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Trapped ion mobility spectrometry and
PASEF enable in-depth lipidomics from
minimal sample amounts
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A comprehensive characterization of the lipidome from limited starting material remains very
challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid
chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel
accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of
100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The
acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of
isotope patterns. Analyzing 1TulL of human plasma, PASEF increases the number of identified
lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity.
Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross
sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our
study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-
enhanced lipidomics in four dimensions.
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ARTICLE

isentangling the lipid composition of biological model

systems and clinical samples in a robust and high

throughput manner promises novel insight into basic
biology, as well as the onset and progression of disease! . Lipid
extracts from biological sources can be analyzed either directly via
high-resolution mass spectrometry>® or via online liquid chro-
matography coupled to mass spectrometry (LC-MS)’. Lipid
identifications base on accurate mass and the MS? or MS3 frag-
mentation pattern, which is increasingly facilitated by recent
software developments and ever growing reference databases3-11.
Established LC-MS lipidomics workflows separate lipids at flow
rates in the higher micro- or milliliter per minute range, which
ensures high sample throughput and robustness, but also com-
promises sensitivity. As the available sample amount becomes a
limiting factor, for example with small tissue biopsies from bio-
banks or small cell sub-populations, it is increasingly attractive to
employ nanoflow chromatography!2-14,

MS technology has greatly improved and state-of-the-art high-
resolution Orbitrap or time-of-flight (TOF) instruments transmit
ions very efficiently and achieve low- to sub-ppm mass
accuracy!>10. The high acquisition speed of TOF analyzers makes
them compatible with very fast separation techniques such as ion
mobility spectrometry (IMS)!7:18. Nested in-between LC and MS,
IMS provides an additional dimension of separation based on the
ions’ shape and size (collisional cross section, CCS). This is
particularly interesting for lipidomics, as it provides an oppor-
tunity to separate otherwise unresolved isomers!®-22. Further-
more, the chemical structure of lipids is closely linked to the CCS,
which allows predictions by machine learning and could facilitate
lipid identification?3-26,

Trapped ion mobility spectrometry (TIMS) is a relatively new
form of IMS that inverts the separation principle of classical drift
tube ion mobility?’-31. Tons entering the TIMS analyzer are
positioned in an electrical field by the drag of a gas flow. Lowering
the electrical force releases ions from the TIMS device separated
by their ion mobility, while the IMS resolution is proportional to
the user-defined ramp time. It can be tuned to over 200 CCS/
ACCS, for example to separate isomeric lipids with distinct
double bond positions or geometries32. We recently introduced a
MS scan mode termed parallel accumulation serial fragmentation
(PASEF) that synchronizes TIMS with MS/MS precursor selec-
tion33. In proteomics, PASEF increases MS/MS scan rates more
than tenfold, importantly, without the loss of sensitivity that is
otherwise inherent to faster acquisition rates34.

Here, we explore whether the PASEF principle can be trans-
ferred to lipidomics. We build on nanoflow chromatography to
establish a rapid PASEF lipidomics workflow capable of com-
prehensively analyzing low sample amounts. To investigate the
potential of the additional TIMS dimension, we set out to compile
a high-precision lipid CCS library from body fluids, tissue sam-
ples, and human cell lines.

Results
Development of the nanoflow PASEF lipidomics workflow. We
aimed to develop a rapid workflow that enables global lipid
analysis in a straightforward manner (Fig. 1). We adapted an
MTBE lipid extraction protocol> that is applicable to common
biological sample types, such as body fluids, tissue, as well as cell
lines (Fig. la) and requires only a few manual liquid handling
steps that could easily be automated in the future. We found that
our extraction protocol scales well from small sample volumes (1
uL blood plasma) to relatively large cell counts (5e5 HeLa cells)
and can be performed in <1 h.

We loaded the lipid extracts directly onto a C;g column and
eluted them within 30 min, for a total of little more than 1h

analysis time per sample when using both positive and negative
ionization modes (Fig. 1b). Retention times were reproducible
with median CVs of 0.54% in replicate injections prior to
alignment (Supplementary Data 1) and chromatographic peak
widths were in the range of 3-6s full width at half maximum
(FWHM), at least two orders of magnitude slower than TIMS jon
mobility analysis (100 ms) and the acquisition speed of high-
resolution TOF mass spectra (~100 ps). The timsTOF Pro mass
spectrometer (Bruker Daltonics) features a dual TIMS analyzer
that allows to utilize up to 100% of the incoming ion beam?’
(Methods). In this mode, ions are accumulated in the first TIMS
analyzer while another batch of ions is separated by ion mobility
in the second TIMS analyzer. TIMS closely resembles classical
drift tube ion mobility, however, ions arrive at the mass analyzer
in the inverse order, which means low-mobility (and high-mass)
ions are released first, followed by ions with higher mobility (and
lower mass). In our experiments with 100 ms TIMS scan time, the
ion current accumulated during 100 ms was concentrated into ion
mobility peaks of 2-3 ms FWHM, which should lead to a 50-fold
increase in signal-to-noise as compared with continuous acquisi-
tion. These peak widths equate an ion mobility resolution of
40-50 CCS/ACCS. The ion mobility-resolved mass spectra can be
illustrated in two-dimensional heat maps, from which suitable
precursor ions are selected for fragmentation in data-dependent
MS/MS mode (Fig. 1b). With PASEF, multiple precursors are
fragmented in each TIMS ramp by rapidly switching the
quadrupole (see below). As the collision cell is positioned after
the TIMS analyzer in the ion path, fragment ions occur at the
same ion mobility position as their precursor ions in MS1 mode.

We make use of this information in the post-processing
(Fig. 1c) to connect MS/MS spectra to their corresponding MS
features extracted from the four-dimensional data space (reten-
tion time, m/z, ion mobility, intensity). Finally, we rely on
established lipidomics software to automatically assign lipids to
the spectra based on diagnostic fragment ions and database
matching (Methods). Our workflow automatically converts ion
mobility to CCS values and records them for all detected MS1
features and thus all identified lipids.

Evaluating PASEF in lipidomics. The central element of our
workflow is the PASEF acquisition method. PASEF takes
advantage of the temporal separation of ions eluting from the
TIMS device to select multiple precursors for MS/MS acquisition
in a single TIMS scan33. To illustrate, Fig. 2a, b shows repre-
sentative MS1 heat maps of co-eluting lipids from an LC-TIMS-
MS analysis of human plasma. The ions are widely spread in m/z
vs. ion mobility space, while higher mass roughly correlates with
lower ion mobility. In standard MS/MS mode, the quadrupole
isolates a single precursor mass throughout the entire TIMS scan
time (red dots in Fig. 2a). However, the targeted precursor
completely elutes during about 6 out of 100 ms, and thus over
90% of the acquisition time is effectively not used. In PASEF
mode, the quadrupole instead switches its mass position within
~1ms to capture as many precursors as possible (red dots in
Fig. 2b). In this example, 16 precursors were selected during a
single PASEF scan, which translates into a 16-fold increased MS/
MS acquisition rate of over 100 Hz. Importantly, this does not
come at a loss in sensitivity because the full precursor ion signal
of the 100 ms accumulation time is captured.

In a 30 min analysis of plasma, we found that on average 15
precursors were fragmented per PASEF scan (Fig. 2¢), confirming
that the PASEF principle is transferable to lipidomics. In total, we
acquired 187,177 MS/MS spectra—15-fold more than without
PASEF. This fragmentation capacity greatly exceeds the number
of expected lipids and, in principle, allows to acquire MS/MS
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Fig. 1 Nanoflow lipidomics with trapped ion mobility spectrometry. a Lipids from various biological sources, such as body fluids, tissues and cells, are
analyzed using a single MeOH:MTBE extraction. b The crude extract is injected into a nanoflow liquid chromatography (LC) system coupled online to
a high-resolution TIMS quadrupole time-of-flight mass spectrometer (timsTOF Pro). In the dual TIMS analyzer, ions are accumulated in the front part
(TIMS 1), while another batch is released as a function of ion mobility from the TIMS 2 analyzer. PASEF synchronizes precursor selection and ion mobility
separation, which allows fragmenting multiple precursors in a single TIMS scan at full sensitivity. ¢ Features are extracted from the four-dimensional
(retention time, m/z, ion mobility, intensity) data space and assigned to PASEF MS/MS spectra for automated lipid identification and compilation of
comprehensive lipid CCS libraries. MeOH = methanol, MTBE = methyl-tert-butyl ether, CCS = collisional cross section.

spectra for every suitable isotope pattern detected in a single
lipidomics LC run. Here, we chose to fragment low-abundance
precursors repeatedly to increase their signal-to-noise ratios in a
summed spectrum. On average, precursors were fragmented two
times as indicated by the acquisition engine.

We evaluated the performance of our PASEF method with
lipid extracts from human plasma, mouse liver, and HeLa cells
(Fig. 2d and Supplementary Fig. 1). In all three sample types, the
4-dimensional feature detection vyielded 8900-13,400 MSI
features above the intensity threshold and after collapsing
multiple adducts. In standard TIMS-MS/MS mode, on average
5.5% of these were fragmented. This fraction increased up to 11.5-
fold with PASEF and, in both negative and positive ionization
mode, about 65% of all features had corresponding MS/MS
spectra. Overall, PASEF increased the number of identified lipids
across all runs on average 3.6-fold (Supplementary Fig. 2). To
further investigate whether PASEF is fast enough to acquire MS/
MS spectra of close to all informative lipid features in a short
time, we extended the LC gradients to 60 and 90 min
(Supplementary Fig. 3). Indeed, 97% of all lipids identified with
the three times longer gradient were already identified in the

30 min PASEF run, which confirms our hypothesis and suggests
that even shorter runtimes could be explored.

Comprehensive and accurate lipid quantification. Having
ascertained that PASEF achieves a very high MS/MS coverage of
lipidomics samples, we investigated our automated data analysis
pipeline in more detail (Fig. 3a). Starting from the thousands of
4D features detected in all replicate injections of human plasma,
mouse liver and HeLa cells, we kept those with assigned MS/MS
scans for further analysis. PASEF spectra are resolved by ion
mobility and the software extracts the MS/MS spectra at the ion
mobility position of the respective precursor ion. We then sear-
ched all MS/MS spectra considering four lipid categories with the
respective lipid classes and subclasses. This yielded 653-1595
annotations for each sample and ionization mode. We manually
inspected all automatically annotated MS/MS spectra to filter
potential false positives based on the observed fragmentation
pattern (Methods). Finally, we grouped adducts, isomers, and co-
eluting peaks that were separated by their ion mobility but could
not be distinguished based on their MS/MS spectra. However, we
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Fig. 2 Evaluating PASEF in lipidomics. Heat-map visualization of a representative trapped ion mobility resolved mass spectrum of human plasma at an
elution time of 9.2 min. Red dots indicate precursors selected for MS/MS fragmentation in the subsequent 100 ms PASEF scan in a, standard TIMS-MS/
MS mode and b TIMS-PASEF mode. The dashed line indicates the positioning of the quadrupole. ¢ Distribution of the number of precursors per PASEF scan
in an LC-MS analysis of human plasma lipid extract (n=1). d Total number of 4D features extracted from 30 min runs of human plasma (n =5), mouse
liver (n=5), and human cancer cells (n=5) in positive ion mode without (TIMS-MS/MS, red) and with PASEF (TIMS-PASEF, blue). The fraction of

features with assigned MS/MS spectra is indicated by a darker color.

kept separate lipids with same MS/MS-based annotation but
eluting in close proximity as these are potential isomers.
Removing duplicates resulted in 460-879 identified unique lipids
per experiment. Combining both ionization modes, we identified
1108 unique lipids from the equivalent of 0.05pL plasma per
injection, 976 unique lipids from 10 g liver tissue and 1351
unique lipids from ~2000 HeLa cells, with a median absolute
precursor mass accuracy of 1.06 ppm (Supplementary Data 2-4).
The identified lipid species covered all major lipid classes such as
glycerophospholipids (PC, PE, PA, PS, PI, PG), oxidized glycer-
ophospholipids, monoacyl-, diacyl- and triacyl-glycerols, sterol
lipids, ceramides, glycosphingolipids, and phosphosphingolipids.

This comprehensive lipid coverage from relatively small sample
amounts motivated us to investigate our sensitivity limit in more
detail. Starting from the concentration above, we diluted the
lipids extracted from human SRM 1950 plasma over three orders
of magnitude in seven steps. With a 10-fold dilution, we were still

able to identify 526 lipids in positive mode and this number
dropped below 400 only at >100-fold dilution (Supplementary
Fig. 4). We reasoned that this sensitivity is partially due to our
nanoflow chromatography setup as opposed to conventional
high-flow systems. In fact, a direct comparison indicated a 100-
fold lower sensitivity limit with nanoflow in both ionization
modes. Injecting the same amounts of plasma lipids on column,
we identified three to six times more lipid species with the
nanoflow setup (Supplementary Fig. 4).

In biological or clinical studies, quantitative accuracy is at least
as important as cataloging the lipid composition and may be
compromised if lipids are sparsely detected across samples. We
hypothesized that the speed of PASEF and the improved signal-
to-noise of TIMS should lead to very reproducible quantification.
Indeed, we observed that 816 out of the total 976 identified lipids
in liver tissue were quantified in five out of five replicates
(Fig. 3b), resulting in a data completeness of 95.4%. The median
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Fig. 3 Lipid identification and quantification. a Sequential data analysis steps from the total number of detected 4D features to unique lipids for human
plasma, mouse liver, and human cancer cells in both ionization modes. b Number of lipids quantified in N out of five replicate injections of liver tissue
extract. ¢ Coefficients of variation for 976 lipids quantified in at least three out of five replicate injections of liver tissue extract.

coefficient of variation (CV) was 12.3%, and 80% of all quantified
lipids had a CV below 20% (Fig. 3c and Supplementary Data 5).

From these results, we conclude that our nanoflow PASEF
lipidomics workflow covers the lipidome comprehensively with
high quantitative accuracy, while requiring only minimal sample
amounts.

Coverage of the human plasma lipidome. To assess the lipid
coverage of our PASEF workflow in more detail, we analyzed the
human plasma Standard Reference Material (SRM 1950), a pool
from 100 individuals from the United States in the age range of
40-50 years, provided by the National Institute of Diabetes and
Digestive and Kidney Diseases and the National Institute of
Standards (NIST)3¢. This sample has served as a reference for
many lipidomics studies, establishing a range of detectable lipid
species and their absolute concentrations3’. The LIPID MAPS
consortium recently compiled consensus results from 31 labora-
tories, each of which followed their in-house analysis workflow
(Bowden et al.38). In an effort to disentangle the human plasma
lipidome, Quehenberger et al.3* employed class-specific analysis
strategies to quantify about 500 lipids from >1 mL NIST SRM
1950 plasma.

Taking these two studies as a reference, we first compared the
number of identified lipids in each lipid category based on the
short name annotation (Fig. 4a and Supplementary Data 6, 7).
Starting from 1 uL plasma and with a single extraction protocol,
our PASEF workflow detected many more glycerolipids and
glycerophospholipids, exceeding both studies three- to four-fold.
At the same time, 87 and 83% of all glycerolipids and
glycerophospholipids reported in the Bowden et al. study®? were
also present in our dataset. Similarly, we retrieved 65 and 49% of
all lipids from these two abundant plasma lipid categories
reported by Quehenberger et al.3*. We observed a two-fold gain
for sphingomyelins, again with a high overlap of 77 and 60%
with both reference studies. Analysis of ceramides typically
requires specific extraction methods and this category was
therefore underrepresented in ours as well as in the Bowden
et al. study3® relative to the class-specific analysis by Quehen-
berger et al.3°. From another analytically challenging class of
lipids, sterol lipids, we still detected 33 species in the human
plasma reference sample.

To further investigate the sensitivity of our method, we
mapped all identified lipids onto absolute plasma concentrations
reported in ref. 38 (Fig. 4b and Supplementary Data 7). We
quantified about 80% of the lipids covering the full abundance
range from about 0.01 up to 1000 nmol/mL. For example, we
achieved full coverage of the triacylglycerols and also quantified
less abundant lipids such as phosphatidylethanolamines compre-
hensively. Even though coverage was sparser in the lowest
abundance range, we quantified the least abundant lysopho-
sphatidylcholine (LPC 22:1) with a reference concentration of
0.013 nmol/mL. Since we injected only 1/20th of the lipids
extracted from 1 uL plasma in each replicate, this translates into a
sensitivity in the attomol range for the entire workflow.

Accuracy and precision of online lipid TI™MSCCS measure-
ments. In addition to generating MS/MS spectra for almost all
detectable precursors with PASEF, TIMS measures the ion
mobility of all identified and unidentified lipids. We calibrated all
TIMS measurements to reduced ion mobility values using well-
characterized phosphazine derivatives and converted them to
collisional cross sections (TIMSCCS) using the Mason-Schamp
equation?>40. Because they have the same underlying physics,
TIMSCCS can be directly related to drift tube experiments30-31,41
and should result in high quality and highly reproducible colli-
sional cross section data.

First, we investigated a mixture of commercially available lipid
standards (Differential Ion Mobility System Suitability Lipidomix
Kit, Avanti) on four timsTOF Pro instruments in two
independent laboratories (in Bremen and Munich, Germany)
(Fig. 5a). The measured TI™MSCCS values for all 22 lipid ions (12
distinct lipids) clustered closely around their median values with
a median CV of 0.35%. The median intra-instrument variability
in five replicate injections ranged from 0.10 to 0.17% and the
median intra-laboratory CV was between 0.18 and 0.21% in both
laboratories. The TI™MSCCS values were also highly reproducible
between laboratories with an average inter-laboratory CV of
only 0.35% and did not reveal any lipid-class specific biases
(Supplementary Data 8).

To test whether the high quality of TIMSCCS values manifests
in complex biological samples, we first investigated all detectable
features in all three sample types regardless of their identification
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as a lipid. Plotting the TIMSCCS values across repeated injections
on one instrument revealed excellent reproducibility (Pearson r >
0.99) (Supplementary Fig. 5 and Supplementary Data 9), which
motivated us to measure lipid extracts from the NIST SRM 1950
plasma on all four instruments. Considering only TIMSCCS of
lipids identified in all experiments, we found median CVs < 0.1 to
0.45% in repeated injections on the same instrument (Fig. 5b and
Supplementary Data 10) and similar intra-laboratory CVs of
0.15-0.45%. Overall, CCS measurements from both laboratories
agreed within 0.38% on average and were highly correlated with a
Pearson correlation coefficient > 0.99 for all pair-wise compar-
isons (Fig. 5c and Supplementary Data 11).

Having ascertained highly reproducible T™SCCS measure-
ments in complex samples, we next investigated the accuracy of
our results by comparing it with different methods and
instrumentation. Our dataset shared 149 and 28 lipid identifica-
tions (based on the short name annotation) with recent reports
from the Zhu?4 and McLean?3 laboratories, which both employed
drift tube ion mobility analyzers to establish high-precision
reference data. Our comparison revealed a very high correlation
(Pearson r=0.999) and 98% of all values were within +1%
deviation centered at zero (Fig. 5d and Supplementary Data 12).
The median absolute deviation was 0.18%, which is very well in
the range of recently reported inter-laboratory variability for
standard compounds measured with a commercial drift tube
analyzer#2.

The high reproducibility of lipid ion mobility measurements
makes them also very attractive for machine learning approaches.

The Zhu laboratory has developed a support vector regression
model that predicts lipid CCS values from SMILES structures*
and which is implemented in the Bruker MetaboScape software in
a modified version (Methods). Even though the model was
trained on independent data from a different instrument type,
predicted and experimental TIMSCCS values correlated very well
(Pearson r=10.996) and the relative deviations were normal
distributed with 95% of the values within +2% deviation for lipid
classes that were contained in the initial training data (Fig. 5e and
Supplementary Data 13). The median absolute deviation was
0.44% and based on the experimental precision demonstrated
above, we expect that machine learning models trained directly
on TIMS data yield even more accurate predictions.

The TIMS lipidomics landscape. Data generated by our TIMS
lipidomics workflow span a three-dimensional data space in
which each feature is defined by retention time, m/z and CCS,
with intensity as a 4th data dimension. To explore this data space,
we compiled all measurements from human plasma, mouse liver
and Hela cells acquired in both ionization modes. The total
dataset comprises CCS values of 1856 unique lipids (positive
mode), representing the four major lipid categories and 15 lipid
classes (Supplementary Data 14). To make our dataset fully
accessible, we provide Supplementary Data 14 in a format that
follows the standard lipid nomenclature guidelines by the LIPID
MAPS consortium®? and the Lipidomics Standards Initiative
(https://lipidomics-standards-initiative.org/).
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The investigation of the correlation of lipid mass and ion
mobility has been a long term interest in ion mobility
spectrometry-based lipidomics?3?4. TIMS and PASEF provide a
very efficient way to extend the scope of such studies to complex
biological samples. Figure 6a shows a three-dimensional repre-
sentation of all identified lipids in all three sample types in
positive ionization mode color-coded by their respective classes.
Each lipid class occupies a discrete space in the conformational
landscape, which reflects the structural differences in their
chemical composition. Hydrophilic lipids, such as monoacyl-
and low molecular weight diacylglycerophospholipids (m/z
400-600) that elute first in reversed-phase chromatography,
distribute in the CCS dimension from 204 to 253 A2, The second

NATURE COMMUNICATIONS | (2020)11:331| https://doi.org/10.1038/s41467-019-14044-x | www.nature.com/naturecommunications

half of the LC gradient is dominated by the large population of
glycerolipids and glycerophospholipids, which are often co-
eluting, but distinct in mass and CCS. For example, diacylglycer-
ols (DAG) and triacylglycerols (TAG) differ by one acyl chain
and occupy a different CCS space shifted by 54.7 A2, Similarly,
the head groups can strongly influence the ion mobility of lipids,
as exemplified by PIs and PGs with the same acyl chain
composition (Fig. 6a and Supplementary Fig. 6).

A key feature of our workflow is that each detected MS feature
is precisely positioned in the multi-dimensional data cuboid,
while the speed of PASEF ensures that most of these features are
associated with MS/MS information. We hypothesized that the
combined information can be leveraged to assign putative lipid
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sample. € Zoom into the data cuboid and putative assignment of two previously unidentified lipids based on their relative position in the data space. PC =
Phospatidylcholine, PE = Phospatidylethanolamine, PA = Phosphatidic acid, Pl = Phospatidylinositol, PG = Phospatidylglycerol, PS = Phospatidylserine,
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identifications for features that would otherwise have remained
unidentified. To test this, we overlaid all detected features with
MS/MS information on top of all identified lipids (Fig. 6b).
Zooming into the distinct space occupied by triglycerides revealed
the conformational fine-structure of this lipid class, which results
in clusters of lipids with the same acyl chain composition
(Fig. 6¢). Within each cluster, the lipids are differentiated by their
degree of unsaturation as the addition of a double bond decreases

the CCS value almost linearly. This enabled the identification of
features that were not fully characterized by the available MS/MS
information. As an example, we putatively assigned the MS
feature at retention time 26 min, m/z 827.7115 (A = 1.9 ppm) and
CCS 311.2 A2 as TG 48:1 based on the relative position in the 3D
space. This is further supported by the predicted CCS value of
308.4 A2, which deviates <1% from our experimental value.
Similarly, we derived a putative assignment for TG 60:2, which
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had escaped identification due to a low-quality MS/MS spectrum
in this particular experiment.

Discussion

Trapped ion mobility spectrometry is a particularly compact and
efficient ion mobility setup, in which ions are held against an
incoming gas flow and released as a function of their size and
shape. The Bruker timsTOF Pro incorporates two TIMS analyzers
in the front part of a high-resolution quadrupole TOF mass
spectrometer and fully supports our recently introduced PASEF
scan mode. In this study, we developed a nanoflow lipidomics
workflow that takes full advantage of TIMS and PASEF.

In 100 ms TIMS scans, readily compatible with fast chroma-
tography, we made use of the ion mobility separation to fragment
on average 15 precursors per PASEF scan by rapidly switching the
mass position of the quadrupole. Even though this translates into
MS/MS acquisition rates above 100 Hz, the ion count per spec-
trum, and thus the sensitivity, is determined by the TIMS accu-
mulation time (here 100 ms or 10 Hz). In principle, this allows to
acquire MS/MS spectra for all detectable isotope patterns in short
LC-MS runs, which would otherwise require much longer gra-
dients or multiple injections and advanced acquisition strategies.
While many of the acquired spectra remained unidentified in our
current data analysis pipeline, the PASEF acquisition strategy
generates very comprehensive digital MS/MS archives of all
samples that can be mined with alternative and novel search
algorithms at any time in the future.

Our results indicate that the nanoflow PASEF lipidomics
workflow is readily applicable to a broad range of biological
samples, such as body fluids, tissue samples and cell cultures.
With a single extraction step, we quantified thousands of lipids
with very high accuracy and reproducibility from as little as
micrograms of tissue or only a few thousand cells. This makes our
workflow very attractive for sample-limited applications, such as
lipid analysis from biopsies, micro dissected tissue or sorted cell
populations.

An important application of lipidomics is the investigation of
body fluids, for example blood plasma. Our analysis of a human
reference sample was in good agreement with previous reports
and greatly surpassed the coverage of glycerol- and glyceropho-
spholipids, using only a fraction of the analysis time and sample
amount. Based on these results, we estimate a limit of detection in
the attomole range for these analyte classes.

Our online PASEF lipidomics workflow positions each lipid in
a four-dimensional space with a precision of 1 ppm for masses,
<0.2% for CCS and about 1% for retention times. We exemplified
that this precision and accuracy can be leveraged to facilitate lipid
assignment in addition to the comprehensive MS/MS information
generated by PASEF. To further explore this data space, we
compiled a library of over 1800 high-precision lipid CCS values
directly from unfractionated biological samples. Our dataset lar-
gely extends the number of reported lipid CCS values and pro-
vides a basis for emerging machine learning techniques to predict
CCS values more accurately and for a broader range of lipid
classes.

We conclude that TIMS and PASEF enable highly sensitive and
accurate lipidomics, and generate comprehensive digital archives
of all detectable species along with very precise ion mobility
measurements—a wealth of information which awaits full
exploration and application. We also note that all the analytical
advantages demonstrated for lipidomics should carry over to
metabolomics in general, an area that we are currently exploring.

Methods
Chemicals and biological samples. 1-Butanol (BuOH), iso-propanol (IPA),
ortho-phosphoric acid, formic acid, methanol (MeOH), and water were purchased

from Fisher Scientific (Germany), and methyl tert-butyl ether (MTBE) from Sigma
Aldrich (Germany) in analytical grade or higher purity. The standard lipid mixture
Differential Ion Mobility System Suitability Lipidomix Kit was purchased from
Avanti Polar Lipids, Inc (product no. 330708). The human plasma reference
standard NIST SRM 1950 was obtained from Sigma Aldrich. Human cancer cells
(HeLa, human, ACC57, DSMZ) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM), with 10% fetal bovine serum, 20 mM glutamine and 1%
penicillin-streptomycin (all from PAA Laboratories, Germany) and collected by
centrifugation. The cell pellets were washed, frozen in liquid nitrogen and stored at
—80 °C. Mouse liver was dissected from an individual male mouse (strain: C57BL/
6) and snap frozen immediately. Animal experiments were performed in com-
pliance with the ethical and institutional regulations of the Max Planck Institute of
Biochemistry for animal testing and research, and have been approved by the
government agencies of Upper Bavaria.

Lipid extraction. Lipids were extracted using an adapted MTBE protocol3”. Plasma
samples were thawed on ice and the sample preparation was performed at 4 °C.
200 pL cold MeOH were added to 1 pL of blood plasma and vortexed for 1 min.
Subsequently, 800 pL of cold MTBE were added and the sample was mixed for
another 6 min before adding 200 uL water. To separate the organic and aqueous
phases, we centrifuged the mixture at 10,000 g for 10 min at 4 °C. The upper
organic phase was collected and vacuum-centrifuged to dryness. To extract lipids
from mouse liver, we first homogenized 1 mg of tissue in methanol and followed
the extraction protocol described above. To extract lipids from ~5 x 10° HeLa cells,
they were lysed after addition of MTBE by sonication (Bioruptor, Diagenode,
Belgium). The dried lipid extracts from all samples were reconstituted in BuOH:
IPA:water in a 8:23:69 ratio (v/v/v) with 5 mM phosphoric acid (nanoflow LC)!4 or
in MeOH: Dichloromethane 9:1 (v/v) (high-flow LC) for LC-MS analysis.

Liquid chromatography. An Easy-nLC 1200 (Thermo Fisher Scientific) ultra-high
pressure nanoflow chromatography system was used to separate lipids on an in-
house reversed-phase column (20 cm x 75 pm i.d.) with a pulled emitter tip, packed
with 1.9 um C;3 material (Dr. Maisch, Ammerbuch-Entringen, Germany). The
column compartment was heated to 60 °C and lipids were separated with a binary
gradient at a constant flow rate of 400 nL/min. Mobile phases A and B were ACN:
H,0 60:40% (v/v) and IPA:ACN 90:10% (v/v), both buffered with 0.1% formic acid
and 10 mM ammonium formate. The 30 min LC-MS experiment started by
ramping the mobile phase B from 1 to 30% within 3 min, then to 51% within 4 min
and then every 5 min to 61, 71 and 99%, where it was kept for 5 min and finally
decreased to 1% within 1 min and held constant for 2 min to re-equilibrate the
column. The total LC runtime was ~40 min including time for re-filling of LC
pumps and sample loading before the start of the analytical gradient.

The gradient was extended proportionately for 60 min and 90 min experiments.
We injected 1 pL in positive and 2 pL in negative ion mode on column and each
sample was injected five times in both ionization modes.

For the high-flow experiments (flow rate 0.4 mL/min), an Elute-HT UHPLC
system (Bruker Daltonics Bremen, Germany) was used with an Intensity Cg
column (100 mm x 2.1 mm, 1.9 um beads) (Bruker, Daltonics, Germany) heated to
55 °C. Mobile phases and gradient were the same as with the nano-flow setup. The
injection volume was 5 uL and each sample was injected five times in both
ionization modes.

Trapped ion mobility—PASEF mass spectrometry. The nanoLC was coupled
to a hybrid trapped ion mobility-quadrupole time-of-flight mass spectrometer
(timsTOF Pro, Bruker Daltonics, Bremen, Germany) via a modified!® nano-
electrospray ion source (Captive Spray, Bruker Daltonics). For a detailed descrip-
tion of the mass spectrometer, see Refs. 3334, Briefly, electrosprayed ions enter the
first vacuum stage where they are deflected by 90° and accumulated in the front
part of a dual TIMS analyzer. The TIMS tunnel consists of stacked electrodes
printed on circuit boards with an inner diameter of 8 mm and a total length of 100
mm, to which an RF potential of 300 V,,;, is applied to radially confine the ion
cloud. After the initial accumulation step, ions are transferred to the second part of
the TIMS analyzer for ion mobility analysis. In both parts, the RF voltage is
superimposed by an electrical field gradient (EFG), such that ions in the tunnel are
dragged by the incoming gas flow from the source and retained by the EFG at the
same time. Ramping down the electrical field releases ions from the TIMS analyzer
in order of their ion mobility for QTOF mass analysis. The dual TIMS setup allows
operating the system at 100% duty cycle, when accumulation and ramp times are
kept equal?®. Here, we set the accumulation and ramp time to 100 ms each and
recorded mass spectra in the range from m/z 50-1550 in both positive and negative
electrospray modes. The ion mobility was scanned from 0.6 to 1.95 Vs/cm?. Pre-
cursors for data-dependent acquisition were isolated within + 1 Th and fragmented
with an ion mobility-dependent collision energy, which was linearly increased from
25 to 45 eV in positive mode, and from 35 to 55 eV in negative mode. The overall
acquisition cycle of 0.4 s comprised one full TIMS-MS scan and three PASEF MS/
MS scans. Low-abundance precursor ions with an intensity above a threshold of
100 counts but below a target value of 4000 counts were repeatedly scheduled and
otherwise dynamically excluded for 0.2 min. TIMS ion charge control was set to
5e6. The TIMS dimension was calibrated linearly using four selected ions from the
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Agilent ESI LC/MS tuning mix [m/z, 1/Ky: (322.0481, 0.7318 Vs cm~2), (622.0289,
0.9848 Vs cm—2), (922.0097, 1.1895 Vs cm—2), (1221,9906, 1.3820 Vs cm—2)] in
positive mode and [m/z, 1/Ky: (666.01879, 1.0371 Vs cm~2), (965.9996, 1.2255 Vs
cm™2), (1265.9809, 1.3785 Vs cm™2)] in negative mode.

Dilution series experiment. Plasma SRM 1950 was extracted on the same day and
injected in both nano- and high-flow LC systems as described above. For positive
mode experiments with the high-flow system, 30 uL plasma was extracted and
reconstituted in 300 uL reconstitution solvent to inject a final volume of 5 pL
(translating into 0.5 uL plasma on column). For the nanoflow separation, 1 uL
plasma was extracted and reconstituted in 20 pL reconstitution solvent to inject a
final volume of 1 uL (translating into 0.05 uL plasma on the column). These stock
samples were then sequentially diluted in 1:3.3, 1:10, 1:33, 1:100, 1:333, and 1:1000
ratios (vol:vol). For the high-flow experiment in negative mode, 30 uL plasma was
extracted and reconstituted in 30 pL to inject a final volume of 5 pL (5 pL plasma
on column). For the nanoflow experiment, 1 pL plasma was extracted and
reconstituted in 20 uL to inject a final volume of 2 uL (0.1 pL plasma on column).
The samples were diluted to the final concentrations as above. All samples were
injected in five replicates.

Data analysis and bioinformatics. The mass spectrometry raw files were analyzed
with MetaboScape alpha version 5.0 (Bruker Daltonics, Germany). This version
contains a novel feature finding algorithm (T-ReX 4D) that automatically extracts
data from the four-dimensional space (m/z, retention time, ion mobility and
intensity) and assigns MS/MS spectra to them. Masses were recalibrated with the
lock masses m/z 622.028960 (positive mode) and m/z 666.019887 (negative mode)
and the ion mobility dimension was recalibrated using the ions of the tuning mix as
above. Feature detection was performed using an intensity threshold of 500 counts
in positive mode and 200 counts in the negative mode. The minimum number of
data points in the 4D TIMS space was set to 100, or 50 when using recursive feature
extraction.

Lipid annotation of detected molecular features with assigned MS/MS spectra was
performed using the high-throughput lipid search (HTP) function of SimLipid
v6.05 software (PREMIER Biosoft, Palo Alto, USA). The lipid search comprised four
lipid categories, Glycerolipids (GL), Glycerophospholipids (GP), Sphingolipids (SP)
and Sterol lipids (SL) and TAG, DAG, PA, PC, PE, PG, PI, PS, Ceramides,
Sphingomyelins, Neutral Glycosphingolipids, Steryl esters, Cholesterols, and
Derivatives, as well as oxidized glycerophospholipid classes. PE and PC lipids with
ether- and plasmalogen- substituents were considered. Lipid species from TAG and
sterol classes were not considered for the negative mode MS/MS database search.
Glycerophospholipids were only considered if containing an even number of carbons
on at least one of the fatty acid chains. We searched for [M + H]*, [M + Na]*, and
[M + NH,4] ™ ions in positive mode, and [M-H]~, [M + Cl]~, [M-CH3]~, [M +
HCOO]~ and [M + AcO]~ in negative mode. The precursor ion and MS/MS
fragment mass tolerances were set to 5 and 10 ppm, respectively.

The initial search results were filtered to ensure that lipids were annotated based
on high-quality MS/MS spectra with fragment ions corresponding to structure
specific characteristic ions. To this end, we manually inspected the SimLipid results
and removed potential false positives and refined lipid annotations based on head-
groups and/or fatty acyl composition as follows. In positive mode, we rejected
unlikely PC lipid ion species such as [PC + NH,4]* and [PC + Na]* if the
corresponding [M + H] T ion was not observed, and if [M-59 + Na] T (neutral loss
of (CH;)3N) and [M-183 + Na]* (neutral loss of phosphocholine) fragments were
not detected. Lipids from GP, ST, and SP categories were required to have their
corresponding head group diagnostic ions e.g., m/z 369.3516 for cholesterol esters,
m/z 184.073 for PC lipid species, as well as the neutral loss of 141 Th for PEs.
Neutral glycosphingolipids and ceramides were rejected if the structure-specific N
"-type fragments were not annotated. However, lipid species from sterol classes
were accepted if the precursor ion was the base peak in the MS/MS spectrum. TG/
DG lipids with three or two unique fatty acid chains were reported only if at least
two/one fatty acid chain fragment ion were/was detected. In negative mode, we
rejected all lipid annotations for which we did not detect at least one characteristic
fragment ion corresponding to one of the fatty acid chains.

We report lipid identifications with increasing level of fragment ion evidence
using the following nomenclature: (i) a short name (e.g., PC 32:1) to indicate mass-
resolved lipid molecular species, (ii) a long name for composition-resolved
identifications where the symbol @ indicates that this particular acyl-chain is not
fully characterized by fragment ions (e.g., Cer d18:1_26:0@), and (iii) a long name
where head group and fatty acyl-chain composition are fully characterized (e.g., PG
16_1:16:1). Note that sn1/sn2/sn3 chain assignments, positions of the double
bonds, as well as cis/trans isomers are not evident from our data and therefore not
annotated.

Lipid CCS values were predicted in MetaboScape using SMILES from
LipidMaps based on a support vector machine learning approach by Zhou et al.?4.
Mass spectrometric metadata such as the PASEF frame MS/MS information were
extracted from the.tdf files using an SQLite database viewer (SQLite Manager
v3.10.1). Further data analysis and visualization was performed in Python 3
(Jupyter Notebook) and Perseus (v1.6.0.8)%4.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The mass spectrometry raw files have been uploaded to the MASS Spectrometry
Interactive Virtual Environment (MassIVE) and are accessible via the identifier
MSV000083858. Source data for all figures are provided in the Supplementary Data 1-14.
All other data are available from the corresponding authors on reasonable request.
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