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We study the time evolution of excitonic states after photo-excitation in the one-dimensional spin-
less extended Falicov-Kimball model. Several numerical methods are employed and benchmarked
against each other: time-dependent mean-field simulations, the second-Born approximation (2BA)
within the Kadanoff-Baym formalism, the generalized Kadanoff-Baym Ansatz (GKBA) implemented
with the 2BA and the infinite time-evolving block decimation (iTEBD) method. It is found that
the GKBA gives the best agreement with iTEBD and captures the relevant physics. We find that
excitations to the particle-hole continuum and resonant excitations of the equilibrium exciton re-
sult in a qualitatively different dynamics. In the former case, the exciton binding energy remains
positive and the frequency of the corresponding coherent oscillations is smaller than the band gap.
On the other hand, resonant excitations trigger a collective mode whose frequency is larger than
the band gap. We discuss the origin of these different behaviors by evaluating the nonequilibrium
susceptibility using the nonthermal distribution and a random phase approximation. The peculiar
mode with frequency larger than the band gap is associated with a partial population inversion with
a sharp energy cutoff. We also discuss the effects of the cooling by a phonon bath. We demonstrate
the real-time development of coherence in the polarization, which indicates excitonic condensation
out of equilibrium.

I. INTRODUCTION

Excitonic states play a central role in photo-excited
semiconductors, nanostructures and molecules and have
been studied extensively in the context of photo-voltaic
applications1–4 and charge migration.5–7 In particular,
two-dimensional (2D) materials – especially transition
metal chalcogenides (TMCs) – are currently attracting
a lot of interest, fueled by the possibility of creating tai-
lored heterostructures.8–11 Due to the low dimensionality
of TMCs, the Coulomb interaction is weakly screened,
thus giving rise to pronounced interaction effects and
excitonic features. TMCs exhibit large exciton binding
energies, which can be of the order of a few hundred
meV.10,12,13 Apart from the importance of excitons as
excited states dominating the in-gap optical absorption
– known as virtual or coherent excitons1,4,14 – excitons
can also be present in the ground state. For sufficiently
large binding energy, these excitons can condense collec-
tively, forming an excitonic insulator (EI).15–17 Because
of the strong Coulomb interaction, TMCs are among the
best candidates for realizing the EI phase.18–22

While virtual excitons in semiconductors are usually
considered in the linear response regime, stronger excita-
tions and out-of-equilibrium dynamics have also been in
the spot light. Dynamics of semiconductors after strong
excitations and the realization of the EI phase there have
been investigated theoretically,23–25 and the relevant
photo-dressed states have been observed recently.26 Fur-
thermore, the strong light-matter coupling in TMCs,27

which can be enhanced by orders of magnitude in a
micro-cavity setup,28–30 implies that excitonic proper-

ties need to be investigated beyond linear response. Im-
portant examples for nonequilibrium setups also include
the optical Stark effect31 and the ultrafast charge trans-
fer in photo-excited bilayer TMCs.32,33 In addition, in
order to unravel the mechanisms of the photo-induced
enhancement34,35 or ultrafast melting of EI orders36, it
is essential to develop an understanding of the dynam-
ics of bound electron-hole pairs in strongly photo-excited
systems.19,34–39

In the linear response regime, excitons are typically
treated within the framework of the Bethe-Salpeter equa-
tion (BSE)13,40,41 in combination with the kernel de-
termined by the Hartree-Fock self-energy (the random-
phase approximation, RPA) or the GW approxima-
tion. Extending the BSE to a nonequilibrium scenario
is possible,42 but currently out of reach for realistic sys-
tems. Time-dependent approaches are a promising alter-
native route for computing the linear43–47 and beyond-
linear response.48,49 In particular, the nonequilibrium
Green’s functions (NEGF)50 approach provides a natural
way of extending the many-body perturbation theory to
the time domain. However, a priori it is unclear which
scheme works best out of equilibrium. For instance, the
spurious effects of fully self-consistentGW 51 are expected
to hamper the excitonic properties, while the extension
of partially self-consistent schemes to the time domain
is not straightforward. Therefore, benchmarks of differ-
ent methods in and out of equilibrium will yield valuable
insights.

In this work, we study a two-band semiconductor
model in one dimension (the extended Falicov-Kimball
model), with virtual excitons induced by a local inter-
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band interaction. This simple model has all the ingredi-
ents needed for exploring exciton dynamics far from equi-
librium, and highly accurate solutions can be obtained.
In particular, we employ the infinite time-evolving block
decimation (iTEBD)52 method, which – upon conver-
gence – yields an essentially numerically exact descrip-
tion. Furthermore, we employ several methods within the
NEGF framework, including time-dependent mean-field
(tdMF) theory and the full treatment of the Kadanoff-
Baym equations (KBEs).50 The self-energy is treated in
the second-Born approximation (2BA), which can cap-
ture polarization and exchange effects. Furthermore, we
employ the generalized Kadanoff-Baym ansatz,53 which
reduces the computational cost considerably. While the
iTEBD method is a numerically powerful and reliable
method for one-dimensional systems, it is difficult to ex-
tend the method to more general setups such as higher
dimensions and long-range interacting systems. In the
present study, we use it to calculate benchmark results for
the other methods. Such a systematic comparison for fi-
nite systems demonstrated the potential of the GKBA.54

Here, we will show that the GKBA also performs well in
extended systems.

Benchmarking these methods against each other, we
systematically study the properties of excitons out of
equilibrium and discuss the effects which require a treat-
ment beyond the MF theory. In particular, we compare
above-bandgap excitations to resonant excitations of the
exciton. We show that in the latter case a moderately
strong pulse can induce large coherent oscillations in the
polarization, which can gradually decay and be regarded
as a transient nonequilibrium excitonic phase. We sys-
tematically study the nature of collective modes in tran-
sient states after above-bandgap excitations and resonant
excitations and find that in the latter case its nature is
different from the normal exciton states in equilibrium.
Combining the GKBA and the RPA-like approach with
distributions obtained from GKBA, we reveal that the
peculiar collective mode originates from the efficient cre-
ation of an inverted population at the edge of the va-
lence and conduction band. We also study the cooling
effects from the electron-phonon couplings and show the
real time formation of the peculiar mode from the above-
bandgap excitation and the build-up of an exciton con-
densation out-of equilibrium.

The paper is organized as follows. In Sec. II, we intro-
duce our model and the methods (tdMF, 2BA, GKBA
and iTEBD) used to study the time evolution of the
model after photo-excitation. We also derive the expres-
sions for the relevant susceptibilities. In Sec. III, we show
the results of the simulations. Section III A presents the
results in the linear response regime, while in Sec. III B
we go beyond the linear response regime and discuss the
difference between above-bandgap excitations and reso-
nant excitations. In Sec. III C, we consider the effects of
cooling from the electron-phonon coupling. The conclu-
sions of our study are summarized in Sec. IV.

II. FORMULATION

A. Model

In this paper, we focus on a spinless two-band model,

Ĥ(t) = Ĥkin(t) + Ĥint + Ĥdip(t) , (1)

where the first term represents the kinetic energy

Ĥkin = −
∑

〈i,j〉,a=c,v

Ja(rij , t)ĉ
†
i,aĉj,a +

∑
i,a

∆aĉ
†
i,aĉi,a .

(2)

Here 〈i, j〉 indicates a pair of nearest-neighbor sites, and
a = c, v indicates the orbitals. c and v stand for the
conduction band and the valence band, respectively. ĉ†

is the electron creation operator, Ja(rij , t) the hopping
parameter, rij is the spatial vector connecting site j to
site i, and ∆a is the energy of orbital a. The electrons in
the two bands interact via a local interaction

Ĥint = U
∑
i

n̂i,cn̂i,v, (3)

where n̂i,a = ĉ†i,aĉi,a. The effect of an external field is

partially included in Ja(rij , t) via the Peierls substitution

Ja(rij , t) = Ja(rij) exp
[
i
q

~
rij ·A(t)

]
, (4)

where A(t) = −
∫ t

E(t̄)dt̄ is the vector potential, E(t) is
the electric field, and q the charge of the electron. This
term corresponds to the intraband acceleration. The
third term is the dipole excitation, which represents the
interband excitation,

Ĥdip(t) = −E(t) ·
∑
i

P̂i = −E(t) ·
∑
i,a

daĉ
†
i,aĉi,ā. (5)

Here the dipole matrix dc,v is local and P̂ is the dipole
moment per site. We use the notation ā = c (ā = v) for
a = v (a = c). In the following, we set the length of the
primitive vector, ~ and q to unity.

Assuming translational invariance, we define the oper-

ators in momentum space, ĉ†k,a = 1√
N

∑
k e

ik·ri ĉ†i,a. Here

N is the number of sites. With these operators, one can
express the Hamiltonian as

Ĥkin(t) =
∑
k

[
ĉ†k,c ĉ†k,v

]
· hkin,k(t) ·

[
ĉk,c
ĉk,v

]
, (6a)

Ĥdip(t) =
∑
k

[
ĉ†k,c ĉ†k,v

]
· hdip,k(t) ·

[
ĉk,c
ĉk,v

]
, (6b)

with

hkin,k(t) =

[
εc(k− qA(t)) + ∆c 0

0 εv(k− qA(t)) + ∆v

]
,

(7a)

hdip,k(t) =

[
0 −E(t) · dc

−E(t) · dv 0

]
. (7b)
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Here εa(k) = −
∑
l Ja(rl)e

−ik·rl , where the sum runs over
nearest-neighbor sites.

Next we introduce the single-particle density matrix as

ρia,jb(t) ≡ 〈ĉ†jb(t)ĉia(t)〉 (8a)

ρk,a,b(t) ≡ 〈ĉ†k,b(t)ĉk,a(t)〉. (8b)

Note that ρloc,a,b(t) ≡ ρia,ib(t) = 1
N

∑
k ρk,a,b(t). We

also use ρk(t) to express the 2× 2 matrix with elements
ρk,a,b(t).

In the present study, we consider one-dimensional
chains and assume that the dipole matrix is directed
along the chain and that d∗c = dv. The system is excited
with Gaussian pulses with various excitation frequencies.

B. Methods

In order to study the nonequilibrium dynamics of this
system, we use several different methods: tdMF, the
2BA, the GKBA implemented with the 2BA and the
iTEBD. In the following, we briefly introduce these meth-
ods and discuss the corresponding susceptibilities.

In general, a linear function χRBA(t, t′) = −iθ(t −
t′)〈[B̂(t), Â(t′)]〉 can be measured by exciting the system

with a weak excitation, Ĥex = Fex(t)Â with Fex(t) ∝
δ(t − t′), and observing the evolution of B̂. This is
how we measure linear functions in the following. If

Â =
∑
ij Aij ĉ

†
j ĉi and B̂ =

∑
mlBmlĉ

†
l ĉm, the response

function can be expressed as

χRBA(t, t′) =
∑
ijlm

Bmlχ
R
ml,ij(t, t

′)Aij , (9)

where χRml,ij(t, t
′) is the retarded part of the function

χml,ij(t, t
′) =− i〈TC ĉ†l (t)ĉm(t)ĉ†j(t

′)ĉi(t
′)〉 (10)

+ i〈TC ĉ†l (t)ĉm(t)〉〈TC ĉ†j(t
′)ĉi(t

′)〉

defined on the the Konstantinov-Perel’ contour C,50,55

which runs from time 0 to time tmax along the real time
axis, back to zero, and then to −iβ along the imaginary
time (Matsubara) axis. TC is the contour ordering oper-
ator and t, t′ ∈ C refer to contour arguments.

In particular, we consider the response function for

Â = ρν,j ≡ Ψ̂†jσνΨ̂j and B̂ = ρµ,i ≡ Ψ̂†iσµΨ̂i, which

we denote by χRµν(t − t′; rij) for a steady state. Here

Ψ̂i = [ĉi,c ĉi,v]
T and σµ is a Pauli matrix. In momentum

space this response function is expressed as χRµν(ω; q) =∑
l

∫
dteiωtχRµν(t; rl)e

−iq·rl . Here, χR11 corresponds to the
polarization-polarization response function.

1. Time-dependent mean-field theory

In the tdMF theory, we consider the time evolution
of the one-particle density matrix Eq. (8) under the

MF Hamiltonian, which is self-consistently determined
at each time. Assuming translational invariance, the MF
Hamiltonian is

ĤMF(t) =
∑
k

[
ĉ†k,c ĉ†k,v

]
· hMF,k(t) ·

[
ĉk,c
ĉk,v

]
, (11)

with

hMF,k(t) = hkin,k(t) + hHartree,k(t)

+hFock,k(t) + hdip,k(t), (12a)

hHartree,k(t) = U

[
ρloc,vv(t) 0

0 ρloc,cc(t)

]
, (12b)

hFock,k = −U
[

0 ρloc,cv(t)
ρloc,vc(t) 0

]
. (12c)

The time evolution of the density matrix follows from the
van Neumann equation, ∂tρk(t) = −i[hMF,k(t),ρk(t)]
and the MF effect is taken into account through ρloc(t) =
1
N

∑
k ρk(t). We also note that the Hartree term shifts

the positions of the bands after the excitation since the
occupation in the two orbitals changes.

Now we consider the linear response of a steady solu-
tion in the MF dynamics assuming that the steady state
does not break the symmetry of the Hamiltonian (the
system remains in the normal state). Here a steady solu-
tion means a state which does not change under the MF
time propagation. The equilibrium state is one example.
The expression for χRµν(ω; q) evaluated by the direct time
propagation within the tdMF is

χR(ω; q) = [1− χR0 (ω; q)Θ]−1χR0 (ω; q). (13)

Here χ indicates the 2 × 2 matrix whose components
are χRµν with µ, ν = 1, 2, and Θ = diag[−U2 ,−

U
2 ]. χ0

is the response evaluated by the time evolution without
updating the mean field, which can be expressed as

χ0,µν(t; q) = −iθ(t) 1

N

∑
k

{
tr[σµG>k+q(t)σνG<k (−t)]

− tr[σµG<k+q(t)σνG>k (−t)]
}
.

(14)

Here Gk(t) is the MF Green’s function at the steady-
state, which is expressed as

G<aa,k(t) = ina(k)e−iEa(k)t, (15a)

G>aa,k(t) = −i(1− na(k))e−iEa(k)t, (15b)

with vanishing off-diagonal components, since we assume
that the steady state is a normal state. Ea(k) is the en-
ergy of the electron in band a with momentum k deter-
mined with the MF Hamiltonian, Eq. (12), for the density
distribution na(k). The explicit expression of the Fourier
transformation of χ0(t; q) is

χ0,µν(ω; q) =
1

N

∑
k,a,b

tr[W aσµW bσν ](na(k− q)− nb(k))

ω + i0+ − (Eb(k)− Ea(k− q))
,

(16)
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with W c =

[
1 0
0 0

]
and W v =

[
0 0
0 1

]
. We note that

by using the equilibrium distribution na(k) = (1 +
exp(βEa(k)))−1, Eq. (13) reproduces the well-known
RPA-type susceptibility in equilibrium, which consists of
ladder diagrams, see Appendix A.

One can simplify Eq. (16) for q = 0 by introducing

γ = L−1χL, γ0 = L−1χ0L, L =
1√
2

[
1 i
i 1

]
. (17)

This rotation makes the off-diagonal elements of γ and
γ0 zero, while

γ0,11(ω) =
2

N

∑
k

nc(k)− nv(k)

ω + i0+ − (Ev(k)− Ec(k))
, (18a)

γ0,22(ω) =
2

N

∑
k

nv(k)− nc(k)

ω + i0+ − (Ec(k)− Ev(k))
, (18b)

γµµ(ω) =
γ0,µµ(ω)

1 + U
2 γ0,µµ(ω)

. (18c)

We note that for positive frequencies (ω > 0), γ11(ω)
and γ0,11(ω) are featureless, while γ22(ω) and γ0,22(ω)
are responsible for nontrivial features in χ and χ0. In
particular, χ11 = 1

2 (γ22 + γ11) implies that χ11 and γ22

exhibit similar structures.

2. Full Kadanoff-Baym formalism: Second-Born
approximation

In order to investigate the out-of-equilibrium corre-
lated dynamics beyond the tdMF approximation, higher-
order scattering processes need to be taken into account.
The NEGF framework provides a systematic and versa-
tile approach for treating many-body effects in the time
domain.50,56 We define the general Green’s function GF
on the Konstantinov-Perel’ contour C as

Gab,k(t, t′) = −i〈TC ĉk,a(t)ĉ†k,b(t
′)〉. (19)

Adopting again the matrix notation, the GF obeys the
equation of motion (Dyson equation)

[i∂t − hMF,k(t)] Gk(t, t′) = δC(t, t
′) + [Σcorr,k ∗Gk](t, t′) ,

(20)

where δC(t, t′) is a straightforward generalization of the
Dirac delta function to the contour C, while ∗ denotes the
convolution along C. Solving Eq. (20) is accomplished by
projecting onto observable times by invoking the Lan-
greth rules, yielding the KBEs.50,56 After solving the cor-
responding equilibrium state (Matsubara GF), the real-
time evolution is governed by the KBEs. Since the MF
self-energy ΣHF(t, t′) = δC(t, t′)(hHartree(t) + hFock(t))
is included in hMF(t), many-body effects beyond mean
field are captured by the correlation self-energy Σcorr =
Σcorr[G], which is a functional of the GF. In this work, we

employ the 2BA, which corresponds to the second-order
self-consistent weak-coupling approximation: Σcorr[G] ≈
Σ2B[G]. The correlated parts of the self-energy consists
of a direct and and an exchange part,

Σ2B[G](t, t′) = Σ2Bd[G](t, t′) + Σ2Bx[G](t, t′) . (21)

For the interaction Hamiltonian (3), the direct contribu-
tion to the self-energy reads

Σ2Bd
ab,k(t, t′) =

U2

N2

∑
q,p

Gab,k−q(t, t′)Gāb̄,q+p(t, t′)

×Gb̄ā,p(t′, t) , (22)

while the exchange part is given by

Σ2Bx
ab,k(t, t′) = −U

2

N2

∑
q,p

Gab̄,k−q(t, t′)Gāb,q+p(t, t′)

×Gb̄ā,p(t′, t) . (23)

While exchange effects captured by Eq. (23) vanish when
the GFs do not have inter-orbital components, their im-
pact onto the strongly driven dynamics is less clear.
Therefore, we also compare results within the simplified
2BA (taking the direct contribution Eq. (22)) to the full
2BA. We denote the simplified 2BA as s2BA in the fol-
lowing.

Given the expression of the self-energy, one can evalu-
ate the linear response functions by simulating the evo-
lution after a weak delta-function field pulse. Using
the real-space representation for convenience, the corre-
sponding response function (χml,ij(t, t

′) in Eq. (10)) can
be expressed as

χml,ij(t, t
′) = −itr[elmG0(t, t′)ejiG0(t′, t)]

− iTr
[
elm

∫
C

dt̄1dt̄2G0(t, t̄1)
δCΣ[G](t̄1, t̄2)

δCFex(t′; i, j)

∣∣∣
G=G0

G0(t̄2, t)
]
.

(24)

Here, G0 indicates the full Green’s function without the
probe excitation, Fex(t; i, j) is the strength of the exter-

nal field proportional to ĉ†j ĉi,
δC
δC

is the functional deriva-

tive on the contour, and δCΣ[G](t̄1,t̄2)
δCFex(t′;i,j) the reducible ver-

tex expressed as a functional derivative on the contour
C. The matrix eij is defined by [eij ]kl = δikδjl. The
self-energy Σ[G] entering Eq. (24) is the full self-energy
Σ[G] = ΣHF[G] + Σcorr[G]. We note that the contribu-

tion from δCΣ
F [G](t̄1,t̄2)

δCFex(t′;i,j) leads to the ladder diagrams con-

sisting of G0. In other words, the response to the probe
evaluated by only updating ΣF [G] in the Dyson equa-
tion and keeping Σcorr[G] = Σcorr[G0] corresponds to the

ladder diagrams consisting of G0. Hence, δCΣcorr[G](t̄1,t̄2)
δCFex(t′;i,j)

generates diagrams beyond these ladder diagrams.

3. Generalized Kadanoff-Baym ansatz

The numerical cost of evaluating the full Kadanoff-
Baym equations Eq. (20) scales as O(N ·N3

t ), where Nt is
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the number of time points used in the simulation, and it
grows significantly for long propagation times. Employ-
ing the GKBA reduces the computational effort by one
order of magnitude in Nt and thus allows simulations up
to considerably longer times. Furthermore, the GKBA
has been shown to cure some deficiencies of the full KBE
approach, especially for finite systems.54 Systematic as-
sessments in extended system are scarce,57 which is one
of the motivations for the present study.

Within the GKBA, the description is reduced to
the time evolution of the single-particle density matrix.
Given a self-consistent approximation to the self-energy
(Σ = Σ[G]), the equation of motion for the density ma-
trix (transport equation) can be expressed as

∂tρk(t) + i[hMF,k[ρ](t),ρk(t)] = −(I<k (t, t) + h. c.),
(25)

where the collision integral I<k (t, t) is defined by

I<k (t, t) =

∫ t

−∞
dt̄
(
Σ<

corr,k(t, t̄)GA
k (t̄, t)

+ ΣR
corr,k(t, t̄)G<(t̄, t)

)
. (26)

Here, we consider the Keldysh contour, which starts from
t = −∞, in constrast to the Konstantinov-Perel’ contour
used in the previous section. In the Keldysh formalism,
correlations of the initial state ρ(t = 0) are built in by
adiabatic switching: at t = −∞, the equilibrium den-
sity matrix is determined by the MF treatment, while
correlation effects are gradually incorporated by replac-
ing Σcorr,k(t, t′) → f(t)f(t′)Σcorr,k(t, t′) with a smooth
switch-on function f(t). However, Eqs. (25) and (26) are
not closed in terms of ρ since, in principle, information
on the whole two-time dependence of the GF enters the
collision integral Eq. (26).

The idea of the GKBA is to approximate the Green’s
functions (GF) in the collision integral by combining
the information contained in the occupation (ρ) and the

spectrum (G̃R, G̃A) by introducing the following auxil-
iary GF:

G̃<
k (t, t′) = −G̃R

k (t, t′)ρk(t′) + ρk(t)G̃A
k (t, t′), (27a)

G̃>
k (t, t′) = G̃R

k (t, t′)(1− ρk(t′))− (1− ρk(t))G̃A
k (t, t′).

(27b)

Here we determine G̃R/A(t, t′) as the mean-field GF

(i∂t − hHF[ρ](t))G̃R/A(t, t′) = δ(t− t′) . (28)

The GKBA attains a closed form for any choice of the
self-energy upon replacing Σ[G] → Σ[G̃] and G → G̃
in the collision integral Eq. (26). In the present paper,
we use the full 2BA Eq. (21) as well as the simplified
version which considers the direct contribution Eq. (22)
only (s2BA).

We now roughly discuss the relation between the sus-
ceptibility evaluated by GKBA and the full KBE form as

described in the previous section. As mentioned in the
previous section, keeping Σcorr[G] = Σcorr[G0] in the full
KBE corresponds to the ladder diagram in terms of the
full GF G0, which is in contrast to the tdMF, whose lad-
der diagram consists of the MF GF. In the latter GF,
the damping of quasi-particles is not included. In the
language of the transport equation, Eq. (25), this corre-
sponds to keeping Σcorr[G] = Σcorr[G0] but updating G
in the collision integral. In the GKBA we approximately
update G and Σ in the collision integral. Therefore,
naively speaking, the corresponding susceptibility should
include a) the effects of the ladder diagrams consisting
of dressed Green’s function (more than the MF Green’s
function) and b) the effects beyond the ladder diagrams.

4. iTEBD

In this subsection, we briefly explain the principle of
iTEBD.52 This method can be applied for the time-
dependent problems such as quench dynamics or laser
driving in quantum spin58–60 and fermion61–64 systems.
The advantage of iTEBD is that calculations without fi-
nite size effects are possible by assuming translational
invariance of the system.

In one dimension, the quantum states can be repre-
sented as matrix product states (MPS). When the system
has a translational symmetry, the MPS representation is
also translationally invariant

|Ψ〉 =
∑
αi,si

· · ·λBAα−1
ΓAα−1α0

[s0]λABα0
ΓBα0α1

[s1]λBAα1

× ΓAα1α2
[s2]λABα2

· · · | . . . , s0, s1, s2, . . .〉,

where si represents the quantum state on the site
i, and in the present system si = 0, 1, 2, 3 corre-
spond to (niv, nic) = (0, 0), (1, 0), (0, 1), (1, 1), respec-
tively (niv, nic is the eigenvalue of n̂iv, n̂ic). αi is the
suffix for the matrices, and the values in the diagonal
matrix λαi

(= λαiαi
) are singular values (also known as

the entanglement spectrum) obtained from the Schmidt
decomposition on the bond between the sites i and i+ 1.
The bipartition of the sites into A and B is for the pur-
pose of the time evolution described below.

The initial state is si = 1 for all i, and the MPS repre-

sentation is given as λ
AB(BA)
αi=1 = 1 and Γ

A(B)
αi=1,αi+1=1[si] =

δsi1, where the matrix dimension is 1. Next we write the
Hamiltonian in the bipartite form as

Ĥ(t) =
∑
i∈A

ĤAB
i (t) +

∑
i∈B

ĤBA
i (t),
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where

Ĥ
AB(BA)
i (t) =−

∑
a

[Ja(ri,i+1, t)ĉ
†
i,aĉi+1,a + H.c]

+
∑
a

∆a

2
(ĉ†i,aĉi,a + ĉ†i+1,aĉi+1,a)

+
U

2
(n̂i,cn̂i,v + n̂i+1,cn̂i+1,v)

− 1

2
E(t) · (P̂i + P̂i+1).

Note that ĤAB(BA)(t) only acts on the bond AB(BA).
Using the Trotter formula, the time evolution operator
U(t, t + ∆t) for an infinitesimal time interval from t to
t+ ∆t is decomposed as

Û(t, t+ ∆t) =e−i
∑

i∈A Ĥ
AB
i (t+ ∆t

2 ) ∆t
2 e−i

∑
i∈B ĤBA

i (t+ ∆t
2 )∆t

× e−i
∑

i∈A Ĥ
AB
i (t+ ∆t

2 ) ∆t
2 +O(∆t2)

=
∏
i∈A

e−iĤ
AB
i (t+ ∆t

2 ) ∆t
2

∏
i∈B

e−iĤ
BA
i (t+ ∆t

2 )∆t

×
∏
i∈A

e−iĤ
AB
i (t+ ∆t

2 ) ∆t
2 +O(∆t2) .

We can consider Tsisi+1;s′is
′
i+1
≡ e−iĤ

AB
i (t+ ∆t

2 ) ∆t
2 as a

two-site quantum gate, and the procedure of its appli-
cation is as follows. We construct a large matrix

ΘAB
αi−1sisi+1αi+1

=
∑

αi,s′i,s
′
i+1

λBAαi−1
ΓAαi−1αi

[s′i]λ
AB
αi

×ΓBαiα1
[s′i+1]λBAαi+1

Tsisi+1;s′is
′
i+1
,

and then perform the singular value decomposition,

ΘAB
αi−1sisi+1αi+1

=
∑
α′i

XA
αi−1siα′i

λ̃ABα′i Y
B
α′isi+1αi+1

by regarding (αi−1, si) and (si+1, αi+1) as the row and
column of the matrix, respectively. The number of up-
dated singular values λ̃ABα′i

is four times larger than that

of λABαi
because λ̃ is obtained from the enlarged matrix

Θ(αi−1,si);(si+1,αi+1) (si = 0, 1, 2, 3). Since the dimension
of the matrix increases by iterating the step, we fix a
maximum dimension M (called the truncation dimen-
sion) and only keep the M largest singular values, trun-
cating the rest when the matrix dimension exceeds M .
The updated Γ is constructed as

Γ̃Aαi−1α′i
[si] =(λBAαi−1

)−1XA
αi−1siα′i

,

Γ̃Bα′iαi+1
[si+1] =Y Bα′isi+1αi+1

(λBAαi+1
)−1.

The procedure is the same for the application of∏
i∈B e

−iĤBA
i (t+ ∆t

2 )∆t. By iterating the above update,
we can calculate the time evolution of the system. The
numerical error arises from the Trotter decomposition
and the truncation, and the precision becomes better for

larger M and smaller ∆t. In this paper, we set M = 1200
and ∆t = 0.01 or 0.05 depending on the laser field. The
expectation value of a single-site observable such as n̂i,v
and P̂i (for the A site) is calculated as

〈Ôi〉 =
∑

αi−1,si,αi

(λBAαi−1
)2ΓA∗αi−1αi

[si]Γ
A
αi−1αi

[s′i](λ
AB
αi

)2

× 〈si|Ôi|s′i〉,

where ∗ represents the complex conjugate. We also cal-
culate the expectation value for the B site in the same
way and take the average of A and B.

For the calculations of space-time correlation func-
tions, we use TEBD for finite size systems instead of
iTEBD because the application of the single site oper-
ator at the initial time t0 breaks the spatially transla-
tional invariance. We prepare the N (= even) site system
r = −N/2 + 1, . . . , N/2, and apply the operator at the
site r = 0. The scheme for the time evolution of TEBD is
the same as that of iTEBD. Hence the response functions
are obtained directly

χ>(ω; q, t0) =

∫ t1

t0

dt
∑

r

eiω((t−t0)−q·r)χ>11(t, t0; r),

(29)

where χ>11(t, t0; r) = −i〈P̂r(t)P̂0(t0)〉 is the greater part

of the contour function χ11(t, t′; r) ≡ −i〈TCP̂r(t)P̂0(t′)〉.
This quantity Eq. (29) reveals the structure of collective
modes at finite momenta. χ>11(t, t0; r) can be calculated
as follows. Since the initial state is (ni,v, ni,c) = (1, 0) for
all i, the initial MPS is represented by one-dimensional
matrix as stated above. For the equilibrium correlation
function, we apply P̂0 to this state (t0 = 0), and calcu-
late the time evolution using the Hamiltonian without
laser up to the time t. Then P̂r is applied and taking the
inner product with the initial state (and the phase factor
eiE0t, E0 is the ground state energy). For the dynamical
correlation function under the laser, we evolute from the
initial MPS up to the time t0 with the Hamiltonian with
laser driving and obtain the state |Ψ(t0)〉. Then we evo-

lute the two states |Ψ(t0)〉 and P̂0|Ψ(t0)〉 from t0 to t1
with the Hamiltonian under laser and apply P̂r only to
the latter. χ>11(t, t0; r) is obtained as the inner product
of these two states.

We note that −Imχ<(ω; q) in equilibrium at T = 0 is

exactly the same as −ImχR(ω; q) for ω > 0. In general,
when the contribution from the lesser part of χ11(t, t′; r)
is small, χ>(ω; q, t0) can be approximated with the

Fourier component of the retarded part χR(ω; q, t0). In
practice we use a window function Fwindow(t; t0) in the
Fourier transformation Eq. (29), χ>11 → χ>11Fwindow, since
TEBD can only access rather short times. Specifically,
we use Fwindow(t; t0) = Fgauss(t−t0, σ) with Fgauss(t, σ) ≡
exp
(
− t2

2σ2

)
.
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FIG. 1. Dispersion of the conduction band and valence band
for Jc = 1, Jv = −1,∆v = −3.2,∆c = 1.2 and U = 2.0
at T = 0. The green (blue) arrows indicate the above-gap
(resonant) excitation with frequency Ω = 3.0 (Ω = 1.9).

III. RESULTS

In the following, we choose the hopping parameters as
Jc = 1, Jv = −1 and consider half-filling systems in the
semiconductor regime (with a band gap > 0). In this
case the valence band is fully occupied in the ground
state at T = 0, which is our initial state. The single
particle spectrum obtained by the MF theory becomes
exact for this state, as discussed in Appendix. A. For the
other parameters, we use ∆v = −3.2 and ∆c = 1.2, and
U = 2.0, which corresponds to a direct gap semiconduc-
tor with the band gap Egap = 2.4 at T = 0, see Fig. 1.
The choice of these parameters is motivated by those of
some TMDs, which are characterize by a binding energy
of a few hundred meV and a gap energy of a few eV.33

A. Linear response regime

We first discuss the excitons in the equilibrium sys-
tem. The exciton state is a bound state of an electron
in the conduction band and a hole in the valence band.
When we denote the energy necessary to excite an exci-
ton from the equilibrium state by Eex, the exciton bind-
ing energy Eb can be expressed as Eb = Egap − Eex. To
measure Eex, we excite the system with a very weak and
short pulse, which includes a wide range of frequency
components, and measure the induced dynamics of the
dipole moment P . The exciton energy Eex manifests it-
self as a well defined oscillation in this quantity, and thus
can be obtained by the Fourier transformation of P (t).
In Fig. 2(a), we compare the Eb evaluated in the above
way for different methods (s2BA, GKBA+s2BA,tdMF,
iTEBD). The results match perfectly, since in the present
case one can show that the MF dynamics (RPA-type re-
sponse), the GKBA and 2B are exact, see Appendix A.
(2BA and GKBA+2BA are also exact.) More specifi-
cally, the response function evaluated by Eq. (18) with
the T = 0 occupation becomes exact. In Fig. 2(b), we
show the corresponding γ0,22(ω). The imaginary part of
γ0,22(ω) is essentially zero below the band gap. (It is fi-

FIG. 2. (a) Comparison of the exciton binding energy, Eb,
estimated from the oscillations after a short pulse using dif-

ferent numerical methods. The dashed line indicates U2

8
. (b)

Results of γ0,22 (Eq. (18b)) for T = 0. Here 0+ = 0.02 is
used. The horizontal dotted line indicates − 2

U
. The shaded

area indicates the particle hole continum. (c) The spectrum of
the linear response function −Imχ11(ω; q) in equilibrium eval-
uated by the TEBD for ∆v = −3.2,∆c = 1.2 and U = 2.0
at T = 0. Here we take σ = (t1 − t0)/(2

√
2) with t0 = 0

and t1 = 40. The green (blue) arrows indicate the above-
gap (resonant) excitation with excitation frequency Ω = 3.0
(Ω = 1.9).

nite in the figure because we use 0+ = 0.02 in Eq. (18b)
for the numerical evaluation.) The real part has a peak
at Egap, which is related to the imaginary part by the
Kramers-Kronig relation. The crossing of γ0,22(ω) and
−2/U at ω < Egap leads to a peak structure in the
imaginary part of γ22(ω), which corresponds to the exci-
ton. For the one dimensional case, one can analytically
show that −Reγ22,0(ω) diverges ∝ 1√

ω−Egap

around Egap

for ω < Egap and that the binding energy Eb scales as
U2

4∗(Jc−Jv) for small U . We also note that, as long as the

ground state is semimetallic, the exciton binding energy
is independent of Egap in the present case. One can see
this from Eq. (18b). The change of the gap by ∆Egap

just shifts γ0,22(ω) by ∆Egap. Hence the pole position in
γ22(ω) is also shifted by ∆Egap, and the binding energy
does not change.

In Fig. 2(c), we show the spectrum of the linear re-
sponse function −Imχ11(ω; q) for ∆v = −3.2,∆c = 1.2
and U = 2.0 at T = 0 evaluated by the TEBD. One
can see a dispersive band below the particle-hole contin-
uum, which corresponds to the (virtual) exciton states
and their dispersion.
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FIG. 3. GKBA+s2BA time evolution of the excited charge (a),(d), the dipole moment (b),(e), and the total energy (c),(f)
during and after the photo excitation with Ω = 3.0 (a)-(c) and Ω = 1.9 (d)-(f), pulse parameters defined in Eq. (32), and
different field strengths E0.

B. Beyond linear response

Now, we discuss the time evolution of the system dur-
ing and after a photo-excitation beyond the linear re-
sponse regime. In the following, we use ∆v = −3.2 and
∆c = 1.2, and U = 2.0, which gives Eeq

gap = 2.4 and
Eeq

ex = 1.93 in equilibrium at T = 0. We apply the Gaus-
sian pulse with

Ax(t) = A0 · Fgauss(t− t0, σ) · sin(Ω(t− t0)) · Framp(t, tr).
(30)

Here Fgauss(t, σ)(= exp
(
− t2

2σ2

)
) is the envelope function

and

Framp(t, tr) =


0 for (t ≤ 0)
1
2 −

3
4 cos(πt/tr) + 1

4 cos(πt/tr)
3

for (0 < t < tr)

1 for (tr ≤ t)
(31)

is a ramp-up function which ensures that the evolution
of the field around t = 0 is smooth. In the following, we
use

φ = 0, t0 =
Ncycπ

Ω
, σ =

t0
3.0

, tr =
2π

8Ω
, (32)

with Ncyc = 10 unless we mention the condition specifi-
cally. Here Ncyc is the number of cycles included within
[−3σ, 3σ] of the Gaussian envelope. We will consider two
cases, i) an excitation into the particle-hole continuum
(Ω > Eeq

gap) and ii) a resonant excitation of the excitons

(Ω = Eeq
ex ). The former case is depicted in Figs. 1 and

2(c) with green arrows, while the latter is shown with
blue arrows. We note that in the case of strong exci-
tations, Eex shifts away from its equilibrium value (Eeq

ex )
during the pulse, so that for a fixed pulse frequency, the
system eventually deviates from the resonant condition.
With this excitation protocol, we are going to investi-
gate how the exciton frequency Eex, the binding energy
Eb, and the single particle spectrum are affected by the
photo-doping of the system.

In Fig. 3 we first show the GKBA+s2BA results for
the time evolution of the number of electrons in the con-
duction band, the dipole moment, and the total energy
after different excitations. For Ω = 3.0 > Eeq

gap (left pan-
els), the number of excited charge carriers increases with
increasing field strength in this regime. In the absence
of a field, the bands are decoupled and the Hamilto-
nian conserves the number of particles in the conduction
and valence band, respectively, which is correctly cap-
tured by the GKBA. As expected, since Ω is far from
the exciton frequency, there is no prominent oscillation
observed after the pulse, which lasts up to t ≈ 20. For
Ω = 1.9 ' Eeq

ex (right panels), one can observe a non-
monotonic increase of nc as a function of time as well as
the field strength. This can be understood as a Rabi os-
cillation between the ground state and the exciton state.
After the excitation (t & 30), one can observe strong
coherent oscillations in P (t) with some frequency ωcoh,
which persist for a long time after the pulse. The damp-
ing speed of these oscillations is enhanced with increas-
ing field strength. From the Fourier transformation of
these oscillations, one finds ωcoh = 2.13 (ωcoh = 2.12) for
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FIG. 4. Comparison of the density of conduction band electrons and the polarization among s2BA, GKBA+s2BA, iTEBD and
MF for Ω = 1.9. (a),(b) are for E0 = 0.1, (c),(d) are for E0 = 0.2 and (e),(f) are for E0 = 0.3.

E0 = 0.1 (E0 = 0.2) at t = 60 (The frequency is a bit
∼ 0.04 increased from just after the pulse.). These val-
ues exceed the exciton frequency in equilibrium and the
renormalized gap energy Eren

gap = 1.91 (Eren
gap = 1.85). Here

Eren
gap is extracted from the instantaneous MF hamiltonian

hHF[ρ](t). Note that when the amplitude of the polar-
ization becomes small the contribution of the Fock term
becomes negligible and Eren

gap is mainly determined by the
Hartree shift. (For smaller field amplitude E0, the os-
cillation frequency is still smaller than the renormalized
gap energy.) As demonstrated in Figs. 3(c) and 3(f), the
total energy (Etot) is conserved after the excitation.

Now let us compare the results obtained by the differ-
ent numerical methods. In Fig. 4, we compare the density
of the conduction band electrons and the polarization
obtained by s2BA, GKBA+s2BA, MF and iTEBD for
Ω = 1.9. In all cases, the strong coherent oscillations in
the polarization persist even after the pulse. Among the
approximate methods (s2B, GKBA+s2B, MF), GKBA
provides the results closest to those of iTEBD. The most
important difference between the tdMF and the rest is
the damping of the induced coherent oscillations. Al-
though GKBA still underestimates the damping com-
pared to iTEBD, we find that the estimation of the
damping within the GKBA is quantitatively better for
the stronger fields. The s2BA can also show the damp-
ing of oscillations but it is generally weaker compared
to GKBA and for E0 = 0.1, 0.2 it is very weak, while
2BA and GKBA match better as we further increase
the field strength. Importantly, the peculiar feature of
the coherent oscillations induced by the resonant exci-
tation can be observed in iTEBD. For example, within
iTEBD ωcoh is 2.05, while Egap is 1.86 for E0 = 0.1 around
t = 60. (Since the direct evaluation of the single parti-
cle gap in nonequilibrium iTEBD calculations is difficult,
we estimate Egap from the density of excited charges nc
and the resulting Hartree shift.) We also compare 2BA,
GKBA+2BA, s2BA and GKBA+s2BA in Appendix C,
but, in the present setup, the exchange term does not
result in a significant change in the evolution of P nor
systematically improve the results compared to s2BA and

GKBA+s2BA. This comparison suggests that the GKBA
captures well the relevant features of the dynamics of the
extended systems and that it is a useful method for sys-
tematic studies due to its relatively cheap computational
cost.

Let us now comment on the relation between the strong
coherent oscillations observed here and results reported
in previous works.23–25,65,66 After the excitation, the
Hamiltonian conserves the number of electrons and holes,
respectively. If the excited charge carriers are cooled
down due to some coupling to thermal baths, the steady
state after the relaxation should be described by a ther-
mal state of the original Hamiltonian (Eq. (1) without
excitation) with two different effective chemical poten-
tials for the conduction band (µc) and valence band (µv),

ĤM = Ĥ(0) − µcN̂c − µvN̂v.25,65,66 Here µc and µv are
determined such that the number of electrons and holes is
the same as that just after the excitation. Since ĤM cor-
responds to the original Hamiltonian with a smaller band
gap, it can exhibit an excitonic insulating (EI) phase
(exciton condensation out of equilibrium).25,66 The time

evolution of the system is however described by Ĥ, not by
ĤM , so that this state exhibits oscillations of the polar-
ization (off-diagonal component of the density matrix)
with frequency |µc − µv|, which is of the order of the
band gap. It has recently been shown in an indepen-
dent work (Ref. 25) using the same model as considered
here and tdMF, that such a state can be realized even
without baths by using a suitable pulse shape. Thus,
the strong coherent oscillations in the polarization ob-
served here can be understood as a transient realization
of a nonequilibrium EI phase and the frequency of the
oscillations above the renormalized band gap can be at-
tributed to the effective chemical potentials in the two
bands. Still, we have to note that the state just after the
excitation is not exactly the thermal equilibrium state
of ĤM , and our beyond-MF simulation shows that the
transient EI phase can decay because of the scattering
between the excited carriers. In the following, we focus
on the properties of the transient states characterized by
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a gradually decreasing polarization. The effects of a cou-
pling to phonon baths, which results in the realization of
an equilibrium state of ĤM , are discussed in Sec. III C.

To study properties of the transient states, we perform
a pump-probe simulation using GKBA + s2BA. Namely,
in addition to the first strong pump field, we add a sec-
ond weak pulse (probe pulse) with some time delay. The
shape of the probe pulse is chosen as

Eprobe(t; tprobe) = EprobeFgauss(t− tprobe, σprobe). (33)

In the following we use σprobe = 0.5 and Eprobe = 0.01
and neglect the vector potential of the probe pulse. Then
we measure the dipole moment P (t) and calculate the
difference between the results with and without a probe
pulse at tprobe,

∆P (t; tprobe) ≡ P (t; tprobe)− P (t)no probe. (34)

To identify frequencies of oscillations induced by the
probe pulse at tprobe, we perform a Fourier transforma-
tion with a window function,

∆P (ω; tprobe) =

∫
dt ∆P (t; tprobe)Fwindow(t; tprobe)eiωt.

(35)

Here Fwindow(t; tprobe) = Fgauss(t−tprobe, σ) and σ = 20.0
is used in the following. This time dependent spectral
function can reveal the excitation structure of the tran-
sient state around t = tprobe, when the oscillations in-
duced by the pump pulse is not large or slower than the
characteristic frequency induced by the probe pulse. We
call the peak in ∆P (ω; tprobe) as ω∗coh in the following.

In Fig. 5 we show the results of these analyses for
Ω = 3.0 and Ω = 1.9, respectively. For Ω = 3.0
(above band-gap excitation, left four panels), one finds
that there is almost no change in ∆P (t; tprobe) and hence
∆P (ω; tprobe) after the pump pulse. With increasing
field strength, the oscillation frequency (ω∗coh) becomes
smaller and at the same time, the life time of the oscilla-
tion becomes shorter. After the excitation, the band gap
is reduced because of the Hartree shift from the photo
carriers. Still, the frequency of the oscillation is within
the shifted band gap, and thus the situation is qualita-
tively similar to the exciton state in equilibrium. Thus we
can regard ω∗coh as a renormalized exciton energy, Eren

ex .
We note that within GKBA + s2BA, the renormalized
binding energy, Eb = Eren

gap − Eren
ex , is slightly increased to

0.50 (0.55) for E0 = 0.2 (E0 = 0.3) from the equilibrium
value Eb,eq = 0.47. However, within GKBA + 2BA, even
though Eren

ex (= ω∗coh) < Eren
gap, Eb = 0.42 for E0 = 0.2.

Whether the enhancement of Eren
b is genuine or not is

thus unclear. (iTEBD can only access short times for
Ω = 3.0.)

For Ω = 1.9 (resonant excitation, right four panels),
one observes a very different behavior from the case dis-
cussed above. Namely, the frequency of the induced os-
cillations (ω∗coh) increases for small E0 from Eeq

ex and de-
creases for larger E0. More remarkably, the frequency

can exceed the renormalized band gap unlike the normal
exciton in equilibrium. We note that, when the nonequi-
librium states induced by the pump pulse show strong
oscillations, the signal induced by the probe pulse also
follows these oscillations and ω∗coh becomes similar to
ωcoh. Hence, the gradual shift of ω∗coh after the pulse
for E0 = 0.2 can be attributed to the shift of ωcoh itself.
When the amplitude of the oscillations induced by the
pump pulse is damped and becomes small, ωcoh and ω∗coh
are essentially the same, since both oscillations can be re-
garded as a small perturbation around the state without
the oscillations. As in the case of Ω = 3.0, the life-time
of the oscillations becomes shorter with increasing field
strength.

Since the exciton states should be strongly affected
by the transient quasiparticle occupations, we study the
time evolution of the momentum distribution of the
charges (nc(k), nv(k)). Since nc(k) and 1−nv(k) behave
identically, we only show nc(k) in Fig. 6. For Ω = 3.0
[Figs. 6(a) and 6(b)], the charges are excited at finite
momenta which correspond to Ω = Ec(k)−Ev(k). Even
though there occurs a slight redistribution and the oc-
cupation around k = 0 becomes nonzero, most of the
excited charges remain at nonzero momentum, and after
the pulse the nonthermal distribution function remains
almost constant. This is qualitatively similar to the MF
dynamics, even though the latter lacks scattering and
the occupation around k = 0 remains almost zero after
the pulse, see Fig. 14 in Appendix B. The slow intra-
band relaxation is a consequence of the one-dimensional
setup we are using, which implies that the scattering be-
tween charges is strongly restricted because of the mo-
mentum conservation and the energy conservation. It is
expected that if we use a higher-dimensional lattice or
consider electron-phonon scattering, one can observe a
faster thermalization/redistribution process. In Sec III C
we will analyze the effects of electron-phonon couplings.

For Ω = 1.9 [Figs. 6(c) and 6(d)], the charges are di-
rectly excited around k = 0. After the pulse, the distri-
bution function remains almost unchanged. The compar-
ison with the results from tdMF (Fig. 14 in Appendix B)
shows that the redistribution of the population due to
scattering is indeed captured by GKBA, which yields
a smooth distribution as a function of momentum and
leads to an increase of the occupation near k = 0. In
both simulations, a fast approach to a steady value is ob-
served after the pump, which is consistent with a change
of the oscillation frequency during or quickly after the
excitation. We note that for E0 = 0.3 the particles are
broadly distributed in the momentum space compared to
the case for E0 = 0.2.

To understand the origin of the qualitatively different
collective modes (ω∗coh) in the transient state after the
pump pulse, depending on the excitation frequency, we
now perform an RPA-type analysis using the essentially
steady momentum distribution after the pulse. The idea
of this analysis is the following. First, we extract, the
momentum distribution nc(k) and nv(k) after the pulse
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FIG. 6. GKBA + s2BA time evolution of the momentum
distribution of the conduction-band electrons (nc(k)) for dif-
ferent pump pulse excitations and amplitudes.

from the GKBA simulation. We then substitute these
nc(k) and nv(k) (neglecting the interorbital components
〈ĉ†cĉv〉, 〈ĉ†v ĉc〉) into Eqs. (16), (18b) and (13) to estimate
the nonequilibrium susceptibility. We note that this ap-
proximation corresponds to the MF dynamics starting
from the distribution given by nc(k) and nv(k) (without
interorbital component), which is a steady-state solution
of the MF equation of motion.

In Figs. 7 and 8, we show γ0,22(ω) and γ22(ω) for dif-
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FIG. 7. Results of γ0,22 [Eq. (18b)] and γ22 [Eq. (18c)] for
different field strengths E0 and Ω = 3.0. The momentum
distribution is obtained from the GKBA +s2BA simulation
at t = 150. The vertical dotted lines indicate the band gap
estimated by the MF Hamiltonian, Eq. (12). Here we set
0+ = 0.02 in Eq. (18) for the numerical evaluation, which ex-
plains the finite weight in Imγ0,22 below the band gap. ”Eq.”
indicates the results in equilibrium.

ferent pump frequencies and amplitudes. For Ω = 3.0
(Fig. 7), as we increase the field strength, more electrons
are excited to the conduction band and the band gap be-
comes smaller because of the Hartree shift, see Eq. (12b).
As a consequence, the edge of the imaginary part of γ0,22
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estimated by the MF Hamiltonian, Eq. (12). Here we set
0+ = 0.02 in Eq. (18) for the numerical evaluation, which ex-
plains the finite weight in Imγ0,22 below the band gap. ”Eq.”
indicates the results in equilibrium.

is shifted to lower energies and the peak at the edge is
reduced because of the finite density of conduction elec-
trons around k = 0, see Eq. (18b). The electrons stuck
at non-zero momentum appear in the imaginary part
of γ0,22 as a local minimum around ω = 3.0. Because
the imaginary part of γ0,22 is connected to the real part
through the Kramers-Kronig relation, these features in
the imaginary part lead to a shift of the peak and a re-
duction of the height of the peak in the real part. Still the
peak in the real part in γ0,22 is prominent, which leads to
a well defined in-gap mode appearing in the imaginary
part of γ22, see Fig. 7(d). The exciton binding energy
(the distance between the peak and the dashed line in
Fig. 7(d)) is gradually reduced with increasing pulse am-
plitude, which reflects the reduction of the height of the
peak in the real part of γ0,22.

For Ω = 1.9 (Fig. 8), we observe a suppression of the
band gap with increasing field strength. Different from
the case of Ω = 3.0, the excited charges directly accumu-
late at the bottom of the conduction band around k = 0.
This produces a more drastic change in γ0,22 and hence
in γ22. For E0 = 0.06, the peak structure around the
renormalized gap Eren

gap is strongly suppressed in γ0,22(ω),
but there still exists a crossing between the real part of
γ0,22(ω) and −2/U , which leads to a well-defined in-gap
state as in equilibrium, see Fig. 8(c,d). When we further
increase E0, a population inversion (nc(k) > nv(k)) oc-
curs around k = 0, which is reflected in the positive value
of Imγ0,22(ω) around Eren

gap. Because of this population in-
version near k = 0, the imaginary part of γ0,22(ω) crosses
zero at a certain energy, which we denote by ω∗. This

zero-crossing can lead to a peak in the real part of γ22(ω).
To show this let us approximate γ0,22(ω) ' α+iβ(ω−ω∗)
around ω∗. Using Eq. (18c),

γ22(ω) '
[α+ iβ(ω − ω∗)][(1 + U

2 α)− iU2 β(ω − ω∗)]
(1 + U

2 α)2 + [U2 β(ω − ω∗)]2
.

(36)

This expression features a pole at ω = ω∗ + i(1 +
U
2 α)/(U2 β). If (1 + U

2 α)/(U2 β) is small compared to ω∗

and the range in which the linearization of γ0,22(ω) is
justified, one can see a clear peak in the real part of
γ22(ω) around ω∗. This condition is indeed satisfied in
the present case, see E0 = 0.08, 0.2 in Figs. 8(a)(b),
where α & −2/U , so that we end up with a clear peak in
the real part of γ0(ω), see Figs. 8(c)(d).

Thus, the RPA-type analysis qualitatively reproduces
the dependence of the frequency of the collective mode
ω∗coh on the excitation condition. For the above-gap exci-
tation with Ω = 3.0, ω∗coh stays smaller than Eren

gap, whose
character is similar to that of excitons in equilibrium.
On the other hand, the mode observed for Ω = 1.9 above
the renormalized band gap is explained by the popula-
tion inversion just at the bottom of band (large β) and
the moderate excitation, which results in a minimum of
the real part of γ0,22(ω) close to −2/U . Since a resonant
excitation at the equilibrium exciton energy can quickly
induce such populations, its naturally result in the pe-
culiar coherent mode with frequency ω∗. Furthermore,
the RPA-type analysis predicts that the appearance of
a well-defined peak in the real part of the susceptibil-
ity χ0(ω; q = 0) instead of the imaginary part leads to a
phase shift of the oscillation against the probe pulse.

We now directly check this change in the transient sus-
ceptibility within GKBA + s2BA. Using GKBA, we can
estimate the transient susceptibility through the pump-
probe simulation as

χGKBA(ω; tprobe) =
∆P (ω; tprobe)

−q Eprobe(ω; tprobe)
(37)

with ∆P (ω; tprobe) defined in Eq. (35) and
Eprobe(ω; tprobe) =

∫
dteiωtEprobe(t; tprobe). We note

that this corresponds to χR11(ω; q = 0) in equilib-
rium when Eprobe is very weak. Considering the
fact that the system is oscillating, we calculate the
average of χGKBA(ω; tprobe) over the time interval
145 ≤ tprobe ≤ 155 (χ̃GKBA(ω)) and show the results in
Fig. 9(a)(b).

For small E0, there is a peak in the imaginary part
of χ̃GKBA, see E0 = 0.04 as an example, while for large
enough E0, the peak appears in the real part of χ̃GKBA,
see e. g. E0 = 0.2. This is consistent with the RPA-
type analysis. In Fig. 9(c), we show the renormalized
gap (evaluated at t = 150) and the frequency of the in-
duced oscillation ω∗coh evaluated by the peak position of
|χ̃GKBA(ω)| as a function of E0. The relative magnitude
of these quantities switches around E0 = 0.08 but the
weak- and strong-field regimes are smoothly connected
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(no singular behavior). In Fig. 9(c), we also show the
phase of −χ̃GKBA(ω) at ω = ω∗coh. Reflecting a peak in
the imaginary part for small E0 and the one in the real
part for large E0, the phase quickly changes from a value
close to 1.5 to one close to 0 near E0 = 0.08.

Although the GKBA and the RPA-type analyses agree
qualitatively, there are several differences between them.
First, compared to GKBA, the RPA-type analysis shows
a larger frequency of the collective mode and a more
abrupt switching of the phase, Fig. 9(c). Second, GKBA
predicts that the signal in the crossover region becomes
larger and the peak becomes sharper compared to the
result for larger values of E0, which is opposite to the
behavior found in the RPA-type analysis. We also note
that for E0 = 0.17, 0.19, the RPA-type analysis predicts
a positive weight at the peak in Reγ22, which originates
from the fact that γ0,22(ω) becomes smaller than −2/U
at ω∗. Hence, the phase of −χ̃GKBA(ω∗coh) takes a value
near −π. In addition, the RPA-type analysis predicts an
infinite life-time of the in-gap states, while in the GKBA
analysis these states can decay.

These differences may be attributed to i) the absence
of the effects of the interorbital components in the RPA-
type analysis, ii) the fact that GKBA partially takes into
account the finite life-time of the quasiparticles as well as
the corrections beyond the ladder diagrams from the cor-
related part of the self-energy. Neglecting the effects of
the off-diagonal part in the density matrix should not be
justified when the induced oscillations are long-lived as in
E0 = 0.06 ∼ 0.1 at Ω = 1.9. Hence, the transition from
the normal-exciton like oscillation to the peculiar collec-
tive mode above the band gap is not fully captured within
the RPA-type analysis. As for ii), the finite lifetime of
quasi-particles can lead to a decay of the excitons and
hence a finite lifetime, while the vertex corrections for
the response functions beyond the RPA-type diagrams
can renormalize the frequency of the oscillations.

Finally, we show the momentum resolved correlation
functions evaluated by TEBD, Eq. (29). In Fig. 10, we
show −Imχ>(ω; q, t0) just after the resonant excitation
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FIG. 10. Imaginary part of the momentum resolved corre-
lation function −Imχ>(ω; q, t0) after the pump with Ω = 1.9
and E0 = 0.1 for t0 = 33.08 and t1 = 80. Here σ =
(t1 − t0)/(2

√
2) is used for the window function.

(Ω = 1.9 and E0 = 0.1), see Fig. 2(c) for the equilibrium
result. In equilibrium, there is a single exciton band be-
low the electron-hole continuum. The correlation func-
tion after the resonant excitation exhibits several well-
defined bands. Around q = 0, the sign of−Imχ>(ω; q, t0)
changes around ω = 2.05, which is consistent with the
behavior of −Imχ̃RGKBA when the peculiar mode is gen-
erated, see Fig. 9(b). Interestingly, the positive signal
above 2.05 evolves into a well-defined branch at finite
momentum which has a different dispersion than the ex-
citon branch.

C. Effects of electron-phonon coupling

So far we have studied the dynamics of pure elec-
tron systems. However, in practice, there are nonzero
electron-phonon (el-ph) couplings and the excited charge
carriers can be cooled down. Especially in semiconduc-
tors, the relaxation in the conduction band can occur
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FIG. 11. (a), (c) Time evolution of the momentum dis-
tribution of the conduction-band electrons (nc(k)) within
GKBA + s2BA for finite electron-phonon couplings. (b),
(d) |∆P (ω; tprobe)| obtained by the pump-probe simulation
(Eq. (35)) plotted in the space of ω and tprobe. The solid
black lines indicate the frequency of the exciton in equilibrium
Eex,eq, while the dashed black lines indicate the renormalized
band gap Erengap, after the pulse measured at t = 150. (a), (b)
is for E0 = 0.2 and Ω = 3.0, while (c), (d) is for E0 = 0.35
and Ω = 3.0. Here ωc = 0.2 and g = 0.25 are used.

on a few tenth to a few hundred of femtoseconds and
thus plays an import role.67,68 The efficiency of the cool-
ing depends on the strength of the el-ph coupling and
the phonon frequency. Here we study the cooling effects
using the GKBA. Namely, in addition to the self-energy
from the el-el interaction, Eq. (22), we add the self-energy
representing the el-ph coupling at the level of the Migdal
approximation:

Σ
≷
k [G̃](t, t′) = ig2G̃

≷
loc(t, t′)D≷

0 (t, t′) . (38)

Here, D0(t, t′) denotes the phonon GF and we assumed
that the phonons are locally coupled to the densities
of each band on each site. Since the total density
per site is fixed, with this type of coupling, no dy-
namics of the phonon displacement is induced after the
excitation, and the Hartree-like (Ehrenfest) term can
be ignored. Moreover, such a coupling to the phonon
bath does not change the symmetry of the Hamilto-
nian so that the number of excited charges is con-
served after the pulse. We fix the phonon propaga-
tor to the equilibrium one (no feedback to the phonon
subsystems), such that the phonons act as a heat
bath. The phonon GF is obtained by Fourier trans-

forming D
≷
0 (t, t′) =

∫
dω/(2π)D

≷
0 (ω)e−iω(t−t′) and the

fluctuation-dissipation theorem D>
0 (ω) = −iNB(ω)B(ω),

D<
0 (ω) = −i[NB(ω) + 1]B(ω) (NB(ω) is the Bose distri-

bution). Here we consider the Ohmic spectrum

B(ω) = 2π
ω

ωc
e−|ω|/ωc (39)

with cutoff frequency ωc.

In Fig. 11, we show the evolution of nk,c and the results
of the pump-probe simulation for the excitation above the
gap (Ω = 3.0) with different excitation strength. One
can see the relaxation of the excited carriers from finite
momentum toward k = 0, which was absent in the case
without electron-phonon coupling. Reflecting the time
evolution of the momentum distribution, the frequency
of the collective mode induced by the probe field gradu-
ally increases. For the weaker excitation, the frequency
of the collective mode remains below the band gap, while,
for sufficiently strong excitations, at some point in time
the frequency exceeds the renormalized band gap. The
latter result is very similar to the resonant excitation case
without el-ph coupling, where the photo electrons (holes)
are directly created at the bottom (top) of the conduc-
tion (valence) band. The present calculation shows that,
with the cooling induced by the el-ph coupling and for
sufficiently strong excitation, the peculiar collective mode
can also be induced by above band-gap excitations.

As discussed in Sec. III B, when the system is com-
pletely relaxed after the excitation, the steady state
reached should be described by the original Hamiltonian
(Eq. (1) without excitation) with two different chemi-
cal potentials for the conduction band (µc) and valence

band (µv), Ĥ
M = Ĥ(0) − µcN̂c − µvN̂v.25,65 Since the

ground state of such a Hamiltonian can be an excitonic
insulating (EI) phase, one can expect the appearance of
large amplitude persistent oscillations of the polarization
(nonequilibrium EI phase). In Sec. III B, we showed that
the resonant excitation can create a transient state close
to such an EI phase, consistent with the recent results in
Ref. 25. Here we show that, in the presence of el-ph cou-
pling, after the initial decay of the transient EI state, the
nonequilibrium EI phase is recovered due to the cooling
effect. As a result, large-amplitude persistent oscillations
of the polarization reappear at long times.

In Fig. 12, we compare the time evolution with and
without the phonon bath for the strong resonant exci-
tation, which generates the excited electrons near the
Γ point. For the present field strength, the polariza-
tion damps quickly after the pulse in both cases. How-
ever, in the presence of the phonon bath, the polarization
recovers after some time and exhibits persistent oscilla-
tions, which suggests the exciton condensation induced
by the cooling of the excited charges. In Fig. 12(c), we
show the evolution of the kinetic and total energies. The
phonon bath gradually reduces the total energy. After
the pulse, the kinetic energy also gradually decreases,
but it starts to increase when the signal of the coher-
ence of polarization starts to recover. This is consis-
tent with the Bardeen-Cooper-Schrieffer (BCS) scenario,
since the ordered state lowers the interaction energy at
the cost of increasing the kinetic energy. In Fig. 12(d),
we show the evolution of the momentum distribution of
the conduction band electrons. One can clearly see that
the electrons are more concentrated around the Γ point
compared to Fig. 6(d). Slow oscillations in the density
distributions set in around t = 120, where the polariza-
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FIG. 12. (a)-(c) Comparison of the evolution after strong
resonant excitation with and without phonon bath using
GKBA+s2BA. Panel (a) shows the evolution of the excited
charge, (b) shows the dipole moment, and (c) shows the to-
tal energy (solid line) and the kinetic energy (dashed line).
(d) Evolution of the momentum distribution of the conduc-
tion band electrons using GKBA + s2BA. Here, ωc = 0.2,
g = 0.25, 0.0, Ω = 1.9, E0 = 0.3. The other pulse parameters
are defined in Eq. (32).

tion starts to be enhanced. These oscillations become
less prominent in later times, which suggests the system
approaches a steady state.

Finally, let us comment on a few points. First, we
expect the emergence of the exciton condensation even
in the case of the off-resonant excitation Ω = 3.0 if we
simulate up to long enough times. Since the charges are
excited to higher energy, it requires several scatterings
with phonons for them to relax to the Gamma point.
Second, a similar cooling and resultant condensation of
excitons is expected for other types of el-ph couplings
as long as the coupling does not break the symmetry.
However, if the coupling is not to the total density on

a given site, one cannot ignore the phonon displacement
and the resulting change of the electron energy levels due
to the Ehrenfest term. Since the phonon displacement is
expected to damp and approach some steady value, the
steady state of the electrons will be determined by ĤM ,
taking into account the change of the energy levels due
to the phonon displacement in a self-consistent manner.

IV. SUMMARY AND CONCLUSION

We have studied the fate of excitons in photo-excited
semi-conductors using a spinless two band model in one
dimension and different numerical methods; the tdMF,
the 2BA, the GKBA implemented with 2BA and the
iTEBD method. In the linear response regime at T = 0,
all these methods produce the exact linear response func-
tions. Hence the exciton energies (Eex) can be accurately
measured from the long-lived oscillations in the dipole
moment after a weak excitation. Beyond the linear re-
sponse regime, strong coherent oscillations in the polar-
ization can be induced by resonant excitations. In par-
ticular, peculiar coherent oscillations characterized by a
frequency larger than the semiconductor gap emerges for
a properly chosen excitation strength. This behavior was
also confirmed by the iTEBD simulation. We pointed
out that these oscillations can be understood as a signa-
ture of the transient emergence of a nonequilibrium exci-
tonic condensate,24,25 which can be gradually suppressed
as time evolves by interaction effects beyond mean field.
Although 2BA and GKBA show such a suppression they
underestimate it compared to the iTEBD reference data.
Still, GKBA captures relevant properties of the coherent
oscillations and provides the best agreement with iTEBD
among these approximate methods.

Focusing mainly on the GKBA results, we have closely
analyzed the collective modes (ω∗coh) of the transient
stats after resonant and above-band-gap excitations us-
ing a numerical pump-probe simulation. In the latter
case, Eex(=ω∗coh) is reduced mainly because of the photo-
induced Hartree shift, but the exciton binding energy
remains positive and thus the situation in the photo-
doped state is qualitatively similar to an equilibrium
state with reduced gap. For resonant excitations, ω∗coh
tends to be increased from the equilibrium value of ex-
citon Eeq

ex . When the excitation is weak, Eren
gap − ω∗coh is

still positive. On the other hand, for stronger excita-
tions, it can become negative but the mode induced by
the probe pulse is still well-defined. We revealed the ori-
gin of this characteristic behavior using the RPA-type
expression of the susceptibility and the nonequilibirum
distributions from the GKBA analysis. In particular,
the peculiar mode characterized by the frequency above
the band gap (ω∗coh > Eren

gap) originates from the photo-
induced population inversion accompanied by a moderate
number of excited charges and the sharp accumulation of
electrons (holes) at the edge of the conduction (valence)
band. The energy of this mode is determined by the en-
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ergy up to which the photo-doped band is populated. We
also studied the cooling effect from the electron-phonon
coupling within GKBA. Because of the cooling of excited
carriers, the frequency of the collective mode evolves in
time. We demonstrated that the efficient cooling of ex-
cited carriers and a sufficient amount of photo-doping can
induce the peculiar mode above the band gap even after
above-gap excitations. We also simulated the build-up of
the nonequilibrium exciton condensation in the phonon-
cooled photo-doped state.

In the present study, we focused on a simplified model
to benchmark the reliability of the methods and to ex-
plore potentially interesting phenomena. Our study
shows that GKBA essentially captures the relevant
physics, which enables systematic analyses for extend
systems at a reasonable computational cost. In the fu-
ture, it would be important and interesting to study the
time evolution of excitons and charge distributions using
more realistic models within GKBA. In addition, GKBA
may be also be useful to study the real-time dynamics
associated with the condensation of excitons or exciton
polaritons out of equilibrium. The condensation prob-
lem has so far been mainly addressed with steady-state
formalisms. A more realistic model study would pro-
vide microscopic and detailed insights into the various
nonequilibrium phenomena observed in transition metal
chalcogenides as well as semiconductors in cavities.
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Appendix A: RPA-type analysis in the linear
response regime

For completeness, we provide a proof that the MF
dynamics in the linear response regime is exact in the
present model at T = 0. To this end, we consider the
linear response in terms of the nonequilibrium Green’s
function (GF) formalism.50,56 The electron GF is defined
on the Konstantinov-Perel’ contour (C) as in Eq. (19).
We also introduce the correlation function on the con-
tour as

χµν(t, t′; q) = −i〈TC ρ̂µ,q(t)ρ̂ν,−q(t′)〉
+ i〈ρ̂µ,q(t)〉〈ρ̂ν,−q(t′)〉, (A1)

where µ, ν = 0, 1 and ρ̂µ,q = 1√
N

∑
i e
−iq·ri ρ̂µ,i with

ρµ,i ≡ Ψ̂†iσµΨ̂i and Ψ̂i = [ĉi,c ĉi,v]
T . The retarded

part of this function is the susceptibility (the response
function). At T = 0 in the present model, the state with
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FIG. 13. (a) An example of ladder diagrams for χµν(t, t′; q) in
terms of the Feynman diagram. (b) an example of a ring con-
tribution, which can appear in the diagrams for χµν(t, t′; q).
(c) An example of ladder-type diagrams with crossed interac-
tion lines for χµν(t, t′; q). Double lines with arrows indicates
the full electron Green’s function, while the dashed lines rep-
resent the Coulomb interaction.

the valence band fully occupied (≡ |Φ0〉) is the ground
state when the band gap is sufficiently large. Therefore,

Gcc,k(t, t′) = 0 (for t ≺ t′), Gvv,k(t, t′) = 0 (for t′ ≺ t).
(A2)

Here t ≺ t′ indicates that t′ appears later than t in terms
of the contour ordering. In addition, the single particle
Green’s function within the MF theory is exact at T = 0

in this model, since ĉ†c,k|Φ0〉 and ĉv,k|Φ0〉 are also eigen-

states and the corresponding eigen energies (measured
from the ground state energy) are εc(k) + U + Dc and
−εv(k)−∆v.
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FIG. 14. Time-evolution of the momentum distribution of
the conduction-band electrons (nc(k)) for various indicated
conditions within tdMF.
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FIG. 15. Comparison of the density of conduction band electrons and the polarization among s2BA, 2BA, GKBA+s2BA,
GKBA + 2BA and iTEBD for Ω = 1.9. Panels (a),(b) are for E0 = 0.1 and (c,d) are for E0 = 0.2.

Now we consider the diagrammatic expression for
χµν(t, t′; q) in terms of the full electron Green’s func-
tions. The expression consists of a) the ladder dia-
grams (Fig. 13(a)), b) diagrams which include ring di-
agrams of the type shown in Fig. 13(b), and c) the
ladder-like diagrams, which include at least one cross-
ing of the interaction lines (Fig. 13(c)). However, one
can show that the contributions from b) and c) are zero
at T = 0 in the present model, because of Eq. (A2).
A ring diagram consists of either Gcc(t, t

′) or Gvv(t, t
′),

since Gcv(t, t
′) = Gvc(t, t

′) = 0. When we write the
time of the vertices on the ring as t1(= tN+1), t2, ..tN ,
both ti+1 � ti and ti+1 ≺ ti must appear because of
the periodic boundary condition. Hence, according to
Eq. (A2), the ring contribution should always vanish.
For the ladder-like diagrams, let us write the times of the
vertices in the lower lines as t1, t2, , , tN and those on the
upper lines as t′1, t

′
2, , , t

′
N . The elements of [t1, t2, , , tN ]

and those of [t′1, t
′
2, , , t

′
N ] are identical since the interac-

tion is instantaneous. To get a nonzero value for the
lower part one needs t � t1 � t2 � . . . � tN � t′

or t ≺ t1 ≺ t2 ≺, , ,≺ tN ≺ t′, while a nonzero up-
per part requires t � t′1 � t′2 �, , ,� t′N � t′ or
t ≺ t′1 ≺ t′2 ≺ . . . ≺ t′N ≺ t′. In a ladder with crossed
interaction lines these two conditions cannot be simulta-
neously satisfied, so that the contributions from diagrams
of the type shown in Fig. 13(c) also vanish. Therefore,
only ladder diagrams can give a nonzero contribution to
χµν .

One can show that the summation of all the ladder
diagrams leads to Eq. (13) with Eq. (14), where Gk is the
exact equilibrium Green’s function at T = 0. Hence, the
susceptibility evaluated from the MF dynamics at T = 0
is exact.

Alternatively, one can use the expression of the re-
sponse function following Eq. (24)45,46,50 to show that the
response function obtained by the tdMF, s2BA and 2BA
is exact. The ladder diagrams originate from the func-

tional derivative of the Fock diagram ( δCΣF [G]
δCFex

). Since
the Fock term Eq. 12c is included in all of these methods,
the corresponding susceptibility also includes the ladder
diagrams. On the other hand, the equilibrium Green’s
functions described by these approximations are exact.
(From Eq. (A2), the correlated part of the self-energy
should be zero at T = 0.) Hence the diagrams other than
the ladder diagrams in the susceptibility vanish for the
same reason as discussed above. Therefore, tdMF, s2BA
and 2BA also produce the exact response functions at
T = 0 in this model.

As for the GKBA, ρcc,k = 0, ρvv,k = 1, ρcv,k =

0, ρcv,k = 0 yields Σ</>
corr [G̃] = 0. Hence this is a steady

state solution and the adiabatic switching of the inter-
action leads to this state. When the excitation with
the off-diagonal field (

∑
i,a ĉ

†
i,aĉi,ā) is applied to this

ground state, the linear response in ĉ†i,bĉi,b should be
zero, since the corresponding linear response function

(' 〈ĉ†i,b(t)ĉi,b(t)ĉ
†
i,a(0)ĉi,ā(0)〉) is zero due to the conser-

vation of particles in each orbital. Hence the response
of ρk,cc and ρk,vv against the field starts from O(E2

0).

Therefore, G̃<cc, G̃
>
vv = O(E2

0) and G̃cv, G̃vc = O(E0).

Using these facts and directly evaluating Σ</>
corr [G̃], one

can show that all components in Σcorr behave as O(E2
0).

Hence in the linear response regime, the collision integral
is still zero and the time evolution is the same as in the
MF theory.

Appendix B: Momentum distribution from tdMF

In Fig. 14, we show the momentum distribution of the
conduction-band electrons (nc(k)) evaluated with tdMF.
For the above-gap excitation (Ω = 3.0), the charges are
excited at finite momentum and are stuck there after the
excitation because of the absence of scattering in tdMF.
For the resonant excitation, there emerges some finite
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occupation around k = 0 and k = ±1.0. The occupation
around k = 0 corresponds to the direct excitation, while
that around k = ±1.0 corresponds to absorption of two
photons.

Appendix C: Effects of the exchange term

In Fig. 15, we compare the time-evolutions described
by s2BA, 2BA, GKBA+s2BA, GKBA + 2B and iTEBD
for Ω = 1.9 to see the effect of the exchange term
(Eq. (23)). While there are rather clear effects on the
number of photo-carriers, the inclusion of the exchange
term does not generally lead to a quantitative improve-
ment of the results. As for the effect on the time evo-
lution of the polarization, it seems less prominent and
again there is no clear improvement associated with the
exchange term.
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14 W. Schäfer and M. Wegener, Semiconductor Optics and

Transport Phenomena (Springer Science & Business Me-
dia, 2013).

15 W. Kohn, Phys. Rev. Lett. 19, 439 (1967).
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