins. A group of proteins annotated as nucleosome compo-

nents were most strongly enriched in supernatants of apoptotic

cells (Figures 4A–4C; Figures S4A–S4C) at 3 h when DNA frag-

mentation and chromatin condensation were detected (Figures

S4D and S4E). This was not the case in necroptosis, in which

nucleosomes were de-enriched (Figure 4A; Figure S4F).

Necroptotic cells showed an increased release of lysosomal

proteins after 3 h of necroptosis stimulation (Figures 4A and

4D; Figure S4G; Table S2), which was not evident during

apoptosis. The release of lysosomal components was strongly

reduced by the RIPK1 inhibitor Nec-1 and even more so in

RIPK3-deficient U937 cells, suggesting a necroptosis-specific

release pathway (Figures S4H and S4I).

Because many lysosomal proteins require cleavage for full

activation, we examined whether the released lysosomal com-

ponents are present in mature (cleaved) or premature (un-

cleaved) forms. Matching the peptide sequences to their pro-

teins revealed that the majority were located within the mature

forms of proteins released by necroptotic cells (Figure S4J).

Consistently, we detected an increase of mature cathepsin B

and cathepsin D in supernatants of necroptotic cells compared

with DMSO-treated cells by immunoblotting (Figure S4K).

Furthermore, we observed a significant increase of semi-tryptic

peptides with comparable intensities to tryptic peptides of the

same proteins in the supernatants of necroptotic cells (Fig-

ure S4L). Their near doubling (at 7 h) proves a dramatic increase

of enzymatic activity in the supernatants of necroptotic cells.

This is less likely due to increased ADAM activity, as they are

active before and at 3 h of necroptosis induction. The numbers

of all peptides identified across treatments did not significantly

change (Figure S4M).

Membrane Permeabilization during Necroptosis
Induces Lysosomal Exocytosis
Several studies have implicated the lysosomal machinery in nec-

roptosis. The bursting of lysosomeswithin cells during necropto-

sis that preceded membrane permeabilization has been

described (Vanden Berghe et al., 2010), and a role for MLKL in

endosomal trafficking and increased vesicle formation has

been reported (Yoon et al., 2017). Taking these studies into

consideration, we asked whether lysosomal proteins were

released via extracellular vesicles during exocytosis. Principal-

component analysis revealed a clear separation of extracellular

vesicle proteomes derived from apoptotic and necroptotic

cells (Figure S4N). Consistent with previous reports, levels of

MLKL and ESCRT proteins, which are involved in extracellular
s.), and the ten most enriched receptors (dark blue) present in supernatants of

treated the same for 3 h.

2.03 10�3, FDR = 0.1), and the tenmost enriched receptors (dark blue) present

n-1 (Nec-1) compared with cells treated with TNF and SM for 3 hours.

uction.
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Figure 4. Lysosomal Proteins Are Released by Necroptotic Cells via Lysosomal Exocytosis

(A) Scatterplot plotting the log2 fold change of proteins released by necroptotic cells compared with the DMSO control against the fold change of proteins

released by apoptotic cells compared with the DMSO control (3 h of treatment; ‘‘Nucleosome’’ [green], ‘‘Lysosome’’ [red]).

(B) Swarm plot showing log2 fold change of all proteins (gray) and proteins assigned to the GOCC annotation ‘‘Nucleosome’’ (green; p = 1.23 10�5) released by

apoptotic cells compared with the DMSO control at 3 h of treatment.

(C and D) 1D annotation enrichment analysis of all proteins in the supernatant of apoptotic (C) and necroptotic (D) U937 cells treated for 3 h compared with the

DMSO-treated control cells. Annotations including ‘‘Nucleosome’’ (C) and ‘‘Lysosome’’ (D) were selected and ranked from higher score to lower score (Benjamini-

Hochberg FDR = 0.02) (STAR Methods). KEGG, Kyoto Encyclopedia of Genes and Genomes; GOCC, Gene Ontology cellular components; GOMF, Gene

Ontology molecular function.

(E) Swarm plot showing log2 fold change of all proteins (gray) and proteins assigned to the annotation ‘‘Calcium/phospholipid binding’’ (keyword, yellow), the

‘‘ESCRTIII complex’’ (GOCC, blue), and ‘‘SNARE complex’’ (GOCC, green) present in extracellular vesicles of necroptotic cells compared with the DMSO control

(legend continued on next page)
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vesicle formation and removal of MLKL from the plasma mem-

brane, were increased in extracellular vesicles derived from

necroptotic cells compared with control or apoptotic cells after

3 h of stimulation (Yoon et al., 2017; Gong et al., 2017) (Figures

4E and 4F; Figure S4O).

Interestingly, we observed a significant enrichment of lyso-

somal components in extracellular vesicles of necroptotic cells

(Figures 4F and 4G; Figure S4O). Luminal lysosomal proteins

were preferentially present in total supernatants, whereas

membrane-bound ones were found mainly in purified extracel-

lular vesicles (Figures 4H and 4G). Distribution of lysosomal

membrane and lysosomal luminal proteins differed significantly

(p < 0.0001). In classical endosomal exocytosis, luminal and

membrane lysosomal proteins would be co-released in extra-

cellular vesicles, which is not the case here.

An alternative process, termed lysosomal exocytosis, which

occurs in response to plasma membrane permeabilization, for

example, through ionomycin treatment or mechanical stress,

has also been described in TNF-treated L929 cells, presumably

to repair plasma membranes (Andrews, 2002; Reddy et al.,

2001; Ono et al., 2001). In that process, the lysosomal mem-

brane fuses with the plasma membrane, releasing its cargo

into the extracellular space. This corresponds with our obser-

vation that luminal lysosomal proteins are enriched in the super-

natant, and membrane lysosomal proteins are enriched in

extracellular vesicles that also contain plasma membrane.

Also the enrichment of calcium/phospholipid-binding and

SNARE (SNAP receptor) proteins, which play an important

role in vesicle fusion in response to increased intracellular

free calcium upon membrane permeabilization, fits the model

of lysosomal exocytosis. (Rao et al., 2004; Shen et al., 2016)

(Figures 4E, 4F, and 4K; Figure S4O).

To determine the role of lysosomal exocytosis in the release

of lysosomal components, we inhibited lysosomal exocytosis

using vacuolin, which leads to homotypic fusion of endosomes

and lysosomes. It blocks calcium-dependent exocytosis in a

cell type-dependent manner (Cerny et al., 2004; Lu et al., 2014;

Shaik et al., 2009). Treatment of necroptotic cells with vacuolin

partially inhibited the release of lysosomal components in the to-

tal supernatant (Figures 4I and 4J).
at 3 h of treatment. The p value (�log10) of the 1D annotation enrichment for ‘‘Calc

and for ‘‘SNARE complex’’ is 1.7 3 10�9.

(F) 1D annotation enrichment analysis of all proteins of extracellular vesicles in th

6556 compared with the DMSO-treated control cells. Annotations are ranked fro

(G) Swarm plot showing log2 fold change of all proteins (gray) and proteins assigne

(GOCC, nude), and ‘‘Lysosomal membrane’’ (GOCC, pink) in extracellular vesicle

p value (�log10) of the 1D annotation enrichment for ‘‘Lysosome’’ is 3.83 10�23, fo

is 2.7 3 10�29.

(H) Swarm plot showing log2 fold change of the same annotation groups as in (G

control at 3 h of treatment. The p value (�log10) of the 1D annotation enrichment

‘‘Lysosomal membrane’’ is 1.0 3 10�3.

(I) Swarm plot showing log2 fold change of all proteins (gray) and lysosomal protein

lysosomal exocytosis inhibitor vacuolin compared with cells treated with TNF, SM

‘‘Lysosome’’ is 9.8 3 10�12 and for ‘‘Lysosomal lumen’’ is 3.7 3 10�10.

(J) 1D annotation enrichment analysis of all proteins in the supernatant of ne

compared with the same treatment without vacuolin. Annotations containing ‘‘

Hochberg FDR = 0.02).

(K) Scheme of lysosomal exocytosis and formation of extracellular vesicle as res
DISCUSSION

Chronic inflammatory TNF-induced cell death is a major contrib-

utor to a range of inflammatory diseases, as dying cells expose

immunogenic proteins normally found within the cell. Our prote-

omic approach provided a comprehensive and unbiased view

on proteins released by apoptotic and necroptotic cells. As

expected, many proteins were statistically significantly changed

in supernatants of apoptotic cells compared with control. This

was even more pronounced in necroptosis, particularly at

later time points.

The release of pro-inflammatory cytokines contributes to

the immunogenicity of cell death pathways. Whereas conven-

tionally released cytokines were generally reduced in superna-

tants of necroptotic cells, non-conventionally released cytokines

were primarily unchanged or increased compared with TNF

alone or apoptosis. Plasma membrane permeabilization facili-

tates the unconventional release of cytokines. The reduction of

conventionally released cytokines is due to the inhibition of

the ER-Golgi trafficking pathway at later stages of necroptosis

and the early plasma membrane permeabilization, which is

most likely the reason for compromised transcription and

expression of TNF-induced proteins. These findings do not

conflict with the results of Orozco et al. (2019) regarding contin-

uous cytokine mRNA translation despite plasma membrane

permeabilization during necroptosis, because the cytokine pro-

duction of stimulated living cells is expected to exceed that of

necroptotic cells.

Other immunogenic proteins were differentially released by

apoptotic and necroptotic cells, such as histones, which were

increased only in supernatants of apoptotic cells. They are linked

to diseases like lupus (Chen et al., 2014; Radic et al., 2004),

chronic obstructive pulmonary disease (COPD), cerebral stroke,

and sepsis. Conversely, HMGB1, a highly inflammatory mole-

cule, was increased in the supernatants of necroptotic cells, as

previously described (Magna and Pisetsky, 2014).

Besides the detection of proteins with known intercellular

functions, our study provides insights into intracellular mecha-

nisms that occur during TNF-induced cell death and that may

also contribute to inflammation. For example, we observed an
ium/phospholipid binding’’ is 5.33 10�9, for ‘‘ESCRTIII complex’’ is 2.93 10�5,

e supernatant of necroptotic U937 cells treated for 3 h with TNF, SM, and IDN-

m higher score to lower score (Benjamini-Hochberg FDR = 0.02).

d to the keyword annotations ‘‘Lysosome’’ (keywords, red), ‘‘Lysosomal lumen’’

s of necroptotic cells compared with the DMSO control at 3 h of treatment. The

r ‘‘Lysosomal lumen’’ is 9.23 10�3 (FDR = 0.1), and for ‘‘Lysosomal membrane’’

) released into the supernatant of necroptotic cells compared with the DMSO

for ‘‘Lysosome’’ is 1.6 3 10�10, for ‘‘Lysosomal lumen’’ is 2.4 3 10�5, and for

s (red) present in supernatants of cells treatedwith TNF, SM, IDN-6556, and the

, and IDN-6556 for 3 h. The p value (�log10) of the 1D annotation enrichment for

croptotic U937 cells treated for 3 h with TNF, SM, IDN-6556, and vacuolin

Lysosome’’ are selected and ranked from higher to lower score (Benjamini-

ponse to plasma membrane permeabilization during necroptosis.
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enrichment of receptor ectodomains in supernatants of necrop-

totic and apoptotic cells due to ADAM-mediated shedding. This

is a physiologically important process: the cleavage of cell

adhesion proteins promotes detachment of dying cells from

surrounding tissue; receptor cleavage abrogates signal trans-

duction into the cell as well as between cells by the generation

of decoy receptors cleavage (Blaydon et al., 2011; Jones et al.,

2016). Together, this switches signaling within dying cells to

signaling between cells by the release of autocrine and paracrine

signals. Shedding was already reported to be activated during

necroptosis (Cai et al., 2016). Our data provide a catalog of

proteins affected and demonstrate that it occurs at later stages

of TNF-induced cell death and can be prevented only by

inhibiting both apoptotic and necroptotic executioners. Further

studies should delineate the intercellular activities of the distinct

signals released by the different forms of cell death on neigh-

boring cells.

A second unexpected group of proteins released by necrop-

totic cells belong to lysosomes. We conclude that this is caused

by lysosomal fusion to the plasmamembrane, a mechanism that

results in the release of lysosomal cargo into the supernatant in

response to membrane permeabilization, described as lyso-

somal exocytosis.

Lysosomal exocytosis was originally described as a plasma

membrane repair mechanism in response to Ca2+ influx (Reddy

et al., 2001). A study on the infection of pathogens with bacterial

type III secretion system confirmed this role (Roy et al., 2004).

During necroptosis the ESCRT machinery removes MLKL from

the plasma membrane to prevent membrane permeabilization

(Yoon et al., 2017; Gong et al., 2017). We speculate that lyso-

somal exocytosis is an additional and very last resort to protect

the cell from death (Ono et al., 2001). Lysosomal exocytosis was

also investigated as a defense mechanism to remove intracel-

lular pathogens (Miao et al., 2015), but the effect of lysosomal

enzymes on pathogens in the extracellular regions has not

been studied in detail. Many lysosomal enzymes work best at

acidic pH but may still retain some enzymatic activity in the

extracellular space, which is sufficient to degrade the extracel-

lular matrix (Fonovi�c and Turk, 2014). This is consistent with

our observation of increased semi-tryptic peptides in superna-

tants of necroptotic cells, which indicates increased proteolytic

activity. These lysosomal enzymes may also affect cells in

close proximity. Whether lysosomal exocytosis following nec-

roptosis induction is just a consequence of cell membrane per-

meabilization or a last chance to rescue dying cells, and whether

it significantly affects the environment, such as pathogens or

neighboring cells, are exciting questions for future studies.

In conclusion, our study provides in-depth, quantitative, and

dynamic catalogs of proteins differentially and commonly

released during apoptotic and necroptotic cell death. This offers

a solid basis for investigating the complexity of biological pro-

cesses that are either incidental or regulated, harmful or func-

tional during apoptosis and necroptosis. Our results demon-

strate that an unexpectedly wide range of different proteins are

released. Only some of these contribute directly to inflammation,

whereas others are more likely to act in more complex ways that

still need to be elucidated in detail in these very different modes

of cell death.
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modulated exocytosis and cell resealing in mast cells. Cell. Signal. 21,

1337–1345.

Shen, Y.T., Gu, Y., Su, W.F., Zhong, J.F., Jin, Z.H., Gu, X.S., and Chen, G.

(2016). Rab27b is involved in lysosomal exocytosis and proteolipid protein traf-

ficking in oligodendrocytes. Neurosci. Bull. 32, 331–340.

Snyder, A.G., Hubbard, N.W., Messmer, M.N., Kofman, S.B., Hagan, C.E., Or-

ozco, S.L., Chiang, K., Daniels, B.P., Baker, D., and Oberst, A. (2019). Intratu-

moral activation of the necroptotic pathway components RIPK1 and RIPK3

potentiates antitumor immunity. Sci. Immunol. 4, eaaw2004.

Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu,

W., Lei, X., and Wang, X. (2012). Mixed lineage kinase domain-like protein me-

diates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227.

Tanzer, M.C., Tripaydonis, A., Webb, A.I., Young, S.N., Varghese, L.N., Hall,

C., Alexander, W.S., Hildebrand, J.M., Silke, J., and Murphy, J.M. (2015). Nec-

roptosis signalling is tuned by phosphorylation of MLKL residues outside the

pseudokinase domain activation loop. Biochem. J. 471, 255–265.

Tanzer, M.C., Khan, N., Rickard, J.A., Etemadi, N., Lalaoui, N., Spall, S.K., Hil-

debrand, J.M., Segal, D., Miasari, M., Chau, D., et al. (2017). Combination of

IAP antagonist and IFNg activates novel caspase-10- and RIPK1-dependent

cell death pathways. Cell Death Differ. 24, 481–491.
1270 Cell Reports 30, 1260–1270, January 28, 2020
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann,

M., and Cox, J. (2016). The Perseus computational platform for comprehen-

sive analysis of (prote)omics data. Nat. Methods 13, 731–740.

Vanden Berghe, T., Vanlangenakker, N., Parthoens, E., Deckers, W., Devos,

M., Festjens, N., Guerin, C.J., Brunk, U.T., Declercq, W., and Vandenabeele,

P. (2010). Necroptosis, necrosis and secondary necrosis converge on similar

cellular disintegration features. Cell Death Differ. 17, 922–930.

Varfolomeev, E., Blankenship, J.W., Wayson, S.M., Fedorova, A.V., Kayagaki,

N., Garg, P., Zobel, K., Dynek, J.N., Elliott, L.O., Wallweber, H.J., et al. (2007).

IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation,

and TNFalpha-dependent apoptosis. Cell 131, 669–681.

Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., De-

clercq, W., Grooten, J., Fiers, W., and Vandenabeele, P. (1998). Inhibition of

caspases increases the sensitivity of L929 cells to necrosis mediated by tumor

necrosis factor. J. Exp. Med. 187, 1477–1485.

Vince, J.E., Wong, W.W., Khan, N., Feltham, R., Chau, D., Ahmed, A.U., Ben-

etatos, C.A., Chunduru, S.K., Condon, S.M., McKinlay, M., et al. (2007). IAP

antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell

131, 682–693.

Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L.F.,Wang, F.S., andWang, X.

(2014). Mixed lineage kinase domain-like protein MLKL causes necrotic mem-

brane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146.

Yoon, S., Kovalenko, A., Bogdanov, K., andWallach, D. (2017). MLKL, the pro-

tein thatmediates necroptosis, also regulates endosomal trafficking and extra-

cellular vesicle generation. Immunity 47, 51–65.e7.

Zhu, K., Liang,W., Ma, Z., Xu, D., Cao, S., Lu, X., Liu, N., Shan, B., Qian, L., and

Yuan, J. (2018). Necroptosis promotes cell-autonomous activation of proin-

flammatory cytokine gene expression. Cell Death Dis. 9, 500.

http://refhub.elsevier.com/S2211-1247(19)31744-9/sref43
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref43
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref44
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref44
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref44
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref45
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref45
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref45
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref46
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref46
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref46
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref47
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref47
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref47
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref47
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref48
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref48
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref48
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref49
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref49
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref49
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref49
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref50
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref50
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref50
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref50
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref51
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref51
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref51
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref52
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref52
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref52
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref52
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref53
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref53
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref53
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref53
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref54
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref54
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref54
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref54
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref55
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref55
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref55
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref55
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref56
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref56
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref56
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref57
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref57
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref57
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref58
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref58
http://refhub.elsevier.com/S2211-1247(19)31744-9/sref58


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-human caspase-8 MBL Cat# M058-3, RRID: AB_590761

Anti-cleaved human caspase-3 Cell Signaling Technology Cat# 9661, RRID: AB_2341188

Anti-human phospho (S358) MLKL Abcam Cat# ab187091, RRID: AB_2619685

Anti-human MLKL Merck Millipore Cat# MABC604

Anti-GAPDH Cell Signaling Technology Cat# 8884s, RRID: AB_11129865

Anti-human CATHEPSIN B Calbiochem Cat# IM27L, RRID: AB_2274848

Anti-human CATHEPSIN D Abcam Cat# ab75852, RRID: AB_1523267

Anti-rabbit IgG, HRP-linked Cell Signaling Technology Cat# 7074, RRID: AB_2099233

Anti-mouse IgG, HRP-linked Cell Signaling Technology Cat# 7076, RRID: AB_330924

Bacterial and Virus Strains

XL1-Blue Competent Cells Agilent Technologies 200249

Biological Samples

Buffy Coats Blood donations to the red

cross: ‘‘Blutspendedienst des

Bayerischen Roten Kreuzes

gemeinn€utzige GmbH‘‘

N/A

Chemicals, Peptides, and Recombinant Proteins

Recombinant human TNF ImmunoTools 11343017

Recombinant human GM-CSF ImmunoTools 21173121

Birinapant Selleckchem S7015

Compound A Gift from Prof. John Silke N/A

IDN-6556 (Emricasan) MedChem Express (MCE) HY-10396

GW280264X Aobious AOB3632

Vacuolin Sigma 673000-10mg

Necrostatin-1 Sigma N9037-10mg

cOmplete, Mini Protease Inhibitor Cocktail Sigma 4693159001

Propidium iodide Sigma 81845

Histopaque-1077 Sigma-Aldrich 10771

Heat inactivated Fetal Bovine Serum Invitrogen 10270106

Penicillin/Streptomycin Invitrogen 15140122

RPMI medium Invitrogen 61870044

Ponceau BS Sigma B6008-100 g

Blasticidin Invivogen Ant-bl-1

DME medium Invitrogen 31966047

Serum- and phenolred free media Thermo Fisher Scientific 11835063

Urea Sigma 45128-500 g

Thiourea Sigma T8656-500 g

Trizma Sigma T1503-1kg

Dithiothreitol (DTT) Sigma D0632-100 g

Chloroacetamide (CAA) Sigma C0267-100 g

Iodoacetamide (IAA) Sigma I6125-100 g

Ammonium bicarbonate Sigma A6141

Trypsin Sigma T6567-1mg

Lys-C Wako Chemicals 129-02541

DMSO Sigma D2650-100ml

(Continued on next page)

Cell Reports 30, 1260–1270.e1–e5, January 28, 2020 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Acetone Fisher Chemical 67-64-1

Acetonitrile VWR 20048320

Trifluoroacetic acid Merck 8082600100

Formic acid Merck 1002641000

PBS GIBCO 14190-094

Tween Acros 233360010

EDTA Sigma 03677-500 g

Skim milk powder Roth T145.3

BSA Serva 11930.03

Glycerol Sigma G5516-1L

Sodium dodecyl sulfate (SDS) Roth CN30.3

Sodium deoxycholate (SDC) Sigma 30970-100 g

Sodium chloride (NaCl) VWR 27810.295

NuPAGE LDS Sample Buffer (4x) Invitrogen NP0007

Igepal Sigma I3021-500ml

GelRed nucleic acid stain Biotium 41003-1

Agarose Invitrogen 16500-500

RNase A Thermo Fisher EN0531

Proteinase K Thermo Fisher AM2546

Brefeldin A Invitrogen 00-4506-51

Puromycin Invivogen Ant-pr-5

Polybrene Sigma 107689

Critical Commercial Assays

Monocyte isolation kit Miltenyi Biotec 130-091-153

Human CCL2 Quantikine kit (ELISA) R&D Systems DCP00

Human HMGB1 Quantikine kit (ELISA) Cloud-Clone ABIN414391

SuperScript III Invitrogen 11752-050

RNeasy Plus Mini Kit QIAGEN 74134

QIAshredder QIAGEN 79656

Deposited Data

Raw Mass Spectrometry Data Files This paper ProteomeXchange Consortium via the

PRIDE partner repository, with the

dataset identifier PXD014966

Experimental Models: Cell Lines

U937 cell line ATCC CRL-1593.2

293T cell line ATCC CRL-3216

Human primary macrophages made

out of buffy coats

Blood donation to the Red cross N/A

Oligonucleotides

sgRNA 1 against RIPK3:

gaattcgtgctgcgcctaga

Tanzer et al., 2017 Metabion

sgRNA 2 against RIPK3:

cgcccccttggtgtccatcg

This study Metabion

Recombinant DNA

lentiCRISPR v2 Transomics TELA1002

psPAX2 http://addgene.org/12260 Addgene #122260

pMD2.G http://addgene.org/12259 Addgene #122259

Software and Algorithms

MaxQuant Cox and Mann, 2008, Version 1.5.0.38 https://www.biochem.mpg.de/5111795/maxquant

Perseus Tyanova et al., 2016, Version 1.5.3.0 https://www.biochem.mpg.de/5111810/perseus

(Continued on next page)

e2 Cell Reports 30, 1260–1270.e1–e5, January 28, 2020

http://addgene.org/12260
http://addgene.org/12259
https://www.biochem.mpg.de/5111795/maxquant
https://www.biochem.mpg.de/5111810/perseus


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

XCalibur Thermo Scientific https://www.thermofisher.com/order/catalog/

product/OPTON-30487

Prism Graphpad N/A https://www.graphpad.com/scientific-

software/prism/
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Felix Meissner

(meissner@biochem.mpg.de). This study did not generate new unique materials and reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiments described in this study are performedwith the U937 cell line and human primarymacrophages. U937were purchased at

ATCC and cultured in RPMI supplemented with 10% FCS and Pen/Step. Human primary macrophages were generated by isolating

PBMCs from buffy coats (generated from blood donations) using Histopaque-1077 (Sigma-Aldrich, 10771). Monocytes were isolated

using a monocyte isolation kit (Miltenyi Biotec, 130-091-153), plated and 50 nM GM-CSF (ImmunoTools, 21173121) was added.

Cells were left for 7 days to induce macrophage differentiation. All cells were stimulated and kept for the entire treatment duration

in serum- and phenol-red free media (Thermo Fisher Scientific, 11835063).

METHOD DETAILS

Sample preparation for proteomic analysis and ELISA of supernatants
1.53 106 U937 cells or full 24 wells of primary humanmacrophages were treated with TNF (30 ng/ml) and the IAP inhibitor, birinapant

(SM, 250 nM) (Compound A (2 mM) for human primary macrophages) to induce apoptosis or TNF and birinapant (SM, 250 nM)

(Compound A (2 mM) for human primary macrophages) and the caspase inhibitor IDUN-6556 (IDN-6556/emricasan, 10 mM) to induce

necroptosis, GW280264X (10 mM, pretreatment for 60 minutes before apoptosis and necroptosis induction), necrostatin-1 (Nec-1,

50 mM), vacuolin-1 (vacuolin, 10 mM) and brefeldin A (BFA, 3 mg/ml, 20 minutes before apoptosis and necroptosis induction).

Control cells were treated with DMSO, TNF, birinapant and IDUN-6556 alone. For ELISA supernatants were taken and processed

according to the manufacturer’s instruction. For proteomic analysis supernatants were spun for 5 minutes at 500 x g to remove cells

and filtered through 0.22 mm filters to remove cell debris. 8 M urea in 40 mM HEPES was added to bring the sample to a final con-

centration of 2.7 M urea, which was subsequently sonicated (Biorupter) for 20 minutes. Proteins were reduced by the addition of

10 mM DTT and incubated for 30 minutes at room temperature. Proteins were alkylated by the addition of 55 mM iodoacetamide

and incubated for 20 minutes at room temperature in the dark. 100 mM Thiourea was added before the addition of 1 mg lysC

and trypsin and digested over night at room temperature. Enzyme activity was stopped by the addition of 2% ACN and 0.6%

TFA and proteins were cleaned up on C18 StageTips (Frauenstein and Meissner, 2018).

Preparation of extracellular vesicles
12 3 106 U937 cells were treated for three hours with TNF and birinapant or TNF and birinapant and IDUN-6556 or with DMSO

alone as a control. Cells were spun for 5 minutes at 500 x g. Supernatants were taken and spun again for 30 minutes at

10,000 x g. Supernatants were taken again and spun for 60 minutes at 100,000 x g to obtain extracellular vesicles. The pellets con-

taining extracellular vesicles were washed with ice cold PBS and again centrifuged for 60 minutes at 100,000 x g. Extracellular ves-

icles were lysed in 8 M Urea with 50 mM Tris (pH8), reduced with 10 mM DTT, alkylated with 40 mM CAA and digested for 2 hours
Cell Reports 30, 1260–1270.e1–e5, January 28, 2020 e3

mailto:meissner@biochem.mpg.de
https://www.thermofisher.com/order/catalog/product/OPTON-30487
https://www.thermofisher.com/order/catalog/product/OPTON-30487
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
http://www.instantclue.uni-koeln.de/
https://www.flowjo.com/
https://www.r-project.org/
https://www.adobe.com/de/products/illustrator.html?gclid=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB&amp;sdid=88X75SKP&amp;mv=search&amp;ef_id=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB:G:s&amp;s_kwcid=AL!3085!3!274277387414!e!!g!!adobe%20illustrator
https://www.adobe.com/de/products/illustrator.html?gclid=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB&amp;sdid=88X75SKP&amp;mv=search&amp;ef_id=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB:G:s&amp;s_kwcid=AL!3085!3!274277387414!e!!g!!adobe%20illustrator
https://www.adobe.com/de/products/illustrator.html?gclid=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB&amp;sdid=88X75SKP&amp;mv=search&amp;ef_id=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB:G:s&amp;s_kwcid=AL!3085!3!274277387414!e!!g!!adobe%20illustrator
https://www.adobe.com/de/products/illustrator.html?gclid=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB&amp;sdid=88X75SKP&amp;mv=search&amp;ef_id=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB:G:s&amp;s_kwcid=AL!3085!3!274277387414!e!!g!!adobe%20illustrator
https://www.adobe.com/de/products/illustrator.html?gclid=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB&amp;sdid=88X75SKP&amp;mv=search&amp;ef_id=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB:G:s&amp;s_kwcid=AL!3085!3!274277387414!e!!g!!adobe%20illustrator
https://www.adobe.com/de/products/illustrator.html?gclid=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB&amp;sdid=88X75SKP&amp;mv=search&amp;ef_id=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB:G:s&amp;s_kwcid=AL!3085!3!274277387414!e!!g!!adobe%20illustrator
https://www.adobe.com/de/products/illustrator.html?gclid=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB&amp;sdid=88X75SKP&amp;mv=search&amp;ef_id=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB:G:s&amp;s_kwcid=AL!3085!3!274277387414!e!!g!!adobe%20illustrator
https://www.adobe.com/de/products/illustrator.html?gclid=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB&amp;sdid=88X75SKP&amp;mv=search&amp;ef_id=Cj0KCQiAj4biBRC-ARIsAA4WaFiBQklh92FMEfFeoXKzbZX3ANOyHPWvjWC_Dc8uqRkApS93wRL-0_MaAvthEALw_wcB:G:s&amp;s_kwcid=AL!3085!3!274277387414!e!!g!!adobe%20illustrator
https://www.ebi.ac.uk/pride/archive/


with lysC (1 mg/sample) before 1:4 dilution with 50 mM ammonium bicarbonate and the addition of trypsin (1 mg/sample). Trypsin and

lysC digestion occurred over night at room temperature and peptides were cleaned up by C18 stage tipping.

Western blotting
Two million cells were stimulated, washed in PBS and lysed in buffer (1% IGEPAL, 10% Glycerol, 2 mM EDTA, 50 mM Tris pH 7.5,

150mMNaCl) supplemented with phosphatase- (Sigma-Aldrich, 4906845001) and protease inhibitors (Sigma-Aldrich, 4693159001).

Lysates were kept on ice for 20 minutes and centrifuged at 16,100 x g for 15 minutes before the addition of 6 x SDS sample loading

buffer (450 mM Tris-HCl, pH 8, 60% (v/v) glycerol, 12% (w/v) SDS, 0.02% (w/v) bromophenol blue, 600 mMDTT) to the supernatant,

followed by boiling and sonication. For immunoblotting of supernatants ten million cells were stimulated in serum-free media, spun

down and proteins in supernatants were precipitated with ice-cold Acetone (80%final concentration). The next day precipitates were

spun down for 30 minutes at full speed and washed twice in 80% Acetone before addition of 6 x SDS sample loading buffer, boiling

and sonication. Separation occurred on 12% Novex Tris-glycine gels (Thermo Fisher Scientific, XP00120BOX) and transferred

onto PVDF membranes (Merck Millipore, IPVH00010) or Nitrocellulose membranes (Amersham, 10600002). Membranes were

blocked in 5% milk and antibodies diluted in 2% BSA in PBST. Antibodies used for immunoblotting were as follows: anti-human

caspase-8 (MBL, M058-3), anti-cleaved human caspase-3 (Cell Signaling, 9661), anti-human phospho (S358) MLKL (Abcam,

ab187091), anti-human MLKL (Merck Millipore, MABC604), anti-GAPDH (Cell Signaling Technology, 8884s), anti-CATHEPSIN B

(Calbiochem, IM27L) and anti-CATHEPSIN D (Abcam, ab75825).

Cell death analysis
13 105 U937 cells and human primarymacrophages were plated in 24well plates and treated with TNF (30 ng/ml), IDN-6556 (10 mM),

necrostatin-1 (Nec-1, 50 mM), birinapant (SM, 250 nM) for U937 and Compound A (SM, 2 mM) for human primary macrophages.

Cell death was measured by propidium iodide incorporation using flow cytometry (FACS Attune NxT, BD FACS Aria III) and analyzed

using Graphpad Prism.

DNA laddering assay
DNA laddering assay was performed as described previously with some changes (Kralj et al., 2003). After stimulation 2 3 106 cells

were washedwith PBS and lysed in 200 ml of lysis buffer (1%NP-40 in 20mMEDTA, 50mMTris-HCl, pH 7.5), centrifuged at 3000 rpm

for 5 min and supernatants were collected. SDS (1%) and RNase A (5 mg/ml) were added for 1 h at 56�C and proteinase K (2.5 mg/ml)

was added for 1 h at 37�C. Afterward, ½ volume of ammonium acetate (stock 10 M), 2 volume of ice cold ethanol were added,

followed by incubation overnight at �80�C. Samples were centrifuged the next day (14000 rpm) for 40 min at 4�C. Pellets were

washed with 70% ethanol and dissolved in 20 ml of water. Equal amounts of DNA were loaded for each condition on a 2% agarose

gel.

qPCR
RNAwas isolated from23 106 cells with the RNeasy PlusMini kit (QIAGEN) and reversely transcribedwith SuperScript III (Invitrogen).

cDNA was amplified with SYBR Green on a Biorad C1000 Thermal Cycler. Primers used were CCL2 (CCCCAGTCACCTGCTGTTAT)

andGAPDH (GTCTCCTCTGACTTCAACAGCG). Fold induction compared to untreated controls was calculated by the delta-delta CT

method.

Chromatography and mass spectrometry
Samples were loaded onto 50-cm columns packed in-house with C18 1.9 mM ReproSil particles (Dr Maisch GmbH), with an EASY-

nLC 1000 system (Thermo Fisher Scientific) coupled to the MS (Q Exactive HF, Thermo Fisher Scientific). A homemade column oven

maintained column temperature at 60�C. Peptides were introduced onto the column with buffer A (0.1% Formic acid) and eluted with

a 107.3-min gradient of 5 to 25% of buffer B (60% ACN, 0.1% Formic acid), both at a flow rate of 300 nl/min.

A data-dependent acquisition (TopN) MS method was used in which one full scan (300 to 1650 m/z, R = 60,000 at 200 m/z) at a

target of 33 106 ions was first performed, followed by 15 data-dependent MS/MS scans with higher energy collisional dissociation

[target 105 ions, max ion fill time 55 ms, isolation window 1.4m/z, normalized collision energy 27%, R = 15,000 at 200m/z]. Dynamic

exclusion of 20 s and apex trigger (4 to 7 s) was enabled.

QUANTIFICATION AND STATISTICAL ANALYSIS

MS raw files were processed by the MaxQuant software version 1.5.0.38 (Cox and Mann, 2008) and fragments lists were searched

against the human Uniprot Reference Proteome without isoforms (August 2015) by the Andromeda search engine (Cox et al., 2011)

with cysteine carbamidomethylation as a fixed modification and N-terminal acetylation and methionine oxidations as variable

modifications. We set the false discovery rate (FDR) to 0.01 at the peptide and protein levels and specified a minimum length of 7

amino acids for peptides. Enzyme specificity was set as C-terminal to Arginine and Lysine as expected using Trypsin and LysC

as proteases and set as semi-tryptic for semi-tryptic peptide analysis, and a maximum of two missed cleavages.
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All bioinformatics analyzes were done with the Perseus software (version 1.5.3.0) (Tyanova et al., 2016) of the MaxQuant compu-

tational platform. Quantified proteins are filtered for at least 75% of valid values among three or four biological replicates in at least

one condition. Missing values were imputed and significantly up- or downregulated proteins were determined by multiple-sample

test (FDR = 0.05) and Student’s t test (two-sided), (FDR = 0.05). n represents replicates of the same cell line stimulated separately.

Further statistical details of experiments can be found in the figure legends.

The 1D annotation enrichment analysis detects whether expression values of proteins belonging to an enrichment term (here we

used: keywords, GOCC, GOMF, GOBP and KEGG name) show a systematic enrichment or de-enrichment compared to the distri-

bution of all expression values (Cox and Mann, 2012).

Swarm plots were created using the software Instant Clue (Nolte et al., 2018).

DATA AND CODE AVAILABILITY

TheMS-based proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository and are

available via ProteomeXchange with identifier (PXD014966) (Jones et al., 2008).
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