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Non-Abelian chiral spin liquid on a simple non-Archimedean lattice
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We extend the scope of Kitaev spin liquids to non-Archimedean lattices. For the pentaheptite lattice, which
results from the proliferation of Stone-Wales defects on the honeycomb lattice, we find an exactly solvable
non-Abelian chiral spin liquid with spontaneous time reversal symmetry breaking due to lattice loops of odd
length. Our findings call for potential extensions of exact results for Kitaev models which are based on reflection
positivity, which is not fulfilled by the pentaheptite lattice. We further elaborate on potential realizations of our

chiral spin liquid proposal in strained a-RuCls.

Since the first proposal’, quantum spin liquids have re-
mained an as fascinating as elusive direction of contemporary
condensed matter research on frustrated magnetism and topo-
logically ordered many-body states. In theory, different ap-
proaches have been developed, many of which were inspired
by cuprate superconductors” or the fractional quantum Hall
effect (FQHE)", but these were limited due to the relative
paucity of exactly solvable models™. A fundamental break-
through was reached by Kitaev in proposing a microscopic
Hamiltonian for quantum spin liquids with an emergent mas-
sive Ising gauge theory”. Instead of just realizing a desired
spin liquid ground state wave function as an exact eigenstate
of a microscopic Hamiltonian, the powerful exact solution of
the Kitaev spin liquid allows for the explicit analysis of any-
onic excitations. Its solution is most elegantly accomplished
by a Majorana representation, where the eigenspectrum sim-
plifies to a free single-Majorana band structure.

The Kitaev models realize both Abelian and non-Abelian
anyons’, spontaneous time reversal symmetry breaking chi-
ral spin liquids’-®, a generalization to Z;, gauge theory’, and
an extension to three-dimensional spin liquids with anyon
metallicity "~ ~. While the non-Abelian anyons in the Kitaev
model are of Ising type, alternative microscopic approaches
to non-Abelian spin liquids have found realizations of SU(2);
anyons in chiral ="' and non-chiral'® spin liquids. The con-
cept of spinon Fermi surface has been previously developed in
the context of Gutzwiller projections on fermionic mean field
states' . The exact solvability of the Kitaev models, however,
renders all these features accessible to an unprecedented de-
gree, and as such promises a more concise connection to ob-
servable quantities’ and candidate materials™'~

In this work, we extend the Kitaev paradigm to non-
Archimedean lattices. Lattices can be classified by the sym-
metry of sites and bonds. Archimedean lattices are formed by
regular polygons where each lattice vertex is surrounded by
the same sequence of polygons. This implies the equivalence
of all sites, but not necessarily of all bonds. Conversely, for
lattices of the type including the Lieb lattice™", the symmetry-
equivalence of all bonds does not imply the equivalence of
sites. In a non-Archimedean lattice, neither all sites nor all
bonds are equivalent. As a prototypical example to which we

particularize in the following, pentaheptite (Fig. 1 (a)) exhibits
irregular pentagons and heptagons as well as two types of ver-
tices with (5',72) and (52, 7!) configuration, respectively. In
this notation a™, the lattice is characterized by a list of the
number of edges a and the multiplicity m of polygons that
surround each inequivalent vertex. Pentaheptite can be
thought of as originating from the honeycomb (63) lattice by
the proliferation of Stone-Wales defects. There, a pair of hon-
eycomb bonded vertices change their connectivity as they ro-
tate by 90 degrees with respect to the midpoint of their bond.
The Stone-Wales defect proliferation transforms four contin-
gent hexagons into two heptagons and two pentagons. Pen-
taheptite has three-colorable bonds as the honeycomb lattice,
and thus lends itself to an exact solution of the Kitaev model,
albeit not being three-colorable by faces.

Strain engineering of pentaheptite lattice in a-RuCly; —
We perform first principle calculations of the candidate Ki-
taev honeycomb material a-RuCl; under uniaxial strain (see
Supplemental Material [29] and Ref.[30-34] therein for more
details). We find that under sufficiently strong tensile or
compressive strain a configuration where the Ru atoms ar-
range themselves in a pentaheptite lattice becomes favorable
(see Fig. 1 (d)). This result motivates our choice to extend
the exactly solvable Kitaev model to non-Archimedean lat-
tices. Moderate strain in a-RuCl; has been shown to enhance
magnetic Kitaev interactions It remains an open ques-
tion whether the geometric frustration introduced by stronger
strain” is detrimental to the directional Kitaev exchange.

Kitaev pentaheptite model — We consider a spin-1/2 degree
of freedom on each pentaheptite site. The unit cell shown in
Fig. 1 (a) contains eight sites and is spanned by the vectors
e1 = (V/3a,3a) and e; = (v/3a, —3a). We set the nearest-
neighbor distance a of the underlying honeycomb lattice to
unity. The Kitaev Hamiltonian reads

H=-J, Y olop—J, Y olol —J. > oioi, (1)

x-type y-type z-type

where 07"%"% denotes the Pauli matrices acting on site j, the
sums run over distinct sets of bonds connecting nearest neigh-

bor sites j and £, and J; , . € R. Which bonds contribute to
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FIG. 1. (Color online) (a) pentaheptite lattice with a unit cell high-
lighted in light yellow and the lattice vectors e; and e2. Bond col-
ors highlight the type of spin-spin coupling across a bond o7 oy,
a = z,y, z (violet for z, orange for y and green for ). (b),(c) site
labels for the definition of plaquette operators in (2). (d) Energy per
Ru atoms for a-RuCl; under strain with respect to the energy of the
honeycomb configuration at ¥ = 120°. In red for a honeycomb lat-
tice, in blue for a Stone-Wales defect. The strain changes the angle 1
between the lattice vectors and the Stone-Wales structure is preferred
at ¥ < 105° and ¥ > 135°.

each sum is shown in Fig. 1 (a). Each heptagon and pentagon
of the lattice is associated with a conserved quantity of (1)
given by

Wien = K12 K23 K34 Ky5K51

2
Whep = K12 K23 K34 K45 K56 K7 K71

where K;; = oj*cf for sites 7 and j connected by a bond of
type @ = z,y, 2. The spin operators act on the sites around
each pentagon and heptagon according to the site labels in
Fig. 1 (b) and (c), respectively. The conserved quantities for
the pentagons and heptagons that relate to those shown in
Fig. 1 (b) and (c) via mirror reflection are defined analogously.
All Wpe, and Whep commute with each other and the Hamil-
tonian (1), which can thus be diagonalized in each eigenspace
of these operators (“flux sector”) separately.

Importantly, in contrast to the Kitaev honeycomb case,
time-reversal 7' commutes with the plaquette operators W; but
flips their eigenvalues. Applying T to the equation W |¢p) =
wy |9), one gets W, T |¢p) = w;T |). The reason is that the
elementary loops in the pentaheptite lattice are of odd length
and have imaginary eigenvalues +i. This implies spontaneous
time reversal symmetry breaking. In particular, one needs
to specify the direction followed around the plaquette and in
definition (2) we choose a counterclockwise convention. A
similar situation is found on the decorated honeycomb lattice

(3,122) of the Kitaev-Yao-Kivelson (KYK) model’. In our
case, however, all elementary loops are of odd length.

With the conserved plaquette quantities identified, one can
map the system to noninteracting Majorana fermions in each
flux sector by following Kitaev’s procedure’: we replace each
spin (site j) by four Majorana fermions c;, b?‘, a =z, 2,
and restrict the Hilbert space to that of even fermion parity on
each site”. The resulting Hamiltonian takes the form

i
H = Z ZAjijCk7 (3)
(k)

where the sum runs over nearest-neighbor sites and A, =
2J o, uji if sites j and k are connected by an « link, o 4 €
{2,y,2}. The Majorana bilinears u;, = ib;’*b,”* commute
with each other and the Hamiltonian. As Hermitian operators
that square to 1, we can replace them by their eigenvalues +1.
Their eigenvalues are related to those of W, via

Wpen = (_i)5 H Ujk, €]

(jk)€pen

where the product runs over all bonds that form a given pen-
tagon. The analogous equation holds for Whe, with the prefac-
tor (—i)7. Thus, while the eigenvalue of u, on a given bond is
gauge variant, the product of eigenvalues around a closed loop
is a gauge invariant Zy flux. Note that the order in the prod-
uct of Eq. (4) requires to fix a positive direction for the bond
operators ;- . According to our convention, the configura-
tion with all the u;; with positive eigenvalues corresponds to
heptagonal (pentagonal) plaquettes with eigenvalue +i (—1i).

Identifying the ground state flux sector — For each flux sec-
tor, the ground state energy of Eq. (3) can be determined.
A powerful result by Lieb’’, based on reflection positivity,
assures that if a Kitaev-type spin model possesses reflection
symmetry such that the plane of reflection does not contain
any lattice site, a ground state is always in the flux free sector.
The Kitaev model on the pentaheptite lattice is particular in
that it does not have such a mirror symmetry.

From our flux sector analysis, we conjecture that even for
Eq. (1), the ground state is in the flux free sector, i.e., the sec-
tor where all u;; have positive eigenvalues according to the
chosen convention. Numerical evidence along this line has
been provided for other systems lacking reflection positivity,
while a rigorous result is missing™°. Fixing J, = J, = J, =
1 without loss of generality, we find the following: (i) For a
cluster of 2 x 2 unit cells, the energy computed for all vortex
configurations™” singles out the vortex-free sector with energy
—3.1044 per unit cell and an excitation gap of 0.0106. The
first excited sector is a cluster of 7 vortices in half of the pla-
quettes as displayed in Fig. 2 (b). This first excited state is
particularly affected by finite-size effects, while we conjec-
ture that the first excited state in larger samples is realized
by a single pair of vortices close to each other.”” (ii) Upon
increasing system size, the energy of the vortex-free config-
uration extrapolates to —3.0971 in the thermodynamic limit.
(iii) The energy cost of nucleating a pair of vortices tends to
a nonzero constant with increasing separation, indicating that
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FIG. 2. (a) Phase diagram of the vortex-free sector of Hamilto-
nian (3). Phases A; and Az are topologically equivalent and realize
the Abelian Z- topological order. Phase B realizes the non-Abelian
Ising topological order. (b) Flux configuration of lowest excited state
for a system on the torus Le; X Ley with L = 2. Colored pla-
quettes have flux 7. (c) Energy cost per vortex for a pair of vor-
tices as a function of their separation on a torus with L = 10 and
J. = Jy = J. = J. For the green curve, vortices are in the pen-
tagons. Vortices in heptagons are shown in orange. For the violet
curve, one vortex is in a heptagon and the other in a pentagon.

it is not energetically favorable to nucleate isolated vortices
[Fig. 2 (c)]. Based on this numerical evidence, we consider
the vortex-free sector for our subsequent analysis of the pen-
taheptite Kitaev spectrum.

Phase diagram — The state with all Wyep = +i, Wpep = —i
and that with Wy, = —i, Wpen = +i are degenerate and
related by time-reversal symmetry. Thus, in the vortex-free
sector, the system spontaneously breaks time-reversal sym-
metry. Without loss of generality, we discuss the phases for
Jz,y,= > 0, as the sign of the couplings is irrelevant: A change
in the sign of .J,, or J, can be reabsorbed by changing the sign
of an even number of u;;, per plaquette without adding vor-
tices. At the same time, JJ, < 0 can be mapped to a configu-
ration with J, > 0 and an odd number of u;;’s per plaquette
with flipped signs. This move adds a vortex in each plaquette,
sending each configuration to its time reversed partner, and
does not affect its energy

As shown in the ternary phase diagram Fig. 2 (a), we find
three gapped phases, which are separated by first-order phase
transitions~ at the phase boundaries given by

J2 =T V20,0, + T, (5)

where the gap in the Majorna single particle spectrum closes.
Phases A; and A, are conveniently understood in a limit
where one of the couplings J,, Jy, or J is much larger than

the others. This is a good starting point for a perturbation
theory in the Majorana fermion representation”". One finds
that only non-contractible loops give a flux-dependent correc-
tion to the energy. In particular, a loop with n weak bonds
of strength J gives a correction of order J". Moreover, loops
of odd length do not give any shift in energy as their contri-
bution is cancelled by their time reversal partners. Assume
J. > Jz,Jy in A;. The first non-trivial correction is given
by the loops of length 10 involving adjacent pentagonal and
heptagonal plaquettes. The Hamiltonian in sixth order pertur-
bation theory reads

6
Hffff) = const. — 28

4
JEIZ TR
A A

i ¢ > WpenWhep . (6)

In Ay, assume J, > J,,J, without loss of generality as the
model is symmetric under J, <+ Jy,. The first non trivial con-
tribution arises in fourth order perturbation theory from the
loops of length 8 involving two pentagons. This correction
does not provide information on the energy cost of vortices in
the heptagonal plaquettes. This enters in sixth order pertur-
bation theory via the loops of length 10 enclosing a pentagon
and a heptagon. The perturbative Hamiltonian up to sixth or-
der for the phase As is:

6 5J3 7J2J4
HLY = const. + Wwpen Woen' — WWpenWhep -

(N
From (6) and (7), we see that both in A; and in A5 the vortex
sector is gapped and the ground state is in the flux-free sector,
i.e., Whep = +iand Wy = —i. To study the vortex exci-
tations, consider the phase A; in the limit J, > J;,J,. A
pair of vortices can be created in two heptagonal plaquettes or
in two pentagonal ones. The energy of these vortices shows
little dependence on their separation. On the other hand, a sin-
gle pair of vortices in a heptagon and a pentagon changes the
fermionic parity and it is thus unphysical. These vortices do
not carry unpaired Majorana modes. Similar results hold for
the A5 phase. These observations, together with the four-fold
ground state degeneracy, reproduce the fusion rules and the
topological degeneracy of Zs topological order” and support
the claim that these phases realize the same topological order
as the same limit of Kitaev models on Archimedean lattices.
Phase B, which also contains the isotropic point J, = J, =
J, is the chiral non-Abelian spin liquid. Our numerical stud-
ies suggest that both the vortex sector and the fermionic sec-
tor of this phase are gapped (see Supplemental Material and
Fig. 2 (¢)). Hence, vortices have well defined statistics. This
can be entirely determined by the Chern number C' associ-
ated to the Majorana spectrum according to the sixteen-fold
way for Majorana fermions in a Zy background gauge field”.
We find™ that the spectral gap at half filling has |C| = 1.
An odd Chern number is linked to non-Abelian statistics of
the vortex excitation which carries an unpaired Majorana zero
mode (MZM). In the presence of well isolated vortices, these
MZMs can be resolved already via exact diagonalization. A
pair of MZMs {; ,v;} can be used to construct a non-local
fermionic degree of freedom a = 1/2(~y; + i7;) with an asso-
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FIG. 3. (a) Boundary spectrum for a ribbon with open boundary con-
ditions along e; and periodic along ez, with J, = J, = J. = J.
The ribbon is composed of 50 unit cells along e;. The Chern num-
bers of the three gaps are C' = —1,+1, —1 from bottom to top.
Modes localized at one edge are plotted in green and those localized
at the other edge in orange. The inset shows the edge terminations
of the ribbon with respective colors. (b) Non-Abelian chiral spin lig-
uid (phase B) arising from weakly coupled spin chains. The Kitaev
pentaheptite model can be deformed to an array of spin chains with
alternating 0”-0” and 0*-0* coupling that are weakly coupled via
oY-0Y interactions (orange lines). The dashed lines represent the o¥-
oY interactions for the coupled wire construction of the honeycomb
lattice.

ciated two dimensional Fock space, such that a system of iso-
lated 2n vortices possess a topological degeneracy 2". Tak-
ing into account the non-contractible loops on the torus and
imposing fermionic parity conservation, the topological de-
generacy for 2n vortices in the B phase is 2"*!. Therefore,
the chiral non-Abelian spin liquid of the B phase is linked to
Ising field theory. It is the same phase that can be induced
by a magnetic field in Kitaev’s model on the honeycomb lat-
tice, albeit in this case at the cost of exact solvability”. Here,
it is accompanied by a spontaneous breaking of time-reversal
symmetry (by choosing all fluxes to be 0 or ), as it is the
case for the KYK model in Ref. 7. Other possible realizations
of this phase include the v = 5/2 FQHE"' and 2D topolog-
ical superconductors’”. The exact solubility of the model in
the B phase offers the opportunity to study its chiral topologi-
cal edge states for a geometry with open boundary conditions,
as presented in Fig. 3 (a). The boundary theory of the Ising
topological order is a single chiral Majorana fermion mode, in
accordance with |C| = 1.

Coupled wire limit — The limit J, = J, > J,, is partic-
ularly interesting to study the gapped non-Abelian chiral spin
liquid phase. In this limit, (1) can be viewed as a collection of

critical one-dimensional Ising chains with alternating x- and
z-type terms (see Fig. 3 (b)) that are weakly coupled with y-
type terms™ . The same limit can be considered for the orig-
inal Kitaev honeycomb model, which leads to a brick-wall lat-
tice of weakly coupled chains. Thus, by merely changing the
geometry of how the chains are connected, one can go from
the Abelian Kitaev honeycomb model to a non-Abelian Kitaev
model. This represents one of the main advantages of the pen-
taheptite lattice over the KYK model. In fact, the latter can-
not be obtained by a simple coupled wire construction, since
in the non-Abelian limit J' < J (see Ref. 7), it consists of
disconnected triangles. Recent ideas using Majorana-fermion
based “topological hardware” offer a promising route toward
realizing topologically ordered spin models (the “topological
software”) .

Extensions to 3D— Non-Archimedean lattices in three di-
mensions are abundant and go beyond the classification stud-
ied in Refs. and It is interesting to notice how the
pentaheptite lattice has a natural 3D extension in a three-
coordinated lattice with elementary loops of odd length, e.g.,
the (9, 3)a lattice''. As such, it is amenable to an exact solu-
tion of the Kitaev model and spontaneously breaks time rever-
sal symmetry, as the pentaheptite lattice in 2D.

The (9,3)a lattice has so far been understood mainly in
terms of stacked honeycomb layers via mid-bond sites. It
can, however, alternatively be obtained from the pentahep-
tite lattice by replacing the bonds shared by a pair of hep-
tagons along e; — eg with triangular spirals. The fact that the
non-Archimedean 2D lattice studied here can originate from
a simpler Archimedean 3D lattice may pave the way to can-
didate materials for this model which have not been consid-
ered previously, and stresses that non-Archimedean systems
may generically arise from the dimensional reduction of an
Archimedean parent lattice.

Summary — We have generalized the Kitaev spin liquid
paradigm to non-Archimedean lattices, and find the Kitaev
pentaheptite model to host an Ising-type non-Abelian chiral
spin liquid. Towards a possible realization of this state of
matter, we find that the Kitaev honeycomb material a-RuCl;
forms the pentaheptite lattice under uniaxial strain. A future
challenge will be to accomplish this experimentally, e.g., by
substrate engineering; and, from a complementary theoreti-
cal point of view, to provide a microscopic derivation of the
magnetic exchange interactions in the modified pentaheptite
structure. More broadly, while there has been some system-
atic work on frustrated magnetism on Archimedean lattices™,
a comparable effort on both Lieb-type and non-Archimedean
lattices is still lacking, and we hope that our work will moti-
vate such studies.
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Physical subspace projection

The states obtained in the Majorana representation are projected to the physical subspace formed by |¢)s that satisfy D, [¢) =
|4) for each site index ¢, where D; = b¥bYbZ¢;. The projector on the physical subspace can be written as:
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where IV is the number of unit cells in the system. As highlighted in Ref. |, unphysical states can likewise be characterized

by the positive eigenvalue of the operator Hfivl D;, which is more convenient to compute. Restricting our attention to physical
states, each configuration of the system with periodic boundary conditions is entirely characterized by the eigenvalues of the
elementary plaquette operators and two additional numbers (¢, , ¢, ). These are two global Z, fluxes computed along a contour
that crosses the whole sample along x and y, respectively.

DFT calculations of a-RuCl;

The structural relaxation and total-energy calculations of a-RuCl; under uniaxial strain was performed within the framework
of density functional theory (DFT) with the scalar-relativistic approximation. The calculation is done using the VASP code”
employing the projector-augmented wave method (PAW)™” and the Perdew, Burke, and Ernzerhof generalized-gradient approx-
imation (GGA-PBE)" for the exchange-correlation functional. We start from the honeycomb lattice of a-RuCl; monolayer with
equilibrium lattice parameter, and then change the angle 9 between the unit cell vectors, simultaneously adjusting the lattice
parameter to keep the surface of the 2D unit cell fixed. For each value of ¢, all atoms are relaxed to their equilibrium positions
inside the unit cell, yielding the minimal total energy. Further, we take a 2 x 2 supercell to introduce one Stone-Wales (SW)
defect and relax the structure for different values of the stretching angles 1, in the same way as for the honeycomb lattice.

The resulting total energies are shown in Fig. 1 (a) of the Main Text. One can see that at ¥y = 120° the honeycomb lattice is
energetically preferred over the Stone-Wales structure. We take the minimum energy of the honeycomb structure as a reference
point for Fig. 1 (a) of the Main Text. As we change the angle 9 from 120°, the energy sharply increases. On the other hand, the
energy of the SW structure has a weaker dependence on the angle, and thus becomes energetically preferred at ¥ < 105° and
¥ > 135°. Moreover, the equilibrium angle for this structure is around 102°, which gives a hope for an experimental realization.
The atomic structures for 9 = 136° and ¥ = 96° are shown in Fig. S4 (a) and (b), respectively.

Under sufficient strain, the pentaheptite lattice studied in this work is favorable. Although the DFT calculations have been
performed on the candidate Kitaev material a-RuCls, it is not obvious whether Kitaev-like exchanges continue to be relevant.
The number of Ru atoms and octahedral Cl cages surrounding them is preserved during the distortion. The odd loops, how-
ever, introduce frustration in the structure and the octahedral cages cannot always share one edge. This can be appreciated in
Fig. S4 (b), where the two octahedral cages in the distorted bond get separated. The determination of the extent to which this
frustration is detrimental to the directional Kitaev exchange goes beyond the scope of this work.

Convention for bond orientation

Majorana operators satisfy the anticommutation relations {b%, bjo‘} = 0 for ¢ # j. Thus, the Majorana bilinears u;;, = ibj-” * b:j *
are odd under index permutation: ;3 = —uy;. The order in the product of Eq.(4) of Main Text forces us to choose an arbitrary
convention for the orientation of the bonds. The convention adopted throughout this work is presented in Fig. S5, where the
u,, are taken positive in the arrow’s direction. Note how, in accordance with Eq.(2) of Main Text, each loop contains an even
number of bonds directed clockwise. With this convention, the plaquette operators defined in Eq. (2) of Main Text ensure that
the composition law for fluxes holds’: Wi o = W1 Wo.



(a) (b)
Y08 _JO
o
QO & ° O - e et
°o._. V4 ¥4 ~ AN
10 YO ) < @ o -
3 . c”°°c°0>°05
(4] oF {018 () ° P v i °
° 0 Lo poy Lo ®
o o0 () <o { o Lo | P,
40 -y °° Oo" °° o"’o"“
<0 0Fr 40 o ¢ v I g vs
VA 9 ON
10 JOoFy ) coc o
Y u"o"coo’ooa
QO ¢+ ¢ Q- o oo
<08
104 (O

FIG. S4. Crystal structure of the Kitaev material o-RuCl; under strain. (a) Angle between lattice vectors 9 = 136°. (b) Angle between lattice
vectors ¥ = 96°.

FIG. S5. Unit cell with arrows indicating the positive orientation of the bilinears ;. Bond colors highlight the type of spin-spin coupling
across a bond ooy, o = x, ¥y, z (violet for z, orange for y and green for x).

Effects of the couplings sign

As argued in the Main Text, the sign of the couplings has no effects on the energy of the system. A change in the sign of .J,, or
Jy can be reabsorbed changing the sign of an even number of w1, leaving the eigenvalues of W, unchanged and without exiting
the flux sector. At the same time, the model with a negative .J, can be mapped to a configuration with a positive coupling and an
odd number of u;s with flipped signs per plaquette. This maps each flux sector to its time reversal partner and does not change
the energy.

A change of sign can however affect other quantities. For example, changing the sign of J, changes the sign of the Chern
number in each gap of the spectrum. In fact, the time reversal operation that absorbs the change J, — —J, flips the sign of the
Chern number. In Fig. S6, we show how the same system with different signs of .J, has edge modes propagating in opposite
directions.

Majorana Fermi surface

The free-fermions tight-binding model on a pentaheptite lattice has a metallic character. The Fermi surface at half filling is
shown in Fig. S7 (a). On the other hand, in the zero flux sector of the Kitaev model, the single particle Majorana spectrum is
gapped. In this section, we do not deal with the full many-body problem. Rather we study the band dispersion of free Majorana
fermions moving in a static background field and relax the constraint of conserved fermionic parity. One may wonder whether
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FIG. S6. Boundary spectrum of the flux free sector for a ribbon with open boundary conditions along e; and periodic along ez, with
Jz = Jy = |J:| = J. The ribbon is composed of 50 unit cells along e;. In orange the modes located on the edge with normal +e; and in
green edge modes located on the opposite edge. (a) J, > 0 (as in the Main Text), the Chern numbers of the three gaps are C = —1,+1, —1
from bottom to top. (b) J. < 0, the Chern numbers of the three gaps are C' = +1, —1, 41 from bottom to top. In the two cases, edge modes

on the same surface propagate in opposite directions.

there are simple configurations of static background Z, fields that close the gap and induce a Majorana Fermi surface. We
answer such curiosity in the affirmative. In particular, the flux configuration that breaks C'y symmetry and preserves the full
lattice translation symmetry, without enlarging the unit cell, achieves this goal. With a 7 flux in a heptagon and a pentagon of
the unit cell, the spectrum develops a Majorana Fermi surface, as shown in Fig. S7 (b).
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FIG. S7. Fermi surface in the first Brillouin zone. The plot shows the minimum of the absolute value of the eigenvalues in the first Brillouin
zone of the pentaheptite lattice and the line of zero energy defines the Fermi surface. (a) Free-Fermions. (b) Free-Majoranas in the presence of
« flux in a pentagon and a heptagon of the unit cell. In both cases J, = Jy, = J, = J.

Perturbation theory in the Ay and Ay phases

Phases A; and A, are conveniently understood in a limit where one of the couplings J,;, .J,;, or J is much larger than the others.
This is a good starting point for a perturbation theory in the Majorana fermion representation. Compared to the Rayleigh-
Schrodinger perturbation theory for spins, the same analysis in the fermionic representation can be formulated in the Feynman
diagrams language’. This results in few simple diagrammatic rules. For sake of concreteness, we consider the case J, >>
Jr = Jy and present the rules in this limit. (i) Construct all possible closed paths involving weak and strong bonds. (ii)
Compute the amplitude of the path. Each weak bond ij contributes a factor 2.J,u;;. Each strong bond contributes a factor
2J.ui;/ (w? 4 (2J.)?). Each strong bond attached to the path with only one site gives a factor w/ (w? + (2J.)%). Give an
extra factor 1/2 and integrate over the whole frequency range —oo < w < +oo0. (iii) Sum over all possible paths considering
the reverse of a non-contractible path as a different one.

Few observations can be readily drawn from these rules. Self-retracting paths gives energy contributions that are flux inde-
pendent. In fact, each bond ij appears twice giving a constant contribution: u;;u;; = —1. Non-trivial contributions are given
by non-contractible loops. Among those, only the even length ones contribute. In fact, since u;; = —u;;, loops of odd length
followed in opposite directions result in opposite sign contributions that cancel each other. A closed loop with n weak bonds
will give a contribution of order J?. The amplitude of a path of length ¢ is a positive number times (4i)*W,. We now focus our
attention on non-self-retracting loops that give the first non-trivial corrections in the perturbative Hamiltonians for the A; and

A phases of the Kitaev model on the pentaheptite lattice.



For the A, phase, we consider the limit J, > J,, J,, and all positive couplings. The lowest order flux-dependent contribution
is given by the loops of length 10 enclosing a pentagon and a heptagon. There are two inequivalent loops of this type per unit
cell, each with double multiplicity (see Fig. S8). The contribution from the loop of Fig. S8 (a) is:

dw 1 9 w w (2J,)4 B 7J4J2
m2x 2/ on 2(2‘] )'@7y) w? 4 (21.)% w? + (2J2)% (w2 + (2.)2)" WsWr = 1285 Tas73 VAW 59

where a factor 2 comes from the same loop traversed in opposite direction and another factor 2 from the presence of two different
loops of this type per unit cell. Here we use W19 = Wi5W5, according to our definition of the plaquette operators (see Main
Text). The contribution from the similar loop of Fig. S8 (b) reads:

w 2J, 4 7J2J4
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w
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dw 1
-2x2 2J,)2(2J,)*
<2 [ S2Renre)
Summing all these terms with the correct multiplicity, we get the sixth order effective Hamiltonian for the A; phase:
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A similar analysis can be performed for the phase A; in the limit .J, > J;, J,. The lowest order non-contractible loop is of
length 8 and encloses two pentagons, Fig. S8 (d). It gives a fourth order contribution:

dw 1 (2J,)* 5J4
2 D ) R et — y = T , S12
/ 222 w2+ et = gl (12

where the factor 2 comes from the two orientations of the loop and we used W = W5 Ws.. Eq. (S12) gives the dominant energy
cost for an isolated vortex in a pentagonal plaquette. It does not, however, determine the energy cost of a vortex in a heptagonal
plaquette. Hence, we need to consider sixth order contributions given by loops of length 10 enclosing a pentagon and a heptagon
(see Fig. S8 (c)). The contribution of such loops is given by:

® dwl w w (2J, )4 7J2J4
—2x2 2 2J,)* y - 1
. / om 3 (2T (2:) W2+ (2J,)2 W2 + (2J,)2 (w2+(2Jy)2)4W5W7 T 12875 Tosgs VoW, B13)

similarly to Eq. (S9). Summing all contributions gives the sixth order perturbative Hamiltonian for the A, phase:
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Note that in the vortex-free sector all heptagonal plaquettes have eigenvalue +i and the pentagonal ones —i. Hence, in sixth
order perturbation theory, isolated vortices have a finite energy cost over the ground state energy in phase A; and As.

Phase transition between A and B phases

The Kitaev model on the pentaheptite lattice realizes two different types of spin liquids. In the phase B, one finds a non-Abelian
chiral spin liquid. In phases A; and As, the ground state of the model is an Abelian spin liquid. These phases are separated by
the phase boundaries defined in Eq.(5) of the main text. There, the gap in the single particle Majorana spectrum closes, while
the flux-gap remains open.

Tuning J, as shown in Fig. S9(a), one can explore the whole phase diagram and compute the energy of the flux-free sector.
We perform such analysis for a finite system on a torus with L = 10, cf. Fig. S9(b). As it can be seen in Fig. S9(c), the derivative
of the ground state energy with respect to .J, shows a discontinuity when crossing from the A, phase to the B one and from
B to A;. The location of the jump in the first derivative is affected by finite size effects but occurs at J, values close to the
theoretically predicted J, = 0.277 and J, = 0.480. This observation proves that the phase transitions at the phase boundaries
of Eq.5 of the main text are topological first-order phase transitions.

Topological phases degeneracy

We checked the degeneracies of the different topological phases in the vortex-free sector. Only physical state with fixed fermionic
parity have been considered. In the A; and A, phases, we find a four-fold degeneracy of the ground state on a torus. This is con-
sistent with the Abelian topological phase of Zs topological order. The four different ground states (GS) are fully characterized



(b) (d)

FIG. S8. Non-self-retracting paths on the pentaheptite lattice. The thickness of the bond is proportional to the coupling strength. Bond colors
highlight the type of spin-spin coupling across a bond oo, &« = x, y, z (violet for z, orange for  and green for x). (a)—(b) Inequivalent loops
of length 10 that give the sixth order perturbation Hamiltonian for the A; phase. (c) Loop of length 10 that gives the sixth order contribution
to the perturbative Hamiltonian in the phase A». (d) Loop of length 8 that gives the flux-dependent fourth order contribution.
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FIG. S9. Phase transitions between A and B phases. (a) Phase diagram as in Fig.2(a) of the main text. In violet the region of phase B and
in orange of phases A1 and As. The black dashed line indicates the coupling values considered to study the phase transitions. (b) Ground
state energy for a sample on a torus with L = 10 as a function of J.. The other coupling constants are J, = J, = (1 — J.)/2. (c) First
derivative of the ground state energy with respect to the coupling .J,. The lower inset shows a zoom-in around the transition between As and
B. The theoretical value J, = 0.277 at which the phase transition should occur is highlighted by a black dashed line. Finite size effects shift
the discontinuity of the first derivative associated to the first-order phase transition. The upper inset shows a similar zoom-in for the A;-B
transition, predicted to occur at J, = 0.480.

by the Zo global fluxes (¢ , ¢, ) around the handles of the torus. In the non-Abelian phase B, the GS degeneracy is threefold,
compatible with an Ising topological field theory. One of the flux-free sectors of the non-Abelian phase does not belong to the
physical subspace (with our convention, the state (0, 0) does not belong to the physical subspace).

It is important to stress how the exact GS degeneracy is present only in the thermodynamic limit. For example, on the torus
Le; x Le, the three GS of the non-Abelian phase have considerably different energies for L = 2. For J, = J, = J, = J, the



energy per unit cell in units of J is:
* (1,0): -3.1044
* (0,1): -3.1044
* (1,1): -3.0892

The first excited state has lower energy than the vortex-free configuration (1,1). However, for L = 10 the system is already
large enough to show a convergence of the energies of the voretx-free states:

* (1,0): -3.097073
« (0,1): -3.097073
e (1,1): -3.097072

Vortex energies

We studied in further details the vortex sector in the B phase. The nucleation of a well isolated vortex costs a non-zero amount
of energy. However, a pair of vortices close to each others has little energy cost and it suggests the existence of an attractive
force between vortices that could favor the formation of clusters. We study the energy cost of clusters on a torus Le; X Les
with L = 10 and J, = J, = J, = J. In Fig. S10 (b) we see how the energy cost per vortex decreases while the cluster size
increases. This seems to point to the existence of a GS different from the vortex-free one. However, Fig. S10 (a) shows the finite
energy gap between the vortex-free sector and the configuration with a vortex cluster. The decrease in energy cost per single
vortex is not enough to compensate the increasing number of vortices in the cluster. Therefore, the formation of large clusters is
not favored. As a last evidence, in Fig. S10 (c), we calculate the cost per unit length of the domain wall between the cluster and
the rest of the system. This quantity fluctuates around a constant non-zero value and suggests the existence of a finite energy
cost to create a domain wall. All these results seem to validate the assumption of the vortex-free flux sector as ground state.

Finally, we checked wether “stripy-like” states as the first excited states of the sample with L = 2 (cf. Fig. 2(c) of main text)
are favorable in larger samples. When L = 10 the energy cost of two vortices in neighboring pentagonal plaquettes is 0.0852.
A single stripe crossing the sample as in Fig. 2(c) of main text has a cost of 0.4728. We further checked that the energy cost of a
larger stipe in the middle of the sample that creates excitation in half of the sample’s plaquettes is 0.5779. Finally a configuration
with alternating single stripes excitation costs 1.9993. These observations suggest that in larger samples the first excited state is
realized a by a pair of neighboring fluxes. The case of a smaller sample L = 2 is with this regard special as it is mainly affected
by finite size effects. These are particularly dramatic for J, > J, , J,. When this condition is met, the ground state of the system
with L = 2 is in the flux configuration of Fig. 2(c) of the main text rather than in the vortex-free one. We carefully checked that
such a situation is realized only in the small sample with L = 2 and disappears already for L = 3. Therefore, we stress that
finite size effects are particularly relevant for a small sample L = 2 and should be treated carefully.

Our findings call for potential extensions of exact results for the Kitaev models which are based on reflection positivity, which
is not fulfilled by the pentaheptite lattice.

Edge modes

In Fig. S11 (a) we show the spectrum of a ribbon for the Abelian phase As. There are no chiral Majorana modes crossing the
band gap around zero energy.

The non-Abelian phase B is characterized by |C'| = 1 and a chiral Majorana edge mode crosses the zero energy gap, as shown
in Fig. S6. In Fig. S11 (b), we show the localization of these modes at the boundary of the ribbon.
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FIG. S10. Energy cost for vortex clusters of different sizes. (a) Global energy cost over the vortex-free flux sector as a function of the number
of vortices in the cluster. (b) Energy cost per single vortex as a function of the number of vortices in the cluster. (c) Energy cost for unit length

of cluster’s domain wall.
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FIG. S11. (a) Boundary spectrum of the vortex-free sector in the Abelian phase A for a ribbon with open boundary conditions along e; and
periodic along ez, with J, = 1, J, = J, = 0.1. The ribbon is composed of 50 unit cells along e;. There are no edge modes crossing the zero
energy single-particle gap. (b) Square modulus of the wavefunctions for the edge modes in Fig. 3 (a) of Main Text. The green state is strongly

localized on the edge with normal —e;, while the orange mode is localized on the opposite edge.
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